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Abstract

This thesis is primarily concerned with the construction of a large Hecke-type structure

called the double affine Q-dependent braid group. The significance of this structure is that

it is located at the top level of the hierarchy of all other structures that are known to be

related to the braid group. In particular, as specialisations we obtain the Hecke algebra,

in addition to the affine Hecke algebra, even the double affine Hecke algebra and also the

elliptic braid group. To render the algebraic description of this group more accessible, we

present an intuitive graphical representation that we have specifically developed to fully

capture all of its structure. Contained within this representation are representations of all

of the afore mentioned algebras which all contain the braid group as primary element. We

also present finite dimensional matrix representations of affine Hecke algebras, emerging

from tangles. Using these tangles we also obtain representations of the Temperley-Lieb

algebra and the affine braid group. We conclude this thesis with our interpretation of the

central role of the Hecke algebra in the development of knot theory. More specifically we

explicitly derive the HOMFLY and Jones polynomials.
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Chapter 1

Introduction

The following is a quote I came across while reading a textbook on differential equations.[1]

“We have not succeeded in answering all our problems. The answers we have found

only serve to raise a whole set of new questions. In some ways we feel we are as confused

as ever, but we believe we are confused on a higher level and about more important things.”

I find that this quote aptly describes most of the time I have spent researching, culmi-

nating with the presentation of this thesis. In my goal of understanding and developing

Hecke algebras, much has been achieved, but as a result a whole new set of questions

need to be answered.

This introduction, serves as motivation to highlight the physical relevance of the work

contained in this thesis.

1.1 Hecke-type Structures

Representation theory is an essential tool in mathematical and physical research: it can

reduce difficult problems in abstract algebra to more tractable problems in linear algebra

for example. To this end, the theory of special functions, arithmetic and related combi-

natorics are the usual objectives of representation theory. A particularly potent example

illustrating the power of representation theory may be offered in the context of Hecke-

type algebras [2]. A significant portion of this thesis is dedicated to our construction

and representation of a Hecke-type structure called the double affine Q-dependent braid

group which we denote by DN{Q}. As the rest of the thesis follows on from the definition

of DN{Q}, in the following figure, Figure 1.1 we specify its position in relation to other

well known algebraic structures.
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Figure 1.1: Diagram describing the relations of the double affine Q-dependent braid
group, DN{Q} (encircled in blue) with other well known algebraic structures. DN{Q}
depends on a set of N commuting deforming operators {Qi}. Taking the quotient group
of DN{Q} by the normal freely generated group 〈QiQ

−1
i+1〉 yields a deformed double affine

braid group DN(Q), given in the centre column. In this quotient group there is only one
deforming operator Q. Restricting the action of this single operator to a scalar factor,
that is Q = q1, and imposing the Hecke relation to the braid group generators, one
recovers a presentation of the double affine Hecke algebra DN(t, q). Encircled in red is an
alternative way of constructing DN(t, q), by appending to the Hecke algebra HN(t) and
affine Hecke algebra AN(t) the generators {Yi} and {Zi}.

Let us describe all of the relations included in Figure 1.1. Encircled in red on the right

hand side are known algebraic structures which readers may be familiar with. To be more

specific, located at the bottom of this column is DN(t, q), the double affine Hecke algebra

(DAHA), first introduced by Cherednik in [3]. In this thesis we explicitly describe its

construction starting with its core element, the braid group BN which we subsequently

extend to the Hecke algebraHN(t). By appending to the Hecke algebra a set of N genera-

tors {Yi} = {Y1, . . . , YN} we obtain the affine Hecke algebra AN(t), which we then further

extend to the DAHA by introducing another set of N operators {Zi} = {Z1, . . . , ZN}.
This describes the rightmost column flowing from HN(t) to DN(t, q).

The rest of Figure 1.1 describes all of the various quotient groups and specialisations

of the double affine Q-dependent braid group, DN{Q}, which we have encircled in blue.

We now explain how we constructed this group in two straightforward steps.
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Firstly we greatly generalised the DAHA, DN(t, q), by considering the deformation

parameter q, upon which it is characterised, as the resultant action of a single extra

generator Q. In doing so we move to the centre column of Figure 1.1, where we obtained

DN(Q). We draw attention to the fact that DN(Q) is a group structure and not an

algebra, as in its construction we did not impose the Hecke relation to the braid group

generators. To complete the explanation of this column, we show that DN(Q) can also

be constructed in a somewhat analogous fashion to the DAHA described above. That is,

by extending the deformed braid group BN(Q) to a deformed affine braid group AN(Q)

and then finally to DN(Q). We highlight that both BN(Q) and AN(Q) depend on the

extra generator Q and hence can be thought of as Q-deformed versions of the original

braid group and affine Hecke algebra.

Secondly, to obtain the double affine Q-dependent braid group, DN{Q} (encircled in

blue in Figure 1.1) we then generalised DN(Q). We did this by appending to its un-

derlying braid group structure a set of N commuting operators {Qi} = {Q1, . . . , QN}.
Each operator Qi acts solely on the ith braid group generator without intertwining them.

Extension of the resulting Q-dependent braid group BN{Q}, to the affine Q-dependent

braid group AN{Q}, and finally to the double affine Q-dependent braid group DN{Q} is

achieved by the introduction of two sets of N generators, the Yi and Zi respectively. This

completes the description of the left most column and also of all of the relations included

in Figure 1.1. We will go into much greater detail in Chapter 3 where we present the

majority of this work and also give the implications of the commutative diagram Figure

1.1.

As it is through representations that abstract concepts are rendered more accessible,

in Chapter 3 we present a pictorial representation of DN{Q} to complement its algebraic

description. In the representation that we develop to fully incorporate all of the properties

of DN{Q}, the braid group strands are turned into ribbons with the inclusion of 2π

twists. Hence one may think of each ribbon as carrying extra information encoded by the

operators {Qi}. A particularly nice feature of this graphical representation is that it fully

describes any double affine Hecke algebra, for all values of the deformation parameter q,

upon which it is characterised. Therefore it is not restricted to q = 1, as has been the

case until now.
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1.2 Double Affine Hecke Algebras

In Chapter 2 we study the properties of Hecke algebras. Of particular interest to us, are

DAHAs which we construct in several different ways. Each new approach that we outline,

offers a unique perspective of its structure. Furthermore they enable the description of

isomorphisms and involutions inherent to this algebra.

Algebraically the structure of a double affine Hecke algebra is very rich, and as a

result, via representations offers significant physical relevance. Recently, polynomial rep-

resentations [3] of DAHAs have become more familiar. Most significantly, their close

connections to Macdonald polynomials, and therefore Jack polynomials [4], have played

a huge part in this.

In this thesis we pay particular attention to Macdonald polynomials, obtained by

simultaneously diagonalising the affine Hecke algebra generators. We give explicit calcu-

lations of their evaluation up to three dimensions and also define operators that generate

all Macdonald polynomials of arbitrary dimension. These two variable polynomials are

widely used to describe many existing physical models. For example in [5, 6] it is shown

how, when subject to special wheel conditions, they yield interesting q-deformed Laughlin

and Haldane-Rezayi wave functions [5, 7]. These are believed to be excellent candidates

for describing quantum Hall effect ground states. By adjusting the wheel condition pa-

rameters, one may even fix the filling fraction of these wavefunctions.

In [7], Kasatani and Pasquier indicate how other polynomials directly obtained from

the DAHA can, in a similar fashion, be used to describe the ground states of O(n) models.

1.3 Topological Quantum Computation

Further motivation for the work contained in this thesis is in the area of quantum compu-

tation. Though we do not focus on this subject, it is nonetheless worthwhile to stress the

importance of seemingly abstract mathematical results in the development of algorithms.

In particular we give the following examples to highlight the central role of the Hecke alge-

bra. In [8], the authors construct a polynomial quantum algorithm for approximating the

Jones polynomial. This algorithm is based on the fact that the decomposition of N -strand

braids can be assigned an algebra called the Temperley-Lieb algebra. The uniqueness of

the Markov trace for this algebra, in addition to its path model representation which

induces a unitary representation of the braid group, means that the algorithm can be
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applied efficiently by a quantum computer. It solves a bounded quantum polynomial

(BQP) complete problem.

Much of this thesis deals with Hecke algebras which can be simply mapped to the

Temperley-Lieb algebra as we show in the next chapter. The Markov trace due to Oceanu

in [9] which is central to the quantum algorithm of [8] was initially defined on the Hecke

algebra. We show explicitly how using this particular trace a two variable knot invariant

is constructed. This knot invariant is the HOMFLY polynomial, of which the Jones

polynomial is a specialisation.

Several attempts have been made to generalise the quantum algorithm described

above. Most notably [10] provides polynomial quantum algorithms for additive approx-

imations of the Tutte polynomial. The Tutte polynomial is a two variable polynomial

defined for finite graphs with weighted edges and a scalar q. It has important implica-

tions in statistical mechanics due to its close connections to the Potts model. Also by

constructing a medial graph, which translates a planar graph into a knot, for a particular

choice of weights and q there is a simple connection between the Tutte polynomial of

the original graph and the Jones polynomial of the knot. The quantum algorithms of

[10] are largely based on generalising the Temperley-Lieb algebra to an infinite algebra

of pictures [11], where the number of strands is not fixed. The allowance of creation and

annihilation operators means that not only graphs originating from braids can be eval-

uated. In such a way an algorithm that calculates Kauffman brackets of a given medial

graph is constructed.

In a somewhat similar way we will design a tangle representation of affine Hecke

algebras. The basis of this representation is formed by elementary patterns with non-

matching numbers of in and out going strands. Using these patterns we construct finite

dimensional matrix representations of the affine Hecke algebra (AN(t)) and hence of the

Temperley-Lieb algebra. We present explicit matrices corresponding to the action of the

AN(t) generators on the pattern basis for the N = 2, 3 and 4 cases.

1.4 Thesis Outline

Chapter 2 describes the structure of Hecke algebras, with emphasis on new approaches to

constructing double affine Hecke algebras. In Chapter 3 the double affine Q-dependent

braid group is introduced. Presented is an intuitive graphical representation to comple-

ment its algebraic definition. The polynomial representation of a DAHA is described in

Chapter 4, showing precisely how to obtain Macdonald polynomials. Chapters 5 and 6 are

closely connected. The first of these describes finite dimensional matrix representations of

5



the affine Hecke algebra based on tangle diagrams. Tangle diagrams are decomposed into

elementary patterns which act as matrix basis using moves associated to knot theory. In

Chapter 6 the knot theory connection is further explored, resulting in the interpretation

of the HOMFLY polynomial as a trace invariant on the Hecke algebra. Finally Chapter

7 discusses conclusions and future work.

This thesis is largely self contained. Proofs, derivations and calculations deemed too long

to include in the main text can be found in the appendices located at the end of each

chapter. Otherwise, where necessary, references to external sources are given. Several

definitions which are frequently referred to throughout the text have been compiled into

a glossary located at the back of this thesis. Though readers may be familiar with many

of these, they serve to clarify what is meant when employed.

6



Chapter 2

The Braid Group and Hecke type

algebras

In this chapter we focus on the right hand column of Figure 1.1 that is encircled in red.

Our goal is to explicitly construct a double affine Hecke algebra, known more simply as

a DAHA. The double affine Hecke algebra, which was first introduced by Cherednik in

[3], has as its very underlying structure, the braid group. For this reason it is at the

foundation of our construction, which we now proceed to describe.

We begin by introducing the well known N -strand braid group BN , due to Artin [12].

We then extend it to the Hecke algebra HN(t). This is achieved by requiring that all

of the braid group generators satisfy a particular quadratic relation, called the Hecke

relation. The Hecke algebra is key to our construction of a DAHA. Furthermore it is

very closely connected to other algebraic structures that readers may be familiar with.

For instance, we show how it is related to the Symmetric Group, which is composed

of N − 1 elementary permutations. We also define a map from HN(t) to TLN(d), the

Temperley-Lieb algebra which first appeared in [13].

Having defined the Hecke algebra, the next step in constructing a DAHA, is to extend

HN(t) to an affine Hecke algebra AN(t). It is known by [14] that any Hecke algebra can

be extended to an affine Hecke algebra by simply appending to it a set of N invertible

operators. However a more interesting presentation of AN(t) purely in terms of the braid

group generators and an element denoted by σ is outlined by Kasatani and Pasquier in

[7]. We describe this approach in detail and explicitly derive all of the defining relations

of AN(t) in terms of the element σ.

Finally, we extend the affine Hecke algebra to a double affine Hecke algebra by intro-
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ducing a further N generators. This completes our construction of a DAHA composed

precisely of all of the relations first introduced by Cherednik.

It is important to highlight the fact that the construction of a DAHA is not unique.

In Section 2.4 we present two new alternative constructions that offer the reader a deeper

insight into this algebraic structure. The advantage of these alternative methods are

that the defining relations of a DAHA become less complicated and easier to work with.

Furthermore they enable the simple definition of automorphisms and involutions of this

algebra.

The remainder of this chapter describes isomorphisms and automorphisms of the

double affine Hecke algebra, resulting in the explicit construction of the modular group

within this DAHA. The benefits of the alternative definitions are apparent in this section,

particularly when describing involutions.

To conclude we present a very special case DAHA, the “one dimensional DAHA” put

forward by Cherednik in [2]. We investigate in detail many of its interesting properties.

In particular we describe automorphisms and involutions, as well as the presence of the

modular group in this special DAHA.

2.1 The Braid Group and the Hecke Algebra

2.1.1 The Braid Group BN

The braid group is at the basis of all Hecke type algebras. The N -strand braid group

BN is defined as follows: BN is the group generated by the N − 1 invertible elements

{Ti|i = 1, .., N − 1} satisfying the relations

TiTj = TjTi for |i− j| ≥ 2, (2.1)

TiTi+1Ti = Ti+1TiTi+1 otherwise . (2.2)

The second of the above is commonly referred to as the braid relation or the Yang-Baxter

equation.

8



2.1.2 The Hecke Algebra HN(t)

The braid group is central to the Hecke algebra. In fact the extension of the braid group

to an algebra by requiring that the Ti generators satisfy a particular equation defines the

Hecke algebra.

We associate with BN the Hecke algebra HN(t). This is the group algebra of BN over

a field k parametrised by t ∈ k such that each generator Ti satisfies the Hecke relation

(
Ti − t1/21

) (
Ti + t−1/2

1
)

= 0. (2.3)

We highlight that even though T−1
i was assumed to exist in BN , this relation gives its

form explicitly:

T−1
i = Ti −

(
t1/2 − t−1/2

)
1.

It is often convenient to rewrite the Hecke relation (2.3) in the following way

T 2
i −

(
t1/2 − t−1/2

)
Ti = 1. (2.4)

We note that the Hecke relation, HN(t) depends on the parameter t. Varying the value

of this parameter yields different group and algebraic structures. For example when t = 1

the Hecke algebra maps onto the Symmetric Group SN , whose generators Si satisfy

SiSj = SjSi for |i− j| ≥ 2,

SiSi+1Si = Si+1SiSi+1,

S2
i = 1.

By the above relations one may view the Hecke algebra as a “deformation” of the sym-

metric group.

2.1.3 The Temperley-Lieb Algebra TLN(d)

The Hecke algebra is closely connected to the Temperley-Lieb algebra. We define the

map from the HN(t) generators Ti, to the TLN(d) generators ei, as

Ti 7−→ ei + t1/21.
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Using this map the Hecke relation (2.4) gives one of the defining relations of TLN(d)

e2
i = (−t1/2 − t−1/2)ei

= dei.

The two other relations that define HN(t), namely (2.1) and (2.2) give the remaining

Temperley-Lieb algebra relations

eiej = ejei for |i− j| ≥ 2, (2.5)

eiei+1ei − ei = ei+1eiei+1 − ei+1. (2.6)

2.2 The Affine Hecke Algebra AN(t)

Any Hecke algebra HN(t) can be extended to an affine Hecke algebra (AHA) AN(t) [14]

by appending to it N invertible operators Yi. These satisfy the relations

YiYj = YjYi for all i, j, (2.7)

TiYj = YjTi for j 6= i, i+ 1, (2.8)

TiYi+1Ti = Yi for i = 1, . . . , N − 1. (2.9)

Repeated applications of the last of these relations implies that we need only one of the

Yi (and all of the Ti) to generate the others. For example, (2.9) can be used to rewrite

Yi for i = 2, . . . , N as

Yi = T−1
i−1T

−1
i−2 . . . T

−1
1 Y1T

−1
1 . . . T−1

i−2T
−1
i−1. (2.10)

It is perhaps worth pointing out that even though the above definitions involve only

multiplication, we need the full Hecke algebraic structure in order to consistently order

the operators. For example, T1 and Y3 can be reordered as we like, however this is not

true for T1 and Y2. In this case we must use the Hecke relation:

T1Y2 = Y2T
−1
1

= Y2

[
T1 −

(
t1/2 − t−1/2

)
1
]

= Y2T1 −
(
t1/2 − t−1/2

)
Y2.

AN(t) is thus fully generated by Y1 and the Ti, and we can reorder them as necessary.
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2.2.1 The AHA AN(t) in terms of σ

A more elementary presentation of AN(t) is to write all the Yi in terms of Ti and an

element σ defined as

σ := T−1
N−1T

−1
N−2 . . . T

−1
1 Y1. (2.11)

Using this presentation outlined by Kasatani and Pasquier in [7], we show exactly how

all of the Yi can now be written in terms of σ and the Ti using (2.9):

When i = 1

σ = T−1
N−1T

−1
N−2 . . . T

−1
1 Y1

⇒ Y1 = T1T2 . . . TN−1σ.

When i = 2, . . . , N − 1

Y2 = T−1
1 Y1T

−1
1 = T2 . . . TN−1σT

−1
1

⇒ Y3 = T−1
2 Y2T

−1
2 = T3 . . . TN−1σT

−1
1 T−1

2 .

By repeated iteration we find

Yi = Ti . . . TN−1σT
−1
1 . . . T−1

i−1 for all i = 2, . . . , N − 1.

Finally when i = N

Yi = Ti . . . TN−1σT
−1
1 . . . T−1

i−1 ⇒ YN = σT−1
1 . . . T−1

N−1.

Therefore in terms of the element σ all of the Yi are given by:

Yi =


T1T2 . . . TN−1σ i = 1 ,

Ti . . . TN−1σT
−1
1 . . . T−1

i−1 i = 2, . . . , N − 1,

σT−1
1 . . . T−1

N−1 i = N.

In Appendix 2A.1 at the end of this chapter we explicitly derive the other defining

relations for an AHA in terms of the Hecke algebra generators and σ. They provide the

reader with a good insight into working with the many commutation relations. We simply
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give the results here; namely that (2.7) and (2.8), may also be rewritten in terms of σ as

Ti−1σ = σTi, i = 2, . . . , N − 1, (2.12)

TN−1σ
2 = σ2T1. (2.13)

If we define TN = σT1σ
−1, then we get that Ti−1σ = σTi for all i = 2, . . . , N .

In Appendix 2A.1 we derive that the above relations imply σNTi = Tiσ
N . This tells

us that σN commutes with all the Ti, and therefore with all the Yi too. In fact it is the

product of the Yi:

σN =
N∏
i=1

Yi. (2.14)

Though a known result [2], due to its importance we offer a proof in Appendix 2A.2. Its

significance implies σN is central in AN(t). We could therefore if necessary label irre-

ducible representations of this AHA with the eigenvalues of σN .

Before concluding this section, it is essential to point out that, given a Hecke algebra,

an AHA always exists. This is because all of the Yi are defined recursively (2.9), hence

setting the value of any Yi is sufficient to construct an AHA. To illustrate this point we

see that the choice Y1 = 1 fulfills all the necessary criteria. By (2.10) the elements

Yi = T−1
i−1 . . . T

−1
2 T−2

1 T−1
2 . . . T−1

i−1

give all the Yi for i = 2, . . . , N and

σ = T−1
N−1T

−1
N−2 . . . T

−1
1 .

As a further example one may take YN = 1 which by (2.10) means

Y1 = T1 . . . TN−2T
2
N−1TN−2 . . . T1.

Repeated applications of the recursive relation (2.9) yields

Yi = Ti . . . TN−2T
2
N−1TN−2 . . . Ti
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which gives all of the Yi for i = 1, . . . , N − 1 and

σ = TN−1TN−2 . . . T1.

Therefore it is clear that any Hecke algebra HN(t) already contains an AHA; it’s just

that the AHA generators are not independent of each other.

2.3 The Double Affine Hecke Algebra DN(t, q)

To complete the construction of a DAHA, we extend the affine Hecke algebraic structure

to a double affine Hecke algebra of type A, [2, 15] by introducing a further N invertible

generators Zi. This particular DAHA denoted by DN(t, q), satisfies the relations

ZiZj = ZjZi for all i, j, (2.15)

TiZj = ZjTi for j 6= i, i+ 1, (2.16)

TiZi+1Ti = Zi for i = 1, . . . , N − 1, (2.17)

together with a new parameter q ∈ k which appears explicitly in relations intertwining

the Yi and the Zi [2]:

Y1Z2Y
−1

1 Z−1
2 = T 2

1 , (2.18)

Yi

(
N∏
j=1

Zj

)
= q

(
N∏
j=1

Zj

)
Yi, (2.19)

Zi

(
N∏
j=1

Yj

)
= q−1

(
N∏
j=1

Yj

)
Zi. (2.20)

This double affine Hecke algebra follows Cherednik’s original definition. It is the most

widely used presentation of a DAHA but not the only one. In the following sections we

introduce alternative DAHA presentations.

2.3.1 The DAHA DN(t, q) in terms of σ

Here we present another way of defining the DAHA described in the previous section.

Recall that in Subsection 2.2.1, we derived the defining relations of AN(t) purely in terms

of the Hecke algebra generators Ti and the operator σ, which replaced all of the Yi. In a

similar fashion we can define a DAHA in terms of the Ti, Zi and σ by choosing to eliminate
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the Yi in favour of the operator σ. To accomplish this we rewrite the intertwining relations

(2.18) and (2.19).

In terms of σ, we show in detail in Appendix 2A.3 that (2.18) and (2.19) can be

rewritten as

Zi−1σ = σZi for i = 2, . . . , N,

ZNσ = q−1σZ1,

or, if we define Z0 = qZN , then Zi−1σ = σZi for all i.

We will now use the above equations to learn more about the σ − Z interaction. Of

interest is σN which we saw is central to AN(t). We investigate if this is also the case for

DN(t, q).

Firstly we know that Zi−1σ = σZi for i = 1, . . . , N when Z0 = qZN .

Therefore this implies that σ−1Zi−1σ = Zi for all i. Replacing Zi−1 with σ−1Zi−2σ we

obtain

σ−2Zi−2σ
2 = Zi.

After i iterations and using Z0 = qZN gives

σ−iqZNσ
i = Zi

⇒ ZNσ
i = q−1σiZi

⇒ σN−iZNσ
i = q−1σNZi.

Ideally we would like the same index of Z on both sides. For this to be the case we can

decrease ZN to Zi by pushing σs through using σZi = Zi−1σ. After N − i iterations

σN−1−iσZNσ
i = q−1σNZi

⇒ σN−1−iZN−1σ
i+1 = q−1σNZi

⇒ σN−(N−i)−iZiσ
i+N−i = q−1σNZi

⇒ Ziσ
N = q−1σNZi.

