

Specification Reuse using Data Refinement in Dafny

M. Asif Saleem

Dissertation 2013

Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science

National University of Ireland, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfilment

of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department : Dr Adam Winstanley

Supervisor : Dr. Rosemary Monahan

June 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297015324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby certify that this material, which I now submit for assessment on the program of study
leading to the award of Master of Science in Dependable Software Systems, is entirely my own work
and has not been taken from the work of others save and to the extent that such work has
been cited and acknowledged within the text of my work.

Signed:___________________________ Date:___________________________

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Rosemary Monahan for her keen attention,
guidance and encouragement. I am also thankful for her creative ideas, suggestions and moral
support over the duration of this work. I would also like to extend my gratitude to all of my lecturers
in the university, for their knowledge, skills and support they imparted to me.

Abstract

Data refinement is a technique for transforming system specifications into system implementation
that differs in data types. It gives us the freedom to write specifications in a way that is independent
of its implementation; moreover we can generate multiple implementations without changing the
system specifications, the client does not have to worry about the underlying implementation.
Abstraction Invariant is used to relate the high level abstract specification to its concrete
implementation.

Dafny is a research language developed by Microsoft. Its main focus is data refinement. The
language provides the rich mathematical properties such as sequences, sets and multi-set, along with
functions, predicates, methods and user defined data types. In Dafny the Abstraction Invariant is in
the form of a function, which is added as a pre and post conditions to all of methods and functions.
Given this function one can verify that the code is providing the implementation that satisfies its
specifications even when the specification is defined in term of one data structure and the code is
implemented in term of another data structure. Dafny works with Boogie which is a static program
verifier and the SMT solver Z3. These are the main underlying technologies for verification: Dafny
code is translated in to Boogie from which the verification conditions are generated for Z3 in order
to verify the program.

In this research the programmer over head is identified when replacing one implementation
to another in terms of underlying data structure change while preserving the client specification. The
motivation behind this work is to assist programmers to come up with a quick solution in situations
such as “slow system performance” with new system implementation. Moreover, a semi automatic
tool is developed for transforming one implementation to another without changing the client
specifications. The result is the generation of a semi verified program whose implementation is in
terms of a data structure other than that used in the specifications. The verification can be fully
automatic through the provision of implementation details from the user.

List of Figures:

Figure 1.1: Problem Statement ... 2

Figure 2.1: Client abstract view of specifications (Dafny Syntax) ... 5

Figure 2.2: Spec# counter class .. 6

Figure 2.3: Client abstract view of specifications (Dafny Syntax) ... 7

Figure 2.4: Program Refinement .. 7

Figure 2.5 Data refinement in Spec# ... 12

Figure 2.6: Data refinement in Dafny .. 14

Figure 2.7: Abstract Class .. 15

Figure 2.8: Concrete Class ... 15

Figure 2.9: Code generation in Event-B ... 18

Figure 2.10: Implementation and verification comparison ... 19

Figure 2.11: Effort required-1 .. 21

Figure 2.12: Effort required-2 ... 21

Figure 3.1: Solution ... 22

Figure 3.2: Generic System Design (Specification Reuser) ... 23

Figure 3.3: User Interface .. 24

Figure 3.4: User Interface .. 24

Figure 4.1: Specification Reuser Use Case Diagram ... 27

Figure 4.2 : Block diagram of Specification Reuser .. 28

Figure 6.1: Statistics based on cost drivers .. 39

Figure 6.2: Implementation effort using Specification Reuser .. 40

Figure 6.3 Traditional approach to refinement .. 41

Figure 6.4 Approach based on data structure refinement .. 41

Figure 7.1: Library of data structures .. 43

Table of Contents

1 :-: Introduction ... 1

1.1 The Problem Description ... 1

1.2 Motivation ... 2

1.3 The Goals of this research .. 2

1.4 Contribution of this thesis .. 3

1.5 Thesis overview .. 3

2 :-: Related Work ... 4

2.1 Problem Context .. 4

2.2 Data Abstraction .. 4

2.3 Abstraction in Software Engineering .. 10

2.4 Specifications and Refinement Support .. 11

2.5 Data Refinement Support ... 12

2.6 Two Class approach to data refinement ... 14

2.7 Critical Analysis .. 16

2.8 Refinement and Code generation in Event-B .. 17

2.9 Critical Analysis .. 18

2.10 Programmers overhead ... 19

2.11 Conclusion... 21

3 :-: Solution Design .. 22

3.1 Problem statement ... 22

3.2 Solution Requirements .. 22

3.3 Solution Design .. 23

3.4 Interface Design ... 24

3.5 Conclusion... 24

4 :-: Solution Implementation ... 25

4.1 Design decision... 25

4.2 Tool Implementation ... 25

4.3 Guidelines .. 26

4.4 Specification Reuser ... 27

4.5 Conclusion... 30

5 :-: Proof of Concept .. 31

5.1 Case Study ... 31

5.2 Conclusion... 36

6 :-: Evaluation... 37

6.1 Evaluation and Validation ... 37

6.2 Experimental setup .. 37

6.3 Results .. 39

6.4 Critical Analysis .. 40

6.5 Conclusions ... 42

7 :-: Conclusions... 43

7.1 Summary .. 43

7.2 Achieving our Goals .. 43

7.3 Future work ... 43

Bibliography ... 45

Appendix A: UML Class Diagrams ... 47

A.1: Ideal System: UML Class Diagram .. 47

A.2: Implemented System: UML Class Diagram ... 48

Appendix B: Dafny .. 49

This Page is left intentionally

Introduction

1

1 :-: Introduction

Formal methods [1] are playing a very important role in program verification. These methods
provide techniques where the computer can tell if their own programs are correct and meet its
specifications. Formal methods are equipped with strong mathematical tools such as (logic and
calculi) from where various proofs can be generated; which can be used for the verification of
programs. By incorporating these methods into the system development Lifecycle, we can ensure the
program correctness and can guarantee that the implementation meets its specification. Despite the
difficulty in automating proofs, formal methods have been used in the industry for decades. These
industries include but are not limited to aerospace, transport, banking, telecommunication and
satellites [1].

Formal methods can be applied to any phase of software specially design, development,
verification and writing client specifications. There are many languages and tools for system
development which use formal methods to aid the development; some of them include VDM,
ADT’s, Z, Logic, OCL, JML, Spec# and Dafny. In recent years with the advancement in
specification based languages such as Spec# and interactive verifiers such as SMT solvers [2], B [3]
and SparkAda [4] small to medium size program verification is possible. The verification of safety
critical applications is the main target of the industry such as those that build autopilot systems and
Satellite platforms. Mostly specification based languages build on top of Design by Contract
principles as described by Meyer [5].

Design by Contract illustrates the principle of client and supplier relationship where the client
guarantees that the precondition to be met before executing the system and the supplier in return
guarantees that if the precondition was met then the system terminates in a state which satisfies its
postcondtion. Pre and post conditions are defined as before and after execution of the program.
Modern design by contract languages such as Spec# and Dafny allows its users to write programs
that can be verified by the using an underlying SMT solver, making program verification process very
interactive as the verifier is constantly running in the background and prompting the users after every
written line about the correctness of the program. Boogie [6] a static program verifier is used as an
intermediate layer between the specification language and SMT solver. The program code is first
translated to Boogie code from where the verification conditions that needs to be verified by the
SMT solver are generated.

Dafny (see appendix B) is a specification based language which emphasizes particularly on data
refinement. Data refinement is a technique by using which we can write specification without
worrying about the implementation details. Refinement is achieved by applying an abstraction
invariant that is used to relate specification data (also referred to as abstract) with an implementation
data (also referred to as concrete). High level specification languages such as Dafny gives us the
freedom to refine data without worrying about the underlying refinement calculus by using high level
mathematical constructs such as sets, sequences and multi-sets.

1.1 The Problem Description

Software requirement specification is a technique where a software engineer gathers requirements
about the system to develop and then write down it down in an informal way. Requirements may
include both functional and non-functional. UML is traditionally used for gathering requirements. By
using the theory of formal methods one can write functional requirements in term of logical
specifications which can then be refined to produce the final system which is verified and correct.

Introduction

2

One of the major issues in software systems is the ‘performance degradation’ and users of the
systems are getting delayed in performing their day to day tasks. Fixing such issues need considerable
concentration and time. In many cases software engineers need to think about overall system design
and its underlying data structure. For instance if data structure A is being used in the implementation
and we need to replace it with a data structure B in order to improve the system performance, then
all the system objects who are using data structure A need to be changed to use the data structure B
in order to work with new data structure. This means whole design will be changed and the software
engineer will need to work further with design team to make a new design from the specification.
This will cost the company resources and time. In other situations where we have specifications and
design of the system but the underlying tool or language in which system is supposed to be
implemented does not support the data structure which is recommended in the system design. For
instance data structure A is recommended but due to lack of support for A data structure in the
language or tool we want to generate implementation with B data structure which is supported by the
tool or language. In this project we focus especially on the correctness of software where the data
structure has been modified. We provide the proof of concept tool which translate one
implementation into another while preserving the client specification resulting a semi verified
program. Moreover programmer overhead will be provided for writing a new implementation
manually.

Figure 1.1: Problem Statement

1.2 Motivation

The motivation behind this work is to reuse client specifications by using data structure based
refinement so that implementation can be written independently from its specifications.

1.3 The Goals of this research

The First goal of this research is to provide a proof of concept tool which generates another
implementation that differs in data structure given that the first implementation and an abstraction
function. The second goal is to provide the analysis on programmer overhead while writing new
implementations. The third goal is to propose a generic framework based on data structure
refinement. To achieve these goals we analyze the languages that support data refinement and its
relation with underlying verifiers. We measure the overhead as a side product for manual writing of
implementation by defining a metric. For tool construction two semis verified programs will be taken
with the same specification that differs in underlying data structures. The current implementation

Slow System Performance,
can system perform better
without losing my current
functionality

Introduction

3

and an abstraction invariant that relates current specification and new implementation will be taken
as an input for generating new implementation.

1.4 Contribution of this thesis

This thesis will contribute by improving programmer overhead for writing different implementations
without changing the system specifications. The new implementation will differ in the underlying
data structure with provision of semi static verification1.

This research will provide the starting point for analyzing the automatic generation of
implementations for same client specifications that differs in the data structure. It is achieved by
using the idea of data refinement where one specification can be transformed into different
implementations. Moreover a proof of concept tool will be developed for expressing the idea which
will take a program with one implementation and abstraction invariant for new implementation and
generates the new implementation. The new implementation will be semi verified program from
where programmers can begin to code in order to satisfy the full verification.

1.5 Thesis overview

In this chapter we discussed the motivation of our project and research goals. We have described the
problem statement which we want to solve and the context of our work. In the second chapter we
present an overview of related work and discuss about the general concept of abstraction and
abstraction in specification languages. We analyze the support for writing specifications and verifying
the code and review the support for refinement in different languages with code generation for
Event-B models. We analyze whether the generated code supports the change in data structure and if
it supports than whether the code required changing in specifications.

In chapter 3 we present the design for Ideal generic framework and provide its class diagram.
In following chapter we implement our solution reality that what we have achieved so far with the
help of a case study in chapter 4. In chapter 5 we evaluate our work with the help of tables and
graphs. We provide the critical analysis of our work along with a comparison of our results with the
related work. Finally we summarize our findings in chapter 6 and gives future work in this area.

1 Checking program correctness without executing it

Related Work

4

2 :-: Related Work

In this chapter we discuss about the related work to our problem. We discuss about the data
abstraction and refinement in general and review them in different languages such as Dafny and
Spec#. We assume that readers have some familiarity with the syntax of Dafny (see appendix B)
and Spec# but we will assist them by providing comments for syntax highlighting and their
meanings. We analyze the support for writing specifications and verifying the code. We review the
two class approach to data refinement and assess the verification of this approach with possible
verification issues. We discuss about Event-B [7] refinement and code generation where we discuss
the verification of the generated code and whether there is facility for generating different
implementations that differs in data structures without changing higher level specifications.

2.1 Problem Context

The literature has shown that not much work has done in the area of data structure based
refinement. A step towards this goal was achieved in two class approach where the specification
and implementation can be maintained in two different classes separating the client view from the
supplier2 but this approach is achieving specification reuse by defining new subclasses that will
inherit from the same abstract super class. By using this approach one can plug out one
implementation and plug in another while preserving the specifications unchanged. Our focus is on
Dafny because it follows one class approach to data refinement which is relatively simple as
compares to the two class approach and provides updateable ghost3 variables as abstract data to be
used in the implementation. We will benefit from its native support of data refinement for building
our proof of concept tool in order to achieve the first step towards data structure based data
refinement.

Data refinement is a key concept in program verification. It gives us functional and
executable program that meets its specifications. Monahan [8] has proposed the two class approach
in Spec# [9] for data refinement. The idea behind this approach is to separate the specification
completely from the implementation by using the abstract specification class with a subclass which
inherit from the specified abstract class for implementation. The implementation class overrides all
abstract methods from the abstract class. This approach is not automatic and programmer should
have the knowledge and expertise in Spec# with experience with the underlying verifier in order to
write another implementation. Another approach to data refinement is in Event-B which is
basically a modeling tool that models the system using mathematical properties. The tool has
support for data abstraction and refinement from Event-B machines [10] one can generate the code
for multiple programming languages such as C, C++ and Java. Code generation for Dafny is also
supported from proof obligations in Event-B [11]. We analyze both two class approach and Event-
B code generation with the context of our problem in the below sections.

2.2 Data Abstraction

Data abstraction is one of the object oriented principles also refer to as information hiding where
actual implementation is hidden from the client. The client can only see the abstract view of the
system as shown in Figure 2.1. For example if the client wants a mathematical behavior of a
sequence than the supplier of the sequence can supply the sequence behavior using underlying data

2 We are referring implementer as supplier
3 Specification only variables used in JML [26] and Dafny

Related Work

5

structures such as arrays or link-lists. The client is only concerned about the mathematical behavior
of a sequence where actual implementation is hidden from a client and it has only abstract view of
the system. In this sequence example we are referring sequence as abstract data and underlying data
structure as concrete data.

Data abstraction provides clear separation between client and supplier views. The client
should not have direct access to the fields of a class because if implementation will change in the
future than the abstract view will be changed as well. This situation becomes even worse if an
implementer removes those fields of the class to which client have direct access than the abstract
view of the system will completely vanish. Specification languages such as Spec# and Dafny
provide data abstraction by using ghost and model variables. Dafny uses ghost variables whereas
spec# uses model variables. Dafny has an advantage over model variable that it does not allow
automatic updating of ghost variables whereas Spec# does for model variables.

