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1. Introduction

The quark-gluon plasma phase of QCD has been studied experimentally at both RHIC and the
LHC. However, a full theoretical understanding of this phase is still being developed. One quantity
which can aid this understanding is the potential between quarks as a function of temperature. Due
to the widely cited J/ψ suppression [1], it is natural to consider the interquark potential of the
charmonium system.

There has been theoretical work studying the interquark potential in quarkonia as a function
of temperature from early models [2] to perturbative QCD calculations [3]. Furthermore, there
have been some recent non-perturbative QCD studies (i.e. using lattice simulations) of interquark
potentials which is relevant to the work presented here. These fall into two categories: (i) non-
zero temperature studies of thestatic quark potential [4]; and (ii)zero temperaturestudies of the
potential between quarks with finite masses [5]. This work presents a study of the interquark
potential of charmonium usingphysical charm quark massesat finite temperatureand uses two-
flavours of dynamical quarks. A particular feature of our work is that our lattices are anisotropic
which has the significant advantage in that our correlation function data is determined at a large
number of temporal points.

Our method follows the HAL QCD method [6] of determining the potential in lattice simu-
lations.1 This is based on using the Nambu-Bethe-Salpeter (NBS) wavefunction as input into the
Schrödinger equation and solving for the potential.

In this work we use two methods to determine the wavefunctionfrom our lattice simulations,
conventional exponential fits and the Maximum Entropy Method. We find that both approaches give
qualitatively similar results. Our main conclusion is thatwe observe a temperature dependence in
the charmonium potential which is consistent with expectations, i.e. the potential is steepest for
low temperatures,T, and shows signs of flattening at large distances asT increases.

We are in the process of extending our work by using the “time-dependent” approach of HAL
QCD [8] which determines the potential directly from the hadron correlation functions [9].

2. Schrödinger Equation Approach

We follow the HAL QCD method to determine the potential [6]. We begin by determining the
NBS wavefunction of charmoniumψ(r

∼
) from the (t → ∞ behaviour of the) correlators of point-

split operators,J(x, r
∼
) = q(x)ΓU(x,x+ r

∼
)q(x+ r

∼
),

C(r
∼
, t) = ∑

x
∼

< J(0; r
∼
) J(x; r

∼
)> −→ |ψ(r

∼
)|2 e−Et. (2.1)

The NBS wavefunction is determined from the matrix element of the point-split operator,ψ(r
∼
) ∼

〈0|J(r
∼
)|gnd〉. Once the NBS wavefunctions and energies,E, are extracted from the correlators (see

section 4) we use the Schrödinger equation to solve for the potentialV(r),

1The original HAL QCD programme studiedinternucleonrather thaninterquarkpotentials from lattice QCD sim-
ulations.
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(

−
∇2

2µ
+V(r)

)

ψ(r) = E ψ(r). (2.2)

Here, µ = 1
2mq ≃ 1

4MJ/ψ , is the reduced mass. We note that this is the opposite approach nor-
mally associated with the Schrödinger equation, i.e. the potential is “reverse engineered” from the
inputted wavefunction.

3. Lattice Parameters and Correlators

Our lattices are generated with two dynamical flavours of light quarks using a Wilson-type
action with anisotropy ofξ = as/aτ = 6 with as ≃ 0.162fm anda−1

τ ≃ 7.35GeV [7]. Table 3 lists
the lattice parameters used. We note that the range of temperatures,T = 1/(aτ Nτ), is from the
confined phase up to∼ 2Tc whereTc is the deconfining transition. The charm quark is simulated
with the (anisotropic) clover action and its mass is set by matching the experimentalηc mass at
zero temperature.

Ns Nτ T(MeV) T/Tc Ncfg

12 80 90 0.42 250
12 32 230 1.05 1000
12 28 263 1.20 1000
12 24 306 1.40 500
12 20 368 1.68 1000
12 16 458 2.09 1000

Table 1: Lattice parameters used, including spatial and temporal dimension,Ns andNτ .

In Fig.1 we plot the pseudoscalar charmonium correlation functions for quark separationsr at
various temperatures, see table 3. Only on-axis separations, r

∼
, were studied in this work.

4. Wavefunctions and Potentials from Exponential Fits

We extract the NBS wavefunction,ψ(r), discussed in section 2 using a standard exponential
fit of the point-split correlators at larget, C(r, t) = |ψ(r)|2 e−Et (see eq.(2.1)). The normalised
wavefunctions are plotted in Fig.2 for both the pseudoscalar (ηc) and vector (J/ψ) channels. As
can be seen, the expected behaviour for s-wave ground statesis observed with the maximum of
ψ(r) at r = 0, andψ(r)→ 0 asr → 0.