We can now use the identity
∏N

j=1 Yj = σN , which gives us precisely (2.20); that is

Zi

(
N∏
j=1

Yj

)
= q−1

(
N∏
j=1

Yj

)
Zi.
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Therefore, in our definition of DN(t, q) in terms of the Ti, the Zi and σ, it is clear that

(2.20) is not independent of the other relations intertwining the Yi and Zi. Although it is

often included in the literature as part of the definition of a DAHA we have just shown

how it can be derived using equations (2.18) and (2.19).

Hence, to summarise, from now on we can take a DAHA to be the algebra generated by

Ti, Yi and Zi which satisfy equations (2.1)-(2.3), (2.7)-(2.9) and (2.15)-(2.19).

2.4 Equivalent DAHA constructions

The purpose of this section is to introduce new methods we developed of constructing a

double affine Hecke algebra. As we have already seen, our definition of DN(t, q) in terms

of σ revealed several interesting relations but more importantly helped us gain a deeper

understanding of the structure of a DAHA. Similarly, in the following novel approaches,

where we treat a DAHA as the combination of two separate AHAs, we offer the reader a

completely different perspective of the double affine Hecke algebra.

Recall that in the definition of an affine Hecke algebra, we introduced an element σ

(2.11), and then proceeded in writing the defining relations of this AHA purely in terms

of σ and the Ti. In a similar fashion within the double affine Hecke algebra one could

define an element analogous to σ since, by (2.15)-(2.17), the Ti and Zi form an AHA

by themselves. The relations intertwining both AHAs, (2.18)-(2.20), therefore determine

the relationship between σ and its analogue.

Defining an element analogous to σ can be done in one of two ways. We now present

these in what follows.

2.4.1 Method 1 - Defining ζ1

The first approach is straightforward. We follow the construction of σ (2.11) exactly by

defining ζ1 as

ζ1 = T−1
N−1 . . . T

−1
1 Z1. (2.21)

Using this definition we can now describe the AHA formed by the Zi and the Ti solely in

terms of the Ti and ζ1. Unsurprisingly, since the Zi and Yi obey the same relations with
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the Ti, ζ1 has very similar properties to σ; that is (2.15)-(2.17) become

Zi = Ti . . . TN−1ζ1T
−1
1 . . . T−1

i−1,

Ti−1ζ1 = ζ1Ti for i = 2, . . . , N − 1, (2.22)

TN−1ζ
2
1 = ζ2

1T1.

As in Subsection 2.2.1, defining TN = ζ1T1ζ
−1
1 , implies that Ti−1ζ1 = ζ1Ti for all i =

2, . . . , N . In addition to this the above equations also imply that ζN1 Ti = Tiζ
N
1 ; its

derivation can be found in Appendix 2A.4.

Analogous to the construction of σ, ζN1 is the product of the Zi,
(
ζN1 =

∏N
i=1 Zi

)
, and

therefore commutes with all the Zi and Ti.

So we now know how the two separate AHAs behave independently. Recall that the

first AHA where the Yi were eliminated in favour of σ is defined by the equations (2.11)-

(2.13). However to construct a valid DAHA both of these AHAs must be combined in a

specific way. It is the intertwining relations (2.18) and (2.19) that govern the relationship

between these two AHAs, the first in terms of the Ti and σ, and the second in terms of

the Ti and ζ1. Hence to complete the construction of this DAHA we must rewrite the

intertwining relations in terms of the elements σ and ζ1.

We begin with the first intertwining relation (2.18).

1. We have Y1Z2Y
−1

1 Z−1
2 = T 2

1 ⇒ Y1Z2 = T 2
1Z2Y1. We can write the lefthand side of

this expression using the definitions of Y1 and Z2 in terms of σ and ζ1 respectively

to get

Y1Z2 = (T1 . . . TN−1σ)
(
T2 . . . TN−1ζ1T

−1
1

)
.

Using Ti−1σ = σTi for i = 2, . . . , N−1 repeatedly allows us to move σ to the right:

Y1Z2 = (T1 . . . TN−1)
(
T1σT3 . . . TN−1ζ1T

−1
1

)
= (T1 . . . TN−1) (T1 . . . TN−2)σζ1T

−1
1 .

By definition of Y1 we can write T 2
1Z2Y1 as follows

T 2
1Z2Y1 = T1T1Z2T1 . . . TN−1σ.

Firstly using (2.17) and then (2.16) repeatedly we can push Z1 to the right of the
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Ti:

T 2
1Z2Y1 = T1Z1T2 . . . TN−1σ

= T1T2Z1T3 . . . TN−1σ

= (T1 . . . TN−1)Z1σ

= (T1 . . . TN−1) (T1 . . . TN−1) ζ1σ.

Using Y1Z2 = T 2
1Z2Y1 we obtain the final expression

(T1 . . . TN−1) (T1 . . . TN−2)σζ1T
−1
1 = (T1 . . . TN−1) (T1 . . . TN−1) ζ1σ

⇒ σζ1T
−1
1 = TN−1ζ1σ

⇒ σζ1 = TN−1ζ1σT1.

So rewriting (2.18) in terms of σ and ζ1 gives the first relation describing the inter-

action between σ and ζ1. The second independent relation is obtained in a similar

fashion by rewriting (2.19) in terms of σ and ζ1.

2. By (2.19), Yi

(
N∏
j=1

Zj

)
= q

(
N∏
j=1

Zj

)
Yi.

It is shown in Appendix 2A.3 that in terms of σ this relation becomes

σZ1 = qZNσ.

Using the definitions of Z1 and ZN in terms of ζ1, (2.21) and (2.22), gives the final

expression

σ (T1 . . . TN−1) ζ1 = qζ1

(
T−1

1 . . . T−1
N−1

)
σ.

As a consequence of these two relations between σ and ζ1 we also obtain relations

describing the interaction between the product of all the σ, that is, σN with ζ1 and

vice versa, which we now derive. Recall that σN is central to the AHA in the Ti

and σ and that ζN1 is central to the AHA formed by the Ti and ζ1.
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3. In Subsection 2.3.1 we showed that Ziσ
N = q−1σNZi. Using the definition of Zi in

terms of ζ1, (2.22), this relation becomes

Ti . . . TN−1ζ1T
−1
1 . . . T−1

i−1σ
N = q−1σNTi . . . TN−1ζ1T

−1
1 . . . T−1

i−1.

But we know that σN commutes with all the T s since σNTi = Tiσ
N , therefore we

get the expression

Ti . . . TN−1ζ1σ
NT−1

1 . . . T−1
i−1 = q−1Ti . . . TN−1σ

Nζ1T
−1
1 . . . T−1

i−1

⇒ ζ1σ
N = q−1σNζ1.

4. Since ζN1 is the product of the Zi,
(
ζN1 =

∏N
i=1 Zi

)
, we can rewrite equation (2.19)

as

Yiζ
N
1 = qζN1 Yi.

Using the definition of Yi in terms of σ, this relation becomes

Ti . . . TN−1σT
−1
1 . . . T−1

i−1ζ
N
1 = qζN1 Ti . . . TN−1σT

−1
1 . . . T−1

i−1.

However since ζN1 Ti = Tiζ
N
1 , then ζN1 commutes with all the T s and we obtain the

final expression

Ti . . . TN−1σζ
N
1 T

−1
1 . . . T−1

i−1 = qTi . . . TN−1ζ
N
1 σT

−1
1 . . . T−1

i−1

⇒ σζN1 = qζN1 σ.

This completes the description of DN(t, q) in terms of the Ti, σ and ζ1.

To summarise this new method of constructing a DAHA, we have included the com-

plete set of relations which define DN(t, q) in terms of the Ti, σ and ζ1 in Table 2.3 located

at the end of Appendix 2.

2.4.2 Method 2 - Defining ζ2

In this section we present the second approach we developed for defining an element

analogous to σ. In a similar fashion to the method just described we will again split the
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original definition of a DAHA into two separate AHAs. The intertwining relations of the

original DAHA, between the Yi and Zi, now in terms of the element σ and its alternative

analogue which we denote by ζ2, give the relations that the two AHAs must satisfy in

order to come together to form a DAHA.

We define the element ζ2 in a somewhat reversed way to ζ1

ζ2 = Z1T
−1
1 . . . T−1

N−1. (2.23)

Note that by writing Z1 in terms of ζ1 by (2.21), the definition of ζ2 above tells us pre-

cisely how ζ1 and ζ2 are related; ζ2 (TN−1 . . . T1) = (T1 . . . TN−1) ζ1.

Predictably, the properties of ζ2 are somewhat reversed compared to ζ1. This is clearly

seen as in terms of ζ2, the AHA formed by the Ti and ζ2 that is (2.15)-(2.17) is given by

Zi = T−1
i−1 . . . T

−1
1 ζ2TN−1 . . . Ti,

Ti+1ζ2 = ζ2Ti for i = 1, . . . , N − 2, (2.24)

T1ζ
2
2 = ζ2

2TN−1.

In a similar (yet reversed) fashion to ζ1, defining TN = ζ−1
2 T1ζ2 implies that Ti+1ζ2 = ζ2Ti

for i = 1, . . . , N − 1. In Appendix 2A.4 we prove that the relations above also imply that

Tiζ
N
2 = ζN2 Ti. Therefore ζN2 commutes with all the T s and is central to the AHA formed

by the Ti and ζ2.

In addition to the above relations, ζN2 is the product of the Zi,
(
ζN2 =

∏N
i=1 Zi

)
, making

it commute with all the Zi and Ti.

At this point we have all of the relations satisfied by both independent AHAs. The

first in terms of the Ti and σ is defined by (2.11)-(2.13). The second AHA which we have

just derived is given by (2.23) and (2.24). We can now rewrite the intertwining relations

(2.18) and (2.19) in terms of ζ2 and σ. These two relations are of great importance as

they determine the necessary conditions for the two separate AHAs to fuse and form

a double affine Hecke algebra. As before, we begin by examining the first intertwining

relation.

1. We have by (2.18) that Y1Z2Y
−1

1 Z−1
2 = T 2

1 ⇒ Y1Z2 = T 2
1Z2Y1. Writing the

lefthand side of this expression using the definitions of Y1 and Z2 in terms of σ and

ζ2 gives

Y1Z2 = (T1 . . . TN−1)σT−1
1 ζ2 (TN−1 . . . T2) .
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Similarly we can write T 2
1Z2Y1 as follows

T 2
1Z2Y1 = T 2

1 T
−1
1 ζ2 (TN−1 . . . T2) (T1 . . . TN−1)σ

= T1ζ2 (TN−1 . . . T2) (T1 . . . TN−1)σ.

Using the braid relation (2.2) firstly and then by (2.1) we get that

T 2
1Z2Y1 = T1ζ2 (TN−1 . . . T3T1T2T1T3 . . . TN−1)σ

= T1ζ2 (TN−1 . . . T1T3T2T3T1 . . . TN−1)σ.

We repeat the last step until eventually

T 2
1Z2Y1 = T1ζ2 (T1 . . . TN−2TN−1TN−2 . . . T1)σ.

Now we can push ζ2 through the Ti by (2.24) and move σ to the left of the expression

using Ti−1σ = σTi for i = 2, . . . , N − 1 repeatedly

T 2
1Z2Y1 = T1T2 . . . TN−1ζ2TN−1σTN−1 . . . T2.

Setting Y1Z2 = T 2
1Z2Y1 we obtain the final expression

(T1 . . . TN−1)σT−1
1 ζ2 (TN−1 . . . T2) = (T1T2 . . . TN−1) ζ2TN−1σ (TN−1 . . . T2)

⇒ σT−1
1 ζ2 = ζ2TN−1σ.

Equation (2.18) in terms of σ and ζ2 gave the first relation between σ and ζ2. In a

similar fashion, (2.19) in terms of σ and ζ2, gives the second independent relation

governing the interaction of both separate AHAs.

2. Again we refer to Appendix 2A.3 for the explicit derivation and just state the result

here; that is, in terms of σ (2.19) is given by

σZ1 = qZNσ.

Substituting into this relation the definitions of Z1 and ZN in terms of ζ2, (2.23)

and (2.24), gives the final expression

σζ2 (TN−1 . . . T1) = q
(
T−1
N−1 . . . T

−1
1

)
ζ2σ.
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As in our construction of DN(t, q) in terms of the Ti, σ and ζ1, we obtain equations

describing the interaction between the product of all the σ with ζN2 and vice versa.

However, even though ζ1 and ζ2 are defined differently, the product ζN2 is equal to ζN1 and

so shares its properties; namely we obtain

ζ2σ
N = q−1σNζ2 and σζN2 = qζN2 σ.

These equations complete the description of DN(t, q) in terms of the Ti, σ and ζ2.

To summarise the structure of double affine Hecke algebras, we reiterate that the

construction of a DAHA is not unique. Initially we introduced Cherednik’s original defi-

nition of a DAHA denoted DN(t, q), defined in terms of the braid group operators Ti in

addition to the affine Hecke algebra generators, the Yi and the double affine generators

the Zi. Then we eliminated the Yi in favour of σ and proceeded in describing DN(t, q)

in terms of the Ti, the Zi and σ. Finally treating DN(t, q) as the specific combination of

two separate AHAs, allowed us to construct two new presentations of a DAHA.

In the first of these we opted to describe the second independent AHA in terms of the

element ζ1, before forming DN(t, q) in terms of the Ti, σ and ζ1 by combining it with the

first independent AHA which was given by the Ti and σ.

The second new DAHA in terms of the Ti, σ and ζ2 was formed by combining the first

AHA in Ti and σ, with another AHA initially formed by the Ti and Zi, now in terms of

the Ti and the element ζ2.

A complete summary of all of the equations used to define all of the DAHAs we have

discussed is included in Table 2.3 at the end of Appendix 2.

As a final comment before concluding this section, recall that at the end of Subsection

2.2.1 we pointed out that given a Hecke algebra, an AHA always exists. However it is

now clear that the AHA construction which takes either Y1 or YN equal to 1 will not work

in a DAHA where q 6= 1. In fact using an AHA where any of the Yi are set to 1 can only

be extended to a DAHA with q = 1. Since we know Yiζ
N
1,2 = qζN1,2Yi, whichever Yi is set

to 1 will simply commute with ζN1,2.

Therefore, it is not apparent that, given either HN(t) or AN(t), we can extend it to

a DAHA with q 6= 1.
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2.5 Automorphisms and Involutions on DN(t, q)

In the remainder of this chapter we will investigate many of the properties of the dou-

ble affine Hecke algebra, DN(t, q). Recall that in the previous sections we constructed

DN(t, q) and showed that it is generated by the Ti, Yi and Zi satisfying the relations

(2.1)-(2.3), (2.7)-(2.9) and (2.15)-(2.19).

Initially we will begin by defining automorphisms of DN(t, q) which have appeared in

[2]. We are particularly interested in applying these definitions; in doing so we successfully

derive a representation of the modular group within DN(t, q). Finally we expand the

known domain by presenting the simple form of the action of involutions on DN(t, q) in

terms of our previously described second alternative presentation of a DAHA in the Ti,

σ and ζ2.

2.5.1 Automorphisms on DN(t, q)

The following are all automorphisms of DN(t, q); each takes Ti to itself and their actions

on Y1 and Z1 are given in Table 2.1.

map Y1 7→ Z1 7→

τ+ Y1Z1 Z1

τ− Y1 Y1Z1

τ−1
− Y1 Y −1

1 Z1

λ Z1 Z−1
1 Y −1

1 Z1

λ−1 Y1Z
−1
1 Y −1

1 Y1

Table 2.1: Automorphisms of DN(t, q).

Note that Table 2.1 is not a complete list of all the automorphisms of DN(t, q); it merely

gives the ones of most interest to us for future calculations. For example, since τ+ is an

automorphisms of DN(t, q), then τ−1
+ is also an automorphism, yet we have not included

it in Table 2.1.

The actions on Yi and Zi are found via their definitions in terms of Y1 and Z1; for

example the map λ−1 defined in Table 2.1 acts on the Yi as

λ−1 (Yi) = λ−1
(
T−1
i−1

)
. . . λ−1

(
T−1

1

)
λ−1 (Y1)λ−1

(
T−1

1

)
. . . λ−1

(
T−1
i−1

)
= T−1

i−1 . . . T
−1
1 Y1Z

−1
1 Y −1

1 T−1
1 . . . T−1

i−1.
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Using these definitions it is straightforward to prove the validity of the automorphisms

defined in Table 2.1.

We would like to find a relationship between these automorphisms . We achieve this by

defining an isomorphism ε from DN(t, q)→ DN(t−1, q−1). ε is an isomorphism satisfying

ε−1 = ε whose action is

ε (Yi) = Z−1
i , ε (Zi) = Y −1

i , ε (Ti) = T−1
i .

Since ε2 = 1, it is trivial to show that the automorphisms described in Table 2.1 are

related via

τ− = ετ+ε
−1,

λ = τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− = ελ−1ε−1.

The latter is of particular interest to us; upon closer examination we see that it is the

braid relation, meaning the braid group B3 is a subgroup of Aut(DN(t, q)). In B3 there

are only two generators: letting them be τ+ and τ−1
− , we can say

B3 =
〈
τ+, τ−|τ+τ

−1
− τ+ = τ−1

− τ+τ
−1
−
〉
.

The appearance of B3 as a subgroup of Aut(DN(t, q)) suggests that if there exists a normal

subgroup C, generated by a and b with a2 = b3 = 1, then there is a representation of

the modular group within DN(t, q). This exciting prospect is a direct consequence of the

following property of the modular group PSL(2,Z):

PSL(2,Z) = B3/ 〈C〉 .

We outline our construction of such a subgroup in the following section.

2.5.2 The Modular Group in DN(t, q)

Our goal is to find a normal subgroup of B3 =
〈
τ+, τ−|τ+τ

−1
− τ+ = τ−1

− τ+τ
−1
−
〉
. Define C

to be λ2, that is:

C =
(
τ+τ

−1
− τ+

)2
=
(
τ−1
− τ+τ

−1
−
)2

=
(
τ+τ

−1
− τ+

) (
τ−1
− τ+τ

−1
−
)

=
(
τ+τ

−1
−
)3
.
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Clearly C was carefully chosen such that it is generated by two elements, saying S and

U , that are related via S2 = U3. We now verify that C is a normal subgroup of B3.

Cτ+ =
(
τ+τ

−1
− τ+τ

−1
− τ+τ

−1
−
)
τ+ Cτ−1

− =
(
τ+τ

−1
− τ+τ

−1
− τ+τ

−1
−
)
τ−1
−

=τ+τ
−1
− τ+τ

−1
− τ−1

− τ+τ
−1
− =τ+τ

−1
− τ+τ+τ

−1
− τ+τ

−1
−

=τ+

(
τ+τ

−1
− τ+τ

−1
− τ+τ

−1
−
)

=τ−1
−
(
τ+τ

−1
− τ+τ

−1
− τ+τ

−1
−
)

=τ+C =τ−1
− C

So clearly C commutes with τ+ and τ−1
− , therefore the group freely generated by C,

〈C〉 = 〈
(
τ+τ

−1
− τ+

)2〉, is a normal subgroup of B3. This means we can construct the quo-

tient B3/ 〈C〉.

Setting 1 = [C], S = [τ+τ
−1
− τ+] and U = [τ+τ

−1
− ], we have the group

〈
S, U |S2 = U3 = 1

〉
,

which is precisely the presentation of the modular group PSL(2,Z).

Having derived a representation of the modular group withinDN(t, q) via the subgroup

C, we now deduce the action of C on the DAHA generators. Using Table 2.1, we find

that

1. C(Ti) = λ2(Ti) = Ti,

2. C(Y1) = λ2(Y1) = λ(Z1) = Z−1
1 Y −1

1 Z1,

3. C(Z1) = λ2(Z1) = λ(Z−1
1 Y −1

1 Z1) = Z−1
1 Y1Z

−1
1 Y −1

1 Z1.

Writing these as C(Y1) =
(
Z−1

1 Y1

)
Y −1

1

(
Y −1

1 Z1

)
and C(Z1) =

(
Z−1

1 Y1

)
Z−1

1

(
Y −1

1 Z1

)
, we

can see that the action of C on Y1 and Z1 is – up to conjugation by Z−1
1 Y1 – inversion.

Therefore taking [C] = 1 is thus akin to identifying these generators with their inverses,

which is perhaps too trivial.

It is then more interesting to look at C2. C2 = λ4 acts on the DAHA generators as

follows:

1. C2(Ti) = λ2(Ti) = Ti,

2. C2(Y1) = λ2(Z−1
1 Y −1

1 Z1) = λ(Z−1
1 Y1Z

−1
1 Y −1

1 Z1) = (Z−1
1 Y1Z1Y

−1
1 )Y1(Y1Z

−1
1 Y −1

1 Z1),

3. C2(Z1) = λ2(Z−1
1 Y −1

1 Z1) = λ(Z−1
1 Y1Z1Y1Z

−1
1 Y −1

1 Z1) = (Z−1
1 Y1Z1Y

−1
1 )Z1(Y1Z

−1
1 Y −1

1 Z1).
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We write these in a simpler form. Letting u = Y1Z
−1
1 Y −1

1 Z1, C2 acts on the generators

as

C2 (Ti) = Ti, C2 (Y1) = u−1Y1u, C2 (Z1) = u−1Z1u.

In terms of the Hecke algebra generators Ti, using (2.9), u is defined as

u = Y1Z
−1
1 Y −1

1 Z1

= T1 . . . TN−1σZ
−1
1 σ−1T−1

N−1 . . . T
−1
1 Z1.

We can pull the Z1 back as far as σ−1 using σZi = Zi−1σ for i = 2, . . . , N .

u = T1 . . . TN−1σZ
−1
1 σ−1ZNTN−1 . . . T1.

Using ZNσ = q−1σZ1 to write σ−1ZN as q−1Z1σ
−1 yields the final expression

u = q−1T1 . . . TN−2T
2
N−1TN−2 . . . T1.

This remarkable result means that taking the quotient of DAHA by the free group gen-

erated by C2 does not place any restrictions on Y1 and Z1 (although it does so on the

T s). Therefore constructing the quotient group B3/〈C2〉 gives SL(2,Z). This is not the

modular group, but still a very nice group nonetheless, with the generators represented

by the 2× 2 matrices

[τ+] =

(
1 1

0 1

)
,

[
τ−1
−
]

=

(
1 0

−1 1

)
.

2.5.3 Involutions on DN(t, q)

We define two antiisomorphisms θ1 and θ2 which act on DN(t, q), conjugating all numbers

in the process. The first antiisomorphism θ1 is the map from DN(t, q) −→ DN(t∗, q∗)

defined as

θ1(Ti) = Ti, θ1(Yi) = Zi, θ1(Zi) = Yi.

It is straightforward, given the actions above, to verify that θ1 is an antiisomorphism on

DN(t, q). The only relation which requires some work is the action of θ1 on the intertwin-

ing relation (2.18); as such we derive it below.
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Applying θ1 to (2.18) yields

θ1

(
Y1Z2Y

−1
1 Z−1

2 = T 2
1

)
−→ Y −1

2 Z−1
1 Y2Z1 = T 2

1 .