Class Counter {

var value : int;

constructor Init()

modifies this;

ensures value == 0;

method int getValue() returns (result : int)

ensures result == value;

method Inc()

Modifies this;

Ensures value == old(value) +1;

Method Dec()

Modifies this;

Ensures value == old(value) -1;

}

Abstract View

Client

Figure 2.1: Client abstract view of specifications (Dafny Syntax)

Data abstraction focuses on changing abstract data to concrete data where the data types are same
both in the specification and in the implementation, for example integer ghost and non-ghost
variables. Figure 2.1 shows the specification of a counter class in which it increment and
decrement the value upon calling increment and decrement methods. The ‘value’ is a simple way to
express the class operations to the client. We will take the same specification of the counter
example to model abstraction with model and ghost variables.

2.2.1 Model fields

Model fields are specification only variables that are used to specify the behavior of a class. We
cannot directly assign the values to these variables instead they are like functions of concrete fields
and whenever concrete data is updated; their corresponding model fields are automatically updated.
In program verification with model fields the abstraction relation between abstract and concrete
data is also referred to as ‘representation’. A model field provides an abstract view of a system
where implementation remains private from the client. From an implementation point of view
these fields are easy to implement because of abstract data that is automatically updated and
implementer don’t have to worry about the correctness of the program with respect to
specifications.

A model field as compared to their counterpart’s ghost fields differs in value assignment.
From a client point of view they are same because both are providing data abstraction. Model fields

Related Work

6

have some drawbacks as compare to ghost fields as they are automatically updated. As model fields
are the functions of concrete fields immediate updates of the model fields can cause modularity
problems. Problem: ‘How can a method specification name all variables that a method will modify
without revealing the implementation details’ [8]. The solution to this problem was proposed in a
verification methodology [12] by introducing restricted updates to special statements in the
language. The Methodology introduced ‘satisfies’ as a constraint for applying to all model fields
with boolean expressions of the language. The idea behind is rather than updating model fields
immediately update it whenever an object invariant holds. This ensures the correctness of
abstraction function. On the other hand Spec# somehow not fully adhering the data abstraction
principles because the absence of access modifiers [8]. This means that implementation details can
be seen by the client by consulting ‘satisfies’ clause. Below is an example of a counter which is using
model fields.

class spec_counter{
model int value {
satisfies value == incs – decs && value == getValue();
}

protected int incs;
protected int decs;

public spec_counter()
ensures value == incs-decs; {
decs = 0; incs = 0; }

[Pure] public int getValue()
ensures result == value
{
 return incs-decs; }

public void Inc()
modifies incs;
ensures value = old(value) + 1;
{ this.incs = incs + 1; }

public void Dec()
modifies decs;
ensures value == old(value) -1;
{
 this.decs = decs + 1; }
}

Figure 2.2: Spec# counter class

‘Value’ in this example is a model field of type integer which has concrete data of two variables
‘incs’ and ‘decs’ which are representing the increment and decrement values. Spec# allows both
abstract and concrete data to be in methods specifications that may reveal implementation details as
we can see in the above example. Spec# provides ‘Pure’ methods who do not have any side effects
and they can be used in the specifications. The “old” clause represents the value before and after
method execution.

The client only has an abstract view of the system which is a ‘value’ variable in Figure 2.2.
Underlying two concrete integers are connected to abstract integer value and whenever these two
concrete values updates corresponding abstract value will also update thus achieving data
abstraction. Sometimes we need data abstraction but we cannot use the same data type or
constructs which are in specification because we cannot execute the specifications. Data refinement
gives us the freedom to change data types in implementation about which we will talk later in this
chapter.

2.2.2 Ghost Fields

Ghost variables are also specification only variables same as model variables but they give us
freedom to update them manually thus avoiding problems associated with model variables. Dafny
achieves data abstraction with the help of ghost variables. We take the same example of counter
and demonstrate the data abstraction using ghost variables.

class dafny_counter{
ghost var value: int;
var incs : int;
var decs : int;

function valid():bool
reads this;
{ value == incs – decs;
}

Related Work

7

constructor Init()
modifies this;
ensures valid();
{
incs, decs, value := 0, 0, 0; }

public void Dec()
requires valid();
modifies this;
ensures valid();
ensures value == old(value) -1;
{
decs := decs + 1;
value := value -1 ; }

public int getValue() returns (result : int)
requires valid();
ensures result == value;
{
result := incs – decs; }

public void Inc()
requires valid();
modifies this;
ensures valid();
ensures value == old(value)+1;
{
incs := incs +1;
value := value +1; }

Figure 2.3: Client abstract view of specifications (Dafny Syntax)

Above example is separating the client view from implementation by declaring ‘value’ as a ghost
variable and providing increment and decrement functionality with the help of two concrete
integers where abstract and concrete variables both have the same data types thus achieving data
abstraction. Concept of validity function is same as a model block in Spec# which is defining the
abstraction relation. In Dafny this relation needs to be validated for every method as pre and post
condition for consistency of the system.

2.2.3 Refinement

We usually model the client specifications by using mathematical properties such as set theory and
unbounded sequences. The problem with writing specifications using mathematical properties is
that computers cannot directly execute these specifications. These specifications should be
converted into code for execution. The process of converting high level abstract specifications into
executable code is called refinement. Below the diagram is representing a refinement from high
level specifications into executable program.

High Level

Client Specifications
Refine Program -1

Executable

Program
Refine Program -2 ……..

Figure 2.4: Program Refinement

2.2.4 Data Refinement

Data refinement is a subset of refinement where high level specifications are transformed into
implementation which differs in data types. Formally we can define data refinement as a ‘process of
converting abstract specification into concrete implementation using data type that are different
from specification e.g. specification in term of set and implementation in term of arrays’.

Specifications are typically written using higher level mathematical properties such as sets,
sequences and multi-sets which are all non executable constructs. The need for data refinement
exists for multiple reasons. For instance if we have specifications written in term of sets and let’s
assume that the specification can execute by the computer and we want to extract an element on a
particular location from the set. We cannot perform this operation because set does not have such
property instead we can refine this set to some concrete implementation such as arrays or link list
to perform this operation. Modern languages such as Dafny provide the facility to use abstract data
within the concrete implementation solely for verification purpose.

Related Work

8

Object oriented specification languages such as Dafny and Spec# provides one class-approach to
data refinement where client specification and implementation remains in one class. This approach
has disadvantages. First the implementation is exposed to the client because the client has access to
abstract data. Second disadvantage is that it is difficult to distinguish between abstract and concrete
data within one class because for understanding the logic of the program you have to review all the
code. Another approach is called ‘two class approach’ in which specifications and implementations
are kept in separate abstract and concrete classes where the implementation class extends the
abstract class and override all its abstract methods. This approach provides clear separation
between client and supplier and these two classes are related through abstraction invariant.
Abstraction invariant which is a key component in refinement is placed in the abstract class. An
abstract class consists of three components, abstract data, abstract data invariant, and constructor
where methods specifications are written in term of abstract data. Concrete class has same three
components but in term of concrete data. Monahan [8] has proposed this approach in Spec# for
achieving modular data refinement. This model represents data refinement through inheritance and
preserves the property that the implementation meets its specification. This approach has its own
drawbacks about which we will talk later in this chapter. Below is an example of data refinement
using Z [13] which uses a simple birthday book system that records the name and birthdays of
different people.

Specifications: A system which can record the birthdays of different peoples and can issue the
remainder to people who have birthdays on the same date. Moreover system should able to find
birth date for any particular person.

Above specifications can be written by using mathematical sets. If we analyze the specifications we
can easily judge that we need two sets, one for name and other for corresponding birth dates.

¶NAME := set of all names {Bob, John, Alice, Agatha}
¶DATE := set of all dates {‘12-02-70’, ‘02-12-70’, ‘04-07-70’, ‘04-07-70’}

Where ¶ is representing a set. We require some sort of function or relationship so that we can relate
each name to its corresponding birth date i.e. Bob has a birthday on 12-02-70

ʄ birthday(NAME) = {Bob -> 12-02-70,
 John -> 02-12-70,
 Alice -> 04-07-70,
 John -> 04-07-70}

Let’s introduce one more set ‘present’ where present contains all the names currently in the
systems. Initially system look likes below.

BirthdayBook
¶present : ¶NAME
¶birthday : ¶ ʄ(NAME)DATE
Invariant: present == domain of birthday
Now we can use above information to define different operations.

∆ AddBirthdayday
Input to system
nameʔ : Name
dateʔ : DATE
processing
nameʔ present

birthday := birthday U {nameʔ dateʔ}

present := present U {nameʔ}

Related Work

9

Where ʔ symbol is representing input variable and ∆ is representing a function that can change the
system state. Whenever system changes its state invariant should hold before and after the state.
From the above method we can see that name is added to ‘present’ which is satisfying the invariant.

₪ FindBirthday
input to system
nameʔ : NAME
date! : DATE
processing
nameʔ ϵ present
!date = birthday (nameʔ)

Where ! is representing the output and ₪ indicating that the system state will not change as the
result of operation.

₪ RemindBirthday
Input to system
today_dateʔ : DATE
nameslist! : ¶NAME
processing
nameslist! = { n : present | birthday(n) == today_dateʔ}

The ‘nameslist’ is containing all the names who have birthday days on “today_date”. This set can be
interpreted as ‘forall n in present such that birthday(n) == today_date’. Now we design our
program based on the above specifications. The idea behind this design is to convert abstract data
from specifications to concrete data structure so that the computer can execute this system. Let’s
choose arrays to represent the birthday book such as
:_: names, NAME : array[..] : array of names
:_: dates, DATE : array[..] : array of dates
Initially the array is infinite but in real implementation we have to specify the size of the array but
the behavior remains same. For example names[i] where ‘i’ is the index of the element which is
equivalent to name(i) in specifications and names[i] := “elem” is equivalent to
:_: name := name U {i->elem}
Where ‘U’ is representing a union. The concrete function of initial birthday book looks like below

BirthdayBook
names [] : array of NAME
dates [] : array of DATE
size: size of the array
condition: Ʉ i,j : 1 .. size • i ≠ j names(i) ≠ names(j)

Birthday book now contains two arrays with their respective size and a precondition

Abstraction Invariant (Abs)
present == { i: 1 .. size • name(i) }
Ʉ i : 1 .. size • birthday(names(i)) == dates(i)

Abstraction invariant shows that the set ‘present’ is containing all the names up to the size of the
array and every name has corresponding birth dates.

AddBirthday
Input to system
nameʔ : Name
dateʔ : DATE
processing

Ʉ i : 1 .. size • => namesʔ ≠ names(i)

size := size +1

names := names {size nameʔ}

dates := dates {size dateʔ}

Related Work

10

This ‘AddBirthday’ function has the same input and outputs to ‘AddBirthday’ function in the
specifications except it is operating on concrete data. The results of the operations are same in both
cases. In concrete implementation every name and date have a unique index in order to get the
‘date’ against any ‘name’. It is same as we have added {namedate} in the birthday book in
specifications. We can translate above function easily to our programming language as below

method Add(name:NAME, date:DATE)
{
size := size +1 ;
names[size] := name;
dates[size] := date;}

FindBirthday
input to system
nameʔ : NAME
date! : DATE
processing

 i : 1 .. size • nameʔ = names(i) date! = dates(i)

We can interpret ‘FindBirthday’ function as ‘there exists some ‘i’ such that names(i) is equal to
input name and date! Is containing the corresponding date value of the same index. This function
can easily be translated to programming language as below

method FindBirthday(name : NAME) returns (date:DATE)
{ var i : int;
i := 1;
while (i <= names.Length){
If (names[i] != name)
{i := i+1;}
else { date := dates[i]; break;} } }
 ‘RemindBirthday’ is returning the set of all names whose birth dates are on some particular date.

RemindBirthday
today_dateʔ : DATE
namelist [] ! : NAME
ncount! : int
{i : I .. ncount! • namelist!(i)} = { j : 1 .. size | dates(j) == today_dateʔ • names(j)}

RemindBirthday’ can easily be translated to programming language as below

method RemindBirthday(today : DATE) returns (namlist[] : NAME, ncount: int)
{
var j : int;
while (j < size) {
j := j +1
if (dates[j] == today)
{
ncount := ncount +1;
namelist[ncount] := names[j]; }}}

2.3 Abstraction in Software Engineering

Abstraction in software engineering refers to very high level requirements of a software system that
cannot be directly modeled and coded. These requirements are also referred to as abstract
specifications of a system. The process of decomposing high level requirements into more
understandable is called refinement. In software engineering practices refinement is mandatory for
designing robust software applications and also proving that the end user product meets its
specification. In addition it may reduce the time, effort and risk associated with the software
system. Design patterns [14] are used to model the abstraction in software development process.

Related Work

11

2.4 Specifications and Refinement Support

There are many tools and languages which provide support for writing specifications from which
some of them provide rich mathematical properties and many of them have limited support. Below
is the description of some tools and languages

-:-UML and OCL

UML is a standard modeling language providing a rich set of tools for modeling the system such as
use case, class, and component and deployment diagrams. Object Constraint Language is used to
define constraints over the UML model such as invariant, pre and post conditions. OCL [15] has
limitation to write specifications over the models only such as for class diagrams.

-:-Specification Modeling

Z Method

Z [13] is a powerful modeling language that supports writing of specifications by providing a richer
mathematical tool-kit such as set, multi-sets, relation, functions, number and finiteness.

B Method and Event-B

B [3] is powerfuler modeling language that supports refinement. It’s capture the system
specifications as an abstract design model and refine it gradually with new requirements until the
construction of concrete model. B method provides greater support for rich mathematical
properties such as Predicates, Set theory and logical structures. Event-B is a modeling tool based on
the B language. This tool provides interactive user interface for modeling the system and available
under the name of Rodin [16].

Circus

Circus [17] is a specification language that was designed specifically to support refinemenofor
concurrent programs. Circus was developed by combining process algebra CSP [18], Z method
anthe refinementnt calculus.

Temporal Logic

Temporal logic [19] has an important application in formal verification. Temporal logic is used to
write specifications for concurrent programs in which we can define order of things that may
happen with respect to time.

-:-Design by Contract Languages

Spec#

Spec# is a DbC4 language supporting general specification constructs such as requires, ensures and
class invariants but it does not support mathematical specification constructs such as sets, multi-
sets and sequences hence the support for writing the specification is very limited.