We use eq.(2.2) to determine the potential for both the pseudoscalar and vector channels.
Figure 3 shows the spin-independent potential,Vqq(r), defined

Vqq(r) =
1
4
[VPS(r)+3VV(r)]. (4.1)

As can be seen from Fig. 3, there is evidence of a temperature dependency in the potential: the
potential flattens as the temperature increases. This is in accord with expectations. Note however,
that theNt = 16 correlator fits cannot be made over a large time range due tothe brevity of the
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Figure 1: Pseudoscalar charmonium correlators of point-split operators for various temperatures.

lattice in the temporal direction. For this reason we associate some uncertainty with this ensemble
(and these points are depicted with open symbols in Fig. 3).

5. Wavefunctions from MEM

The Maximum Entropy Method (MEM) has been used by many lattice studies to extract spec-
tral information from correlators [10]. The fundamental equation is

C(r, t) =
∫

ρ(r,ω) K(t,ω) dω , (5.1)

whereρ is the spectral function and the lattice kernel is

K(t,ω) =
cosh[ω(t −Nt/2)]

sinh[ωNτ/2]
. (5.2)

Figure 4 shows the spectral function obtained via MEM from the correlators of point-split opera-
tors,C(r, t), at the highest temperature. The vertical bands in Fig. 4 areplaced at the ground and
first excited states’ masses as obtained from an MEM analysisat lower temperatures. We estimate
the NBS wavefunction from the integral ofρ(ω) over this energy interval. Figure 2 includes the
wavefunctions obtained in this way. As can be seen there is reasonable agreement between the
MEM determination and the exponential fit approach from section 4.
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Figure 2: Pseudoscalar (PS) and vector (V) normalised wavefunctions, ψ(r), for various temperatures. Both
the results from the exponential and MEM fits are shown.
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Figure 3: The spin-independent potential,Vqq, for various temperatures. Statistical errors only are shown,
and the points are shifted horizontally for clarity. A vertical constant was added to each temperature’s
potential to align the first point, i.e.Vqq(r/as = 1) is defined to be zero. TheNt = 16 points are depicted
with open symbols due to the concerns about their fits as discussed in the text.
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Figure 4: The spectral function obtained from MEM for theNτ = 16 case for various separationsr. The
vertical bands are placed at the position of the ground and excited states.

Note that the estimate of first excited state’s wavefunctionfrom the second vertical band in
Fig. 4 decreases for small separations,r, asr → 0, as expected for an excited state.

6. Conclusions and Outlook

There is a significant body of theoretical work studying the interquark potential in charmonium
at non-zero temperature using model, perturbative and lattice (non-perturbative) approaches. This
work improves upon earlier lattice simulations by considering quarks with finite mass, and thus
represents a first-principle calculation of the charmoniumpotential of QCD at finite temperature.
The method we use is based on the HAL QCD approach which obtains the potential from correla-
tors of point-split operators [6]. Our determination of thepotential shows the expected flattening
as the temperature increases. This work adds to previous charmonium studies performed by our
collaboration with the same lattice parameters [11].

We’ve used two different methods of fitting the point-split correlators: conventional fits to
exponentials and the MEM. There is qualitative agreement between the wavefunctions determined
from both. However, it is clear from Fig 4 that the (high temperature) correlators, are not a simple
sum of discrete exponentials, i.e. each spectral feature has a finite width. For this reason, fitting
the correlator to an exponential (as in section 4) is an approximation. A better approach would be
to determine the wavefunction from MEM as described in section 5. However, it is necessary to
have symmetric correlators2 when using MEM to maintain positive semi-definite spectral weights,
ρ . Since the operators in question in this study are point-split and therefore are inherently noisy,
demanding symmetric correlators increases the noise substantially compared to non-symmetric
correlators.

In forthcoming work [9] we will use the HAL QCD “time dependent” approach [8] which
allows us to calculate the potential directly from the correlators, thus circumventing the problems
discussed in both the exponential and MEM fitting procedures. We also will be studying signif-

2i.e. correlators of thesameoperator at the source and sink
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icantly larger lattices (with a spatial volume of 323) with 2+1 flavours of dynamical quarks and
hope to extend our work to determine the potential between NRQCD quarks [12].
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