Equation (2.17) gives Z1 = T1Z2T1 and (2.9) gives Y −1
2 = T1Y

−1
1 T1, therefore after

direct substitution we now have

T1Y
−1

1 T1Z
−1
1 Y2T1Z2T1 = T 2

1 .

But Y2T1 = T−1
1 Y1 by (2.9) and T1Z

−1
1 = Z−1

2 T1 by (2.17), which gives

Y −1
1 Z−1

2 T−2
1 Y1Z2 = 1

⇒ Y −1
1 Z−1

2 = Z−1
2 Y −1

1 T 2
1

⇒ Y1Z2Y
−1

1 Z−1
2 = T 2

1

as required.

The second antiisomorphism θ2 onDN(t, q) is the map fromDN(t, q) −→ DN((t∗)−1, (q∗)−1)

defined as

θ2(Ti) = T−1
i , θ2(Yi) = Y −1

i , θ1(Zi) = Z−1
i .

Verifying the action of θ2 on the defining relations of DN(t, q) follows in a similar way to

the last proof.

A particularly nice form of the two antiisomorphisms θ1 and θ2 comes from their

action on DN(t, q) in terms of Ti, σ and ζ2, which we introduced in Subsection 2.4.2.

Eliminating the Yi and Zi in favour of σ and ζ2 means

θ1(σ) = θ(T−1
N−1 . . . T

−1
1 Y1) θ1(ζ2) = θ1(Z1T

−1
1 . . . T−1

N−1)

=Z1T
−1
1 . . . T−1

N−1 =T−1
N−1 . . . T

−1
1 Y1

= ζ2 =σ

We can similarly show that θ2(σ) = σ−1 and θ2(ζ2) = ζ−1
2 .

Both of these maps square to the identity in Aut(DN(t, q)); as a result θ1 is an

involution on DN(t, q) if t∗ = t and q∗ = q, resulting in a real representation of DN(t, q).

θ2 is an involution on DN(t, q) if t∗ = t−1 and q∗ = q−1 which is useful if one requires a

unitary representation of DN(t, q).
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2.6 The DAHA D1(t, q)

In the concluding section of this chapter we look at a very special case DAHA, the case

when N = 1 which is due to [2]. Since this DAHA is very a little known algebra we

will describe it in great detail. Though of little physical relevance in terms of the braid

group, its algebraic structure displays very interesting properties which we now proceed

to investigate.

Among the defining relations of the double affine Hecke algebra DN(t, q) constructed

in Section 2.3 were the braid group relations, (2.1) and (2.2), which govern the N -strand

braid group BN generated by the N − 1 invertible elements {Ti|i = 1, .., N − 1}.

It is clear that when N = 1 we can’t use these definitions for a DAHA, because the

braid group is trivial in this case; N − 1 generators equals zero generators, and therefore

seemingly no T s.

However we can get around this by defining D1(t, q) with no mention of the braid group.

We do this by assuming there is a single element T which satisfies the Hecke relation

(2.3), that is,
(
T − t1/21

) (
T + t−1/2

1
)

= 0.

Completing its definition there are, in addition, two invertible elements X and Y satis-

fying

TXT = X−1, TY −1T = Y,

XY = q1/2Y XT 2.

These relations appear quite similar to the definitions for N ≥ 2 DAHAs as in Section 2.3.

However, they are completely independent from all of the relations for N ≥ 2 DAHAs

and cannot be obtained from them by simply setting N equal to 1.

As in the general case, we can also find automorphisms on D1(t, q). The maps τ+, τ−

and λ are all automorphisms on D1(t, q) which leave T unchanged and act on X and Y

as given in Table 2.2.

In addition to the automorphisms, we define an isomorphism ε from D1(t, q) to

D1(t−1, q−1), satisfying ε−1 = ε, whose action on the generators T , Y and X is

ε(T ) = T−1, ε(Y ) = X, ε(X) = Y.
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map X 7→ Y 7→

τ+ X q−1/4XY

τ− q1/4Y X Y

τ−1
− q−1/4Y −1X Y

λ Y −1 q−1/2Y −1XY

λ−1 q1/2X−1Y X X−1

Table 2.2: Automorphisms of D1(t, q).

Using this definition of ε, the automorphisms described in Table 2.2 are related via

τ− = ετ+ε
−1,

λ = τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− = ελ−1ε−1.

Once again the last relation implies the appearance of B3 as a subgroup of Aut(D1(t, q)).

Following Subsection 2.5.2 we show that there exists a representation of the modular

group within D1(t, q).

Define C to be λ2. It is easy to see that C = (τ+τ
−1
− )3, and also that C commutes

with both τ+ and τ−. The group freely generated by C, 〈C〉 = 〈
(
τ+τ

−1
− τ+

)2〉, is therefore

a normal subgroup of B3, and we can construct the quotient B3/ 〈C〉.

With 1 = [C], S = [τ+τ
−1
− τ+] and U = [τ+τ

−1
− ], we have precisely the presentation of the

modular group PSL(2,Z),

〈
S, U |S2 = U3 = 1

〉
.

We would now like to see if the action of the subgroup C on the D1(t, q)) generators is

somewhat trivial, as was the case for the N dimensional DAHA. Using Table 2.2, the

action of C on the D1(t, q)) generators is given by

1. C(T ) = λ2(T ) = T ,

2. C(Y ) = λ2(Y ) = q−1/2Y −1X−1Y −1XY ,

3. C(X) = λ2(X) = q1/2Y −1X−1Y .
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Using the defining relations of D1(t, q)), we can rewrite these as follows:

C(T ) = T, C(Y ) = T−1Y T, C(X) = T−1XT.

From the above it is clear that C = λ2 acts on the generators via conjugation by T .

Therefore, in this case the representation of the modular group PSL(2,Z), obtained

via the quotient B3/ 〈C〉, is more meaningfull than for the N > 1 case where the the

generators were just identified with their inverses.

2.6.1 Involutions on D1(t, q)

As in DN(t, q) we also define two antiisomorphisms θ1 and θ2 which act on D1(t, q).

The first map θ1: D1(t, q) −→ D1(t∗, q∗) is the antiisomorphism

θ1(T ) = T, θ1(Y ) = X−1, θ1(X) = Y −1.

If t and q are real then θ1 defines a Hermitian adjoint on D1(t, q).

The second antiisomorphism θ2: D1(t, q) −→ D1((t∗)−1, (q∗)−1) is given by

θ2(T ) = T−1, θ2(Y ) = Y −1, θ2(X) = X−1.

θ2 can be used as a Hermitian adjoint if both t and q have modulus 1.

To conclude this chapter, which focused mainly on Hecke algebras, or more specifically

double affine Hecke algebras, we highlight some of the main points. Starting with the

definition of the braid group and the Hecke algebra, we explicitly constructed a DAHA

in several different ways. We pointed out that given a Hecke algebra, an AHA always

exists; yet further extension to a DAHA with q 6= 1 is not apparent.

Furthermore we investigated some interesting properties of a DAHA, particularly au-

tomorphisms and the presence of a representation of the modular group within. We also

looked at a special case DAHA, that of D1(t, q).

In the next chapter we will introduce an even richer structure which we created,

called the double affine Q-dependent braid group (DN{Q}). It’s structure resembles in

many ways that of a DAHA, but is much more general. In fact we will show that the
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double affine Hecke algebra is a small quotient group of the double affine Q-dependent

braid group, hence all of its properties which we have just discussed are contained within

DN{Q}.
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Appendix 2

2A.1 The AHA AN(t) in terms of σ

In terms of σ all of the Yi are given by:

Yi =


T1T2 . . . TN−1σ i = 1 ,

Ti . . . TN−1σT
−1
1 . . . T−1

i−1 i = 2, . . . , N − 1,

σT−1
1 . . . T−1

N−1 i = N.

We want to rewrite the other defining relations of AN(t) in terms of σ, namely

YiYj = YjYi for all i, j,

TiYj = YjTi for j 6= i, i+ 1.

1. We have TiYj = YjTi for j 6= i, i+ 1. So for j = 1 and i = 2, . . . , N − 1:

TiY1 = TiT1T2 . . . TN−1σ

= TiT1 . . . Ti−2Ti−1TiTi+1 . . . TN−1σ.

Can pull the first Ti through since it commutes with T1, . . . , Ti−2 and then use the

braid relation

TiY1 = T1 . . . Ti−2 (TiTi−1Ti)Ti+1 . . . TN−1σ

= T1 . . . Ti−2 (Ti−1TiTi−1)Ti+1 . . . TN−1σ.

Second Ti−1 can be pushed all the way to the right since it commutes with Ti+1, . . . , TN−1

TiY1 = T1 . . . TN−1Ti−1σ.

Since TiYj = YjTi for j 6= i, i+ 1, and using the definition of Y1, we must have that:

T1 . . . TN−1Ti−1σ = T1 . . . TN−1σTi

⇒ Ti−1σ = σTi for i = 2, . . . , N − 1.

This relation between the Ti and σ is valid for i = 2, . . . , N − 1 only, yet in AN(t)
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there are (N − 1)Ti generators. So can we find a similar relation when i = N?

2. We know that YiYj = YjYi for all i, j. So for j = 1 and i = N , we rewrite Y1YN =

YNY1 in terms of σ.

By definition of Y1 and YN

Y1YN = T1 . . . TN−1σ
2T−1

1 . . . T−1
N−1,

YNY1 = σT−1
1 T−1

2 . . . T−1
N−1T1 . . . TN−1σ.

Can pull T1 all the way back to T−1
2 since

(
T−1

3 . . . T−1
N−1

)
commutes with T1 and

then use the braid relation

YNY1 = σT−1
1 T−1

2 T1 . . . T
−1
N−1T2 . . . TN−1σ

= σT2T
−1
1 T−1

2 T−1
3 . . . T−1

N−1T2T3 . . . TN−1σ.

Repeat the previous step until all the Ti on the right are moved to the left

YNY1 = σT2 . . . TN−1T
−1
1 . . . T−1

N−1TN−1σ

= σT2 . . . TN−1T
−1
1 . . . T−1

N−2σ.

We previously found that Ti−1σ = σTi for i = 2, . . . , N − 1 ⇒ σT−1
i = T−1

i−1σ.

We use this to move the sigmas until they meet in the middle

YNY1 = T1σT3 . . . TN−1T
−1
1 T−1

2 . . . σT−1
N−1

= T1T2σ . . . TN−1T
−1
1 T−1

2 . . . σT−1
N−2T

−1
N−1

= T1 . . . TN−2σ
2T−1

2 . . . T−1
N−1.

Setting expressions equal we obtain the final expression:

Y1YN = YNY1

⇒ T1 . . . TN−1σ
2T−1

1 . . . T−1
N−1 = T1 . . . TN−2σ

2T−1
2 . . . T−1

N−1

⇒ TN−1σ
2T−1

1 = σ2

⇒ TN−1σ
2 = σ2T1.

Having obtained the expression TN−1σ
2 = σ2T1, one questions what happens after
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repeated applications of σ; that is, is there a relation involving σN?

3. Ti−1σ = σTi for i = 2, . . . , N − 1 ⇒ Ti = σ−1Ti−1σ for i = 2, . . . , N − 1.

Therefore we can replace Ti−1 with Ti−1 = σ−1Ti−2σ to get:

Ti = σ−2Ti−2σ
2.

Now replace Ti−2 with Ti−2 = σ−1Ti−3σ and repeat this procedure until finally

Ti = σ−3Ti−3σ
3

= σ−(i−1)T1σ
i−1.

When i = N − 1

TN−1 = σ−(N−2)T1σ
N−2

⇒ TN−1σ
2 = σ−(N−2)T1σ

N .

But TN−1σ
2 = σ2T1 so we substitute to get:

σ2T1 = σ−(N−2)T1σ
N

⇒ σNT1 = T1σ
N

⇒ σNTi = Tiσ
N for i = 1, . . . , N − 1.

2A.2
∏N

j=1 Yj = σN

We show that
∏N

j=1 Yj = σN . Although this identity is already well-known [2], we present

our own proof for the interested reader.

Define the operator Pk by

Pk : = σk (T1 . . . Tk)
−1 (T2 . . . Tk+1)−1 . . . (TN−k . . . TN−1)−1 . (2A.1)

We want to show by induction that this is equal to Pk =
N∏

j=N−k+1

Yj.
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1. For k = 1:

P1 := σ1 (T1)−1 (T2)−1 . . . (TN−1)−1

= σT−1
1 T−1

2 . . . T−1
N−1

= YN ,

so P1 is indeed equal to
N∏

j=N−1+1

Yj = YN , and the assertion is true for k = 1.

2. Now assume that our assertion is true for some k, namely,

Pk = σk (T1 . . . Tk)
−1 (T2 . . . Tk+1)−1 . . . (TN−k . . . TN−1)−1 =

N∏
j=N−k+1

Yj.

If this holds, then PkYN−k is
N∏

j=N−k

Yj because all the Yi commute. Using YN−k =

TN−k . . . TN−1σT
−1
1 . . . T−1

N−k−1, we can rewrite this same expression as

PkYN−k =
[
σk (T1 . . . Tk)

−1 (T2 . . . Tk+1)−1 . . . (TN−k . . . TN−1)−1]
×
[
TN−k . . . TN−1σT

−1
1 . . . T−1

N−k−1

]
=

[
σk (T1 . . . Tk)

−1 (T2 . . . Tk+1)−1 . . . (TN−k−1 . . . TN−2)−1]
×
[
σT−1

1 . . . T−1
N−k−1

]
.

Using T−1
i σ = σT−1

i+1, all σs can be moved to the left:

PkYN−k =
[
σk+1 (T2 . . . Tk+1)−1 (T3 . . . Tk+2)−1] . . .
. . .
[
(TN−k . . . TN−1)−1 T−1

1 . . . T−1
N−k−1

]
.

Ti commutes with all other T s except Ti+1 and Ti−1, so we may pull the rightmost

operators T−1
1 to T−1

N−k−1 as far as possible to the left:

PkYN−k = σk+1
[
(T2 . . . Tk+1)−1 T−1

1

] [
(T3 . . . Tk+2)−1 T−1

2

]
. . .

. . .
[
(TN−k . . . TN−1)−1 T−1

N−k−1

]
= σk+1 (T1 . . . Tk+1)−1 (T2 . . . Tk+2)−1 . . . (TN−k−1 . . . TN−1)−1 .

But (2A.1) tells us that this is precisely the definition of Pk+1. Thus, PkYN−k =

Pk+1, so Pk+1 =
N∏

j=N−k

Yj and our assertion holds for k + 1 if it holds for k.
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This therefore verifies that

σk (T1 . . . Tk)
−1 (T2 . . . Tk+1)−1 . . . (TN−k . . . TN−1)−1 =

N∏
j=N−k+1

Yj

for all k = 1, 2, . . . , N − 1. For k = N − 1, this gives

σN−1 (T1 . . . TN−1)−1 =
N∏
j=2

Yj.

But σ−1(T1 . . . TN−1)−1 = Y −1
1 , so we find that

N∏
j=1

Yj = σN . �

2A.3 The DAHA DN(t, q) in terms of σ

We want to write the defining relations of a DAHA solely in terms of σ and the Ti; that

is we must rewrite the following equations

Y1Z2Y
−1

1 Z−1
2 = T 2

1 ,

Yi

(
N∏
j=1

Zj

)
= q

(
N∏
j=1

Zj

)
Yi.

1. We have that Y1Z2Y
−1

1 Z−1
2 = T 2

1 and by definition of Y1

Y1Z2 = T 2
1Z2Y1

= T1T1Z2T1 . . . TN−1σ.

Now we can push Z2 all the way to the right of the expression. First write Z2 in

terms of Z1 by (2.17), then using (2.16) and since Z1 commutes with (T3 . . . TN−1)

we get

Y1Z2 = T1Z1T2 . . . TN−1σ

= T1T2Z1T3 . . . TN−1σ

= T1 . . . TN−1Z1σ.

But we already know that Y1Z2 = T1 . . . TN−1σZ2 by definition of Y1.
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Therefore:

T1 . . . TN−1σZ2 = T1 . . . TN−1Z1σ

⇒ σZ2 = Z1σ

⇒ σZi = Zi−1σ for i = 2, . . . , N.

This relation, σZi = Zi−1σ is valid only for i = 2, . . . , N , so we must also consider

the case i = 1.

2. We begin by examining the product of the Zi by the product of the Ti. Using

TiZj = ZjTi for j 6= i, i+ 1 this can be rewritten as follows

(Z1 . . . ZN) (T1 . . . TN−1) = Z1 (Z2T1) (Z3T2) . . . (ZNTN−1) .

By (2.17) we can push each Zi to the right of each Ti

(Z1 . . . ZN) (T1 . . . TN−1) = Z1

(
T−1

1 Z1

) (
T−2

2 Z2

)
. . .
(
T−1
N−1ZN−1

)
.

Now (2.16) means all the Zi commute with the Ti to their right

(Z1 . . . ZN) (T1 . . . TN−1) = Z1T
−1
1 . . . T−1

N−1Z1 . . . ZN−1.

Use (2.17) repeatedly to push Z1 to the right of the expression through the T−1
i

(Z1 . . . ZN) (T1 . . . TN−1) = T1Z2T
−1
2 . . . T−1

N−1Z1Z2 . . . ZN−1

= T1 . . . TN−1ZNZ1 . . . ZN−1.

All Zi commute with each other by (2.15) giving us the final expression

(Z1 . . . ZN) (T1 . . . TN−1) = (T1 . . . TN−1) (Z1 . . . ZN) .

Therefore we see that the product of the Ti, (T1 . . . TN−1), commutes with the prod-

uct of the Zi, (Z1 . . . ZN).

We shall use this important result to find an expression for σZi = Zi−1σ when i = 1.
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3. Let us see how this commutation relation influences Yi

(
N∏
j=1

Zj

)
= q

(
N∏
j=1

Zj

)
Yi.

For i = 1, by the definition of Y1 and since all the Zi commute with each other

q

(
N∏
j=1

Zj

)
Y1 = q (Z1 . . . ZN) (T1 . . . TN−1)σ

= q (T1 . . . TN−1) (ZN . . . Z1)σ.

Using σZi = Zi−1σ for i = 2, . . . , N to move σ to the left of the Zi

q

(
N∏
j=1

Zj

)
Y1 = q (T1 . . . TN−1)ZNσ (ZN . . . Z2) .

This must equal (2.19) with i = 1

Y1

(
N∏
j=1

Zj

)
= (T1 . . . TN−1)σ (Z1 . . . ZN)

= (T1 . . . TN−1)σ (ZN . . . Z1) .

Setting both expressions equal yields:

(T1 . . . TN−1)σ (ZN . . . Z1) = q (T1 . . . TN−1)ZNσ (ZN . . . Z2)

⇒ σZ1 = qZNσ.

Since we already found that σZi = Zi−1σ for i = 2, . . . , N , defining Z0 = qZN ,

completes the expression

σZi = Zi−1σ for i = 1, . . . , N.

2A.4 The derivations ζN1 Ti = Tiζ
N
1 and Tiζ

N
2 = ζN2 Ti

We have the relations Ti−1ζ1 = ζ1Ti for i = 2, . . . , N − 1 and TN−1ζ
2
1 = ζ2

1T1.

1. Ti−1ζ1 = ζ1Ti for i = 2, . . . , N − 1 ⇒ Ti = ζ−1
1 Ti−1ζ1 for i = 2, . . . , N − 1.

Therefore we can replace Ti−1 with Ti−1 = ζ−1
1 Ti−2ζ1 to get:

Ti = ζ−2
1 Ti−2ζ

2
1 .
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Now replace Ti−2 with Ti−2 = ζ−1
1 Ti−3ζ1 and repeat this procedure until finally

Ti = ζ−3
1 Ti−3ζ

3
1

= ζ
−(i−1)
1 T1ζ

i−1
1 .

When i = N − 1

TN−1 = ζ
−(N−2)
1 T1ζ

N−2
1

⇒ TN−1ζ
2
1 = ζ

−(N−2)
1 T1ζ

N
1 .

But TN−1ζ
2
1 = ζ2

1T1 so we substitute to get:

ζ2
1T1 = ζ

−(N−2)
1 T1ζ

N
1

⇒ ζN1 T1 = T1ζ
N
1

⇒ ζN1 Ti = Tiζ
N
1 for i = 1, . . . , N − 1.

We have the two relations Ti+1ζ2 = ζ2Ti for i = 1, . . . , N − 2 and ζ2
2TN−1 = T1ζ

2
2 .

2. Ti+1ζ2 = ζ2Ti for i = 1, . . . , N − 2 ⇒ Ti+1 = ζ2Tiζ
−1
2 for i = 1, . . . , N − 2.

Therefore we can replace Ti with Ti = ζ2Ti−1ζ
−1
2 to get:

Ti+1 = ζ2
2Ti−1ζ

−2
2 .

Now replace Ti−1 with Ti−1 = ζ2Ti−2ζ
−1
2 and repeat this procedure until finally

Ti+1 = ζ3
2Ti−2ζ

−3
2

= ζ i2T1ζ
−i
2 .

When i = N − 2

TN−1 = ζN−2
2 T1ζ

−(N−2)
2

⇒ ζ2
2TN−1 = ζN2 T1ζ

−(N−2)
2 .
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But ζ2
2TN−1 = T1ζ

2
2 so we substitute to get:

T1ζ
2
2 = ζN2 T1ζ

−(N−2)
2

⇒ T1ζ
N
2 = ζN2 T1

⇒ Tiζ
N
2 = ζN2 Ti for i = 1, . . . , N − 1.
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Chapter 3

Graphical Calculus for the

Double Affine Q-Dependent Braid

Group

In this chapter our primary objective is to give readers a clear picture of the structure of

a large group we created called a double affine Q-dependent braid group (DN{Q}). We

initially developed this group as a generalisation of the double affine Hecke algebra. As

such it is constructed by appending to the braid group a set of N commuting operators

{Qi} = {Q1 . . . , QN}, before extending it to an affine Q-dependent braid group. In addi-

tion we establish its position in relation to other well known abstract algebraic structures,

in particular, the double affine Hecke algebra, DN(t, q) which we defined in the previous

chapter. As it is through representations that we learn most about abstract mathematical

concepts, we also present a novel intuitive graphical calculus to complement the original

algebraic description.

Our interest in DN{Q} stems from its pole position with respect to other algebraic

structures whose primary element is a braid group. In fact, appending to the double

affine braid group a set of operators {Qi} generalises, without affecting, the structure of

the underlying braid group. It does so by turning braid group strands into ribbons and

permitting 2π twists. Since the operators {Qi} do not intertwine the braid group genera-

tors, then the original braid group corresponds to BN{Q}/〈Qi〉, where 〈Qi〉 is the normal

group freely generated by the operators Qi. Thus the original braid group is in other

words equivalent to BN{Q} where Q = 1. Similarly the affine braid group corresponds to

AN{Q}/〈Qi〉. Naturally the elliptic braid group [16, 17] is obtained from DN{Q} by ig-

noring the twists or equivalently by contracting ribbons to strands, i.e. DN{Q}/〈Qi〉. In

addition, taking the quotient DN{Q}/〈QiQ
−1
i+1〉 is equivalent to considering twists on dif-
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ferent ribbons as identical. Furthermore imposing the Hecke relation and setting Qi = q1,

where q ∈ C, we obtain the double affine Hecke algebra (of type A) [2, 15]. We illustrate

all of these relations in Figure 3.1.