Dafny

Dafny (see appendix B) is a DbC language supporting general and mathematical specification
constructs such as requires, ensures, sets, multi-sets and sequences. Support for writing
specifications in Dafny is much higher than Spec#.

4 Design by Contract

Related Work

12

Eiffel

Eiffel [20] is a DbC language supporting general specification constructs such as requires, ensures
and class invariants. The language supports rich mathematical constructs such as sets and multi-sets
hence providing good support for writing specifications.

-:-Theorem Provers

With the advancements in verification technology program verification is becoming interactive with
the development of automatic theorem Provers such as SMT [2] and extended static verifiers [21].

2.5 Data Refinement Support

Data refinement is a special case of refinement in which data types require changes from what are
in the specifications. Spec# and Dafny both supports data refinement. Below are the details

2.5.1 Spec#

Spec# is a powerful language for data refinement. The only hurdle for using this language is the
absence of high level mathematical properties such as set theory and unbounded sequences. Spec#
provides refinement using one and two class approaches. Spec# classes contain the following
information

 Abstract data, object invariant, method specifications and constructor specified in term of
abstract data

 Concrete data, object invariant, methods and constructor written in term of concrete data
and abstraction invariant relating abstract and concrete data

Below is a classic example of data refinement which is converting a high level sequence to an array.
Sets, sequences and multi-sets are not supported in Spec# hence we are simulating the sequence
with two integers where one integer is representing the sum of a sequence and another represents
the number of elements in the sequence. This limitation is overcome by Dafny by providing all
these specification constructs such as sequence, set and multi-sets hence focusing more on data
refinement support.

public class Seq {
[SpecPublic] private int seq_sum;
[SpecPublic] private int seq_count;
[Rep] private int []! array ;
private int array_count ;

invariant 0 <= seq_count ;
invariant 0 <= array_count && array_count <=
array.Length ;
invariant seq_count <= array.Length && seq_sum ==
this.array_sum();

Seq ()
ensures seq_count == 0 && seq_sum == 0;
ensures seq_count == this.array_count; {
this.array_count = 0; array = new int [100]; }

[Pure] public bool isEmpty ()
ensures result == (seq_count == 0);{
if (array_count == 0) return true ;
else return false ; }

void add(int elem)
requires 0 <= elem;
modifies this.*;
ensures seq_sum == old(seq_sum) + x && seq_count
== old(seq_count) + 1;
{
expose (this){
array [this.array_count] = elem;
array_count ++; } }

[Pure] public int array_sum ()
ensures result == sum{int i in (0 : array.Length); array
[i]};
{
int s = 0;
for(int j = 0; j < array.Length ; j ++)
invariant j <= array.Length ;
invariant s == sum{int i in (0 : j); array [i]};
{s = s+ array [j]; }
return s;
}

Figure 2.5 Data refinement in Spec#

Related Work

13

 [SpecPublic] annotation is indicating that the fields are specification only and simulating sequence
as a pair of two integers. The ‘array’ and ‘array_count’ are two concrete fields containing elements
and the number of elements in the array. ‘Rep’ annotation is for representation which is showing
the ownership hierarchy that the array object is owned by the Sequence class. ‘Seq’ constructor is
initializing concrete fields and initially declaring the array with hundred elements. ‘isEmpty’ is a
pure method because pure methods have no side effects on the behavior of the class so they can be
used in the specifications. The ‘isEmpty’ method is returning a Boolean value based on the current
state of the array. The state can be empty or it contains some elements.

Three object invariants were used in this example. First invariant for abstract data, second
is for concrete and third for relating abstract and concrete data. ‘Add’ method adds an array
element in exposing block which tells the verifier about skipping the object invariant constrain
check within the expose block. It’s the user's responsibility to check whether object invariant is
established or not after the execution of exposing block. Pure method “array_sum” is calculating
sum by comparing it with the sum of a sequence. Model fields and “get” property of Spec# can be
used as well with the help of object oriented inheritance principle for data refinement about which
we will talk later in this chapter.

2.5.2 Data Refinement in Dafny

Set theory is a strong mathematical concept that can be used for writing specifications. We can
express natural language in the form of a set such as a set of traffic lights or set of names. Spec#
does not support set theory and other mathematical constructs. For writing specifications we have
to define simulations such as we did in the last section. In this case refinement will be to convert
simulated abstract variables to some underlying data structure such as arrays or linked lists. While
on the other hand languages such as Dafny which have support for set theory and other
mathematical constructs. In this case data refinement will be the conversion from the high level set
or sequence specifications to arrays, link-lists or any other suitable data structure. We will use
Dafny as a source language upon which we will build our tool.

The advancement of research in languages that supports specifications to be written as a
part of the program, multiple steps can be omitted in refinement process often called direct
refinement. For example Dafny support the concept of “ghost variables” by using these variables
one can write specifications in term of mathematical sets, multi-sets or sequences and can
implement the code using arrays, sequences, link-list or any data structure supported by the
language. In addition we can use sequence for both specification and for implementation what we
need to do is to define an abstraction invariant which relates the abstract data (specifications) to
concrete data (implementation). For instance comparing the length of a sequence and array such
that ‘sequence.length == array.Length’ and each element of a sequence with each element in array
such that set[i] == array[i] ‘where ‘i’ iterate from 0 to length-1’ can be an abstraction invariant. In
some cases for writing abstraction invariant we may need to keep track about operational
differences between mathematical specification constructs and underlying implementation. For
example set might use union operation to add an element and sequence uses concatenation for
adding an element. In this case we require defining a mapping function between the set and array in
order to validate the abstraction invariant. Below is an example of data refinement

class SumFind
{
ghost var abst_array: seq<int>;

function Valid(conc_array:array<int>) : bool
 reads this, conc_array;
 requires conc_array != null && conc_array.Length >=0 ;
{
conc_array.Length == |abst_array| &&
(forall i :: 0 <= i && i < |abst_array| ==>

conc_array[i] == abst_array[i])
}

method Sum(conc_array: array<int>, arlength:int)
returns (array_sum: int)
requires 0 <= arlength && conc_array != null &&
conc_array.Length == arlength;
requires Valid(conc_array);
ensures Valid(conc_array);
{

Related Work

14

array_sum := 0;
var i := 0;
while (i < arlength)
invariant i <= arlength;
decreases arlength-i; {
array_sum := array_sum + conc_array[i];
i := i + 1;
}}

method Find(conc_array:array<int>, elem:int,
arlength:int) returns (ghost index:int , res_elem : int)
requires arlength >=0 && conc_array != null &&
conc_array.Length == arlength ;
requires Valid(conc_array);
ensures Valid(conc_array);{

index := 0;
var i := 0;
while (i < arlength)
invariant i <= arlength;
decreases conc_array.Length-i;
{
if (conc_array[i] == elem) {
res_elem := conc_array[i];
index := index +1 ;
return;
} else {
i := i +1;
index := index + 1;}}
}
}

Figure 2.6: Data refinement in Dafny

The class ‘SumFind’ is declaring an abstract sequence using ghost variables. Valid function is the
abstraction invariant which is relating abstract and concrete data which is an array in our example.
This function is always returning boolean and used as a pre and post condition to methods.
Method ‘Sum’ is calculating the sum of the array and checking the abstraction invariant as its pre
and post condition. Method ‘Find’ is searching for an element in the array and returning both index
and the element. The invariant is the ‘loop invariant’ which remains true trough out all loop
iterations and decreases clause ensuring that the loop will terminate. In this example abstract data is
in term of a sequence where concrete implementation is using an array. We will provide an analysis
for writing multiple implementations for same specifications using data refinement later in this
chapter.

2.6 Two Class approach to data refinement

The basic idea behind this technique is to provide modular data refinement [8] where the client haa
completely separate viewew of the system and implementation details are completely hidden from
the client. In two class approach, specification and implementation are kept in separate classes. The
abstract class where we can define abstract variable and methods and whoever class implements
this abstract class will in turn provide the concrete implementation of all the abstract methods. In
Spec# two class data refinement approach has proposed by Monahan [8] who is using existing
Spec# and C# properties.

The approach is using inheritance and other language features as a backbone for
verification. Specification class does not contain any implementation details and abstraction
invariant which relate the abstract and concrete data is placed in the subclass. As specification class
contains only abstract variables and abstract methods ‘Additive’ clause is used to allow abstract data
fields to be referenced in the subclass invariant. Fields are also kept protected in order to use them
in the subclass. Pure methods are also the part of the specification class for using within the
specifications. These two classes will also adhere to the inheritance principles in which post
conditions can be strengthened and preconditions may weaken where frame conditions shouldn’t
be modified. Abstract classes require their fields to be “SpecPublic” and “Additive” for fulfilling
this principle.

We take the same Sequence example as stated in Figure 2.5 and demonstrate this approach
on it. Below is the abstract class

public abstract class SeqAbstract {
[SpecPublic] [Additive] private int seq_sum;
[SpecPublic] [Additive] private int seq_count;

Invariant 0 <= seq_sum;
Invariant 0<= seq_count;

Seq()
ensures seq_sum ==0;
ensures seq_count ==0;

[Pure] public bool isEmpty()
ensures result == (seq_count == 0)

Related Work

15

public void add(int elem)
requires 0 <= elem;
modifies elem, seq_sum, seq_count;

ensures seq_sum == seq_sum +1
ensures seq_count == seq_count+1
}

Figure 2.7: Abstract Class

The abstract class contains only specification and invariants of abstract data. These specifications
and invariants will be inherited in the subclass and will be conjucted with implementation class. The
problem here is the constructor of abstract class which is initializing only the abstract data fields
whereas constructor in the subclass will only initialize the concrete data fields. Abstract
constructors will not be inherited in subclasses and as per language property its subclass
responsibility to establish the object invariant after constructor execution so we have two
constructors one for abstract data and one from concrete data and verifier has no knowledge how
to check object invariant to verify such program. The solution to this problem was proposed by
using C# properties ‘get’ and ‘model fields’ [8]. A subclass of Figure 2.7 is as follow

public class SeqConcrete : SeqAbstract {
 [Rep] private int []! array ;
private int array_count ;

invariant 0 <= array_count && array_count <=
array.Length ;
invariant seq_count <= array.Length && seq_sum ==
this.array_sum();
SeqConcrete ()
{
array [this.array_count] = elem;
array_count ++; } }

[Pure] public int array_sum ()
ensures result == sum{int i in (0 : array.Length);
array [i]};
{ int s = 0;

this.array_count = 0;
array = new int [100]; }

[Pure] public bool isEmpty ()
{
if (array_count == 0) return true ;
else return false ; }

void add(int elem)
{
expose (this){
for(int j = 0; j < array.Length ; j ++)
invariant j <= array.Length ;
invariant s == sum{int i in (0 : j); array [i]};
{
 s = s+ array [j];
}
return s; } }

Figure 2.8: Concrete Class

The Figure 2.8 is representing the concrete implementation of the abstract class by using
inheritance relationship. Defining an abstraction relation between abstract and concrete data is a
major part in data refinement. As per our above example abstraction invariant is now part of the
implementation class. The first drawback of this approach is the mixing of abstract and concrete
variables for object invariant. It’s now difficult to distinguish between these two variables in the
implementation class. The abstraction relation now contains both abstract and concrete fields. The
abstract class is allowed to modify his abstract fields that may create inconsistency with object
invariant and verification errors. Additive is used in order to avoid the violation of object invariant.
Second drawback is the constructor in Spec# where it has the freedom to violate the object
invariant during his execution. The abstract class constructor is not inherited in the subclass and it
has his own abstract fields to initialize where on the other hand concrete constructor have his own
fields to initialize and object invariant is required to have both abstract and concrete data for
establishing so in this situation verifier has no knowledge that how to establish the object invariant.
The solution to this problem is to use C# properties and hence enabling Spec# for modular data
refinement [8].

Spec# provides the ’accessor’ methods to read and write private fields that have the same
functionality like any other regular methods. ‘get’ is a built in accessor method in Spec# that can be
used as a part of the property. This method is pure by default and can be used in the specifications.
We can now write abstract data as property using ‘get’ method which will be overridden in the
subclass and conjucted with the concrete data. Overridden version of property provides the
concrete representation of abstract fields. Below is an example

Related Work

16

public abstract int Count{
get:
ensures 0 <= result;}
Count is a property representing the abstract data with the invariant that ‘Count >=0’. This
property is overridden in the subclass to provide the abstraction invariant for both abstract and
concrete data as below

private int array_count;
public override int Count{
get:
ensures result == this.array_count;
{return this.array_count;}
The abstract data Count is mapped to ‘array_count’ concrete data by the abstraction invariant
“result == this.array_count”. As post conditions can be strengthened in a subclass, ‘array_count’
property is using this principle and providing the abstraction invariant as a property post condition.
By using the C# ‘get’ property, two class approach is now practical because the abstraction
invariant issue can now be handled without breaching the program verification.
Another approach proposed by this technique for handling the abstraction invariant issue by using
model variables. Rather than providing abstract data in properties, bundling it under model clauses
which satisfy the given assertion. Below is an example

model int Count{
satisfies 0 <= result;}

For providing concrete implementation model fields can be overridden in the concrete class as
follow

private int array_count;
override model int Count{
satisfies result == array_count; }
In this approach abstraction invariant can directly be written in satisfying clause instead of post
condition. Two class approach is a perfect start to think about data structure based refinement.
This approach has provided perfect modular data refinement but it has some drawbacks that are
outlined below.

2.7 Critical Analysis

One of the basic ideas behind two class approach was to separate specification from
implementation which was achieved by using inheritance, Spec# and C# properties so that we can
reuse the specifications. There are some limitations and issues for using this approach as outlined
below

 Programmer overhead is high for writing new implementation

 The programmer must have knowledge of the existing system in order to write new
implementation.

 The programmer has to write all abstraction invariants for the new data type in order to
relate abstract data with concrete data.

 New abstraction invariants mean programmer has to define all properties or model fields
for the new implementation.

 Need to provide a new implementation for all abstract methods.

 No support to express specifications in term of mathematical properties such as sequence,
set and multi-sets

 It is very hard to reuse specifications because the lack of support for mathematical
specification constructs.

Related Work

17

 No automatic support discussed for generating new implementation

 One class approach is better to use for automatic data structure based refinement because
we do not have to deal all the complexity that comes with two class approach by
compromising the separation between specification and implementation.

2.8 Refinement and Code generation in Event-B

Event-B [7] is a modeling tool for modeling software systems. Event-B uses rich mathematical
structure to write models and generated proof obligations5 for these models to prove their
correctness. The tool uses contexts and machines where context used to model all static properties
of a system and machine models all dynamic properties. The Event-B model consists of an abstract
machine or refinement of an existing machine. Event-B uses B [3] structure to write context and
machines. Static properties include, sets, constants, axioms and theorems where sets are used to
specify the behavior of a system, constants defines all constants needed to fulfill that behavior of
the system, axioms define the properties of sets and constants where theorems includes all those
theorems that can be derived from the axioms. Contexts can be extended in order to add new
system requirements or system change.

The machine model dynamic properties and ‘sees’ the context for expressing the use of
constants and sets that satisfy axioms and theorems. The machine consists of invariants, guard
conditions and events. Invariant defines the safety properties of the model so that model remains in
a consistent state throughout his lifetime and nothing bad will happen. Events are different states
of the machine triggered upon satisfying the guard conditions. One of the main purposes of safety
property is the correctness of states on occurring of different events. Proof obligations [22] are
generated for ensuring the correctness of model which guarantees that the system is in a safe state
for all possible occurrences of events. Machines can be refined in order to add new requirements or
to handle system change requests. The idea behind is to keep refining machine as new requirements
come unless it reaches the final state where all system requirements have been met. The resulting
system will be correct and meets its specifications. Event-B provides refinement proofs to be
validated while refining machines which preserve the correctness of the system throughout
refinement levels. Idea of refinement in Event-B is slightly different as compared to specification
languages that we have discussed so far. Event-B considers refinement in context of machines
where machines contain dynamic properties and whenever new feature will be added in the system
machine refinement is needed so that new features cannot disturb the previous properties of the
system. Refinement proof helps to ensure this correctness.
Code generation is an active area of research from formal specifications. The idea is to generate
code for execution by the computer that meets its specifications. Figure 2.9 shows the plug-in
architecture for code generation in Event-B.
We start from defining an abstract machine model and keep on refining unless final version is
reached. Code generation is started after final refinement of the model for formally executing it into
the computer system. Automatic code generation provides many benefits such as testing. We can
test our generated code against the specifications which we modelled in Event-B. Many tools exist
for automatic code generation from formal specifications such as Classical B [3] but our focus is on
the Event-B code generation here. EB2C, EB2C++, EB2J and EB2C# tools are available as plug-
in to Rodin [16] platform for code generation from Event-B model to C, C++, Java and C#.
These tools work by taking context file of the target language and generate code by handling
mapping of contexts, machines and events from Event-B model to target language.

5 A proof obligation is a mathematical proving the correctness of the model

Related Work

18

Abstract

 Machine

Refinement-1Refinement-2

.

.

.

Refinement-n

Generated

Code

R1R2

Target language
Context File

Figure 2.9: Code generation in Event-B

2.9 Critical Analysis
Code generation plug-ins provides greater flexibility for generating target language code in Event-B
but these tools have some limitations and drawbacks because of the nature of modelling tools.

 No formal verification exists for generated code, as it relies on the correctness of Event-B
model such as C code verification with VCC.

 Tools does not support all formal symbols of Event-B such as “IFF” (<-->) and forall (

and) quantifiers, that’s mean user intervention is required to complete the code. Which
may breach the correctness of the model

 Integrating user define or external code that may be required for functions the system may
breach the correctness of generated code.

 Multiple implementations are not supported that differs in a data structure for the same
Event-B model.

 For supporting multiple implementations separate mappings are needed for each data
structure from Event-B model. For instance Event-B set model to link-list or arrays.
Currently plug-ins are providing one to one mapping such as set model to target language
enumerations and model functions to language functions.

 In case of slow performance of generated code the user has to write the implementation
manually which may breach the code correctness and may result unreliable software
because of unverified code.

 We cannot use Event-B model to generate multiple implementations that differ in the
underlying data structure as there is no such plug-in support.

Although these plug-ins are very useful for executing the system but due to the lack of multiple
implementations support their usage may be limited. Usually in large programs one of the user
requirements is faster system performance so these tools should provide support for specification
reuse based on change in the data structure.

Related Work

19

2.10 Programmers overhead

Below table is comparing the effort of implementing and verifications of different data structure
for same specifications with particular focus on Dafny.

Specifications Data Structure Implementation Verification
Sequences Sequences Implementation is easy if we have

specification in terms of sequences
because it is simple to define the
abstraction relation between abstract
and concrete data due to the available
functionality in Dafny such as getting
the length of the sequence, getting
value on a specific index, updating the
value on the specific index and adding
elements dynamically.
This is one to one mapping and
representing data abstraction instead
of refinement.

-Easy to write pre and post
conditions based on the method
behavior
-No manual loop termination logic
is required because of the ‘length -
|seq|’ functionality provided by the
sequence where we can check the
bounds of the sequence
-Easy to traverse a sequence which
helps for writing complex post
conditions for state modification.

Sequences Link list Implementation is hard as compare to
sequences because we need to define
all operations such as getting an
element or setting an element in a link
list. For writing abstraction invariant
now we have to compare abstract
sequence with link-list in terms of
length and contents of the elements.
We need to define initial static node
say “head” of the link list and also
there should be a relation between
abstract data and link-list next node
data.

-hard to write pre and post
conditions based on method
behavior where we need to take care
of current and next node.
-Loop termination logic is required
because link list do not have any
bounds. Suitable invariants and
decrease clauses needed
-hard to traverse link-list for
writing complex post conditions
after state modification.

Sequences Arrays Implementation is easy with arrays
when using as underlying data
structures. One issue for writing
abstraction invariant is the difference
in the way the arrays behave in the
language. For example we can grow
sequence dynamically up to an
infinite number of elements but for
arrays we have to specify the size at
the time of allocation.
This imposes the restrictions for
defining the abstraction relation
between arrays and sequences. The
solution is to pass arrays as method
parameters to every method because
arrays are treated with reference in
Dafny and verification is possible.

-Easy to write pre and post
conditions based on method
behavior
-No manual loop termination logic
is required because of “array
Length” function which is providing
the bound checking of the data.
-Easy to traverse the array for
writing complex post conditions
after state modification

Sets Link-
list/Arrays

Available functionality in Dafny so
far for “sets” manipulations is only to
check the presence of an element. In
the latest 1.6 version of Dafny new
functionality for iterating over the sets
is introduced. Still direct refinement
from sets is not supported. We need to
write a mapping function from set to
any underlying data structure.

-hard to write pre and post
conditions which are based on
method behavior.
-Loop termination logic is required
in case of link list but not required
in case of arrays
-Mapping function needs to be
define from sets to underlying data
structures for supporting data
refinement.
 -hard to traverse link-list for
writing complex post conditions
after state modification.

Figure 2.10: Implementation and verification comparison

Related Work

20

2.10.1 Effort Required

We are using Constructive Cost Model (COCOMO) [23] to estimate the effort and development
time required for writing the code. This model is a standard for software project estimations and
widely used in the industry. This model has three modes of operations, basic, intermediate and
advance. Each mode is further divided into three project types. Organic projects: where teams are
usually small and have good working experience and less rigid requirements. Semi-detached
projects: where teams are usually medium in size and have mixed working experience with
moderate rigid requirements. Embedded projects: usually have tight timing constraints and can be
mixture of Organic and Semi-detached projects. We are taking the intermediate model of
COCOMO and modifying its cost drivers to estimate the implementation and verification effort of
a program. This estimation can be used only with specification based languages with a good
mathematical toolkit for writing specifications. The table below is defining the standard values of
the model

Project Type a b c d
Organic/Small 3.2 1.05 2.5 0.38

Now we define the additional attributes for calculating the verification effort on a three-point scale
where 3.0 denotes the lowest value and 0.0 highest

Cost Driver Rating
 Low Moderate High

Verification attributes
Verification Skills 1.25 1.00 0.75
Programming Language Knowledge 1.20 1.00 0.67

Now we define the type of verification rating based on the verification type. Automatic verification
refers to the underlying verifier such as SMT or any similar interactive verifiers while manual
verification is without using any interactive verifier.

Cost Driver Rating

Verification Type
Manual 1.00
Automatic 0.20

Now we define the rating for data structure according to their complexity

Cost Driver Rating

Data Structure used
Sequence 0.05
Arrays 0.10
Link list 0.20
Tree 0.60

Total effort required with program verification

Effort = a*(KLOC) ^b * EAF [man-months]6
Development Time = c*(KLOC) ^d [months]
Total Days = Development Time * 30 [days]
Persons Required = Effort/Development Time

EAF (effort adjustment factor) is the product of all three cost drivers according to the scenario.
Figure 2.11 shows the effort required for implementing different data structure based on the above
defined complexity. The figure is showing the effort based on number of lines of code in thousands
with effort adjustment parameters as follows. High skills in verification and programming with
automatic verification. The effort adjustment factor would be
EAT = (0.75) * (0.67) * (0.20) * (used data structure rating)

6 Amount of time an average person spends on a software project in a month

Related Work

21

Specification Data Structures KLOC Implementation and

Verification effort in term
of DT

Sequence/Set Sequence 500 => 0.5 12 days
Sequence/Set Link-list 500 => 0.5 20 days
Sequence/Set Arrays 500 => 0.5 15 days
Sequence/Set Tree 500=> 0.5 30 days

Figure 2.11: Effort required-1

Figure 2.12 shows the effort required for implementing different data structure based on the above
defined complexity. The figure is showing the effort based on number of lines of code in thousands
with effort adjustment parameters as follows. Low skills in verification and programming with
manual verification. The effort adjustment factor would be

EAT = (1.25) * (1.20) * (1.00) * (used data structure rating)

Specification Data Structures KLOC Implementation and
Verification effort in

term of DT
Sequence/Set Sequence 500 => 0.5 33 days
Sequence/Set Link-list 500 => 0.5 56 days
Sequence/Set Arrays 500 => 0.5 43 days
Sequence/Set Tree 500=> 0.5 85 days

Figure 2.12: Effort required-2

2.11 Conclusion

In this chapter we discussed about the Data abstraction and refinement in general followed by data
refinement in different languages and tools. We discussed the Abstraction in Software Engineering
and analyze the different languages and tools that support specification writing. We proposed a
metric for measuring the overhead of programmer while writing manual implementation that
differs in the data structure. In the next chapter we will design our ideal solution for generic
framework for data structure based refinement.

Solution Design

22

3 :-: Solution Design

In this chapter we present the solution requirements and design for the problem which we have
stated in chapter 1. We review the problem statement again and suggest the solution to the problem
in case of already verified program. Moreover we present the design of the generic framework for
refinement based on data structure.

3.1 Problem statement

As we discussed in chapter 2 writing new implementation is cumbersome especially in large
programs. Our effort metric in chapter 2 is showing the effort required for manual new
implementations. In addition to that effort programmer should have the existing knowledge of the
system and have a good understanding of verification technology underneath together with the
time and cost of writing new implementations. The Solution to this problem can be achieved if we
can generate new implementation without programmer intervention in a fully automatic way where
we already have a verified program. We name our system a “Specification Reuser” because it can
use existing specifications for generating new implementation. Below is the block diagram

Client

Specifications

Current Client

Implemenation

New

Implementation

with changed

data strcture

Input for new implementation

Current Specifications

Client

Figure 3.1: Solution

The above diagram is representing the solution in case of already verified program. For
supporting refinement regardless of any specification and programming language we are
designing a generic framework based on data structure refinement as below.

3.2 Solution Requirements

Below are the requirements for designing our ideal system which will be fully automatic and
support data structure based refinement with the capability to generate new implementations.

 Library of data structures to be chosen for new implementations

 Data refinement Language

 Current Specifications

Solution Design

23

 New Implementation details

 Abstraction invariant which relates the current specification with new implementation

 Operational knowledge of the new implementation such as metadata

 A GUI building tool which supports drag and drop features

3.3 Solution Design

Below is the block diagram of the system where different components of the system are interacting
with each other

Drag & Drop

GUI

Current

Specification

Abstraction
Invariant

Specification

Data Structure

Library

N
ew

 D
at

a
S

tr
u

ct
u

re

Meta Data

Collection

Code

Generator
New

Implementation

N
ew

Im
p

le
m

en
ta

ti
o

n

Data Refinement

Language

Figure 3.2: Generic System Design (Specification Reuser)

Drag and drop GUI feature selects the selects the specification and corresponding
implementations. Meta data collection process is responsible for collecting the operational data of
the new implementation such as method operations, variables information and logic of the
program. Abstraction invariant provides the relation between abstract and concrete data where data
refinement language refines the data for new implementations. Code generator takes Meta data and
abstraction invariant as input and generates the new implementation. Class diagram of the system is
present in appendix A.1.

The class diagram is representing different potential classes which are grouped into
different packages such as GUI package contains classes which work behind the user interface.
Specification reader class reads the current specification of the system and implementation reader
class reads the new implementation of the system. The class for new implementation is responsible
for collecting data for new implementation by getting the data structure details from the supported
data structure library. Meta data collection class is responsible for collecting operational knowledge

for the new implementation. The abstraction invariant class checks the validity of abstract and
concrete data and generator class is using the rule class and the refinement validation and
refinement packages for generating the new implementation.

Solution Design

24

3.4 Interface Design

Our proposed system has very interactive design so that the user can drag and drop different
specification and corresponding implementations. Below is the prototype of the interface

Figure 3.3: User Interface

In Figure 3.3 ‘Spec’ tabs are representing specifications in term of sets and sequences where ‘Impl’
tabs are representing implementable data structures. The abstraction invariant button is getting the
abstraction invariant for new implementation with respect to specification from the user.

In Figure 3.4 specification is same but this time we are generating implementation using
array as the underlying data structure. The new abstraction invariant is required in this case that will
relate the set specification to array implementation.

Figure 3.4: User Interface

3.5 Conclusion

In this chapter we provided an overall design of the generic framework. We discussed the generic
solution requirement and presented the block diagram and class diagram along with an ideal user
interface where users can drag and drop the components for producing new implementations. In
the next chapter we will design our proof of concept tool that performs refinement based on data
structure.

Solution Implementation

25

4 :-: Solution Implementation

In this chapter we present the implementation of our tool and discuss how much we have achieved
in reality as compare to our ideal system design in the previous chapter. We use Dafny as a data
refinement language and use its native support for implementing the solution.

4.1 Design decision

There are many limitations for implementing our generic solution in the previous chapter such as
unavailability of external data structure library lack of data refinement process and lack of support
for Meta data collection. We are taking the case of our problem statement where we already have
verified program and want to generate another implementation using different data structures from
the existing implementation. For implementing the solution to the sproblem we are seeking data
refinement support from the language and thus limiting the data structure usage to arrays and link
list because they are relatively less complex to verify.