/<Q    >iQi+1
-1

elliptic braid 

    group

HN
(t)

(t)AN

DN
(t,q)DN {Q}

AN {Q}

BN {Q}

/<Q >i

Hecke reln

Hecke reln

Hecke reln

+ Yi{  }
i=1

N

+ Z i{ }
i=1

N

+ Yi{  }
i=1

N + Yi{  }
i=1

N

+ Z i{ }
i=1

N
+ Z i{ }

i=1

N

BN(  )

AN(  )

DN(  )Q

Q

Q

Q=q1

Q=q1

Q=q1

/<Q    >iQi+1
-1

/<Q    >iQi+1
-1

Q=1

Figure 3.1: Diagram describing the relations of DN{Q} with other algebraic structures
whose primary element is a braid group. To comment on the notation we introduce in
this figure and will adopt in this chapter, note that BN{Q} = BN(Q1, Q2, . . . , QN) and
BN(Q) = BN{Q}/〈QiQ

−1
i+1〉 ' BN(Q,Q, . . . , Q).

To further clarify the position of DN{Q} in relation to other known algebraic struc-

tures we describe Figure 3.1 in greater detail. The rightmost column of this figure corre-

sponds to the construction of the double affine Hecke algebra DN(t, q) which we described

in the previous chapter. As illustrated, and as we previously showed, DN(t, q) can be

obtained by firstly appending to the Hecke algebra HN(t), a set of operators Yi, to define

the affine Hecke algebra AN(t). Appending to AN(t) a further N generators denoted by

Zi, then completes the description of DN(t, q).

In the middle column of Figure 3.1 we depict a Q-dependent generalisation of the

construction of DN(t, q). We develop this group by considering the parameter q, which

as we saw in the previous chapter is included in the definition of a DAHA, as a special

value corresponding to the action of an extra generator Q. Therefore the middle column

describes the construction of the double affine Q dependent braid group DN(Q) from

which DN(t, q) is obtained by setting the single generator Q = q1. Note also that the

braid group generators Ti do not satisfy the Hecke relation and for this reason the middle

column describes a group structure and not an algebra.
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Finally, the complete description of the construction of DN{Q} is given in the first

column. DN{Q} is the double affine Q-dependent braid group which has an additional

set of N commuting generators Qi with respect to DN(Q). In this case all of the Qi are

unique and it is only when we consider them as identical via the quotient 〈QiQ
−1
i+1〉 that

we recover DN(Q).

To complement the algebraic description of the double affineQ-dependent braid group,

we also provide a pictorial representation that fully captures all of its complex structure.

The graphical calculus we develop is based on ribbons within cubes, where opposite ver-

tical faces of the cube are identified; a topologically equivalent presentation is given in

terms of ribbons living inside a toroid. We clearly illustrate all of the defining relations

of DN{Q} in our new cube-ribbon representation. It provides a concrete visual descrip-

tion of its structure, in particular we obtain a very straightforward interpretation of the

action of the generators Qi which create 2π twists in the ribbons. In the quotient group

DN{Q}/〈QiQ
−1
i+1〉, where we obtain the double affine Hecke algebra, we show that q cor-

responds to the factor when replacing a ribbon with a twist by one with no twist at all.

Hence a major achievement of our cube-ribbon representation is that it describes double

affine Hecke algebras for all values of q, something which has not been accomplished

until now. In DN{Q}/〈Qi〉 the ribbons are reduced to strands and twists are no longer

possible, therefore our pictorial representation gives a toroidal description of the elliptic

braid group.

The first step in describing our construction of the double affine Q-dependent braid

group, DN{Q}, is to define its underlying Q-dependent braid group BN{Q}.

3.1 The Q-Dependent Braid Group BN{Q}

We begin by defining the braid group and its Q-dependent extension. These are essential

to our construction of DN{Q}. Similarly its well-established pictorial representation

serves as a starting point for our cube-ribbon representation.

As previously presented in Section 2.1, the N -strand braid group BN is the group

generated by the N − 1 invertible elements {Ti|i = 1, .., N − 1} satisfying the relations

TiTj = TjTi for |i− j| ≥ 2,

TiTi+1Ti = Ti+1TiTi+1 otherwise .

It is indeed well known that this algebraic description can be incorporated into a
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pictorial one by defining Ti and its inverse T−1
i to correspond to the exchange of the ith

and (i+ 1)th strands as illustrated below:

Ti Ti
-1

i i+1 i i+1

Multiplication is then defined by stacking: AB is the braid obtained by stacking A on

top of B and gluing the bottom ends of the strands in A to the top ends of those in B.

To illustrate, we demonstrate the braid relation in B4 for i = 1, i.e. T1T2T1 = T2T1T2:

T1

T2 =

1 2 3 1 2 34 4

T1

T1

T2

T2

Pulling all strands tight one can see that the relation is satisfied. All other braid group

relations follow similarly.

We now generalise the braid group in a specific way, by defining the N -strand Q-

dependent braid group, BN{Q}, as follows: BN{Q} is the group generated by the in-

vertible elements {Ti|i = 1, .., N − 1} satisfying (2.1) and (2.2), in addition to a set of

commuting elements {Qi|i = 1, .., N} satisfying the relations

QiQj = QjQi for all i, j, (3.1)

TiQj = QjTi for j 6= i, i+ 1, (3.2)

TiQi = Qi+1Ti for i = 1, . . . , N − 1, (3.3)

TiQi+1 = QiTi for i = 1, . . . , N − 1. (3.4)
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Note that the Qi do not intertwine the Ti. Furthermore the latter two relations give

Qi+1 = TiQiT
−1
i and Qi+1 = T−1

i QiTi for all i = 1, . . . , N − 1. Therefore

TiQiT
−1
i = T−1

i QiTi

⇒ T 2
i Qi = QiT

2
i for i = 1, . . . , N − 1.

Since T 2
i Qj = QjT

2
i for all i, j, then the Qs commute with all even powers of the T s but

not with odd powers.

As it stands, only the trivial braids – those whose strands go straight from top to

bottom without crossing – can represent the Qs in a way consistent with (3.1)-(3.4). We

shall see later how to introduce nontrivial graphical representations for the Qs.

3.2 Affine Braid Groups

3.2.1 The Affine Braid Group AN

In Section 2.2 we described how the braid group can be extended to an affine Hecke

algebra AN(t). In a similar fashion to describe our definition of an affine Q-dependent

braid group, we must necessarily firstly extend the Q-dependent braid group BN{Q} to

an affine braid group AN . We accomplish this by appending to it N invertible operators

Yi which satisfy the relations

YiYj = YjYi for all i, j, (3.5)

TiYj = YjTi for j 6= i, i+ 1, (3.6)

TiYi+1Ti = Yi for i = 1, . . . , N − 1. (3.7)

Again we see that AN is fully generated by Y1 and the Ti, since we need only one of the

Yi (and all of the Ti) to generate the others. Furthermore, equation (3.7) can be used to

rewrite Yi for i = 2, . . . , N as

Yi = T−1
i−1T

−1
i−2 . . . T

−1
1 Y1T

−1
1 . . . T−1

i−2T
−1
i−1.

As in Subsection 2.2.1, introducing the element σ defined as:

σ := T−1
N−1T

−1
N−2 . . . T

−1
1 Y1, (3.8)

and following the derivations of Appendix 2A.1, the defining relations for AN may be
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rewritten in terms of σ and the Ti as

Yi =


T1T2 . . . TN−1σ i = 1 ,

Ti . . . TN−1σT
−1
1 . . . T−1

i−1 i = 2, . . . , N − 1,

σT−1
1 . . . T−1

N−1 i = N,

Ti−1σ = σTi, i = 2, . . . , N − 1,

TN−1σ
2 = σ2T1.

Recall also that the above relations imply that σNTi = Tiσ
N which tells us that σN

commutes with all the Yi, and is thus central in AN .

Before defining our generalisation of AN to the affine Q-dependent braid group, it

is perhaps worth pointing out that unlike the definition of the affine Hecke algebra in

Section 2.2 where the braid group generators are required to satisfy the Hecke relation,

in the affine braid group AN there is no such restriction on the Q-dependent braid group

generators. They are part of a group and not an algebra.

3.2.2 The Affine Q-Dependent Braid Group AN{Q}

In a similar fashion to BN{Q}, we extend AN to an affine Q-dependent braid group,

AN{Q}, by defining how the set of elements {Qi|i = 1, .., N} interact with the affine

generators Yi.

Therefore in addition to all of the defining relations of AN , the generators of AN{Q}
must also satisfy

YiQj = QjYi for all i, j. (3.9)

Using the definition of σ, (3.8), one can rewrite (3.9), to obtain AN{Q} purely in

terms of the Ti, σ and Qi:

σQi = Qi−1σ for i = 2, . . . , N,

σQ1 = QNσ.

It is straightforward to show that these relations also imply that σNQi = Qiσ
N .

Having fully described our definition of an affine Q-dependent braid group, AN{Q},
we now incorporate its algebraic structure into an intuitive graphical one.
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3.2.3 Pictorially Representing AN{Q}

We have already seen that in the pictorial representation of the braid group BN , the

braiding of the strands takes place in the strip in a strict top-to-bottom direction. To

incorporate the extra set of generators, we develop the idea of [7] where the Yi were

thought of as braiding on the surface of cylinders.

In order for us to do this, we turn the braid group strip into a cylinder by identifying

the left and right edges; to highlight this point, we represent these edges with dashed

lines. This means that we can now braid in a left-to-right (or vice versa) fashion by

wrapping strands around the cylinder. This application of periodic boundary conditions

is what gives us a pictorial representation for the affine Q-dependent braid group AN{Q}.
(The braid group generators Ti still braid top-to-bottom as they did before we identified

the sides.)

To illustrate this, we define the pictorial representations of the AN{Q} generator Yi

and its inverse Y −1
i as follows:

i i+1i-1

Yi

i i+1i-1

Yi
-1

So we see that Yi takes the strand starting at point i on the top edge and takes it to the

same point on the bottom edge and leaves all other strands untouched, and does so such

that it goes over all strands to the right (i + 1, . . . , N) and under all strands to the left

(1, . . . , i − 1). For example, in the N = 3 case, Y1 is given by either of the two pictures

below:

Y1

=

1 2 3

1
2

3

Multiplication is now defined by stacking cylinders on top of one another. We ex-

plicitly demonstrate this for Y2. Recall that by (3.7) all of the Yi are defined recursively
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so given Y1 and the Ti we can construct all other Yi. Algebraically in the N = 3 case

Y2 = T−1
1 Y1T

−1
1 and hence to demonstrate the multiplication of braiding on cylinders and

to show that our pictorial representation is consistent we have that:

-1

Y1

T1

-1
T1

Y

=

2

=

1
2

3

1 2 3

1 2 3

To complete the pictorial representation of the Yi in the N = 3 strand case, we show that

Y3 = T−1
2 Y2T

−1
2 .

-1
T

Y
2

2

Y

=

3

=

1
2

3

1 2 3

1 2 3

-1
T
2

Recall, from (3.8), that σ was defined in terms of Y1: σ = T−1
N−1T

−1
N−2....T

−1
1 Y1. Since

we now have a pictorial representation for all of the T s and all of the Y s, we can illustrate

the operator σ. In the N = 3 strand case, we have σ = T−1
2 T−1

1 Y1, which looks like
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-1
T
2

-1
T1

Y1

=

σ

=

1
2

3

1 2 3

1 2 3

From the illustration it is clear that σ has the same general form for all N , namely, it

acts as a kind of raising operator on the indices by taking point i on the top to point i+1

on the bottom (with the cylindrical topology identifying point N + 1 with 1). Therefore,

we take this to be the pictorial definition of σ, and so together with the cylinders repre-

senting the Ti, all of the defining relations of the AN{Q} follow suit.

At this point we have a complete pictorial representation for the Y s. However, the

Qs are still only representable by trivial braids. Despite this we can extend AN{Q} to

a double affine Q-dependent braid group by incorporating a whole new set of generators

and their graphical representations, as we will now show.

3.3 Double Affine Braid Groups

3.3.1 The Double Affine Q-Dependent Braid Group DN{Q}

We can extendAN{Q} to a double affine Q-dependent braid groupDN{Q} by introducing

a further N invertible generators Zi satisfying the relations

ZiZj = ZjZi for all i, j, (3.10)

TiZj = ZjTi for j 6= i, i+ 1, (3.11)

TiZi+1Ti = Zi for i = 1, . . . , N − 1, (3.12)
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together with the set of elements {Qi|i = 1, .., N} which commute with all the Zi and

appear explicitly in relations intertwining the Yi and the Zi:

ZiQj = QjZi for all i, j, (3.13)

Y1Z2Y
−1

1 Z−1
2 = T 2

1 , (3.14)

Yi

(
N∏
j=1

Zj

)
= Qi

(
N∏
j=1

Zj

)
Yi, (3.15)

Zi

(
N∏
j=1

Yj

)
= Q−1

i

(
N∏
j=1

Yj

)
Zi. (3.16)

As in the construction of the double affine Hecke algebra in Section 2.3, we can choose

to eliminate the Yi in favour of the cyclic operator σ. Then (3.14) and (3.15) can be

rewritten as

Zi−1σ = σZi, for i = 2, . . . , N,

ZNσ = Q−1
N σZ1.

Furthermore using the above relations, one can quickly see that

Ziσ
N = Q−1

i σNZi, (3.17)

and this, in addition to the identity
∏N

j=1 Yj = σN gives us (3.16). Therefore it is not

independent of the other relations.

To summarise, we define a double affine Q-dependent braid group DN{Q} to be

the group generated by the Ti, Yi, Zi and Qi which satisfy equations (2.1) and (2.2),

(3.1)-(3.4), (3.5)-(3.7) alongside (3.9) and (3.10)-(3.15). We shall see shortly that the

appearance of the operators Qi in the last of these defining relations will strongly influence

our choice of pictorial representation for DN{Q}.

3.3.2 Graphical Representation of DN{Q}

Previously we extended the well known pictorial representation of the braid group to

that of an AN{Q} by identifying the two vertical edges and defining the action of the Yi

generators on the strands as wrapping around the resulting cylinder. We would now like

to extend this AN{Q} representation to one for a DN{Q} by somehow incorporating the

new generators Zi into the picture.
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Our method for doing so is motivated by the AN{Q} construction: the braid group

generators do not wind strands at all; they simply connect points on the top edge to ones

on the bottom. The Yi generators, however, do wind the strands “perpendicular” to the

Ti, namely, left-to-right (or vice versa) instead of top-to-bottom.

As the new Zi generators have exactly the same relations between themselves and

the T s as the Y s do (both form independent affine braid groups), this suggests that we

need a third direction. Therefore instead of a strip whose two vertical sides are identified,

we now use a cube whose opposite vertical faces are identified. So the left and right

faces of the cube are identified with the Yi operators taking strands through them, while

the front and back faces are identified with the Zi generators taking strands through them.

To see this, first consider drawing each braid group generator Ti in a cube. The braid-

ing now takes place within the cube from top to bottom:

T1

Multiplication is defined in the usual way, by stacking one cube onto another. So for

example the element T 2
1 is represented as follows:

2

T1
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This representation is essentially the same as that for the elliptic braid group on a torus

[16, 17], which is generated by Ti, Yi and Zi but requires all the Qi to be unity. In

Subsection 3.4.1, we show that the Qi are indeed 1 for our representation, as expected.

This is not a surprising result though as the elliptic braid group is simply DN{Q}/〈Qi〉.
However, using three-dimensional cubes rather than a two-dimensional torus will allow

us to generalise to values of Qi other than unity, as we illustrate in Subsection 3.4.2.

Recall that the affine Q-dependent braid group generators Yi identified the left and

right sides with each other to give braiding on a cylinder. In the cube representation, we

identify the left and right faces of the cube with each other. In the following figure, the

turquoise arrows traverse the coloured blue planes and wrap the strand around the cube

from one to the other.

Y1
-1

Y
1

The additional DN{Q} generators Zi identify the front face of the cube with its back face.

In the figure below, we use red arrows to indicate that the strand passes out through the

coloured front face of the cube, then wraps around until it meets the strand that passes

out the back face. More specifically, for the N = 3 case we define Z1 (and its inverse) as

1Z
-1

1Z

Having defined Z1, we can now obtain all of the other Zi for i = 2, . . . , N using TiZi+1Ti =

Zi. So, for example, Z2 = T−1
1 Z1T

−1
1 :
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-1
T1

1Z =

Z 2

-1
T1

For completeness we also give the pictorial representation of Z3, and so all of the Zi in

the N = 3 case are depicted.

Z 2

-1

T
2

=

Z 3

-1

T
2

For the general N strand case one may proceed in this manner to construct Zi for any i.
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We see that its action is to take the ith point on the top face, bring it out the front face

of the cube, wrap around to come in the back face, and connect to the ith point on the

bottom, with all other strands simply going straight from top to bottom.

At this point, we highlight the fact that our cube is topologically equivalent to a

hollowed-out toroid: identification of the opposing sides of any horizontal slice of the

cube gives a 2-torus, and the region between the top and bottom faces – a time interval

I if we view our strands as worldlines – gives the thickness. Thus, each of our generators

is represented as N strands within the toroid S1 × S1 × I.

To illustrate this further, define two angles, θ and ϕ. We let θ be the direction in

which the Yi generators wrap around the toroid and ϕ is the direction the Zi wrap around

the toroid. So, in effect, the AN{Q} generators Yi encircle the torus within the toroid

whereas the additional DN{Q} generators Zi encircle the empty space bounded by the

toroid, as illustrated below:

θ φ

θ

φ

s

s

where s ∈ I is the time parameter.

A particularly nice feature of this toroidal representation, is that one can now clearly

see the distinct directions in which the different generators wrap. In Figure 3.2 particular

cross sections of the torus are illustrated, each one indicating precisely how the different

generators are represented. For completeness we show all three types of generators, the

Ti, Yi and Zi. Firstly we illustrate the generator T2 which braids strands in the region

between both torus surfaces. Then we show the generator Y1 which encircles the inner

torus and the generator Z1 which braids strands around the empty space bounded by the

toroid.
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1

2

3

1

2

3

T2 Y1

1Z

Figure 3.2: Toroidal representation of the action of the generators T2, Y1 and Z1 in the
N = 3 strand case.

We define multiplication by stuffing toroids inside each other: this is done such that

the points on the inner boundary of the first (in order of multiplication) generator cor-

respond to the points on the outer boundary of the second generator. As an example in

Figure 3.3 we illustrate the product T2Y1: that is,we stuff Y1 into T2 such that the num-

bered points on the outer boundary of Y1 correspond to the points on the inner boundary

of T2.

T2Y1

1

2

3

Figure 3.3: Toroidal representation of the product T2Y1 where only a small cross section
of the overall toroid is shown.

3.4 Graphical Representation of the action of Qi

3.4.1 The case Qi = identity

We must confirm that our cubic/toroidal representation works for all the DN{Q} axioms.

We start by verifying (3.14), i.e. Y1Z2Y
−1

1 Z−1
2 = T 2

1 . From Figure 3.4, we see that this is

satisfied by our cube representation.
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Z2

= =

= =

2

T

=

Y
1

Y
1

-1

Z2
-1

1

Figure 3.4: Step-by-step verification of the relation Y1Z2Y
−1

1 Z−1
2 = T 2

1 in the cube repre-

sentation.
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Equations (3.15) and (3.16) must also hold in our representation, of course. These are

the relations that depend explicitly on the elements Qi. In fact, they give us various ways

of writing the Qi; for example, in the N = 3 case, we find Q3 = σZ1σ
−1Z−1

3 . We have

pictorial representations for all the generators on the right-hand side of this relation, so

we may explicitly find the pictorial representation of Q3. From Figure 3.5, we see that

Q3 acts only on the third strand while leaving the other two untouched. For clarity, we

have indicated the twisting using arrows; one must start form the top of the third strand

and follow the arrows around all faces of the cube.

=

Figure 3.5: Pictorial representation of Q3 = σZ1σ
−1Z−1

3 . Pulling all strands tight yields
the identity.

This is the pictorial representation of Q3. By pulling the strands tight, we find that this is

precisely the operator which leaves the strands entirely alone: the identity 1, namely, the

trivial braid. This result is not unique to Q3; we find that the graphical representation

for each of the Qs is simply the identity.

Although this cube representation is successful in describing the Ti, Yi and Zi gener-

ators of DN{Q}, it still only allows the Qi to be represented by trivial braids, and so is

really only valid when Qi = 1. Therefore, this is simply a representation of DN{Q}/〈Qi〉,
i.e. the elliptic braid group [16, 17] (see Figure 3.1). However, if we wish to allow for

values of Qi other than unity, our cube representation needs to be modified. We now

proceed to describe the modification that is required.

3.4.2 The General Case Qi 6= identity: Introducing Ribbons

To obtain a nontrivial pictorial representation which accommodates Qi 6= 1, we modify

our cube representation by replacing the strands by ribbons. This modification is not

unmotivated: in order to extend the AN{Q} representation to one for a DN{Q}, we in-

creased the dimension of our space from two to three, and so it is reasonable to increase
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the dimension of our strands.

Doing so is precisely what we need in order for our representation to work for all

DN{Q}s, not just those where the Qi = 1. We therefore no longer braid one-dimensional

strands, but do so instead with two-dimensional ribbons. This extra degree of freedom

will enable us to completely describe a double affine Q-dependent braid group for any

Qi.

However, before we revisit the elements Qi, we must verify that all of the previ-

ous DN{Q} axioms still hold when using ribbons within our cube representation. It is

straightforward to show that they do; to illustrate this point, we explicitly show (3.14),

as this relation contains all three types of generators, the Ti, Yi and Zi. (For clarity, we

have coloured the front and back of each ribbon with black and green respectively.) This

example, illustrated in Figure 3.6, also allows us to clearly lay out the braiding conven-

tions that we use.

Y1

Z2

-1

Y1

Z
2

-1

=

2

T1

Figure 3.6: Cube ribbon representation of the intertwining relation T 2
1 = Y1Z2Y

−1
1 Z−1

2 .
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When the ribbon wraps in a left/right direction – representing a Yi operator – we use

turquoise for the tips that are identified with each other. It is vital to stress that these

link the left and right faces of the cube in a very particular fashion: the ribbon must pass

through a left or right face of the cube oriented vertically. This condition ensures that

the ribbon doesn’t twist while wrapping around the cube.

In a similar fashion, the ribbons representing the Zi generators are coloured so that

when a red tip is visible, this implies that the ribbon passes through either the back or

front face of the cube. We require that whenever such a ribbon intersects the front or

back face of the cube, it does so oriented horizontally.

We now revisit the relationQ3 = σZ1σ
−1Z−1

3 which, when represented by 1-dimensional

strands, was equivalent to the identity element. Now using ribbons instead of strands, we

construct the pictorial representation of Q3. (For clarity, we show only the third ribbon,

as this is the only one which behaves nontrivially.) Keeping with the colour convention

defined earlier, we obtain Q3, and, by pulling the ribbons tight, yields the key result we

require: a twist in the ribbon is created! This important result is illustrated in Figure

3.7.