4.1.1 Language Selection

We are seeking data refinement support from the language for implementing our solution; Dafny is
the language which is specially designed to support data refinement.

4.1.2 The impact of using Dafny

As we discussed earlier that Dafny support the rich features for writing specifications by providing
ghost variables, it handles frame conditions very efficiently and provides greater support for data
refinement. Apart from all Dafny do not allow sub classing that makes it very simple to handle
refinement as compared to the two class approach. Currently data structure support is very limited
in Dafny and hence defining abstraction invariants are relatively simple as compare to other
languages such as Spec#. By using Dafny we can move towards for achieving our ideal system goal
and advance tools can be developed for Dafny that uses the data structure based refinement
feature.

4.2 Tool Implementation

Code generation is dependent on many factors such as specification constructs and support
provided by the language for refining specification constructs. As Dafny follows one class approach
and currently it does not allow sub typing and do not have support for complex data structure
hence our focus of an automatic implementation generation is on one class approach. We are
proposing different rules for each separate implementation where we have an abstraction function
which maps the relation between abstract and concrete data which goes as input to the tool. The
tool will generate the new implementation based on information from abstraction relation, rules
and program logic (Meta data). Our approach is to first define these rules and then based on these
rules we implement the tool. We are defining different rules for different implementations because
different data structure implementations may have different pre and post conditions, loop
termination logic, different operational parameters for methods and different conditional logic. Our
objective is to provide a tool which can generate automatic implementation close to verification

Solution Implementation

26

where programmers can start adding code for full verification of the program. We are considering
array and linked-list as data structure because they are relatively easy to verify.

4.3 Guidelines

Below are guidelines for generating multiple implementations

4.3.1 Sequence to Array Conversion

In this case we have the specification and implementation both in term of sequences. In Dafny
sequences can grow dynamically while arrays cannot, which produces inconsistency while writing
the abstraction invariant. The solution to this problem is to send array as parameters to every
method including validity function. Below guidelines are Dafny specific

 Collecting Meta data of the current implementation by taking input from the user

 Define arrays corresponding to abstract sequences in the current implementation

 Pass all arrays as parameters to every method

 Pass indexes as parameters as per arrays count because these indexes are needed to adhere
design by contract principle

 Replace sequence concatenation operation with array element insertion operator

 Replace sequence length with the length of arrays such as “array.Length” instead of |seq|
as no special termination is needed for loop in this case

Providing abstraction invariant, Meta data and above guidelines the implementations that was
written in term of sequences can be converted into array implementation without changing
specifications. This new implementation may be a semi verified program because right now we do
not know fully that how to collect Meta data or operational knowledge of the existing
implementation.

4.3.2 Sequence to link-list Conversion

In this case we have specification in term of sequences and implementation in term of link-list.
Link list imposes over head for verification because of the nature of the data structure as it is more
difficult to write abstraction invariant and hence implementation as we calculated in our metric in
chapter 2. Below are some general guidelines for implementation conversion.

 Collecting Meta data of the current implementation by taking input from the user

 Declaring abstract node to start the link list

 Replacing sequence concatenation operator with the new node

 Replacing loops with the following properties for every loop in the program
o Declare a new node and points it to head
o Replace loop with condition ‘new node is not equal to null’
o Provide invariant based on the loop
o Provide termination of the loop
o Provide increment on the list

Providing the abstraction invariant and above guidelines a semi verified program can be generated
based on the above guidelines. The program will be semi verified because right now it cannot be
judged fully about loop invariants, pre and post conditions from the old implementation of the
sequence.

Solution Implementation

27

4.4 Specification Reuser

We discussed our ideal design of the Specification Reuser in the previous chapter and we discussed
the limitation that we have for implementing our ideal system. In this section we are designing and
implementing our proof of concept tool that demonstrate the concept that we are trying to achieve
from this work. The development of the tool is using the software engineering principles.

4.4.1 System Specifications

A Specification Reuser system that has the capability to generate multiple implementations from
one single specification.

4.4.2 System Requirements

The basic requirement is to get the abstract function, existing implementation and Meta data from
the user and generates multiple implementations. The tool should provide proper error handling of
input to wrong abstraction function and provides users with information with non convertible
implementation. Prompt user to get Meta data of the current implementation. Apart from the core
functionality tool should be user friendly and can be used by non expert users.

4.4.3 System Design

The system consists of different modules. The graphical user interface where user input the Meta
data information input abstract function and selects the existing implementation file. Abstraction
invariant, Meta data and file goes as input to the validity checker where system checks the
abstraction invariant with respect to existing implementation file. After validity check Mea data,
current implementation and abstraction invariant goes as input to code generation module where it
applies the rules and generate the new file with same specifications. Figure 4.1 shows the use case
diagram that is describing the user interaction with the system followed by the block diagram in
Figure 4.2

Figure 4.1: Specification Reuser Use Case Diagram

In block diagram existing implementation and abstraction function goes as input to validity
checker. The task of the validity checker is to check the abstraction function's validity with existing

System

System User

Generate Linklist Implementation

Generate Array Implementation

Enter Valid Function

relation mismatch
extension points

Enter Meta Data

incomplete data
extension points

<<include>>

Invalid Function

Wrong Meta Data

<<include>>

<<include>>

<<extend>>

<<extend>>

Solution Implementation

28

and new implementation. For existing implementation it checks that specifications are same and for
new implementation it checks that the new implementation is compatible and generateable from
existing specifications

Validity

Checker

Code

Generator

Existing

Implementation

Abstraction

Function

New

Implementation

Guide LinesGuide Lines

Meta Data

Figure 4.2 : Block diagram of Specification Reuser

The validity checker output becomes the input of the code generator which generates the code by
taking the guidelines and Meta data into account and resulting new semi verified code. Class
diagram of the system is present in appendix A.2.

4.4.4 Implementation

The table below describes the classes and their operations

Class Name Description Methods Description
code_generator Class for handling

main GUI
operations

seq_array_CheckedChanged

Handling check box for
sequence to array conversion

seq_linklist_CheckedChanged

Handling check box for
sequence to link list
conversion

SequenceArrayProcessing

Handles conversion from
sequence to array

SequenceToLinkListProcessing
s

Handles conversion from
sequence to link list

logicAndArrayGener
ation

Handling main
logic of the tool
and generating
array
implementation

storeGhostData

Storing ghost data of the
current implementation

storeConcreteData

Storing concrete data of the
current implementation

removeConcreteVariable

Removing concrete variables
from the current
implementation

changeParamsandPrePostCond

Handling pre and post
conditions for array
implementation

changeInitialization

Handling Initialization part of
the current implementation

seqToArrayAdditio

Converting sequence addition
to array insertion

addIndexestoParametersSTAddi
ton

Adding indexes to function
parameters for array
implementation

storeMethodsData Handling and storing

Solution Implementation

29

 methods information such as
method name, opening and
closing braces position

readBytesOfFile

Reading all file data into
bytes

getByteofFile

Getting all bytes of the file

readNumberAndLengthofLines

Reading number of lines and
length of each line from the
file

getFileStorage

Getting the array for number
of lines and length of each
line in the file

getNumberofLines

Returning current number of
lines in the file

getReadingPath

Getting the reading path of
the file

getWrittingPath

Getting the writing path of
the modified file

getWrittingPathForLinkList

Getting the writing path for
link list implementation

readNumberAndLengthofLines
FromStringBuilder

Reading current number of
lines along with length of
each line from changed file in
memory

chaingingLoops

Handling the loop conversion
from sequence to array

handlingValidFunctionConditio
ns

Adding indexes to valid
function for verification of
array implementation

metaDataCollector Collecting
metadata of the
current file by
taking input from
the user

record_btn_Click

Adding meta data objects into
storeMetaData class

finish_btn_Click

Closing the current window
of meta data collector

opertionDesctipion_Load

Reading all the methods from
the file and populating it as a
drop down list

storeMetaData Responsible for
storing meta data
information which
is collected from
front end
metadata collector

setOpName

Recording the method name

setOpDesc Recording the method
description such as “INT for
initiation”, “FD for
searching” and “AD for
addition”

getOpName

Returning method name

getOpDesc

Returning its meta
information

methodsDataHolder

Responsible for
storing methods
information such
as method name,
its opening and
closing braces line
numbers

setMethodName

Recording methods name

setMethodLineNumber

Recording the current line
number of the method

setOpeningBraceLineNumber

Recording the opening brace
number of the method

setClosingBraceLineNumber

Recording the closing brace
number of the method

getMethodName Returning method name
getMethodLineNumber

Returning method current
line number

getOpeningBraceLineNumber

Returning method opening
brace line number

getClosingBraceLineNumber

Returning method closing
brace line number

dataHolder

Responsible for
storing file data
such as storing

setAbstractNameType

Setting abstract variable
name type as ghost

setConcreteNameType Setting concrete variable

Solution Implementation

30

ghost and
concrete variable
information for
data type, variable
name and whether
its ghost or non
ghost

 name type as non-ghost

setAbstractDataType

Setting abstract variable data
type

setConcreteDataType Setting concrete variable data
type

setAbstractVariableName Setting ghost variable name

setConcreteVariableName

Setting non-ghost variable
name

getAbstractNameType

Returning abstract variable
type

getAbstractDataType

Returning abstract variable
data type

getAbstractVariableName

Returning abstract variable
name

getConcreteNameType

Returning concrete variable
type

getConcreteDataType

Returning concrete variable
data type

getConcreteVariableName

Returning concrete variable
name

validFunction Responsible for
handling the valid
function validity

btnClear_Click

Clearing the contents from
the GUI

btnEnter_Click

Collecting the valid function
entered by the user and send
it to validity checker

fillValidFunction Storing the valid function

getValidFunction Returning the valid function

validityChecker Responsible for
checking the
validity of the
valid function

checkValid Returning true or false based
on the valid function contents

linkListGeneration Responsible for
generating link
list
implementation

generateNewNodeVariable

Creating new Node variable
for link list start up

changeSpecificationDataType

Changing data type to node
for some specification
variables for verification
purpose

initializationChanging

Changing initiation from
sequence to link list

commentInitlizationCode

Commenting out unnecessary
code from initialization part

changiningAdditonOperation

Handling addition operation
from sequence to link list

changiningSignatureOfFinding
Operations

Handling signatures for the
methods based on the meta
data information

changiningInsideFindingOperati
ons

Changing loops and other
variables such as in IF
statements inside methods
who have meta data
information such as “FD for
searching operations”

4.5 Conclusion

In this chapter we presented our tool implementation based on Dafny for data refinement. The
tool is implemented using C#. In the next chapter we will demonstrate our tool based on the birth
day book case study.

Proof of Concept

31

5 :-: Proof of Concept

In this chapter we present a case study using our proof of concept tool. We are taking the same
example of Birthday Book which we have described in chapter 2 for data refinement. We are taking
the implementation and specification in term of sequence as input and our tool converts it into an
array and a link list implementation of birthday book while preserving the specifications.

5.1 Case Study

A system which can record the birthdays of different peoples and can issue the remainder to people
who have birthdays on the same date and can find birth date for any particular person.

We have implemented the birthday book case study first by doing one to one mapping
from sequence to sequence. As we are using Dafny language, it is possible to use sequence for
both specification and implementation. Below is the code and description of this mapping. We
will use this mapping as a basis to generate other implementations that differ in their data
structure.

5.1.1 Seq to Seq

This example consists of a specification which is in term of sequences and implementation in term
of sequence as well. We are connecting this example back to our data refinement example in
chapter 2 in order to maintain the symmetry. Initially we have the following birthday book

class Data<NAME,DATE> {
var name: NAME;
var date : DATE;
}
ghost var names_a: seq<NAME>;

ghost var dates_a: seq<DATE>;
ghost var Repr: set<object>;
var namesseq_c: seq<Data<NAME,DATE>>;
ghost var elems: seq<Data<NAME,DATE>>;

Class ‘Data’ contains two member variables ‘name’ and ‘date’ where ghost variables names_a,
dates_a, and elems are representing the abstract data types. These variables are corresponding to set
of names and dates and a function from NAMEDATE in the data refinement example of
birthday book in chapter 2. Repr is for dynamic framing (see appendix B) and namesseq_c
represents the concrete sequences to be used as underlying data structures. In Dafny abstraction
invariant is referred to as validity function which we usually checked before and after the method
where possible state change in the system can occur. In this case our validity function is as below

method Init()
modifies this;
ensures Valid() && fresh(Repr - {this});

{
names_a := []; dates_a := []; Repr := {this};
namesseq_c := []; elems := []; }

function Valid(): bool
 reads this, Repr;
{
this in Repr &&
|names_a| == |dates_a| && |elems| == |names_a| &&
|namesseq_c| == |elems| &&

(forall i :: 0 <= i && i < |names_a| ==>
elems[i] != null &&
elems[i] in Repr &&
elems[i].name == names_a[i] &&
elems[i].date == dates_a[i] &&
elems[i] == namesseq_c[i]) }

This validity function is describing the abstraction invariant that the concrete sequence which is
referred to as ‘namesseq_c’ and abstract sequence as an ‘elems’ have equal length and their
elements are also same. The ‘elems’ sequence is also related to abstract sequence ‘names_a’ and
‘names_a’ is related to ‘dates_a’. The’ elems’ sequence is also checking that his data elements such
as ‘name’ and ‘date’ are also same with other elements of abstract sequence. Init function is

Proof of Concept

32

initializing all the abstract and concrete variables to length zero so that the validity function can
hold.

method Add(name: NAME, date: DATE)
requires Valid();
modifies this, Repr;
ensures Valid() && fresh(Repr - old(Repr));
{
 var h := new Data<NAME,DATE>;
h.name := name;

h.date := date;
names_a := [name] + names_a;
 dates_a := [date] + dates_a;
 namesseq_c := [h] + namesseq_c;
elems := [h] + elems;
 Repr := Repr + {h}; }

The ‘Add’ method is adding a name and date pair to the system by creating the new object of data
by filling it with input parameters ‘name’ and ‘date’ and adding it to the sequence ‘namesseq_c’.
Sequences ‘names_a’ and ‘dates_a’ are also being updated in order to maintain the state of the
system for consistency. Dafny does not provide the automatic updation of ghost variables that
makes this language more flexible to support data refinement as compare to Spec#. Specification
constructs ‘require’ and ‘ensures’ are showing that pre and post condition of the function for which
valid holds. Following is the find birthday method

method FindBB(name: NAME) returns (date :
DATE,ghost n: int)
requires Valid();
modifies this;
{
n := 0;

var i := 0;
while (i < |namesseq_c| && namesseq_c[i] != null)
{
if (namesseq_c[i].name == name) {
date := namesseq_c[i].date; return;
} else { n := n + 1; i := i + 1; }}}

The ‘FindBB’ method is searching the birthday for any given name. We are not checking the post
condition as validity function because the state of the system is not changing as no updation is
being made to the concrete sequence ‘nameseq_c’. Dafny supports the return variable as a part of
the program; in this example we are using ghost variable “n” which is containing the index of the
return name. Moreover Dafny has a feature to return multiple values. Following is the remind
birthday method

method remindBB(date: DATE) returns (ghost n:int , res
: seq<Data<NAME,DATE>>)
requires Valid();
{
n := 0;
var i := 0;

while (i < |namesseq_c| && namesseq_c[i] != null)
{
if (namesseq_c[i].date == date) {
res := [namesseq_c[i]] + res; i := i +1 ; n := n +1 ;
} else { i := i +1; n := n + 1; } }

The method ‘remindBB’ is returning the sequence of names and date pair for a specific date. The
value return by the method is the names of sequence which contains all the names that have
birthday on the specific ‘date’. Both ‘FindBB’ and ‘remindBB’ functions are containing ‘while’ loop
and both are iterating over the sequence ‘namesseq_c’ bounds. Now we use our tool to generate
the next implementation.

5.1.2 Tool Demonstration

In this section we are demonstrating our tool. We are generating the two implementations of birth
day book system one which is using array and other is using link list as underlying data structure by
following below steps.

Step-1

Select the implementation you want to generate and then select a file

Proof of Concept

33

Step-2

Enter the valid function after selecting

Step-3

Enter Meta data information

Where “AD and “FD” are representing addition and searching. Repeat this process for every
method listed in the OpName drop down menu.

Step-4

Check the new Implemented File.

Proof of Concept

34

5.1.3 Seq to link-list

Following birthday book system is generated from our tool except validity function using our proof
of concept tool which is using link list as underlying data structure. Below are the details of the
generated code. Following is the initial birthday book

class Node<NAME,DATE> {
var name: NAME;
var date: DATE;
var next: Node<NAME,DATE>; }
ghost var names_a: seq<NAME>;

ghost var dates_a: seq<DATE>;
ghost var Repr: set<object>;
var head: Node<NAME,DATE>;
ghost var nodes: seq<Node<NAME,DATE>>;

We are taking the Node class which has three data members name, date and next (which is the
pointer to next node in the linked list). Specifications are same and are in term of sequences except
“nameseq_c” is replaced by “head” of type Node, which is representing the first node in the link
list. Following is the validity function supplied by the user

method Init()
modifies this;
ensures Valid() && fresh(Repr - {this});

ensures |names_a| == 0;
{ names_a := []; dates_a := []; Repr := {this};
head := null; nodes := [null]; }

function Valid(): bool
 reads this, Repr;
{
this in Repr &&
|names_a| == |dates_a| && |nodes| == |names_a| + 1 &&
head == nodes[0] &&

(forall i :: 0 <= i && i < |names_a| ==> nodes[i] != null &&
nodes[i] in Repr && nodes[i].name == names_a[i] &&
nodes[i].date == dates_a[i] && nodes[i].next ==
nodes[i+1])
&& nodes[|nodes|-1] == null }

Validity function has the following descriptions. ‘head’ is pointing to first node in the link-list,
where it is a concrete data type and ‘nodes’ is the abstract data type. Moreover abstract data
“names_a” and “dates_a” are being compared for length and elements validity with ‘nodes’
sequence where the next node of ‘nodes’ is also being validated. One thing is to notice here that
“names_a” has length one greater than the “nodes” due to last additional “null” node. Following is
the add birthday function.

method Add(name: NAME, date: DATE)
requires Valid();
modifies Repr;
 ensures Valid() && fresh(Repr - old(Repr));
{
var h := new Node<NAME,DATE>;

h.name := name; h.date := date; h.next := head;
head := h;
names_a := [name] + names_a; dates_a := [date] +
dates_a;
nodes := [h] + nodes;
Repr := Repr + {h}; }

The ‘Add’ method is adding a name and date pair to the system by declaring new object of a node
class and filling its data members and assigning head to current node and keep. Following is the
find birthday method

method FindBB(name: NAME) returns
(curr: Node<NAME,DATE>, ghost n: int, prev:
Node<NAME,DATE>)
requires Valid();
{
n := 0;
prev := null;
curr := head;

while (curr != null)
invariant n <= |names_a| && curr == nodes[n];
decreases |names_a| - n;
{
if (curr.name == name) {
return;
} else {
n := n + 1; prev := curr; curr := curr.next; } } }

The ‘FindBB’ method is searching the birthday for any given name. The searching in link list is
entirely different from searches in sequences and arrays. In arrays and sequences we have lengths to
bound our loop execution but in link list we have to supply the termination. Here it is being proved
with the help of abstract sequence |names_a|. Method is returning current and previous node
along with node number. Following is the remind birthday function.

method remindBB(date: DATE) returns
(curr : Node<NAME,DATE> , ghost n:int , prev :
Node<NAME,DATE>, res :

seq<Node<NAME,DATE>>)
requires Valid();
{

Proof of Concept

35

 n := 0;
 prev := null;
 curr := head;
 while (curr != null)
invariant n <= |dates_a|&& curr == nodes[n];

decreases |names_a| - n;{

{
if (curr.date == date) {
res := [curr] + res; n := n+1; prev := curr; curr :=
curr.next;
} else {
 n := n + 1; prev := curr; curr := curr.next; } } }

The method ‘remindBB’ is returning the current and previous node numbers along with sequences
of nodes containing name and date pair. Below is the second implementation which generated from
our tool by following steps described in section 5.1.2.

5.1.4 Seq to Array

Following birthday book system is generated from our tool except validity function using our proof
of concept tool which is using array as underlying data structure. Below are the details of the
generated code. Following is the initial birthday book

ghost var names_a: seq<NAME>;
ghost var dates_a: seq<DATE>;

ghost var Repr: set<object>;
ghost var elems: seq<Data<NAME,DATE>>;

In this implementation specifications are same except it operates on concrete array. The arrays are
allocated and sent as function arguments. Following is the initialize and validity function.

method Init(name:array<NAME>, date:array<DATE>,
name_date:array<Data<NAME,DATE>>)
requires name_date != null && name != null && date !=
null;
requires name_date.Length >= 0 && name.Length ==
date.Length && name_date.Length == name.Length;
modifies this;
ensures fresh(Repr - {this});
ensures Valid(name,date,name_date);
ensures |names_a| >= 0;
{
var i := 0; names_a := name[..]; dates_a := date[..];
Repr := {this}; elems := name_date[..]; }

function Valid(name:array<NAME>,

date:array<DATE>,
names_c:array<Data<NAME,DATE>>) : bool
reads this, Repr, names_c, name, date, elems;
requires name != null && date != null && names_c !=
null;
 requires name.Length == date.Length && name.Length
== names_c.Length;
{
this in Repr &&
|names_a| == |dates_a| && |elems| == |names_a| &&
names_c.Length == |elems| &&
(forall i :: 0 <= i && i < |names_a| ==>
name[i] == names_a[i] &&
date[i] == dates_a[i] &&
elems[i] == names_c[i]) }

Initialize function is initializing the abstract sequences from the arrays (feature supported by Dafny)
so that we can check the length of the arrays and sequences after any state change. The validity
function is also checking the length and elements for input arrays. As arrays are passed by reference
in Dafny so we can use arrays as function arguments to check the validity of the system because
they remain same throughout the program. Following is the add birthday function.

method Add(name: NAME, date: DATE,
namearr:array<NAME>,datearr:array<DATE>,names_
c:array<Data<NAME,DATE>>, index:int)
requires names_c != null && namearr != null && datearr
!= null;
requires names_c.Length >= 0 && namearr.Length ==
datearr.Length && names_c.Length ==
namearr.Length;
requires Valid(namearr,datearr,names_c);

requires 0<= index < names_c.Length;
modifies this, Repr, names_c;
ensures Valid(namearr,datearr,names_c);
{
var h := new Data<NAME,DATE>;
h.name := name; h.date := date; names_a := [name] +
names_a; dates_a := [date] + dates_a;
elems := [h] + elems; names_c[index] := h;
Repr := Repr + {h}; }

The ‘Add’ method is adding a name and date pair to the system by declaring an object of Data class
and filling the “names_c” array with the data object by using index from methods parameters. As
Dafny requires the bounds to be valid for any array as a pre condition so we need to specify the
index range as the pre condition of the method. Add function is updating both concrete array and
abstract sequences for maintaining the validity of the system. Following is the find birth day
method.

method FindBB(name: NAME,
namearr:array<NAME>,date:array<DATE>,names_c:a
rray<Data<NAME,DATE>>) returns (curr:

Data<NAME,DATE>, ghost n: int)
requires names_c != null && namearr != null && date !=
null;

Proof of Concept

36

requires names_c.Length >= 0 && namearr.Length ==
date.Length && names_c.Length == namearr.Length;
 requires Valid(namearr,date,names_c);
{
n := 0;
var i := 0;
while (i < names_c.Length && names_c[i] != null)

{
if (names_c[i].name == name) {
curr := names_c[i]; return;
} else {
i := i +1; n := n + 1; }
}
}

The ‘FindBB’ method is searching the birthday for any given name. This method is operating on
the concrete array that is coming as input parameter to the method and returning the object of
Data class with which input variable ‘names’ matches. Array bound is being checked with the built-
in array length function. Following is the remind birthday function

method remindBB(date: DATE,
name:array<NAME>,datearr:array<DATE>,names_c:a
rray<Data<NAME,DATE>>) returns (ghost n:int , res :
seq<Data<NAME,DATE>>)
 requires names_c != null && name != null && datearr !=
null;
 requires names_c.Length >= 0 && name.Length ==
datearr.Length && names_c.Length == name.Length;
 requires Valid(name,datearr,names_c); {

n := 0;
var i := 0;
while (i < names_c.Length && names_c[i] != null)
{
if (names_c[i].date == date) {
res := [names_c[i]] + res;
n := n +1 ;
return;
} else { i := i +1; n := n + 1; } } }

The method ‘remindBB’ is using a concrete array for searching. Method is returning the sequence
containing all names those have birthdays on the supplied input date.

5.2 Conclusion

In this chapter we demonstrate our tool using Birthday book system case study and explained the
generated code. In next chapter we evaluate our solution and discuss the validation of our work
along with weakness that still needs to be address.

Evaluation

37

6 :-: Evaluation

In this chapter we evaluate and validate our work. We present the graphical comparison between
automatic and manual implementation. We discuss the validation of our work in the form of
verification for the generated implementation. We criticize our work and analyze it with related
work.

6.1 Evaluation and Validation

Our main idea behind this project is to generate automatic implementation using data structure
based refinement so that we can reuse our specifications. We are evaluating our work based on the
automation we have achieved so far. Below are the tables for different implementations that we are
using for evaluation and validation

Evaluation

Specifications Data Structure Generation Comments
Sequence Arrays Automatic Specification is in term of

a sequence and
implementation is in term
of arrays

Sequence Link List Automatic Specifications is in term
of a sequence and
implementation is in term
of link list

Validation

Specifications Data Structure Generation Verification
Sequence Arrays Automatic Semi
Sequence Link List Automatic Semi but in our case

study its fully verified

6.2 Experimental setup

We now use our developed tool for evaluating our results.

Evaluation

Step-1
Select the implementation you want to generate and then select the file

Evaluation

38

This is the existing implementation in term of sequence

Step-2
Enter the valid function for new implementations

Step-3
Enter Meta data information

Press finish to generate the implementation. Below is the generated implementation which is using
link list as underlying data structure

Evaluation

39

Validation

We are using Dafny extension for visual studio for verification of programs. The above screen shot
is taken from the visual studio which is showing the absence of any verification error. So the
generated implementation of link list is fully verified.

6.3 Results

We have calculated the programmer overhead by using metric in chapter 2. The metric assigns
different weights to different data structure according to their complexity. We now analyze our
results while keeping in mind the effort required for manual implementation. Tables below
describes the statistics that we have discussed earlier

Effort with high Programming and Verification skills with automatic verification

Specification Data Structures KLOC Implementation and
Verification effort in

term of DT
Sequence/Set Sequence 500 => 0.5 12 days
Sequence/Set Link-list 500 => 0.5 20 days
Sequence/Set Arrays 500 => 0.5 15 days
Sequence/Set Tree 500=> 0.5 30 days

Effort with low Programming and Verification skills with manual verification

Specification Data Structures KLOC Implementation and
Verification effort in

term of DT
Sequence/Set Sequence 500 => 0.5 33 days
Sequence/Set Link-list 500 => 0.5 56 days
Sequence/Set Arrays 500 => 0.5 43 days
Sequence/Set Tree 500=> 0.5 85 days

By using Specification Resuer we can see significant difference in implementation and verification
effort

Specification Data
Structure

KLOC Implementation
effort

Verification
effort

Programming
Skills

Verification
Skills

Sequence Arrays Doesn’t
matter

Low Moderate Low Moderate

Sequence Link-list Doesn’t
matter

Low Moderate Low Moderate

Below are the graphical representations of the results which are showing effort without using the
‘Specification Resuer’.

Figure 6.1: Statistics based on cost drivers

Below graph is representing the effort required with using the ‘Specification Resuer’.

0

10

20

30

40

Implementation and
Verfication effort

Sequence

Array

Link list

Tree 0

20

40

60

80

100

Implementation and
Verification effort

Sequence

Array

Link list

Tree

Evaluation

40

Figure 6.2: Implementation effort using Specification Reuser

Effort is categorized as Low, Moderate and High with values of 50, 100 and 150. As we can see in
the first two graphs which are not using Specification Reuser, effort is high in man days while in the
second graph there is a significant difference in the effort.

6.4 Critical Analysis

Effort Metric
The metric we have proposed in chapter 2 is based on Cost Constructive Model [23] where we
have changed the cost drivers to reflect the verification and implementation effort required to
verify the program. The metric is only for rough estimation and designed by keeping in mind the
verification and implementation efforts using specification based programming language.