=

σ

-1

1Z

-1

3
Z

σ

Figure 3.7: Q3, the creation of a twist in the third ribbon.
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As this is a significant feature of our ribbon representation, let us explain in detail

how this comes about: in constructing σZ1σ
−1Z−1

3 , both the black and green faces of the

ribbon are clearly visible. Upon closer inspection, we see that the ribbon undergoes a full

anticlockwise twist in going from the top face to the bottom one. First, the front black

face of the ribbon is visible. Then, having undergone half an anticlockwise twist, the

back green face becomes visible until finally the full anticlockwise twist leaves the black

face facing forwards.

This significant result can be generalised. We have just shown that in our cube-ribbon

representation Q3 creates a twist in the third ribbon. It is easily shown, following the

construction of Q3, that in our particular representation the action of Qi is to create a

single full anticlockwise twist in the ith ribbon.

We can also verify that an expression like Z3σZ
−1
1 σ−1, which the DN{Q} axioms

require to be Q−1
3 for N = 3, is indeed a full clockwise twist in the third ribbon, again

totally consistent with our interpretation of Qi. We illustrate this relation below, where

for clarity only the third ribbon is shown.

=

σ

-1
σ

3Z

1Z
-1
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Other expressions could be used to determine Qi; for example, (3.15) gives

Qi = Yi

(
N∏
j=1

Zj

)
Y −1
i

(
N∏
j=1

Z−1
j

)
.

Or we could use (3.17): Qi = σNZiσ
−NZ−1

i . For these and any other representation

for Qi the result is the same. Therefore the interpretation of Qi is now clear: it is the

generator that creates a full anticlockwise twist in the ith ribbon. Similarly Q−1
i creates a

full clockwise twist in the ith ribbon. As these are no longer trivial actions on the ribbons,

we have a pictorial representation for Qi 6= 1, and a complete description of the structure

of DN{Q}.

As the creation of a full anticlockwise twist in the ribbon may be somewhat difficult

to visualise we have included a more mathematically rigorous argument to convince the

reader in Appendix 3A.1.

3.5 The Double Affine Hecke Algebra within DN{Q}

In the previous section we highlighted the fact that the elliptic braid group is given by

DN{Q}/〈Qi〉. Similarly our definition of a double affine Q-dependent braid group closely

resembles that of a double affine Hecke algebra (DAHA), which we described in Section

2.3. One of the main differences is that a DN{Q} is a group structure and not an algebra.

Hence the braid group generators Ti are not constrained to obey the Hecke relation, as in

the DAHA. However this doesn’t mean that a DAHA isn’t contained within a DN{Q};
we will now show precisely how to obtain a DAHA given our construction of a double

affine Q-dependent braid group.

3.5.1 The Double Affine Hecke Algebra within DN{Q}

Consider the subgroup C of the Q-dependent braid group BN{Q} defined as

C = 〈QiQ
−1
i+1, i = 1, . . . , N − 1〉.

It is easily shown that C is a normal subgroup of BN{Q} (see Appendix 3A.2), and so we

can construct the quotient G = BN{Q}/〈C〉, which is precisely the group we require to

define a DAHA. Within G, the Qi are indistinguishable from one another; therefore, we

refer to each of their cosets [Qi] as Q. Most importantly, using (3.1)-(3.4), we see that
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the Q now commute with not only the squares of the braid group generators T 2
i , but also

with the Ti themselves. We are now in a position to extend the quotient group G to a

Hecke algebra.

3.5.2 The Hecke Algebra HN(t)

Before defining a DAHA, we must extend our quotient group G to an algebra in which

the Ti generators satisfy a particular relation; this defines the Hecke algebra.

Associate with G the Hecke algebra HN(t). This is the group algebra of G over a field

k parametrised by t ∈ k such that each generator Ti satisfies the Hecke relation (2.3)

(
Ti − t1/21

) (
Ti + t−1/2

1
)

= 0.

3.5.3 The Double Affine Hecke Algebra DN(t, q)

To complete the DAHA construction we must firstly extend the Hecke algebra HN(t) to

an affine Hecke algebra AN(t). This is achieved with the introduction of N invertible

operators Yi which satisfy (2.7)-(2.9).

Recall that the AN was fully generated by Y1 and the Ti. It is perhaps worth pointing

out that the affine Hecke algebra is also fully generated by Y1 and the Ti, and we can

reorder them as necessary. This was not true for the AN{Q} as we needed the full Hecke

algebraic structure in order to consistently order the operators.

Following Subsection 2.3.1 we take a DAHA DN(t, q) of type A to be the algebra

generated by the Ti, Yi and Zi which satisfy equations (2.1)-(2.2), the Hecke relation

(2.3) along with (2.7)-(2.9) and (2.15)-(2.17).

In addition to these the Yi and Zi obey the intertwining relations [2]

Y1Z2Y
−1

1 Z−1
2 = T 2

1 , (3.18)

Yi

(
N∏
j=1

Zj

)
= q

(
N∏
j=1

Zj

)
Yi, (3.19)

Zi

(
N∏
j=1

Yj

)
= q−1

(
N∏
j=1

Yj

)
Zi, (3.20)

where q ∈ k.
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(As in the DN{Q} (3.20) is not independent of the other relations, although it is often

included in the literature as part of the definition of a DAHA.)

One must note that unlike our definition of the DN{Q} where we have a set of ele-

ments Qi, in the DAHA q is simply a parameter. So a DAHA DN(t, q) depends on the

two variables t and q. This is entirely consistent with our construction of a DAHA from

DN{Q} via the quotient group G if we set Q = q1. We therefore have a representation

of a DAHA in BN{Q}/〈C〉 when we impose Q = q1.

In terms of our cube representation we can replace a ribbon with a full anticlockwise

twist by one with no twist at all, only if we multiply the resulting cube by a factor of q.

As a result, one may view this twist as the first Reidemeister move on a ribbon:

∝

∝

Therefore the interpretation of q is clear: it is the multiplicative factor in front of a

DAHA element whenever we replace a ribbon with a full anticlockwise twist by one with

no twist at all. Furthermore since q does not describe the actual position of the twist in

the ribbon, one can have a factor of qn in front of a DAHA element corresponding to n

anticlockwise twists occurring anywhere in the cube. As there is no restriction on what

value q can take we have a pictorial representation that fully describes any DAHA.

This has not been the case until now. In previous works, for example in [2], DAHA

representations were limited to having q = 1. Our cube-ribbon representation does

not place any restrictions on the value of q, as such we have significantly expanded the

representation theory of double affine Hecke algebras.

3.6 DN{Q} Summary

In this chapter we developed a large Hecke type structure called the double affine Q-

dependent braid group, DN{Q}. We showed that this group, primarily created by gen-

eralising the braid group, is related to many well known algebraic and group structures

such as the elliptic braid group and the double affine Hecke algebra. In fact from Figure
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3.1 we indicated how all of the known Hecke algebra extensions of type A can be obtained

from DN{Q} via specific quotient groups and by restricting the action of the operators Qi.

Complementing the algebraic description, and to give readers a deeper understanding

of the structure of DN{Q}, we also presented a graphical representation of the double

affine Q-dependent braid group. Following the method of extending the pictorial rep-

resentation of the Q-dependent braid group to one for an AN{Q}, we found that all of

the relations not explicitly involving the operators Qi could be satisfied by a DN{Q}
depicted using 1-dimensional strands embedded in a cube whose opposing vertical sides

were identified, i.e. a hollowed-out toroid.

This representation was consistent only for a DN{Q} where all the Qi = 1; that is,

the elliptic braid group. However, by replacing the strands with ribbons, our cube repre-

sentation allowed us to capture all aspects of a DN{Q} and gave us a nice interpretation

of the action of any Qi as a single full anticlockwise twist in the ith ribbon. We thus

obtain an intuitive pictorial representation which clearly incorporates all of the structure

of the more abstract DN{Q}.

We showed that our new graphical representation is also valid for all DAHAs. Our

definition of a DN{Q} reduced to one of a double affine Hecke algebra simply by attaching

the Hecke algebra to one of its quotient groups. The DAHA depends on two parameters

t and q. We found that graphically, in our cube-ribbon representation, the parameter q

corresponds to a full anticlockwise twist in the ribbon. Hence within this representation

we can fully capture all of the structure of any DAHA for all values of the parameter q.

In the following chapter we will describe another infinite dimensional representation of

the DAHA, that is its polynomial representation.

By construction, our representation is related to tangles and knot theory. Using ele-

mentary tangles via Reidemeister moves to describe this algebra appears quite possible;

in fact, the replacement of a full twist by a factor of q is very much a Reidemeister-like

move. This indicates a relation between our cube-ribbon representation and elementary

tangle representations of affine Hecke algebras. In Chapter 5 we will look further into

this suspected relationship and use our new pictorial representation to transform this

cube-ribbon representation into an equivalent matrix one.

* The author recognises that some of the results obtained in this chapter are in collabo-

ration with Dr. Vincent Pasquier.
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Appendix 3

3A.1 Q: The Twist Operator

Here we show that the twist in the ribbon generated by Q3 is precisely 2π. We demon-

strate this specifically for the case of Q3 = σZ1σ
−1Z−1

3 as in Figure 3.6 where, from top to

bottom, a full anticlockwise twist in the third ribbon is obtained. For clarity we illustrate

only the third ribbon as it is the only one that behaves non-trivially.

Firstly let z(s), (0 ≤ s ≤ 1) denote the position of a point on the ribbon. Then v̂

is the unit vector indicating the ribbon orientation and always lies on the surface of the

ribbon. The direction of motion is given by the unit vector û, where at all times û.v̂ = 0.

The vector ŵ = û× v̂ defines the normal to the ribbon.

So there is an orthogonal frame g(s) = [û, v̂, ŵ] attached to each point on the ribbon as

indicated in the diagram below.

s

s=0 s=1

z(s)

û

v̂

ŵ

g(s)=[û,v̂,ŵ]

We now follow a point as it travels down the ribbon. Attached to this point is the

orthogonal frame g(s). We impose that the ribbon cannot twist around the direction of

motion, that is; ω.û = 0 where ω is the angular velocity of the frame g(s). We measure

the degree of rotation of g(s), between the top and bottom of the ribbon, relative to a

fixed frame. This yields the size of the twist in the ribbon.

Figure 3.8 (a) shows the frame g(s) at various points along the ribbon, from the top

of the ribbon labelled point (A), to the bottom of the ribbon; point (B). Between these

points we show that the moving frame g(s) undergoes a full 2π rotation relative to the

inertial reference frame (x̂, ŷ, ẑ).
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①

②

③

ⓞ

û
ŵ

t=0

t=1

④

①

②

③

ⓞ

û

ŵ

Ⓐ

Ⓑ

= +

x̂

ŷ

ẑ(a) (b)

Figure 3.8: Figure (a) shows g(s) at various points along the ribbon Q3 = σZ1σ
−1Z−1

3 .
In Figure (b) we redraw the relation such that between times t = 0 and t = 1 one can
see û rotating by 2π in the ŷ − ẑ plane.

Notice that between points (A) and (0), the ribbon itself does not undergo any rota-

tion. Therefore without losing any information we can measure the twist starting from

point (0), which we now call time t = 0, as in Figure 3.8 (b).

Furthermore in Figure 3.8 (b), the bottom of the ribbon is redrawn in such a way that
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the extra turns do not contribute to the overall twist. Then following g(s) from t = 0

to t = 1, one can immediately see that û rotates only in the ŷ − ẑ plane. In fact it does

exactly a 2π clockwise rotation. So at any time t, û can be written as follows:

û(t) = cos(2πt)ŷ + sin(2πt)ẑ.

One can easily check this holds. For example at time t = 1/2, û(1/2) = −ŷ. This is

verified upon inspection of point 2© in the diagram.

Further inspection reveals that as û rotates in the ŷ − ẑ plane, the vectors v̂ and ŵ

rotate in a clockwise fashion around û.

We introduce a frame [ê1, ê2, ê3], where ê1 = û and ê2, ê3 are functions of v̂ and ŵ, to

measure the rotation of v̂ and ŵ around û. Impose that at t = 0, ê1 = û, ê2 = v̂ and

ê3 = ŵ. It is important to note that ê1 = û at all times; that is we have û(t) = ê1.

Therefore in terms of this frame [ê1, ê2, ê3] we can write:

v̂(t) = cos(2πt)ê2 − sin(2πt)ê3,

ŵ(t) = sin(2πt)ê2 + cos(2πt)ê3.

Again these can easily be verified through simple substitution and by referring to the

above diagram.

The vector û was fixed to ê1 so in terms of the inertial reference frame we have:

ê1(t) = cos(2πt)ŷ + sin(2πt)ẑ.

Following the vector ê2 between t = 0 and t = 1 we see that it always points in the

negative x̂ direction. This implies that:

ê2(t) = −x̂.

Since [ê1, ê2, ê3] form an orthogonal frame we must have that:

ê3(t) = − sin(2πt)ŷ + cos(2πt)ẑ.

Finally in terms of the fixed frame (x̂, ŷ, ẑ);

û(t) = cos(2πt)ŷ + sin(2πt)ẑ,

v̂(t) = − cos(2πt)x̂+ sin2(2πt)ŷ − sin(2πt) cos(2πt)ẑ,

ŵ(t) = − sin(2πt)x̂− sin(2πt) cos(2πt)ŷ + cos2(2πt)ẑ.

One can clearly see that v̂ undergoes a full 2π clockwise rotation from t = 0 to t = 1. v̂

lies on the ribbon surface at all times, therefore requiring the ribbon to undergo the same

rotation. This yields precisely the required result; Q3 creates a full anticlockwise twist in

the third ribbon.
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3A.2 C is a Normal Subgroup of BN{Q}

We would like to construct the quotient G = BN{Q}/〈C〉. Recall that C is a subgroup

of the Q-dependent braid group BN{Q} defined as

C = 〈QiQ
−1
i+1, i = 1, . . . , N − 1〉.

In order to construct G, we prove that C is a normal subgroup of BN{Q}, by showing

that for each element QiQ
−1
i+1 ∈ C and each Tj ∈ BN{Q} the element Tj(QiQ

−1
i+1)T−1

j ∈ C.
We look at all possible values of j, hence all Tj ∈ BN{Q}.

1. When j = i we have that

Tj(QiQ
−1
i+1)T−1

j = Ti(QiQ
−1
i+1)T−1

i .

But by (3.3), TiQi = Qi+1Ti which implies that

Tj(QiQ
−1
i+1)T−1

j = Qi+1TiQ
−1
i+1T

−1
i .

Using (3.4), TiQi+1 = QiTi ⇒ Q−1
i+1T

−1
i = T−1

i Q−1
i , so

Tj(QiQ
−1
i+1)T−1

j = Qi+1TiT
−1
i Q−1

i

= Qi+1Q
−1
i .

Since C is generated by all elements QiQ
−1
i+1, we see that Qi+1Q

−1
i is merely the inverse

of this element and hence ∈ C.
We now examine another value of j.

2. When j = i+ 1 we have that

Tj(QiQ
−1
i+1)T−1

j = Ti+1(QiQ
−1
i+1)T−1

i+1.

But by (3.3), TiQi = Qi+1Ti ⇒ Q−1
i+1T

−1
i+1 = T−1

i+1Q
−1
i+2 , so

Tj(QiQ
−1
i+1)T−1

j = Ti+1QiT
−1
i+1Q

−1
i+2.

By (3.2), Qi commutes with Ti+1 so we get the final expression

Tj(QiQ
−1
i+1)T−1

j = QiTi+1T
−1
i+1Q

−1
i+2

= QiQ
−1
i+2.
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Since C is generated by all elements QiQ
−1
i+1, we see that QiQ

−1
i+2 is just the product of

two such elements. This is particularly clear if we write QiQ
−1
i+2 as

(
QiQ

−1
i+1

) (
Qi+1Q

−1
i+2

)
.

Therefore QiQ
−1
i+2 ∈ C. We now examine the last case.

3. When j > i+ 1 and when j < i then by (3.2) we have that

Tj(QiQ
−1
i+1)T−1

j = QiTjQ
−1
i+1T

−1
j

= QiTjT
−1
j Q−1

i+1

= QiQ
−1
i+1.

As in the first case, Qi+1Q
−1
i is simply the inverse of one of the elements, namely QiQ

−1
i+1,

which generates C. Therefore Qi+1Q
−1
i is also ∈ C.

This completes our proof that C is a normal subgroup of BN{Q} as we have shown that

for all values of j, the following holds true

Tj(QiQ
−1
i+1)T−1

j ∈ C.
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Chapter 4

The Double Affine Hecke Algebra

Polynomial Representation

As we have already seen, algebraically the structure of a double affine Hecke algebra

is very rich. Furthermore via representations, as in our cube-ribbon representation, a

DAHA offers much physical relevance. For example, in terms of the ribbons, one could

interpret the factor of q as corresponding to a phase factor resulting from the interchange

of the worldlines of two particles. Similarly, in this chapter we present another infinite

dimensional representation of a double affine Hecke algebra that offers significant physical

relevance. In particular we introduce the polynomial representation of a DAHA.

We present the polynomial representation of the double affine Hecke algebra from the

point of view of Kasatani and Pasquier in [7]. However we also go beyond [7] and derive

the explicit polynomials resulting from the action of all of the generators at each point of

the construction. In addition to this we pay particular attention to Macdonald polyno-

mials [18], which are two variable polynomials obtained by simultaneously diagonalising

the affine Hecke algebra generators. As highlighted in the introduction to this thesis,

Macdonald polynomials are widely used to describe many existing physical models. Due

to their importance, and to present readers with clear examples of these polynomials, we

explicitly evaluate all Macdonald polynomials up to three dimensions. We show exactly

how we obtained them, giving all of the detailed calculations.

Furthermore we also define intertwining operators, due to Cherednik [19], which given

any Macdonald polynomial, can be used to generate all other Macdonald polynomials of

arbitrary dimension. With specific examples we will describe in detail how to employ

these operators, resulting in the obtainment of all Macdonald polynomials up to three

dimensions.
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4.1 The Polynomial Representation

Following our presentation of a DAHA DN(t, q) in Chapter 2, we now describe its polyno-

mial representation, which appeared originally in [19]. DN(t, q) has a simple irreducible

representation U on the ring of Laurent polynomials in N variables x±1
i . Unsurprisingly

this representation depends on two parameters t and q.

It is at this point perhaps useful to outline our choice of notation. Throughout this

chapter we will follow the notation introduced in [7]; that is, to avoid confusion between

the abstract algebraic generators and these same generators acting on polynomials, we

adopt the following convention: all generators when acting on polynomials are denoted

with a bar, that is T̄i,j denotes the action of the Hecke algebra generator. In contrast the

abstract Hecke algebra generator is just denoted by Ti. We also impose that all generators

with a bar act on polynomials from the right.

4.1.1 Representing the Ti

The first step in defining the DAHA polynomial representation is to describe the action

of the Hecke generators Ti on polynomials. Inspired by [7], we begin by introducing

permutation operators si, which permute the variables xi and xi+1

xisi = sixi+1,

xi+1si = sixi,

x`si = six` for ` 6= i, i+ 1.

Using the Hecke relation (2.3) a solution to these equations is given by

si = xi+1T̄i − xiT̄−1
i

= (xi+1 − xi)T̄i + xi(t
1/2 − t−1/2).

However the si are permutation operators, hence we must introduce the normalisation

factor (t1/2xi − t−1/2xi+1)−1 to ensure that s2
i = 1

si = (xi+1 − xi)T̄i(t1/2xi − t−1/2xi+1)−1 + xi(t
1/2 − t−1/2)(t1/2xi − t−1/2xi+1)−1.

Rearranging the above equation yields an expression describing the action of the Hecke
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algebra HN(t) generators T̄i on polynomials. We find that

T̄i = (xi − xi+1)−1xi(t
1/2 − t−1/2)− (xi − xi+1)−1si(t

1/2xi − t−1/2xi+1)

= −t−1/2si + (t1/2 − t−1/2)(1− si)
xi

xi − xi+1

.

Clearly, from the above definition we see that the operator T̄i depends only on the per-

mutation operators si. As the si act only on the variables xi and xi+1, it is useful to

define the operator T̄i,j = T̄i,i+1 as follows;

T̄i,j = −t−1/2sij + (t1/2 − t−1/2)(1− sij)
xi

xi − xj
, (4.1)

where sij permutes the variables xi and xj.

By (4.1) we know exactly how the HN(t) generators act on polynomials. For the

N = 3 case, using the explicit calculations included in Appendix 4A.1 we show that

the matrices corresponding to the action of T̄1,2 and T̄2,3 on degree one monomials using

{1, x1, x2, x3} as basis are given by:

T̄1,2 =


−t−1/2 0 0 0

0 (t1/2 − t−1/2) −t1/2 0

0 −t−1/2 0 0

0 0 0 −t−1/2

 ,

T̄2,3 =


−t−1/2 0 0 0

0 −t−1/2 0 0

0 0 (t1/2 − t−1/2) −t1/2

0 0 −t−1/2 0

 .

These matrices are easily inverted giving us a complete description of all of the H3(t)

generators on degree one monomials. Similarly the H3(t) generators on degree two mono-

mials, using the basis {x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3}, give rise to the following matrices:

T̄1,2 =



(t1/2 − t−1/2) −t1/2 0 0 0 0

−t−1/2 0 0 0 0 0

0 0 −t−1/2 0 0 0

(t1/2 − t−1/2) −(t1/2 − t−1/2) 0 −t−1/2 0 0

0 0 0 0 (t1/2 − t−1/2) −t1/2

0 0 0 0 −t−1/2 0


,
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T̄2,3 =



−t−1/2 0 0 0 0 0

0 (t1/2 − t−1/2) −t1/2 0 0 0

0 −t−1/2 0 0 0 0

0 0 0 (t1/2 − t−1/2) −t1/2 0

0 0 0 −t−1/2 0 0

0 (t1/2 − t−1/2) −(t1/2 − t−1/2) 0 0 −t−1/2


.

Again inverting these matrices yields T̄−1
1,2 and T̄−1

2,3 . We have included all of the calcula-

tions surrounding the formulation of these matrices in Appendix 4A.1. These results are

easily verified. One only needs to apply (4.1) to all degree one and two monomials.

Having presented the polynomial representation of the Hecke algebra, we now do

likewise with the affine Hecke algebra AN(t). In a way we are following the order of

construction of the algebraic description of DN(t, q), which we presented in Chapter 2.

4.1.2 Representing the Yi

Describing the action of the affine Hecke algebra generators on polynomials is relatively

straightforward as we already have the action of the Hecke algebra generators, T̄i,j. In

Subsection 2.2.1 we derived that the AN(t) generators Yi, in terms of the element σ (2.11),

are given by

Yi = Ti . . . TN−1σT
−1
1 . . . T−1

i−1.

Therefore acting on a polynomial we have

Ȳi = T̄i . . . T̄N−1σ̄T̄
−1
1 . . . T̄−1

i−1. (4.2)

As we have already described T̄i,j, that leaves us to introduce σ̄.

We need a representation of σ that has all of the same characteristics as the σ we

previously defined in Subsection 2.2.1. Furthermore in our cylindrical representation, we

showed how σ acted as a kind of raising operator on the indices. Hence we decompose

the operator σ̄ into a product of elementary permutations si and a diagonal operator q̂1

σ̄ = sN−1 . . . s2s1q̂1, (4.3)
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where f(x1, . . . , xi, . . . , xN)q̂i = f(x1, . . . q
−1xi, . . . , xN).

Using (4.3) and imposing that 1σ̄ = 1, we look at the action of σ̄ on all xi. Its action

on xi is

xiσ̄ = xisN−1 . . . s2s1q̂1

= sN−1 . . . xisisi−1 . . . s2s1q̂1

= sN−1 . . . sixi+1si−1 . . . s2s1q̂1

= sN−1 . . . s2s1q̂1xi+1

= σ̄xi+1.

The case i = N gives

xN σ̄ = xNsN−1 . . . s2s1q̂1

= sN−1xN−1sN−2 . . . s2s1q̂1

= sN−1sN−2xN−2 . . . s2s1q̂1

= sN−1 . . . s2s1x1q̂1

= sN−1 . . . s2s1q̂1q
−1x1.

We already derived that xiσ̄ = σ̄xi+1 so this implies that xN σ̄ = σ̄xN+1, giving the final

expression

sN−1 . . . s2s1q̂1xN+1 = sN−1 . . . s2s1q̂1q
−1x1

⇒ q̂1q
−1x1 = q̂1xN+1

⇒ q−1x1 = xN+1.

If we define xN+1 = q−1x1, then we get that xiσ̄ = σ̄xi+1 for all i = 1, . . . , N .

We have showed that the action of σ̄ is straightforward. For example on degree one

monomials in the N = 3 case, σ̄ acts as follows: σ̄1 = 1, σ̄x1 = x2, σ̄x2 = x3 and

σ̄x3 = q−1x1. Compiling these results into a matrix with basis given by {1, x1, x2, x3},
we have that the action of σ̄ on degree one monomials is described by

σ̄ =


1 0 0 0

0 0 0 q−1

0 1 0 0

0 0 1 0

 .
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A similar calculation shows that the action of σ̄ on degree two monomials in the N = 3

case is described by the matrix with basis {x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3} given by

σ̄ =



0 0 q−2 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 q−1 0

0 0 0 0 0 q−1

0 0 0 1 0 0


.

The expression for σ̄ now completes the action of Ȳi on polynomials. Substituting

(4.3) into equation (4.2) gives the following expression for Ȳi

Ȳi = T̄i . . . T̄N−1sN−1 . . . s2s1q̂1T̄
−1
1 . . . T̄−1

i−1.

We will rewrite this expression for Ȳi in terms of the T̄i,j previously defined. For consis-

tency we must also write the permutations si as sij. However before doing so we note

that since si is a member of the permutation group, then si = s−1
i , and we can write σ̄

in a more symmetric way as

σ̄ = sN−1....s2s1q̂1

= sN−1....si−1siq̂is
−1
i−1....s

−1
1 .

Using this expression for σ̄, Ȳi in terms of T̄i,j becomes

Ȳi = T̄i,i+1T̄i+1,i+2 . . . T̄N−1,NsN−1,N . . . si,i+1q̂is
−1
i−1,i . . . s

−1
1,2T̄

−1
1,2 . . . T̄

−1
i−1,i , (4.4)

where T̄i,j = T̄i,i+1.

Expression (4.4), though perfectly reasonable is quite inelegant and not practical to work

with. A much nicer way is to express (4.4) in terms of triangular operators [7] X̄i,j,

defined as X̄i,j = T̄i,jsij.

We will now rewrite equation (4.4) in terms of these triangular operators. As it is quite

75



a long expression, we break it into two parts. Firstly, the left-hand side of (4.4) as far as

q̂i, that is T̄i,i+1T̄i+1,i+2 . . . T̄N−1,NsN−1,N . . . si,i+1q̂i, is given in terms of X̄i,j as

T̄i,i+1T̄i+1,i+2 . . . T̄N−1,NsN−1,NsN−2,N−1 . . . si,i+1q̂i

= T̄i,i+1T̄i+1,i+2 . . . T̄N−2,N−1X̄N−1,NsN−2,N−1 . . . si,i+1q̂i ,

since by definition X̄N−1,N = T̄N−1,NsN−1,N .

The operator X̄N−1,N can be pulled through sN−2,N−1 to give

T̄i,i+1T̄i+1,i+2 . . . T̄N−2,N−1sN−2,N−1X̄N−2,NsN−3,N−2 . . . si,i+1q̂i.

Now we replace T̄N−2,N−1sN−2,N−1 with X̄N−2,N−1, and repeating the previous two steps

until all of the si,j on the right meet with the T̄i,j, we get

X̄i,i+1X̄i,i+2 . . . X̄i,N q̂i.

We use the same technique to express the right-hand side, from q̂i onwards, of (4.4) in

terms of X̄i,j.

q̂is
−1
i−1,i . . . s

−1
1,2T̄

−1
1,2 . . . T̄

−1
i−1,i

= q̂is
−1
i−1,i . . . s

−1
2,3X̄

−1
1,2 T̄

−1
2,3 . . . T̄

−1
i−1,i

= q̂is
−1
i−1,i . . . s

−1
3,4X̄

−1
1,3s

−1
2,3 . . . T̄

−1
i−1,i

= q̂iX̄
−1
1,i . . . X̄

−1
i−1,i.

Therefore a tidier expression of (4.4) in terms of the triangular operators X̄i,j is given by

Ȳi = X̄i,i+1X̄i,i+2 . . . X̄i,N q̂iX̄
−1
1,i . . . X̄

−1
i−1,i. (4.5)

This last expression describes the complete action of the affine Hecke algebra generators

Yi on polynomials.

Since by definition X̄i,j = T̄i,jsij, its explicit action in terms of the permutation operators

sij is simply

X̄i,j = −t−1/2 + (t1/2 − t−1/2)(1− sij)
xi

xi − xj
. (4.6)
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In Appendix 4A.2 at the end of this chapter we use equations (4.5) and (4.6) to explicitly

calculate the action of Ȳi on degree one and two monomials. We just present the results

here. That is, the action of the A3(t) generators, on degree one monomials, in matrix

format with basis {1, x1, x2, x3} are given by

Ȳ1 =


t−1 0 0 0

0 q−1t−1 0 0

0 t−1 − 1 1 0

0 t−1 − 1 0 1

 ,

Ȳ2 =


1 0 0 0

0 1 0 0

0 1− t−1 q−1t−1 0

0 0 1− t t

 ,

Ȳ3 =


t 0 0 0

0 t 0 0

0 0 t 0

0 1− t−1 t− 1 q−1t−1

 .

We highlight the fact that one can alternatively obtain these matrices using the alge-

braic relations describing the Yi. In Section 2.2, where we derived all of the defin-

ing relations of the affine Hecke algebra in terms of the Ti and σ, we obtained Yi =

Ti . . . TN−1σT
−1
1 . . . T−1

i−1 and TiYi+1Ti = Yi.

Therefore for the N = 3 case we have Y1 = T1T2σ which on polynomials implies that

Ȳ1 = σ̄T̄2,3T̄1,2. So by simply multiplying the matrices T̄i,j and σ̄, which we have already

obtained, one can verify that the matrices given above for Ȳi on degree one monomials

are recovered. Using the recursive relation TiYi+1Ti = Yi, we can now generate all Ȳi.

For example Ȳ2 = T̄−1
1,2 Ȳ1T̄

−1
1,2 and Ȳ3 = T̄−1

2,3 Ȳ2T̄
−1
2,3 .

4.1.3 The complete DAHA polynomial representation

To complete the polynomial representation of the double affine Hecke algebra DN(t, q)

we need to describe the action of the DN(t, q) generators Zi.
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The action of the double affine Hecke algebra generators Zi on polynomials is partic-

ularly simple and given by

f(x1, . . . , xi, . . . , xN)Z̄i = xif(x1, . . . , xi, . . . , xN). (4.7)

This concludes the presentation of the irreducible polynomial representation U of

DN(t, q). To summarise, the defining relations required to fully describe U are given by

(4.1), (4.3) and (4.5) - (4.7).

In the following section we will present an interesting property of the irreducible

polynomial representation U . More specifically we will describe how to obtain Macdonald

polynomials and even construct several examples in detail.

4.2 Macdonald Polynomials

Non symmetric Macdonald polynomials are monic simultaneous eigenvectors of Ȳi. They

form a basis of the polynomial representation U . Therefore in order to obtain these non

symmetric Macdonald polynomials we must ensure the Ȳi are simultaneously diagonalis-

able on U . In order to achieve this we introduce a particular ordering of the monomial

basis which induces U to be Ȳ -semisimple, that is, simultaneously diagonalisable with

respect to the generators Yi.

4.2.1 Ordering the Ȳi

Following the particular ordering that was introduced by Kasatani in [5], we define the

ordering � such that U is Ȳ -semisimple.

The ordering � : λ � µ ⇔ (λ+ > µ+) or (λ+ = µ+ and λ > µ) (4.8)

where > is the dominance ordering:

λ ≥ µ ⇔
∑̀
j=1

λj ≥
∑̀
j=1

µj , for 1 ≤ ` ≤ N,

and λ+ is the partition (λ+
1 ≥ λ+

2 . . . ≥ λ+
N).

Therefore if λ � µ, under this ordering xλ = xλ11 . . . xλNN is greater than xµ = xµ11 . . . xµNN .
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Under the ordering � the action of Ȳi on any polynomial can be written in the form

[7]

xλπ Ȳj = (−t−1/2)N−1q−λπj tπj−2xλπ +
∑
µ≺λ

cλ,µx
µ , (4.9)

where λπ is the dominant degree term and π is the shortest permutation of λ+ such that

(λπ)i = λ+
π .

The Ȳi operators are now realised as triangular operators in the monomial basis subject

to the ordering �. This makes finding their eigenvalues trivial, as the eigenvalues of a

triangular matrix is just their diagonal entries.

As the definition of � may look rather complicated, we present several examples to

illustrate its action.

Example For N = 3 and given λ = (0, 0, 2)⇒ x0
1x

0
2x

2
3 , we find all µ such that λ � µ.

Firstly we obtain λ+ by rearranging λi in strictly decreasing order.

λi = (0, 0, 2) ⇒ λ+ = (2, 0, 0)

Using the partial sum
∑̀
j=1

λj ≥
∑̀
j=1

µj we then find all µ+; that is all µ in strictly

decreasing order such that:

µ+
1 ≤ 2, µ+

1 + µ+
2 ≤ 2, µ+

1 + µ+
2 + µ+

3 ≤ 2.

In this example we see that the only permitted µ+ are µ+ = (2, 0, 0) and µ+ = (1, 1, 0).

Using µ+ we now deduce all possible µ by cyclic permutation, noting that the µ don’t

have to be in decreasing order.

µ+ = (2, 0, 0) ⇒ µ = (2, 0, 0) , (0, 2, 0) , (0, 0, 2).

µ+ = (1, 1, 0) ⇒ µ = (1, 1, 0) , (0, 1, 1) , (1, 0, 1).

We now have all µ, however not all are permitted since by definition if λ+ = µ+, then we

must also have λ > µ.

In this example λ+ = µ+ = (0, 0, 2) so using our original λ = (0, 0, 2) we must have:

µ1 ≤ 0, µ1 + µ2 ≤ 0, µ1 + µ2 + µ3 ≤ 2.
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This implies that µ = (0, 0, 2) is the only permissible µ from the set {(2, 0, 0), (0, 2, 0), (0, 0, 2)}.
Therefore all µ satisfying λ � µ for λ = (0, 0, 2) are

µ = (0, 0, 2) , (1, 1, 0) , (0, 1, 1) , (1, 0, 1).

These values of µ correspond to x2
3, x1x2, x2x3 and x1x3.

So whenever Ȳi acts on xλ = x(0,0,2) = x2
3, by (4.9) only the terms xµ = x1x2, x2x3 and

x1x3 should appear, preceded by the dominant term x2
3.

This is easily verified; (4.5) gives the action Ȳ3 on x2
3 as

x2
3Ȳ3 = q−2t−1x2

3 + q−2(t−1 − 1)x1x3 + q−2(t−1 − 1)x2x3,

which can be written in the form

x2
3Ȳ3 = q−2t−1x2

3 +
∑
µ≺λ

cλ,µx
µ.

One can also use (4.9) to construct the action of Ȳi on any polynomial as is illustrated in

the following example.

Example We want to find x2
3Ȳ3 for the N = 3 case.

By (4.9) we know it is of the form

xλπ Ȳj = q−λπj tπj−2xλπ +
∑
µ≺λ

cλ,µx
µ.

We want x2
3Ȳ3 = xλπ Ȳj ⇒ λπ = (0, 0, 2) and j = 3 ⇒ λπj = 2.

Now λ = (0, 0, 2) which implies the dominant term λ+ = (2, 0, 0).

By definition π is the shortest permutation of λ+ such that (λπ)i = λ+
π , so with the least

number of permutations we obtain λπ = (0, 0, 2) from λ+ = (2, 0, 0).

λ+ = (2, 0, 0)→ (0, 2, 0)→ (0, 0, 2) = λπ

π = (1, 2, 3)→ (2, 1, 3)→ (2, 3, 1)

We see that πj=3 = 1 and hence πj − 2 = −1.
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Therefore by (4.9) we can write

x2
3Ȳ3 = q−2t−1x2

3 + lower terms,

which we saw in the previous example is precisely the desired result.

It is worth stressing the importance of the permutation patterns πj. In Table 4.1 we

give the value of πj, for all degree one and two monomials in the N = 3 case.

λπj λ+
πj

πj

(2,0,0) (2,0,0) (1,2,3)

(0,2,0) (2,0,0) (2,1,3)

(0,0,2) (2,0,0) (2,3,1)

(1,1,0) (1,1,0) (1,2,3)

(1,0,1) (1,1,0) (1,3,2)

(0,1,1) (1,1,0) (3,1,2)

Table 4.1: Permutation patterns for N = 3 degree one and two monomials.

Consider for example if we wanted to find x2x3Ȳ3 for the N = 3 case. We have x0
1x

1
2x

1
3Ȳj=3

which implies that λπj = (0, 1, 1) and j = 3. The dominant term λ+
πj

= (1, 1, 0) so we

need just find πj=3 corresponding to λ+
πj

= (1, 1, 0). The last row of Table 4.1 tells us

immediately that the appropriate πj is (3,1,2). The third element is 2, so πj=3 = 2. Then

by (4.9) we have

x2x3Ȳ3 = q−1x2x3 + lower terms.

4.2.2 Non symmetric Macdonald polynomials

The monomial basis with respect to the ordering � induces U to be Ȳ -semisimple. Fur-

thermore since the Ȳi are now triangular operators, finding their eigenvalues and hence

their eigenvectors is much simplified. The non symmetric Macdonald polynomials are the

monic simultaneous eigenvectors of Ȳi.

Under the ordering � we present the matrices with basis {1, x1, x2, x3}, corresponding

to the action of Ȳi on degree zero and degree one monomials in the N = 3 case below.
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Ȳ1 =


t−1 0 0 0

0 q−1t−1 0 0

0 t−1 − 1 1 0

0 t−1 − 1 0 1


Ȳ1 is clearly lower triangular so its eigenvalues are η1 = t−1, q−1t−1, 1, 1.

Ȳ2 =


1 0 0 0

0 1 0 0

0 1− t−1 q−1t−1 0

0 0 1− t t


Eigenvalues of Ȳ2 are η2 = 1, 1, q−1t−1, t.

Ȳ3 =


t 0 0 0

0 t 0 0

0 0 t 0

0 1− t−1 t− 1 q−1t−1


Eigenvalues of Ȳ3 are η3 = t, t, t, q−1t−1.

Having found all of the eigenvalues we now find the monic Ȳ -eigenvectors satisfying the

above matrices. As we have explicitly calculated these eigenvectors by hand, the calcula-

tions are quite long and for this reason we have not included them in this text. Instead

we simply present the results here, that is, the non symmetric Macdonald polynomials

Eλπ of degree zero and one are given by

Eλπ = E(0,0,0) = 1 η1 = t−1, η2 = 1, η3 = t,

Eλπ = E(1,0,0) = x1 +
t−1 − 1

q−1t−1 − 1
x2 +

t−1 − 1

q−1t−1 − 1
x3 η1 = q−1t−1, η2 = 1, η3 = t,

Eλπ = E(0,1,0) = x2 +
1− t

q−1t−1 − t
x3 η1 = 1, η2 = q−1t−1, η3 = t,

Eλπ = E(0,0,1) = x3 η1 = 1, η2 = t, η3 = q−1t−1.

Similarly for N = 3, the action of Ȳi under the ordering �, on degree two monomials

with the basis {x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3} is given by the following matrices. Under the
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ordering � ,the Ȳi are lower triangular, hence their eigenvalues are simply the diagonal

entries.

Ȳ1 =



q−2t−1 0 0 0 0 0

t−1 − 1 1 0 0 0 0

t−1 − 1 0 1 0 0 0

q−1(t−1 − 1) q−1(1− t−1) 0 q−1t−1 0 0

q−1(t−1 − 1) 0 q−1(1− t−1) 0 q−1t−1 0

−(2− t− t−1) 2− t− t−1 0 t−1 − 1 1− t t


Eigenvalues of Ȳ1 are η1 = q−2t−1, 1, 1, q−1t−1, q−1t−1, t.

Ȳ2 =



1 0 0 0 0 0

1− t−1 q−2t−1 0 0 0 0

0 1− t t 0 0 0

1− t−1 q−2(t−1 − 1) 0 q−1 0 0

0 0 0 1− t t 0

0 q−1(t−1 − 1) q−1(1− t−1) 2− t− t−1 t− 1 q−1t−1


Eigenvalues of Ȳ2 are η2 = 1, q−2t−1, t, q−1, t, q−1t−1.

Ȳ3 =



t 0 0 0 0 0

0 t 0 0 0 0

1− t−1 t− 1 q−2t−1 0 0 0

0 0 0 t 0 0

1− t−1 0 q−2(t−1 − 1) t− 1 q−1 0

2− t− t−1 t− 1 q−2(t−1 − 1) t− 1 0 q−1


Eigenvalues of Ȳ3 are η3 = t, t, q−2t−1, t, q−1, q−1.

As before, we have found the non symmetric Macdonald polynomials by simultaneously

diagonalising these matrices. We give their explicit form here, a result of lengthy calcu-

lations. The non symmetric Macdonald polynomials of degree two are:

83



Eλπ = E(0,1,1) = x2x3 η1 = t, η2 = q−1t−1, η3 = q−1,

Eλπ = E(1,0,1) = x1x3 +
1− t

q−1t−1 − t
x2x3 η1 = q−1t−1, η2 = t, η3 = q−1,

Eλπ = E(1,1,0) = x1x2 +
t− 1

t− q−1
x1x3 +

t− 1

t− q−1
x2x3 η1 = q−1t−1, η2 = q−1, η3 = t,

Eλπ = E(0,0,2) = x2
3 +

q−1 − q−1t−1

1− q−1t−1
x1x3 +

q−1 − q−1t−1

1− q−1t−1
x2x3 η1 = 1, η2 = t, η3 = q−2t−1,

Eλπ = E(0,2,0) = x2
2 +

1− t
q−2t−1 − t

x2
3 +

q−1(1− t−1)

1− q−1t−1
x1x2,

+
q−1(1− t−1)(1− t)

(1− q−1t−1)(q−2t−1 − t)
x1x3,

+
(1− t−1)(q−2t−1 + q−1 − q−1t− t)

(1− q−1t−1)(q−2t−1 − t)
x2x3 η1 = 1, η2 = q−2t−1, η3 = t,

Eλπ = E(2,0,0) = x2
1 +

t−1 − 1

q−2t−1 − 1
x2

2 +
t−1 − 1

q−2t−1 − 1
x2

3 +
(t−1 − 1)(1− q−2)

(q−2t−1 − 1)(1− q−1)
x1x2,

+
(t−1 − 1)(1− q−2)

(q−2t−1 − 1)(1− q−1)
x1x3,

+
(t−1 − 1)(1− q−2)(2− t−1 − 1)

(q−2t−1 − 1)(1− q−1)(1− q−1t−1)
x2x3 η1 = 1, η2 = t, η3 = q−1t−1.

As can be seen from above, even for low dimensions the Macdonald polynomials can

be quite long. In the next section we will describe a much simpler method for obtaining

Macdonald polynomials.

4.3 Intertwining Operators

As the Macdonald polynomials are found by simultaneously diagonalising the Ȳi, they are

not always easily obtained, especially if calculated by hand as we have done so far. This

is particularly true the larger the dimension of the monomial basis becomes. Even for the

N = 4 case, finding non symmetric Macdonald polynomials of degree two is extremely

tedious and time consuming. It is therefore useful to define intertwining operators which

enable us to find all non symmetric Macdonald polynomials, given any one non symmetric
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Macdonald polynomial. Though these intertwining operators are due to Cherednik [19],

we will define them in a similar fashion to Kasatani [5].

4.3.1 The Intertwining Operator Ā

The intertwining operator Ā increases the degree of Y -eigenvectors. It is defined as

follows:

Ā = Z̄1σ̄
−1, (4.10)

and acts on eigenvectors as

EλπĀ = qλπ1+1Eλπσ̄−1 ,

where λπσ̄
−1 = (λπ2 , . . . , λπN , λπ1 + 1).

Since degree one monomials are just constants, their simultaneous Y -eigenvector is

just 1. It therefore makes sense to start from here to construct all other Y -eigenvectors.

We act with Ā on the eigenvector E(0,0,0) = 1 to obtain another eigenvector of higher

degree. In the N = 3 monomial basis we have

E(0,0,0)Ā = (1)Z̄1σ̄
−1 = x1σ̄

−1 = qx3

⇒ qλπ1+1Eλπσ̄−1 = qE(0,0,1) = qx3

⇒ E(0,0,1) = x3.

Therefore we have just obtained the first degree one Macdonald polynomial using the

operator Ā. Acting Ā again yields a degree two Macdonald polynomial.

E(0,0,1)Ā = (x3)Z̄1σ̄
−1 = x3x1σ̄

−1 = qx2x3

⇒ qλπ1+1Eλπσ̄−1 = qE(0,1,1) = qx2x3

⇒ E(0,1,1) = x2x3.

We can continue applying the operator Ā to obtain Macdonald polynomials in such

a way. We note that repeated applications of Ā, starting at E(0,0,0) = 1 only yields the

lowest ordered Macdonald polynomial of each degree. However from the previous section

we know that there are three simultaneous Y -eigenvectors of degree one. Ā only enabled
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us to find one of these, namely, E(0,0,1) = x3. To find the other two we introduce the

intertwining operator B̄i.

4.3.2 The Intertwining Operator B̄

Unlike the operator Ā, which increased the degree of the Yi by one, we want the intertwin-

ing operators B̄i to maintain the same degree. They commute with the affine generators

Yi so

YjBi = BiYj for j 6= i, i+ 1,

YiBi = BiYi+1,

Yi+1Bi = BiYi.

Using the definition of Ȳi, a solution to these equations is given by B̄i = T̄iȲi+1 − T̄−1
i Ȳi.

Since we want B̄i to act on eigenvectors as EλπB̄i = γEsiλπB̄i, we must introduce a

normalisation factor. The intertwining operator B̄i is therefore defined as

B̄i =
T̄iȲi+1 − T̄−1

i Ȳi
Ȳi − Ȳi+1

, (4.11)

and acts on eigenvectors as

EλπB̄i = t1/2EsiλπB̄i ,

where siλπ � λπ.