Genericity
Table below is describing the automation we have achieved and issues that are preventing the
automation to be fully automatic
Measure Percentage Description
Genericity

40% We can’t say right now that our tool is not more than forty
percent generic that can transform any implementation
written in terms of sequence to array and linked list or to
any data structure. There are limitations and reasons which
we are summarizing in table below

Issues and Limitations
Below are some limitations and issues with their descriptions which are preventing us to achieve
fully automatic implementation or conversion to any data structure
Issues Description
Lack of Operational
knowledge

Operational knowledge or metadata is necessary in order to achieve full
automation. Meta data may include knowledge about operations, variables
and logic of the program. For example two different methods may have two
different sets of parameters as per their operational requirements and new
implementation may require some additional different parameters for each
method according to the logic of the method it is performing. Right now there
is no any clear technique to collect the operational knowledge of the
implementation.

Abstraction Invariant User input is required for supplying the abstraction invariant
Language Dependency Tool is language dependent and not capable to generate implementation other

than Dafny
Limited Reusability If the logic of the program will be change than the tool might achieve less

than forty percent of genericity because of the lack of operational knowledge
for new implemented logic

0

20

40

60

80

100

120

Effort

Implementation
Effort

Verification Effort

Programming Skills
Required

Verification Skills
Required

Evaluation

41

Validation
For Validation we are taking into account the verification of the generated code. Table below is
summarizing the verification achieved so far
Verification Status Percentage Description
Semi Verified 50%

Based on our genericity statistics that we have achieved, the
percentage of the verification code is almost fifty percent.
That’s mean programmers can have almost half of the code
verified automatically and they can start rest of the coding for
full verification of the code.

6.4.1 Related Work

In this section we analyze our work with relation to related work that we have presented in chapter
2.

New Approach
Usually data refinement is used to transform high level mathematical specifications into executable
programs by changing the data types that differs from specifications.

Program Execution

Specifications

{…..}

Refine

Figure 6.3 Traditional approach to refinement

Specifications

{…..}

Implementation-1

[]

Data Structure

based

Refinement

Program Execution

Specifications

{…..}

Implementation-2

[]

Figure 6.4 Approach based on data structure refinement

This approach is achieving the first step to support data refinement that is based on data structure
where we have existing refined implementation and we want to generate another implementation
that differs in data structures. The focus of this approach is on combining the data refinement and
automatic program verification. Data structure based refinement approach is suitable for situations
where system performance need to tunned based on data structure and when we have our
specifications and design but we do not have data structure support in a tool recommended for
implementation.

6.4.2 Spec# Refinement

Spec# supports both one class and two class approach to data refinement. The support for reusing
specifications was achieved by using two class approach. Table below is summarizing our work
with Spec# approach

Evaluation

42

Approaches One Class Two Class
Spec# No support for specification

reusing.
Support specification reusing but
do not have support for automatic
generation of new implementation.
Programmer overhead is high
because all abstraction invariants
need to be redefined for new
implementation

Specification Reuser Support specification reusing in a
automatic way using data
refinement based on data structure

N/A

6.4.3 Event-B

Event-B support refinement but does not support data refinement. It supports automatic code
generation based on Event-B models. Table below is summarizing our work with Event-B
approach

Approaches Refinement Data Refinement Code Generation
Event-B Supports refinement of

models where next model
contains more detailed
information about the
system as compare to
previous one

Not supported Automatic code generation is
supported from models but
the correctness of generated
code relies on the correctness
of Event-B model. Also any
extension to the generated
code results unverified code

Specification Reuser Support refinement based
on data structure

Supported Automatic code generation
based on data structure
refinement with facility to
extend the code

6.5 Conclusions

In this chapter we evaluated and validated our work and provide the experimental setup. Moreover
we criticize our work and analysed the threats to validity of our work. We discussed our new
approach to data refinement and compare our approach to related work. In next chapter we will
summarize our work and provides the future direction on the topic.

Conclusions

43

7 :-: Conclusions

In this chapter we summarize our work by visiting our problem statement again. We discuss what
we have achieved so far and what are needed more to achieve our ideal system design by providing
future directions.

7.1 Summary

We proposed a new technique to data refinement by focusing on data structure replacement so that
we can reuse the specifications. This technique is different from the traditional technique in a way
that it is focusing on data structure for refinement instead changing data types for refinement. We
presented the related work where we discussed refinement in Spec# and Event-B and proposed the
metric for calculating overhead based on Cost Constructive Model. We proposed the generic
system design for generating multiple implementations with difference in data structure without any
language and tool restrictions.

In chapter four we presented our current system design followed by implementation in
chapter five. In chapter six we evaluated and validated our work based on automation and
verification that we have achieved so far. We analyse the programmers overhead by comparing the
results obtained from our tool with the results we have computed in chapter two by using our
proposed metric. We criticized our work and discussed the validity, genericity and verifiability of
our work followed by comparison with related work.

7.2 Achieving our Goals

As per our problem statement we have proposed a generic system design for data structure based
data refinement. We provided the design of the system along with its class diagram. We provided
the proof of concept tool for data structure based data refinement. We demonstrated our tool using
a case study. Now we will provide the directions to extend the existing tool and future
recommendations for developing a generic framework.

7.3 Future work

In this section we discuss future work that needed to implement our ideal system framework.

7.3.1 Library Development

The library that consists of multiple data structures which can be used in our generic framework
and from where we can pick any data structure in which we want to implement our solution.

Link list
Binary Search

Tree
AVL Tree

Array Qeue Stack

……….

……….

Figure 7.1: Library of data structures

Conclusions

44

Library should provide operations for every data structure. For instance if we want to implement a
link list, the library should have supporting operations such as creating a node, inserting an element
in the list and searching an element.

7.3.2 Language Development

Although we used Dafny language in our project as it provides greater support for data refinement
but we still think that we need a more dedicated data refinement language that can treat
specification, Abstraction Invariant and implementation in more easy way and that can be used as a
part of our proposed system.

7.3.3 Meta Data Collection

As we discussed previously in our project that operational knowledge or Meta data is very
important for providing data structure based refinement. We need to develop such a system that
can provide us the operational knowledge of the system code such as methods, variables, decision
statements an loops which can be used within our proposed system.

7.3.4 Improved GUI

As we presented the ideal graphical user interface for our generic framework in our solution design
chapter, the new and improved graphical user interface need to develop where user can have facility
to drag and drop the components and can generate implementations for their particular language.

7.3.5 Generic Framework Implementation

In order to achieve our generic system goal where we can replace any implementation for the same
specifications without any underlying tool or implementation language restriction we need the
development of generic framework with the components we have described above.

7.3.6 Proof obligations Reuse

In order to support data refinement from already verified program where verification required
proof to be discharged we need to develop the system which can reuse proof obligations from
existing implementation to new implementations.

7.3.7 Full Danfy tool Implementation

Currently our proof of concept tool is working only for refining data from sequence to array and
sequence to link list with manual collection of Meta data. It can be extended to support data
refinement for sets and multi-sets with automatic collection of Meta data and drag and drop facility
for user interface.

In this chapter we summarized our work and provide the future directions in order to build a
generic framework for data structure based refinement. In summary we have shown in this
dissertation the first step towards achieving our generic refinement framework which will base
on data structure change. Our future work will focus on full Dafny tool implementation
followed by generic framework development.

45

Bibliography

[1] J. Woodcock, P. G. Larsen, J. Bicarregui and J. Fitzgerald, “Formal methods: Practice and
experience,” ACM Computing Surveys (CSUR), vol. 41, no. 4, pp. 1-40, 2009.

[2] K. R. M. Leino, “Automating Theorem Proving with SMT,” Microsoft Research,
Redmond, WA, USA, May 2013.

[3] J.-R. Abrial, The B-book: assigning programs to meanings, Cambridge University Press
New York, NY, USA ©1996 ISBN:0-521-49619-5, 1996.

[4] J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security, New
York: Addison Wesley, 2003.

[5] B. Meyer, “Applying Design by Contract,” Computer, vol. 25, no. 10, pp. 40-51, 1992.

[6] K. R. M. Leino, “This is Boogie 2,” Microsoft Research, One Microsoft Way Redmond,
WA, 2008.

[7] K. Robinson, System Modelling & Design Using Event-B, University of New South
Wales, 2007.

[8] R. Monahan, Data Refinement in Object-Oriented Verification, School of Computing,
Dublin City Univeristy, Dublin, 2010.

[9] M. Barnett, K. R. M. Leino and W. Schulte, “The Spec# Programming System: An
Overview,” in CASSIS 2004 proceedings., Microsoft Research, Redmond, WA, USA,
Manuscript KRML 136, 12 October 2004.

[10] D. Méry and N. K. Singh, “Automatic Code Generation from Event-B Models,” in SoICT
'11 Proceedings of the Second Symposium on Information and Communication Technology, New York,
NY, USA, 2011.

[11] N. Catano, K. R. M. Leino and V. Rivera, “The EventB2Dafny Rodin Plug-In,” in 2nd
Workshop on Developing Tools as Plug-ins (TOPI), Zurich, 2012.

[12] K. R. M. Leino and P. Müller, “A verification methodology for model fields,” P. Sestoft,
editor, ESOP, vol. 3924 of Lecture Notes in Computer Science, p. 115–130, 2006.

[13] J. M. Spivey, The Z Notation, Oxford: Prentice Hall International (UK) Ltd, 1992.

[14] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Abstraction and Reuse
of Object-Oriented Design,” in ECOOP '93 Proceedings of the 7th European Conference on
Object-Oriented Programming, London, 1993.

[15] OMG, Object Constraint Language (OCL), Version 2.3.1, OMG Document Number:
formal/2012-01-01, 2012.

46

[16] M. Jastram, Rodin User's Handbook, 2012.

[17] J. Woodcock and A. Cavalcanti, “A Concurrent Language for Refinement,” in IW-FM'01
Proceedings of the 5th Irish conference on Formal Methods, Swinton, 2001.

[18] A. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall (Pearson), 2005.

[19] Lamport, Leslie; Digital Equipment Corp., Palo Alto, CA, “The temporal logic of actions,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 16, no. 3, pp. 872-
923, 1994.

[20] ECMA, Eiffel: Analysis, Design and Programming Language, Geneva: Standard ECMA-
367, 2006.

[21] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata, “Extended
Static Checking for Java,” in PLDI '02, NY, 2002.

[22] A. B, Proof Obligations Reference Manual, CLEARSY System Engineerning.

[23] J. Hale, A. Parish, B. Dixon and R. K. Smith, “Enhancing the Cocomo estimation
models,” Software, IEEE, vol. 17, no. 6, pp. 45-49, 2000.

[24] C. L. Goues, K. R. M. Leino and M. Moskal, The Boogie Verification Debugger, Microsoft
Research, Redmond, WA, USA, 2011.

[25] I. T. Kassios, “Dynamic Frames and Automated Verification,” 2011.

[26] P. Chalin, J. R. Kiniry, G. T. Leavens and E. Poll, “Advanced Specification and
Verification with JML and ESC/Java2”.

[27] L. Lamport, “What Good is Temoral Logic,” in Elsevier Science Publishers B.V, North-
Holland, 1983.

[28] K. R. M. Leino and R. Monahan, “Dafny meets the Verification Benchmarks Challenge,”
Microsoft Research, Redmond, WA, USA.

[29] K. R. M. Leino, “Dafny: An Automatic Program Verifier for Functional Correctness,”
Microsoft Research WA, USA.

[30] L. Herbert, K. R. M. Leino and J. Quaresma, “Using Dafny, an Automatic Program
Verifier,” Technical University of Denmark & Microsoft Research.

[31] K. R. M. Leino, “Developing Verifi ed Programs with Dafny,” Microsoft Research,
Redmond, WA, USA.

[32] K. R. M. Leino, “Specification and Verification of Object-Oriented Software,” Microsoft
Research, Redmond, WA, USA.

47

Appendix A: UML Class Diagrams

A.1: Ideal System: UML Class Diagram

GUI
SpecifficationReader

-var_name
-var_data_type
-pre_conditions
-post_conditions

+readSpecificationData()

ImplementationReader

+readVariablesInfo()
+readMethodsInfo()
+readLogicInfo()

NewImplementationInfoReader

-data_structure_name
-data_strcture

+readsNewDataStructureDetails()
+getRefinedData()

MetaData Collection

-operation_name
-operation_description
-operation_type
-variables_name
-variables_description
-variables_types
-variables_logic_info
-methods_logic_info

+setOperationName()
+setOperationDescription()
+setOperationType()
+setVariablesName()
+seVariablesDescription()
+setVariablesType()
+setLogicVariableInfo()
+setLogicMethodInfo()
+getOperationName()
+getOperationDescription()
+getOperationType()
+getVairableName()
+getVariableDescription()
+getVariableType()
+getLogicalVariableInfo()
+getLogicalMethodInfo()

CodeGenerator

AbstractionInvaraintChecker

-isCompatible
-isValid

+checkCompatibility()
+checkRelationValidity()

RefinementValidation

-isRefined

+checkRefined()

Rule

-rule_name
+rule_guidelines

+selectRule()
+applyRule()

Generator

+changeInitlizations()
+changeOperationSignatures()
+changeAdditionLogic()
+changeFindingLogic()
+changeUpdationLogic()
+changeInsertionLogic()

currSpecCurrImpl

1

1

DataStructureLibrary

DataStructureStore

+getDSNAME()
+getDataStrcture()

DataRefinementAPI

DataRefinement

+doRefinement()

CodeGenerationRules

GenerationRules

+getGenRule()

getDataStrctureDetails

1..*1

metaDataCollection

oldSpecNewImp

1..*

1

usingRules
1

1..*

refinementValidation

1

1

getGenerationRules

1..*

1

11

48

A.2: Implemented System: UML Class Diagram

dataHolder

-abstract_name_type
-concrete_name_type
-abstract_data_type
-concrete_data_type
-abstract_var_name
-concrete_var_name

+setAbstractNameType()
+setConcreteNameType()
+setAbstractDataType()
+setConcreteDataType()
+setAbstractVariableName()
+setConcreteVariableName()
+getAbstractNameType()
+getAbstractDataType()
+getAbstractVariableName()
+getConcreteNameType()
+getConcreteDataType()
+getConcreteVariableName()

linkListGeneration

-node_data_type
-extract_data_type
-variable_head
-temp_string_for_new_node_init
-temp_string_for_new_node_flag
-temp_variable_for_new_node
-temp_string_for_new_node_count
-prev_curr_cuurent_line_number
-prev_curr_flag
-temp_closing_brace_line_number