Having used the operator Ā to obtain the first eigenvector of degree one, E(0,0,1) = x3,

let us now act on it with B̄i to find the other two, E(0,1,0) and E(1,0,0).

Firstly we want to find E(0,1,0) given E(0,0,1). Therefore in order to obtain (0, 1, 0) from

(0, 0, 1) we apply the permutation operator s2, since s2(0, 0, 1) = (0, 1, 0).

By the ordering �, (4.8) we have (0, 1, 0) � (0, 0, 1), so we must determine E(0,0,1)B̄2.

E(0,0,1)B̄2 = x3B̄2

= x3
T̄2Ȳ3 − T̄−1

2 Ȳ2

Ȳ2 − Ȳ3

= t1/2x2 +
t1/2(1− t)
q−1t−1 − t

x3.
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However by (4.11) we know that E(0,0,1)B̄2 = t1/2E(0,1,0), which gives us

E(0,1,0) = t1/2x2 +
1− t

q−1t−1 − t
x3.

Similarly, to obtain E(1,0,0) from E(0,1,0) we calculate E(0,1,0)B̄1, since s1(0, 1, 0) =

(1, 0, 0) with (1, 0, 0) � (0, 1, 0).

E(0,1,0)B̄1 = t1/2x1 + t1/2
(

t−1 − 1

q−1t−1 − 1

)
x2 + t1/2

(
t−1 − 1

q−1t−1 − 1

)
x3.

This gives us the last eigenvector of degree one (in the N = 3 case)

E(1,0,0) = x1 +
t−1 − 1

q−1t−1 − 1
x2 +

t−1 − 1

q−1t−1 − 1
x3.

To summarise, using both intertwining operators Ā and B̄i, allows to obtain all si-

multaneous Y -eigenvectors of any degree. Starting with the eigenvector of degree zero

E(0,0,0) = 1, we apply Ā and obtain an eigenvector of degree one. Now B̄i lets us find

all other degree one eigenvectors. Repeated applications of both intertwining operators

thus generates all Macdonald polynomials. For the N = 3 case we therefore have the

following diagram:

E(0,0,1)E(0,1,0)

E(1,1,0)E(0,0,2)E(0,2,0)E(2,0,0)

E(1,0,0)

E(0,0,0)

E(0,1,1)E(1,0,1)
B̅₁

B̅₂

B̅₂ B̅₂

B̅₁

B̅₁

A̅

A̅

A̅A̅

This concludes the chapter on the polynomial representation of a double affine Hecke

algebra. In the next chapter we shift our focus to affine Hecke algebra representations. We

present a tangle representation which we developed to generate finite dimensional matrix

representations of AN(t). The construction of this tangle representation was motivated

by the apparent close relationship between many knot theory ideas and our cube-ribbon

construction.
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Appendix 4

4A.1 T̄i,j on degree zero, one and two monomials

We calculate the action of the Hecke algebra generators T̄i,j on degree zero, one and two

monomials. We look at the case N = 3, where there are two generators T̄1,2 and T̄2,3.

Recall that (4.1) gave us

T̄i,j = −t−1/2sij + (t1/2 − t−1/2)(1− sij)
xi

xi − xj
.

On degree zero and one monomials 1, x1, x2, x3 this gives us the following results:

1T̄1,2 = −t−1/2

x1T̄1,2 = (t1/2 − t−1/2)x1 − t−1/2x2

x2T̄1,2 = −t1/2x1

x3T̄1,2 = −t−1/2x3

1T̄2,3 = −t−1/2

x1T̄2,3 = −t−1/2x1

x2T̄2,3 = (t1/2 − t−1/2)x2 − t−1/2x3

x3T̄2,3 = −t1/2x2

On degree two monomials x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3 we get:

x2
1T̄1,2 = (t1/2 − t−1/2)x2

1 − t1/2x2
2 + (t1/2 − t−1/2)x1x2

x2
2T̄1,2 = −t1/2x2

1 − (t1/2 − t−1/2)x1x2

x2
3T̄1,2 = −t−1/2x2

3

x1x2T̄1,2 = −t−1/2x1x2

x1x3T̄1,2 = (t1/2 − t−1/2)x1x3 − t−1/2x2x3

x2x3T̄1,2 = −t1/2x1x3

x2
1T̄2,3 = −t−1/2x2

1

x2
2T̄2,3 = (t1/2 − t−1/2)x2

2 − t−1/2x2
3 + (t1/2 − t−1/2)x2x3

x2
3T̄2,3 = −t1/2x2

2 − (t1/2 − t−1/2)x2x3
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x1x2T̄2,3 = (t1/2 − t−1/2)x1x2 − t−1/2x1x3

x1x3T̄2,3 = −t1/2x1x2

x2x3T̄2,3 = −t−1/2x2x3

4A.2 Ȳi on degree zero, one and two monomials

We calculate the action of the affine Hecke algebra generators Ȳi on degree zero, one and

two monomials. We look at the case N = 3, where there are three generators Ȳ1 , Ȳ2 and

Ȳ3.

Recall that (4.5) gave us

Ȳi = X̄i,i+1X̄i,i+2 . . . X̄i,N q̂iX̄
−1
1,i . . . X̄

−1
i−1,i,

where the action of the X̄i,j is given by

X̄i,j = −t−1/2 + (t1/2 − t−1/2)(1− sij)
xi

xi − xj
.

Therefore Ȳ1 = X̄1,2X̄1,3q̂1, Ȳ2 = X̄2,3q̂2X̄
−1
1,2 and Ȳ3 = q̂3X̄

−1
1,3X̄

−1
2,3 . We firstly calculate

X̄1,2 , X̄1,3 and X̄2,3 along with their inverses on degree zero, one and two monomials.

1X̄1,2 = −t−1/2

x1X̄1,2 = −t−1/2x1 + (t1/2 − t−1/2)x2

x2X̄1,2 = −t1/2x2

x3X̄1,2 = −t−1/2x3

x2
1X̄1,2 = −t−1/2x2

1 + (t1/2 − t−1/2)x2
2 + (t1/2 − t−1/2)x1x2

x2
2X̄1,2 = −t1/2x2

2 − (t1/2 − t−1/2)x1x2

x2
3X̄1,2 = −t−1/2x2

3

x1x2X̄1,2 = −t−1/2x1x2

x1x3X̄1,2 = −t−1/2x1x3 + (t1/2 − t−1/2)x2x3

x2x3X̄1,2 = −t1/2x2x3
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1X̄−1
1,2 = −t1/2

x1X̄
−1
1,2 = −t1/2x1 − (t1/2 − t−1/2)x2

x2X̄
−1
1,2 = −t−1/2x2

x3X̄
−1
1,2 = −t1/2x3

x2
1X̄
−1
1,2 = −t1/2x2

1 − (t1/2 − t−1/2)x2
2 − (t1/2 − t−1/2)x1x2

x2
2X̄
−1
1,2 = −t−1/2x2

2 + (t1/2 − t−1/2)x1x2

x2
3X̄
−1
1,2 = −t1/2x2

3

x1x2X̄
−1
1,2 = −t1/2x1x2

x1x3X̄
−1
1,2 = −t1/2x1x3 − (t1/2 − t−1/2)x2x3

x2x3X̄
−1
1,2 = −t−1/2x2x3

1X̄1,3 = −t−1/2

x1X̄1,3 = −t−1/2x1 + (t1/2 − t−1/2)x3

x2X̄1,3 = −t−1/2x2

x3X̄1,3 = −t1/2x3

x2
1X̄1,3 = −t−1/2x2

1 + (t1/2 − t−1/2)x3
2 + (t1/2 − t−1/2)x1x3

x2
2X̄1,3 = −t−1/2x2

2

x2
3X̄1,3 = −t1/2x2

3 − (t1/2 − t−1/2)x1x3

x1x2X̄1,3 = −t−1/2x1x2 + (t1/2 − t−1/2)x2x3

x1x3X̄1,3 = −t−1/2x1x3

x2x3X̄1,3 = −t1/2x2x3

1X̄−1
1,3 = −t1/2

x1X̄
−1
1,3 = −t1/2x1 − (t1/2 − t−1/2)x3

x2X̄
−1
1,3 = −t1/2x2

x3X̄
−1
1,3 = −t−1/2x3

x2
1X̄
−1
1,3 = −t1/2x2

1 − (t1/2 − t−1/2)x3
2 − (t1/2 − t−1/2)x1x3

x2
2X̄
−1
1,3 = −t1/2x2

2

x2
3X̄
−1
1,3 = −t−1/2x2

3 + (t1/2 − t−1/2)x1x3

x1x2X̄
−1
1,3 = −t1/2x1x2 − (t1/2 − t−1/2)x2x3
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x1x3X̄
−1
1,3 = −t1/2x1x3

x2x3X̄
−1
1,3 = −t−1/2x2x3

1X̄2,3 = −t−1/2

x1X̄2,3 = −t−1/2x1

x2X̄2,3 = −t−1/2x2 + (t1/2 − t−1/2)x3

x3X̄2,3 = −t1/2x3

x2
1X̄2,3 = −t−1/2x2

1

x2
2X̄2,3 = −t−1/2x2

2 + (t1/2 − t−1/2)x2
3 + (t1/2 − t−1/2)x2x3

x2
3X̄2,3 = −t1/2x2

3 − (t1/2 − t−1/2)x2x3

x1x2X̄2,3 = −t−1/2x1x2 + (t1/2 − t−1/2)x1x3

x1x3X̄2,3 = −t1/2x1x3

x2x3X̄2,3 = −t−1/2x2x3

1X̄−1
2,3 = −t1/2

x1X̄
−1
2,3 = −t1/2x1

x2X̄
−1
2,3 = −t1/2x2 − (t1/2 − t−1/2)x3

x3X̄
−1
2,3 = −t−1/2x3

x2
1X̄
−1
2,3 = −t1/2x2

1

x2
2X̄
−1
2,3 = −t1/2x2

2 − (t1/2 − t−1/2)x2
3 − (t1/2 − t−1/2)x2x3

x2
3X̄
−1
2,3 = −t−1/2x2

3 + (t1/2 − t−1/2)x2x3

x1x2X̄
−1
2,3 = −t1/2x1x2 − (t1/2 − t−1/2)x1x3

x1x3X̄
−1
2,3 = −t−1/2x1x3

x2x3X̄
−1
2,3 = −t1/2x2x3
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We have that Ȳ1 = X̄1,2X̄1,3q̂1, so we calculate the action of Ȳ1 on degree zero, one and

two monomials.

1Ȳ1 = t−1

x1Ȳ1 = q−1t−1x1 + (t−1 − 1)x2 + (t−1 − 1)x3

x2Ȳ1 = x2

x3Ȳ1 = x3

x2
1Ȳ1 = q−2t−1x2

1 + (t−1 − 1)x2
2 + (t−1 − 1)x2

3 + q−1(t−1 − 1)x1x2

+ q−1(t−1 − 1)x1x3 − (2− t− t−1)x2x3

x2
2Ȳ1 = x2

2 + q−1(1− t−1)x1x2 + (2− t− t−1)x2x3

x2
3Ȳ1 = x2

3 + q−1(1− t−1)x1x3

x1x2Ȳ1 = q−1t−1x1x2 + (t−1 − 1)x2x3

x1x3Ȳ1 = q−1t−1x1x3 + (1− t)x2x3

x2x3Ȳ1 = tx2x3

Since Ȳ2 = X̄2,3q̂2X̄
−1
1,2 we can now find the action of Ȳ2 on degree zero, one and two

monomials.

1Ȳ2 = 1

x1Ȳ2 = x1 + (1− t−1)x2

x2Ȳ2 = q−1t−1x2 + (1− t)x3

x3Ȳ2 = tx3

x2
1Ȳ2 = x2

1 + (1− t−1)x2
2 + (1− t−1)x1x2

x2
2Ȳ2 = q−2t−1x2

2 + (1− t)x2
3 + q−2(t−1 − 1)x1x2 + q−1(t−1 − 1)x2x3

x2
3Ȳ2 = tx2

3 + q−1(1− t−1)x2x3

x1x2Ȳ2 = q−1x1x2 + (1− t)x1x3 + (2− t− t−1)x2x3

x1x3Ȳ2 = tx1x3 + (t− 1)x2x3

x2x3Ȳ2 = q−1t−1x2x3
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Finally Ȳ3 = q̂3X̄
−1
1,3X̄

−1
2,3 , so we can calculate the action of Ȳ3 on degree zero, one and two

monomials.

1Ȳ3 = t

x1Ȳ3 = tx1 + (1− t−1)x3

x2Ȳ3 = tx2 + (t− 1)x3

x3Ȳ3 = q−1t−1x3

x2
1Ȳ3 = tx2

1 + (1− t−1)x2
3 + (1− t−1)x1x3 + (2− t− t−1)x2x3

x2
2Ȳ3 = tx2

2 + (t− 1)x2
3 + (t− 1)x2x3

x2
3Ȳ3 = q−2t−1x2

3 + q−2(t−1 − 1)x1x3 + q−2(t−1 − 1)x2x3

x1x2Ȳ3 = tx1x2 + (t− 1)x1x3 + (t− 1)x2x3

x1x3Ȳ3 = q−1x1x3

x2x3Ȳ3 = q−1x2x3
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Chapter 5

Tangle Representation of the Affine

Hecke Algebra

In this chapter our principal goal is to investigate the possibility of finite dimensional

DAHA representations. We aim to find such representations by firstly developing and

then extending finite dimensional matrix representations of affine Hecke algebras. More

specifically, we explicitly develop matrix representations of AHAs emerging from tangles

and present all of the necessary conditions for their extension to matrix representations

of DAHAs.

Our tangle representation of the affine Hecke algebra AN(t), is motivated by the

work of Kasatani and Pasquier in [7], where they define a pattern representation of

the affine Temperley-Lieb algebra, which is a specific quotient group of AN(t). In this

chapter the tangle representation that we construct is much more general and provides

finite dimensional matrix representations for all affine Hecke algebras, in addition to the

Temperley-Lieb algebra.

For clarity we highlight the main points of its construction here. Firstly, we define

exactly how to obtain planar tangles called elementary patterns which form a basis of our

representation. We present combinatorial formulas describing the exact number of basis

elements for all dimensions. Secondly we use the graphical representation of the AN(t)

generators, which we introduced in Chapter 3 in terms of braiding on cylinders, to describe

the action of these generators on the pattern basis. Lastly, to obtain finite dimensional

matrices, we use knot theory techniques. In particular we employ Reidemeister moves

and moves associated to the evaluation of the Kauffman bracket, to decompose the tangle

diagrams resulting from the action of the AN(t) generators on the elementary patterns,

into a linear combination of basis elements.

We begin this chapter by defining tangles and Reidemeister moves before explicitly

describing the construction of the elementary pattern basis.
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5.1 Tangles

A tangle is made by a set of open strings embedded into a three dimensional ball, such

that their extremities are on the boundary [7]. The strings are not allowed to cross each

other. In the special case that the ball is punctured, that is, pierced with a flux running

through it, strings cannot cross the flux but can connect the flux to the boundary.

In either case the extremities of the strings on the boundary are labelled by N points

ordered anticlockwise.

To obtain a tangle diagram complete with crossings, we project onto a flat disk and

note the position of under and over crossings. In the punctured ball case, we project the

flux onto the origin of the disk. Therefore strings can connect the origin to the boundary

but cannot in any case cross the origin.

We highlight that even though tangle diagrams may appear completely unique, they

are in fact equivalent if there exists an ambient isotopy taking one to the other using

Reidemeister moves.

5.1.1 Reidemeister moves

The Reidemeister moves [20] are a set of ambient isotopies that allow us to change the

projection of a tangle diagram without changing the tangle diagram represented by the

projection. They are defined as follows: [21]

1. The first Reidemeister move allows us to include or exclude a twist in any strand

as described in the diagram below.

or

first Reidemeister move

2. The second Reidemeister move allows us to either add or remove two crossings to

a tangle diagram. In the figure below we depict both cases.

second Reidemeister move

or
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3. The third Reidemeister move allows us to move a strand from one side of a crossing

to the other side of the crossing, as illustrated in the following diagram.

third Reidemeister move

or

Using these moves it is straightforward to identify equivalent tangle diagrams.

5.2 Patterns

Having gone from tangles to tangle diagrams, we now introduce patterns which will form

the basis of our representation.

Patterns are planar tangles, therefore they do not contain any crossings. We are

particularly interested in elementary patterns, as linear combinations of these give tangle

diagrams. As such, elementary patterns are the basis elements of all tangles and also the

basis of our finite dimensional representations of the affine Hecke algebra.

5.2.1 Encoding Patterns

We can encode a pattern π, [7, 22], with a string of letters α and β as follows:

(i) If point i on the boundary of the disk is connected to the origin, label it α.

(ii) If points i and j are connected with i < j, then label points i and j by α and β

respectively.

Note that these rules imply that at any point of a pattern π there must be a greater or

equal number of αs as βs. Also given any pattern π we can easily locate the position of

the isolated α by successively erasing factors of αβ corresponding to paired points. To

illustrate these rules, we present the following examples.

Consider the pattern π = ααβαββ. In this pattern all points are paired since N = 6

is even. One can easily see that there is no isolated α as π contains the same number

of αs as βs. Starting from the centre of π we factorise points into pairs (factors of αβ).

Using the second rule, points 2 and 3 are a pair; as are points 4, 5 and 1, 6. Therefore we
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can now draw π as in Figure 5.1.

As another example take the pattern π = βαα. In this case N = 3 is odd so there is

an isolated α connecting the origin to the boundary. π begins with a β meaning the

first element is connected to the last element of π, using the cyclic nature of the patterns.

Therefore since points 3 and 1 are connected, point 2 connects the origin to the boundary.

The pattern π = βαα is illustrated in Figure 5.1.

1

2

3

4

5

6

π = βααπ = ααβαββ

1

23

Figure 5.1: The patterns π = ααβαββ and π = βαα.

Let us now examine the three possible distinct types of patterns.

5.2.2 N Even Patterns

If we have an even number of ordered points N on the boundary of the disk, then all

points are paired. This implies that every pattern must contain the same number of αs

as βs. There is no isolated α and hence we have unpunctured disks. Each pattern must

also begin by an α.

The number of basis elements (patterns π) for N even is given by

CN =
2N/2(N − 1)!!

(N/2 + 1)!
, (5.1)

where (N−1)!! is the product of odd terms only. We see that the number of basis elements

increases quite rapidly as the number of ordered points on the boundary increases. For

the first three even N we find that:

N = 4 ⇒ C4 =
22(3)!!

(3)!
=

4.3.1

6
= 2

N = 6 ⇒ C6 =
23(5)!!

(4)!
=

8.5.3.1

24
= 5

N = 8 ⇒ C8 =
24(7)!!

(5)!
=

16.7.5.3.1

120
= 14
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It is worth pointing out that N = 2 is the first even case. However this is a special

case as given two points there is only one way to connect them. This case is trivial,

therefore the first non trivial even case is when N = 4. We can puncture the N = 2 case

though, which yields two distinct basis elements. We will study this case more thoroughly

in Section 5.4.

5.2.3 N Odd Patterns

Given an odd number of ordered points N on the boundary of the disk, there must be an

isolated α in every pattern. The isolated α connects the boundary to the origin, meaning

that all N odd patterns are punctured. This implies that every pattern must contain a

greater number of αs than βs. It is now useful to view each pattern as an infinite periodic

string with the identification πi+N = πi. In this way for N odd patterns, the first element

doesn’t necessarily have to be an α.

For each odd N the number of basis elements is given by

CN =
2(N−1)/2N !!

(N+1
2

)!
. (5.2)

The dimension of the first four odd basis are:

N = 1 ⇒ C1 = this is trivial as we have only one point

N = 3 ⇒ C3 =
21(3)!!

(2)!
=

2.3.1

2
= 3

N = 5 ⇒ C5 =
22(5)!!

(3)!
=

4.5.3.1

6
= 10

N = 7 ⇒ C7 =
23(7)!!

(4)!
=

8.7.5.3.1

24
= 35

5.2.4 N Even and Punctured

All odd N patterns are inherently punctured. However this is not true for even N

patterns. Therefore we describe how to puncture patterns with an even number of points.

In this situation then, all points remain paired and strings cannot cross the puncture

located at the origin. In essence puncturing patterns increases the dimension of the basis

as there are now more distinct ways in which one can connect the ordered points on the

boundary. As an example in Section 5.4 we derive in detail the N = 2 punctured case.
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5.3 Operators in the Tangle Representation

Before we explicitly derive tangle representations of the affine Hecke algebra it is necessary

to describe the action of operators on the pattern basis. The operators of interest to us

are the affine Hecke algebra generators. In Chapter 2, we defined AN(t) in terms of the

generators Ti and Yi. We also derived all of the defining relations of AN(t) in terms

of the Ti and the operator σ (2.11). Graphically, in Chapter 3 we represented all of

these generators and described their action as braiding on the surface of a cylinder, or

equivalently, as braiding on an infinitely long strip with vertical edges identified with

each other. Now we define how these generators act on the basis elements of our tangle

representation, that is on elementary patterns.

5.3.1 Operators as Annuli

In the tangle representation operators are represented as annuli. Each operator or annulus

has M ordered points on its inner boundary and M̄ ordered points on its outer boundary.

Strands may cross each other as they connect points on M̄ to M . The identity operator

contains no crossings as it is simply the annulus where all points ī on the outer boundary

are connected to corresponding ordered points i on the inner boundary.

When an operator acts on a pattern, we simply place the pattern inside the annulus such

that all N points on the boundary of the disk containing the pattern are identified with

the corresponding M points of the inner boundary of the annulus. To fully describe the

action of an operator on a pattern, in Figure 5.2 we show the Hecke algebra generator T1

acting on the pattern π = βαα.

1

23

1

π = βαα

T₁ T₁ |βαα>

1

2
3

‾

‾
‾3‾ 2‾

1‾

1

23

1

23

Figure 5.2: The operator T1 acting on the pattern π = βαα. Note that π has points
N = 1, 2, 3 on its boundary while T1 has points M = 1, 2, 3 points on its inner boundary
and points M̄ = 1̄, 2̄, 3̄ on its outer boundary.
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5.3.2 Decomposing Tangle Diagrams

From Figure 5.2 it is clear that when an operator acts on a pattern we are left with a

tangle diagram. As our goal is to obtain finite dimensional matrix representations of

the affine Hecke algebra, we decompose tangle diagrams into linear combinations of ele-

mentary patterns. The elementary patterns thus form a basis of our tangle representation.

We use rules from knot theory to decompose tangle diagrams. Specifically, we apply

the rules for calculating the Kauffman bracket [23] of link diagrams. These rules describe

how to rewrite a link (tangle) diagram with crossings into linear combinations of diagrams

without crossings. For a tangle diagram T we use the following rules:

(i)                 =  1 ,

(ii)                 =  A           +  A            ,

(iii)                =  A           +  A            ,

(iv)                    =  (-A  - A  )        ,

(v)                 =  -A         ,

(vi)                =  -A          ,

-1

-1

2 -2

3

-3

UT T

< <

< << <

< < < <
< < < < < <

< <

< <
< <

< <
< <

where A = t−1/4.