+generateNewNodeVariable()
+changeSpecificationDataType()
+initializationChanging()
+commentInitlizationCode()
+changiningAdditonOperation()
+changiningSignatureOfFindingOperations()
+changiningInsideFindingOperations()

methodsDataHolder

-method_name
-method_line_number
-opening_brace_line_no
-closing_brace_line_no

+setMethodName()
+setMethodLineNumber()
+setOpeningBraceLineNumber()
+setClosingBraceLineNumber()
+getMethodName()
+getMethodLineNumber()
+getOpeningBraceLineNumber()
+getClosingBraceLineNumber()

metaDataCollecter

-methodsMetaDatalist

+record_btn_Click()
+finish_btn_Click()
+opertionDesctipion_Load()

storeMetaData

-opname
-opdesc

+setOpName()
+setOpDesc()
+getOpName()
+getOpDesc()

validFunction

-valid_function_str

+btnClear_Click()
+btnEnter_Click()
+fillValidFunction()
+getValidFunction()

validityChecker

-specification_constrcts
-new_dataStrcutre_name

+checkValid()

LogicAndArrayGeneration

-file_bytes
-file_storage
-storage_index
-number_of_lines
-global_array_addition
+new_var_generation_flag_for_linklist
+ghost_seqarraylist
+concrt_seqarraylist
+methods_holdinglist
+generate_ghost_count
+generate_method_count
-currentLineNumber
-currentInsertArrayLineNumber
-temp_currentInsertArrayLineNumber

+Logic()
+storeGhostData()
+storeConcreteData()
+removeConcreteVariable()
+changeParamsandPrePostCond()
+changeInitialization()
+seqToArrayAddition()
+addIndexestoParametersSTAdditon()
+storeMethodsData()
+readBytesOfFile()
+getByteofFile()
+readNumberAndLengthofLines()
+getFileStorage()
+getNumberofLines()
+getReadingPath()
+getWrittingPath()
+getWrittingPathForLinkList()
+readNumberAndLengthofLinesFromStringBuilder()
+chaingingLoops()
+handlingValidFunctionConditions()

CodeGenerator

+CodeGenerator()
+seq_array_CheckedChanged()
+seq_linklist_CheckedChanged()
+creatValidFunctionDialog()
+closeValidFunctionDialog()
+creatoperationDescriptionDialog()
+closeoperationDescriptionDialog()
+SequenceArrayProcessing()
+SequenceToLinkListProcessings()
+code_generator_Load()

1 1

1

1

0..*

1

0..* 1

11

0..*1

1

1

1

1

49

Appendix B: Dafny

Dafny Background

Dafny is an object oriented programming language designed to support static verification of the
programs. The language was designed to support data refinement in fully manners and its supports
generic classes, dynamic frame allocation and much useful specification constructs. Dafny allows
user define algebraic data types and specification constructs which include pre and post conditions,
frames handling (modifies and reads), loop invariants and termination metrics. Further in order to
support the specification, language allows the updateable ghost variables and types like set and
sequences. Ghost variables have a major advantage over the model variables that they are giving
freedom to update them manually. Ghost specification constructs are used for the verification
purpose only and the compiler does not generate the code for ghost variable for using at run time.

Dafny verifier runs as a part of the compiler same as syntactic checker and its interactive in
the sense that it’s always running in the background and promoting users for any failed verification.
There is an integration of Dafny verifier with visual studio 2010 .By using this integration we can
write the Dafny code in visual studio and verifier will run in the background constantly for
checking the code. Dafny verifier translates its code to intermediate verification language Boogie [6]
in such a way that the correctness of Boogie program implies the correctness of Dafny program.
Boogie generates the first order verification conditions that are passed to the underlying SMT [2]
solver. Any violation in verification conditions promotes back to Dafny. Sometimes it’s hard to
understand the error message produces by the SMT solver for which ‘BVD’ [24] Boogie
verification debugger is available to debug the verification conditions. Below is the overall
architecture of Dafny.

Dafny Compiler

Boogie Z3

Dafny Verifier Dafny & Verifier

User Writing Code

C
o

d
e

V Conditions

Verifier Feedback

Z3 feedbacks to Dafny Verifier after

assessing verification conditions

Translation

Verification Conditions

Dafny Architecture

Types

Dafny provides only Boolean and integer data types. The integer data type is also referred to as
natural numbers “Nat”. Other data types such as string and float are not supported by the language.
Dafny provides user defined algebraic data types and do not allow sub classing. All the classes are
subtypes of the class object. Moreover language provides the Generics facility and specification
constructs such as set, sequence and multi-sets.

50

Pre and Post Conditions

Dafny provides the specification constructs for pre and post conditions. ‘requires’ clause is used for
writing precondition and ‘ensures’ clause is used for expressing post conditions. Pre and post
conditions are written immediately after the method declaration.

someMehtod(x: int)
requires x >=0; //pre-condition
ensures x == 10; //post-condition
{/*method body goes here*/}

Methods

The methods provide the modular structure in Dafny. They are same like any other programming
language but starts with the key word ‘method’. The ‘modifies’ clause in methods provides the
authority for which they can change the values of objects. Below is the general structure of the
method.

method someMethod(x:T) returns (y:T)
requires … //pre-condition
modifies … // frame condition
ensures … //post-condition
{/*method body*/}
Where T represents the data type of x and returns indicates the return statement. One important
feature that the language provides that the return variable value can be used in method code.

Functions

Functions are defined in Dafny to be used as specification constructs, where functions have the
same structures as method except the return type syntax. Below is the general structure of the
function

function someFunction(x:T):bool
requires … //pre-condition
reads … // frame condition
ensures … //post-condition
{/*function body*/}

Where ‘reads’ in a function indicates the frame condition. Functions are restricted to use only in
specifications but if we declare the functions as “function method” then we can use it outside the
specification as well.

Predicates

Predicates are same as functions but they don’t have a return type. Predicates provide the behavior
as boolean expressions. Below is the general structure of the predicate

predicate somePredicate(x:int)
requires … //pre-condition
{ if x > 0 then true else false}

51

Quantifiers

Quantifiers are used to iterate over arrays, sequences and sets. ‘forall’ is the only quantifier that is
available in Dafny right now. Below is the general structure of the quantifier

forall k :: 0=< k < array.Length ==> …array[k]…;
Where ‘forall’ is the key word and statement can be interpreted as ‘forall k such that k is greater
than 0 and less than array.Length implies that check every element in the array on index k’.
Quantifiers are very useful for writing pre and post conditions.

Sets

Sets are very useful specification constructs and a powerful mathematical property to express
specifications. Sets are order less collection of elements which are distinct and no repetition is
allowed in the set. Sets are immutable in Dafny that’s mean they cannot be modified once created
hence they can be used easily in annotations without involving heap. Dafny has ‘set’ key word for

declaring sets.

var s1 : set<int>; var s2 : set<int>;
s1:={1,2,3} , s2:={2,4}
assert s1 + s2 == {1,2,3,4} //set union

assert s1 * s2 == {2} //set intersection
assert s1 – s2 == {1,3} //set difference

Where s1 and s2 are the sets of integers and assert statement is ensuring the equality of the
different operations such as union, difference and intersection. Sets are very useful for verification
of the programs.

Sequences

Sequences are immutable objects and same as their counterpart set. Sequences contain ordered
elements and without restriction to be distinct. Sequences have different operations then sets such
as sets required union for adding an element whereas a sequence has concatenation for adding an
element into sequence. Dafny has ‘seq’ keyword for declaring the sequence.

var s : seq<int>;
s := [1,2,3,4,5];
assert s[|s|-1] == 5;
assert s[..] == [1,2,3,4,5];

assert s[1..] == [2,3,4,5];
assert s[1,2,3,4,5] == s[1,2,3] + s[4,5];
assert forall k :: 0=< k < |s| ==> s == s[..k] + s[k..]

Where ‘s’ is a sequence of integers in first statement. Second statement is describing the concept of
slicing where we can slice the sequence and extract particular element at any given index.
Concatenation operation is associative in sequence. The last assert statement is indicating the
iteration over the sequence and holds the relationship that both sides are equal after implication.

Loop invariants

Loop invariants are very important for program verification. Dafny has no mechanism to
determine in advance about the number of time loop will execute in cases where no bounds exist
for the data structure such as link list. It is deterministic in case of iterating over arrays and
sequences but un-deterministic in other cases. Loop invariants are used in order to guide the
verifier about the current situation of the loop. Loop invariant should hold before entering the
loop, during execution and after termination of the loop. Dafny has ‘invariant’ as a key word for
expressing invariants in the loop. Following is an example of an invariant.

var i:= 0;
var n := 10;

52

While (i < n)
Invariant i >= 0; //invariant remains true before, during and after execution of the loop
{i := i +1 }
assert i == n; //condition after loop termination

Termination

As termination is deterministic in case of arrays and sequences but un-deterministic in other cases
such as link lists we have to provide some termination information about the loop otherwise
verifier will complain about the loop that he cannot terminate it. Dafny has key word ‘decreases’
for handling loop termination. It is good practice to provide decreases clauses in the deterministic
case as well because it helps verifier to verify the program easily.

while (i < array.Length)
decreases array.Length - i; //length will decrease on every iteration
{i := i +1}
assert i == array.Length; //condition after loop termination

Ghost Variable

Ghost variables are specification only variables that are needed only for verification purpose. The
compiler does not generate code for ghost variables as these are not needed at the execution time.
Ghost variable is same like physical variables and can be used inside the program freely except that
the values of ghost variables cannot be floated into physical variables.

ghost var gv : int;
ghost var gsq : seq<int>;
ghost var gst : set<int>;
Where ‘ghost’ is the key word used to declare the variables. Here ‘gv’ is a ghost variable of type
integer and variables “gsq” and “gst” are ghost sequence and set.

Frame Handling

Frame problem can be stated as: ‘when formally describing a change in a system, how do we specify
what parts of the state of the system are not affected by the change’ [25]. Frame conditions are used
in methods and functions specifications which tell the verifier about the data or object that can be
modified during the execution of the method or function. Methods are using ‘modifies’ clause
where function are using “reads” clause to express frame conditions. Dafny handles these
conditions in a very simple way by providing the set of objects that methods can modify and the
function can read.
ghost var Repr : set<object>
method someMethod1()
modifies this
{ /*method body */}

method someMethod2()
modifies Repr;
{/*method body*/}

‘Repr’ is a set of objects and declared as a ghost because this set do not require at run time. It
contains all objects that method can modify such as this, obj1 and obj2 where obj1 and obj2 are
some objects of the class. This technique is called dynamic framing in Dafny. Set is dynamic
because it contains different objects at different states of the system.

53

Abstraction Function

Abstraction function is a function that relates specification data with concrete data. In Dafny this
relation is defined in a method called ‘Valid’. This is not reserved name of the function instead we
can give any name to this method only just for simplicity we refers it to as Validity function. This
method is used as pre and post condition to most of the methods and as a precondition to
functions for marinating system consistency.

Dynamic Frames

Dafny handles frames problem with a dynamic frame technique where it uses a set of objects which
contains different objects at different times that are available to method to modify. Below is an
example of handling frames.

class handle_frames{
ghost var repr : set<object>

function Valid()
reads this, repr;
{this in repr && /*function body*/}

method Init()
modifies this;
ensures Valid() && fresh(repr – {this});
{/*body of the method*/

 repr := {this} + {any new object}}

method Update()
requires Valid();
modifies repr;
ensures Valid() && fresh(repr – {this});
{/*body of the method*/}
}

var obj = new handle_frames(); obj.Init();

Above class declares a ‘representation’ set named ‘repr” as a ghost variable. ‘Valid’ functions say
that it allows reading of objects in the ‘repr’ along with ‘this’ object in order to maintain the
consistent state. ‘Init’ specifies that he can modifies ‘this’ object and ensures that after execution of
the method system remains in consistent state and also ensures that all newly allocated objects have
been added to repr set except ‘this’ object. Keyword ‘fresh’ is used by Dafny to express these
allocations where fresh(s) means that all non-null objects in set ‘s’ will be allocated after execution
of the method.

Update method showing that the system will remains in consistent states before and after
method execution. Since this method is allowed to modify ‘repr’ its post condition is ensuring the
consistency of the system and updating all the objects that have been modified during the execution
of the method in ‘repr’ set. Now if we make an object of the class as shown in the example the
‘obj.repr’ is disjoint from any other object of the system and it has its own frame to operate.

	1 :-: Introduction
	1.1 The Problem Description
	1.2 Motivation
	1.3 The Goals of this research
	1.4 Contribution of this thesis
	1.5 Thesis overview

	2 :-: Related Work
	2.1 Problem Context
	2.2 Data Abstraction
	2.2.1 Model fields
	2.2.2 Ghost Fields
	2.2.3 Refinement
	2.2.4 Data Refinement

	2.3 Abstraction in Software Engineering
	2.4 Specifications and Refinement Support
	2.5 Data Refinement Support
	2.5.1 Spec#
	2.5.2 Data Refinement in Dafny

	2.6 Two Class approach to data refinement
	2.7 Critical Analysis
	2.8 Refinement and Code generation in Event-B
	2.9 Critical Analysis
	2.10 Programmers overhead
	2.10.1 Effort Required

	2.11 Conclusion

	3 :-: Solution Design
	3.1 Problem statement
	3.2 Solution Requirements
	3.3 Solution Design
	3.4 Interface Design
	3.5 Conclusion

	4 :-: Solution Implementation
	4.1 Design decision
	4.1.1 Language Selection
	4.1.2 The impact of using Dafny

	4.2 Tool Implementation
	4.3 Guidelines
	4.3.1 Sequence to Array Conversion
	4.3.2 Sequence to link-list Conversion

	4.4 Specification Reuser
	4.4.1 System Specifications
	4.4.2 System Requirements
	4.4.3 System Design
	4.4.4 Implementation

	4.5 Conclusion

	5 :-: Proof of Concept
	5.1 Case Study
	5.1.1 Seq to Seq
	5.1.2 Tool Demonstration
	5.1.3 Seq to link-list
	5.1.4 Seq to Array

	5.2 Conclusion

	6 :-: Evaluation
	6.1 Evaluation and Validation
	6.2 Experimental setup
	6.3 Results
	6.4 Critical Analysis
	6.4.1 Related Work
	6.4.2 Spec# Refinement
	6.4.3 Event-B

	6.5 Conclusions

	7 :-: Conclusions
	7.1 Summary
	7.2 Achieving our Goals
	7.3 Future work
	7.3.1 Library Development
	7.3.2 Language Development
	7.3.3 Meta Data Collection
	7.3.4 Improved GUI
	7.3.5 Generic Framework Implementation
	7.3.6 Proof obligations Reuse
	7.3.7 Full Danfy tool Implementation

	Bibliography
	Appendix A: UML Class Diagrams
	A.1: Ideal System: UML Class Diagram
	A.2: Implemented System: UML Class Diagram

	Appendix B: Dafny