The first rule states that 1 is the value given to the particular projection of the unknot

that has no crossing at all. Rules (ii) and (iii) describe how to rewrite positive and neg-

ative crossings, while rules (v) and (vi) get rid of twists. The fourth rule says that a

disjoint loop in a tangle diagram can be replaced by a factor of (−A2 − A−2) times the

tangle diagram without the loop. We derive these rules in detail in Chapter 6 in a knot

theory context; for the purpose of the tangle representation the above is sufficient.

Using the Kauffman rules we can now decompose any tangle diagram into a linear com-

bination of elementary patterns. This allows us to construct tangle representations of the

affine Hecke algebra.

5.4 Tangle Representations of AN(t)

Starting with the first non trivial case, (N = 2 punctured), we construct finite dimen-

sional matrix representations of the affine Hecke algebra AN(t). The representations are

obtained by examining the action of the AN(t) generators Ti, Yi and σ on the pattern
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basis elements. Using the pictorial representation of the affine Hecke algebra generators

which we introduced in Chapter 3, the action of these generators on the pattern basis

yields tangle diagrams. We then decompose the tangle diagrams into linear combinations

of basis elements to obtain finite dimensional representations of AN(t).

5.4.1 N = 2 Tangle Representation

Recall that the non punctured N = 2 case is trivial, therefore to obtain a non trivial

matrix representation of AN(t) we puncture each disk containing the elementary patterns.

Each pattern contains two points on the boundary of a disk with a puncture located at

its origin. There are only two distinct ways of connecting both points together, giving a

two dimensional pattern basis. Using the rules of Subsection 5.2.1, these patterns are αβ

and βα which we illustrate below.

1 2

1 2

1 2

1 2

= = |1>

= = |2>βα

=αβ

=

Given our two basis elements we must now determine the action of the braid group

generators {T ′i |i = 1, .., N − 1} on these elementary patterns. Since N = 2, we have only

one generator T ′1. Using the Kauffman rules we get rid of crossings in the resulting tangle

diagrams in favour of a linear combination of the two basis patterns αβ and βα as we

now explicitly show:

|1>T'₁ = =

1 2

1 2

|1>=A 3 - A 3 -
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|2>T'₁ = += A 

1 2

A -1 

1 2

A |2>= |1>+A -1 g 

1 2

Therefore the matrix corresponding to the action of the braid group generator T ′1 on the

patterns αβ and βα is given by:

T ′1 =

[
−A3 Ag

0 A−1

]
.

Note that we have given the value “g” to a loop surrounding the puncture located at

the origin. Furthermore we choose to denote braid group generators as T ′i to distinguish

them from the Hecke algebra generators Ti. To obtain the Hecke algebra generators we

normalise the braid group generators so that they obey the Hecke relation (2.3). As we

have only one braid group generator T ′1, we set

γ−1T ′−1
1 = γT ′1 − (t1/2 − t−1/2)1, (5.3)

where γ is a normalisation factor.

Solving (5.3) gives γ = t1/4 = A−1. Thus for the N = 2 punctured disk the Hecke algebra

generator T1 and its inverse T−1
1 are given by the following matrices:

T1 =

[
−A2 g

0 A−2

]
, T−1

1 =

[
−A−2 g

0 A2

]
.

In Subsection 2.2.1 we showed that the defining relations of AN(t) can be written

either in terms of the Hecke algebra generators Ti and the affine Hecke algebra generators

Yi, or purely in terms of the Ti and the cyclic operator σ. For completeness we obtain

matrices for both sigma and the Yi.

Using the graphical representation of σ that we constructed in Chapter 3, we see that

its action on the two dimensional basis is as follows:
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1 2

=σ |1> = = |2>

1 2

=σ |2> =

1 2

= |1>

In terms of matrices this implies that σ has the following form:

σ =

[
0 1

1 0

]
.

Using the matrices that we have just found for T1 and σ, it is evident that they satisfy

the relation (2.13), that is, σ2T1 = T1σ
2 in the N = 2 case.

To complete the tangle representation of A2(t) we obtain matrices corresponding to

the action of the affine Hecke algebra generators {Yi|i = 1, .., N} on the patterns αβ, βα.

Since N = 2 there are just two generators Y1 and Y2. We denote the matrices obtained

from the tangle diagrams as Y ′i as strictly speaking they are affine braid group generators

and need to be normalised to become valid affine Hecke algebra generators.

|1>Y'₁ =

1 2

+= A 

1 2

A -1 

1 2

A |2>= |1>+A -1 g 
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|2>Y'₁ =

1 2

=

1 2 1 2

= |1>= -A 3 -A 3 

This means that Y ′1 is given by the matrix

Y ′1 =

[
Ag −A3

A−1 0

]
.

We can easily verify that this matrix is the unnormalised matrix corresponding to the

affine Hecke algebra generator Y1. Equation (2.11) becomes Y1 = T1σ in the N = 2 case,

so

Y1 = T1σ =

[
−A2 g

0 A−2

][
0 1

1 0

]
= A−1

[
Ag −A3

A−1 0

]
= A−1Y ′1 .

This is exactly as expected since Y1 = T1σ = A−1T ′1σ = A−1Y ′1 , and verifies that the

matrix

Y1 =

[
g −A2

A−2 0

]
describes the action of the affine Hecke algebra Y1 on the two dimensional pattern basis.

In a very similar fashion we obtain the matrix representation of the affine Hecke

algebra generator Y2.

=|1>Y'2

1 2

=

1 2

A -3 - = A -3 - |2>
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=|2>Y'2

1 2

= + A 

1 2

A -1 

1 2

A |2>= |1>+A -1 g 

This means that Y ′2 is given by the matrix

Y ′2 =

[
0 A

−A−3 A−1g

]
,

which we verify is correct. By (2.9) we know that Y2 = T−1
1 Y1T

−1
1 , therefore

Y2 =

[
−A−2 g

0 A2

][
g −A2

A−2 0

][
−A−2 g

0 A2

]
= A

[
0 A

−A−3 A−1g

]
= AY ′2 .

Accounting for the normalisation factors, this is precisely the required result as

Y2 = T−1
1 Y1T

−1
1 = AT ′−1A−1Y ′1AT

′−1
1 = AT ′−1

1 Y ′1T
′−1
1 = AY ′2 .

Therefore the affine Hecke algebra generator Y2 is given by

Y2 =

[
0 A2

−A−2 g

]
.

To summarise our construction of the tangle representation of A2(t) we reiterate

the following points. Using the Kauffman bracket rules to write a tangle diagram as a

linear combination of elementary planar tangles, we firstly found two dimensional square

matrices for the braid group generators. Normalising these matrices to satisfy the Hecke

relation yielded matrices describing the Hecke generators. Then using the graphical

representation of the AN(t) generators we found matrices for the affine braid group which

when normalised gave finite dimensional matrices for the AHA generators Yi. Finally, we

showed that all of the matrices we obtained satisfy the defining relations of A2(t) and

hence form a two dimensional matrix representation of its algebraic description.

Below we give all of the matrices, along with their inverses, which describe the tangle

representation of the two strand affine Hecke algebra A2(t) in terms of the basis patterns
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αβ, βα.

T1 =

[
−A2 g

0 A−2

]
, T−1

1 =

[
−A−2 g

0 A2

]
,

Y1 =

[
g −A2

A−2 0

]
, Y −1

1 =

[
0 −A2

−A−2 g

]
,

Y2 =

[
0 A2

−A−2 g

]
, Y −1

2 =

[
g −A2

A−2 0

]
,

σ =

[
0 1

1 0

]
, σ−1 =

[
0 1

1 0

]
.

5.4.2 N = 3 Tangle Representation

In the N = 3 case, the basis elements are punctured since N is odd. Equation (5.2)

says there are three elementary patterns that form the basis of the tangle representation.

Using the rules for encoding patterns yields three elementary patterns ααβ, βαα and

αβα, all of which we illustrate below.

1

23

1

23

1

23

= |1>

= |2>

=

1 2 3

|3>=

1 2 3

1 2 3

ααβ =

=βαα

=

=

=αβα
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In a similar fashion to the N = 2 case, here we obtain a 3 dimensional matrix repre-

sentation of A3(t) given by the pattern basis {ααβ , βαα , αβα}. We have included the

explicit construction in Appendix 5A.1, we simply present the results in this section.

As in the N = 2 case we begin by obtaining matrices corresponding to the Hecke

algebra generators T1 and T2 by decomposing the tangle diagrams formed by the action

of the generators on the three dimensional basis. The resulting matrices are given by:

T1 =

 A−2 0 0

0 A−2 0

α 1 −A2

 , T−1
1 =

 A2 0 0

0 A2 0

α 1 −A−2

 ,

T2 =

 −A
2 α α−1

0 A−2 0

0 0 A−2

 , T−1
2 =

 −A
−2 α α−1

0 A2 0

0 0 A2

 .
It is also beneficial to obtain the matrix representation of the operator σ in the N = 3

case. Given σ and the T s, we now have a complete representation of A3(t).

σ =

 0 1 0

0 0 α−1

1 0 0

 , σ−1 =

 0 0 1

1 0 0

0 α 0

 .
Alternatively, A3(t) is fully described in terms of the T s and the affine Hecke algebra

generators {Yi|i = 1, .., 3}. Their matrix representations are given by:

Y1 =

 A−2α−1 −1 A−2

0 0 A−4α−1

0 −A2α A−2α−1 + α

 , Y −1
1 =

 A2α A2 −1

0 A2α + α−1 −A−2α−1

0 A4α 0

 ,

Y2 =

 A2α−1 + α 1− A4 −A−2

A−2 A−2α−1 −A−4α−1

1 0 0

 , Y −1
2 =

 0 0 1

−A−4 A−2α A−2α−1

−A−2 α− A4α A2α + α−1

 ,

Y3 =

 0 A4 0

−A−2 A2α−1 + α 0

−1 A2α A2α−1

 , Y −1
3 =

 A−2α + α−1 −A2 0

A−4 0 0

A−2 −α A−2α

 .
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We now have a complete description of all of the generators of A3(t) in the tangle

representation. We point out the dependence on the parameter α. This is the value we

have given to the removal of a 2π clockwise twist of a strand around the origin. We

have explicitly illustrated this twisting in Appendix 5A.1 where we have also included

the complete detailed construction of the N = 3 tangle representation.

5.4.3 Larger N Tangle Representations

Following the rules we laid out in Subsection 5.2.1 for encoding patterns, we now know

how to construct a tangle representation for all AHAs given any number of points on

the boundary of the disk. Furthermore equations (5.1) and (5.2) tell us exactly the

dimension of the tangle basis. In the appendices at the end of this chapter we give all of

the elementary patterns needed to construct the tangle representation of the affine Hecke

algebra for the cases when N = 4, N = 5 and N = 6. Furthermore we also include the

specific matrices which define each AHA in the pattern basis for the above cases. All

other cases follow similarly.

5.5 Tangle Representations of the Temperley-Lieb

Algebra

In Subsection 2.1.3 we introduced the Temperley-Lieb algebra TLN(d). Recall that the

map from the HN(t) generators Ti, to the TLN(d) generators ei, is

Ti 7−→ ei + t1/21,

and the defining relations of TLN(d) are:

e2
i = dei, (5.4)

eiej = ejei for |i− j| ≥ 2, (5.5)

eiei+1ei − ei = ei+1eiei+1 − ei+1, (5.6)

where d = −t1/2 − t−1/2.

Using the established pictorial representation of the Temperley-Lieb generators, see [24]

for example, where the generator ei corresponds to a cup and cap between the ith and

i+ 1th points, we can construct the tangle representation of TLN(d).
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Note that the parameter d = −t1/2 − t−1/2 is the value given to the removal of a dis-

joint closed loop in tangle diagrams as in rule (iv) for calculating the Kauffman bracket.

Keeping with common notation, within the affine Hecke algebra we will denote d by

τ = −A−2 − A2 where A = t−1/4.

5.5.1 Tangle Representation of TL2(d)

In the N = 2 case there is only one Hecke algebra generator T1. We found that its tangle

representation on the pattern basis αβ, βα is given by the matrix

T1 =

[
−A2 g

0 A−2

]
.

Mapping to the Temperley-Lieb operator e1, implies that in the tangle basis we obtain

for e1 the matrix

e1 =

[
τ g

0 0

]
.

We can explicitly verify this result by examining the action of the generator e1 on the

two elementary patterns.

= =|1>

1 2

e₁ |1>τ = =|2>

1 2

e₂ |2>g 

The resulting matrix is

e1 =

[
τ g

0 0

]
,

exactly as expected. Equation (5.4) is also clearly satisfied:

e2
1 =

[
τ g

0 0

][
τ g

0 0

]
=

[
τ 2 τg

0 0

]
= τe1 = de1.

There is only one generator e1 in TL2(d) so this completes the construction of the tangle

representation of the Temperley-Lieb algebra in the case of N = 2.
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5.5.2 Tangle Representation of TL3(d)

The N = 3 case follows similarly. From Subsection 5.4.2, matrices corresponding to

the action of the Hecke Algebra generators T1 and T2 on the elementary basis elements

ααβ, βαα, αβα are:

T1 =

 A−2 0 0

0 A−2 0

α 1 −A2

 , T2 =

 −A
2 α α−1

0 A−2 0

0 0 A−2

 .
The map Ti 7−→ ei + t1/21 implies that in the tangle representation, the Temperley-Lieb

generators e1 and e2 are given by:

e1 =

 0 0 0

0 0 0

α 1 τ

 , e2 =

 τ α α−1

0 0 0

0 0 0

 .
These matrices are in perfect agreement with the matrices obtained from decomposing the

tangle diagrams resulting from the action of the generators e1 and e2 on the elementary

patterns. From the tangle diagrams we get:

1 2 3

1 2 3

=e₁|1> = = |3>α

1 2 3

1 2 3

== = |3>e₁|2>
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1 2 3

== =e₁|3>

1 2 3

|3>ττ

As predicted, the matrix corresponding to the action of e1 on the pattern basis is

e1 =

 0 0 0

0 0 0

α 1 τ

 .
Similarly e2 acts on the basis elements as follows:

1 2 3

1 2 3

= ==e₂|1> |1>ττ

1 2 3

= = = |1>u₁e₂|2>

1 2 3

1 2 3

1 2 3

=e₂|3> = = |1>u₂
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With the values previously obtained for u1 and u2, that is u1 = α and u2 = α−1, the

matrix corresponding to the action of e2 on the pattern basis is as expected:

e2 =

 τ α α−1

0 0 0

0 0 0

 .
It is trivial to show that the matrices obtained for e1 and e2 satisfy the defining re-

lations of the Temperley-Lieb algebra. In N = 3 they satisfy (5.4) and (5.6), notably

e2
1 = τe1, e2

2 = τe2 and e1e2e1 − e1 = e2e1e2 − e2.

To summarise, we can construct the tangle representation of the Temperley-Lieb

algebra by decomposing the tangle diagrams resulting from the action of the Temperley-

Lieb generators ei on the pattern basis, into a linear combination of elementary patterns.

The finite dimensional matrices obtained are consistent with the algebraic description of

TLN(d). Furthermore they are easily mapped to the matrices describing the action of

the Hecke algebra generators on elementary patterns.

5.6 Extending the Tangle Representation

Having successfully obtained finite dimensional matrix representations of the affine Hecke

algebra using tangles, the natural step is to extend the tangle representation to the double

affine Hecke algebra DN(t, q). In Chapter 3 we developed a pictorial representation of all

the double affine Hecke algebra generators Zi. Describing the action of these generators,

in the cube representation, on elementary tangles therefore yields the tangle representa-

tion of DN(t, q).

However limiting factors are encountered when trying to obtain finite dimensional ma-

trix representations of DN(t, q). Firstly we cannot use the Kauffman rules to decompose

the tangle diagrams resulting from the action of the Zi generators on the basis patterns.

The reason is simple; in the cube representation we have “three dimensional crossings”,

that is we do not have simple over and under crossings as in the affine Hecke algebra. In

the cube representation the Yi generators braid strands through the left and right faces

whereas the Zi generators braid strands through the front and back faces. Therefore to

find a tangle representation of DN(t, q) we need to be able to decompose crossings that lie

in two different perpendicular planes. To accomplish this a three dimensional analogue

of the Reidemeister and Kauffman rules is required.
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The difficulty in constructing tangle representations of DN(t, q) emerging from tangle

diagrams does not however rule out the existence of finite dimensional tangle represen-

tations of DN(t, q). For example we can extend the N = 2 tangle representation of the

affine Hecke algebra of Section 5.4.1 to one for the double affine Hecke algebra.

5.6.1 Tangle Representation of D2(t, q)

We begin by noting that in D2(t, q) there are two Zi generators, Z1 and Z2. Also we

found that in the tangle representation of A2(t) the operator sigma is given by:

σ =

[
0 1

1 0

]
,

and so σ2 = 1. This immediately restricts the value of the parameter q, upon which

D2(t, q) depends on, to be one. By (2.14) and (2.20) we have that Ziσ
N = q−1σNZi, and

with σN = 1 we must have q = 1. However we can still try to find a finite dimensional

matrix representation of D2(t, q) with q = 1. Firstly to check if there exists a two

dimensional matrix representation of the double affine Hecke algebra generator Z1 we

impose all of the relations of D2(t, q) to an arbitrary (2× 2) matrix defined as:

Z1 =

[
Z11 Z12

Z21 Z22

]
.

Imposing all of the relations that Z1 must satisfy (see Subsection 2.3.1) in addition to

the matrices obtained for A2(t) means that Z1 must have the following form:

Z1 =

[
Z11 Z12

−Z12 A−4Z11 + gA−2Z12

]
,

where as before g is the value given to a closed loop surrounding the origin and A = t−1/4.

Since all of the Zi are defined recursively according to (2.17), Z2 is simply given by

Z2 = T−1
1 Z1T

−1
1 , which in matrix form is

Z2 =

[
−A−2 g

0 A2

][
Z11 Z12

−Z12 A−4Z11 + gA−2Z12

][
−A−2 g

0 A2

]

=

[
A−4Z11 + gA−2Z12 −Z12

Z12 Z11

]
.
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Interestingly the product of the Z is proportional to the identity. We get that

Z1Z2 =
(
A−4Z2

11 + gA−2Z11Z12 + Z2
12

) [ 1 0

0 1

]
.

The existence of the two matrices corresponding to the action of the double affine

Hecke algebra generators Z1 and Z2 on the pattern basis αβ, βα indicates that it may be

possible to obtain the same matrices by decomposing their corresponding tangle diagrams.

Z1 and Z2 depend on several free parameters, Z11, Z12 and g. These parameters should be

fixed by rules describing the decomposition of “three dimensional crossings” into linear

combinations of planar patterns. In this manner one could obtain finite dimensional

representations of DN(t, q).

5.6.2 Tangle Representation of D3(t, q)

In the extension of the N = 3 affine Hecke algebra tangle representation to one for the

double affine Hecke algebra, a different limiting factor is encountered. The problem of

decomposing “three dimensional crossings” still remains but it is not the only one.

Following the method of the previous subsection we can impose all of the defining re-

lations of D3(t, q) to an arbitrary matrix Z1 and hence define all of the other Z generators

using (2.17). Using all of the matrices describing A3(t), which we obtained in Subsection

5.4.2, the resulting (3× 3) matrix for Z1 is

Z1 =

 A−2α−1 A−2α−1 −α−1

A−4α−2 A−4α−2 −A−2α−2

0 1 −A2 + A2α−1

 .
However this matrix is singular; that is, it is non-invertible. Hence it cannot represent

the action of the double affine Hecke algebra generator Z1 on the pattern basis. All Zi

generators are required to be invertible.

In an effort to obtain a finite dimensional representation of D3(t, q) we take (6 × 6)

matrices in block diagonal form composed of two (3× 3) representations and impose all

of the relations of D3(t, q) to an arbitrary matrix Z of off diagonal form. So the Hecke

algebra generators Ti and affine Hecke algebra generators Yi have the following form:
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Ti =

[
T1 0

0 T2

]
, Yi =

[
Y1 0

0 Y2

]
,

where T1 and Y1 form a (3 × 3) representation of A3(t) depending on the parameters A

and α. T2 and Y2 also form a (3×3) representation of A3(t) and depend on the parameters

B and β.

We impose all of the relations of D3(t, q) to the matrix Z which has an off diagonal form,

that is

Z =

[
Z1 0

0 Z2

]
,

where Z1 and Z2 are both arbitrary three dimensional square matrices.

Imposing all of the conditions and solving for Z yields three distinct matrices. In each

case though the resulting matrix is singular and hence cannot represent a double affine

Hecke algebra generator. This result indicates that in order to obtain finite dimensional

matrix representations of DN(t, q) one needs to be able to systematically decompose three

dimensional crossings into a linear combination of planar tangles.

This concludes the chapter on our construction of finite dimensional matrix representa-

tions of the affine Hecke algebra based on elementary patterns. Our tangle representation

is not solely restricted to affine Hecke algebras; we also showed how we can obtain finite

dimensional matrices that generate the Temperley-Lieb algebra.

Furthermore our tangle representation also provides explicit matrices for all the braid

group and affine braid group generators. Recall that in order to obtain the Hecke al-

gebra generators we needed to normalise the braid group matrices to satisfy the Hecke

relation. Similar normalisation was required to obtain the AHA generators. Therefore

without subjecting the matrices to this normalisation we effectively have a representation

of AN(Q) (see Figure 1.1) for Q = 1.

We also gave explicit conditions for the existence of finite dimensional matrix represen-

tations, emerging from tangles, of double affine Hecke algebras. For the two dimensional

DAHA with q = 1, we found explicit (2× 2) matrices corresponding to the generators Z1

and Z2. These matrices depended on several free parameters, which we indicated should

be fixed by rules describing the decomposition of three dimensional crossings into linear

combinations of planar patterns. Therefore, we have in effect presented the necessary
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conditions for these decomposition rules to satisfy in order to be able to construct finite

dimensional DAHA representations via tangle diagrams.

As we have described, our construction of tangle representations relies heavily on

techniques that are largely associated to knot theory. As such, the affine Hecke algebra

tangle representation also highlights the central role of Hecke algebras in knot theory;

this important role is at the center of the discovery of both the Jones and HOMFLY

polynomials, both knot invariants which we will introduce in the next chapter.
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Appendix 5

5A.1 N = 3 Tangle Representation

We explicitly construct the tangle representation forA3(t), using the basis {ααβ , βαα , αβα}.

However before doing so it is necessary to introduce the following notation: we can

remove a disjoint closed loop by multiplying the corresponding basis element without the

loop by a factor of τ = −A−2 −A2. Similarly a closed loop around the origin is removed

by introducing a factor of g. In addition to these, the factor α corresponds to a 2π twist,

whereas u1 and u2 correspond to 2π clockwise and anticlockwise twists respectively. For

clarity we illustrate these twists below.

1

23=

1 2 3

|3> =

1

23= =|3>α

1 2 3

1

23|1>

1 2 3

= =

1 2 3

|1>u₁

1

23= =

1

23= =

1 2 3

|1>u₂

117



Firstly we obtain the matrices for the braid group generators T ′1 and T ′2.

1 2 3

1 2 3 1 2 3

= + |1>A |3>α= + A  |1>T'₁ = A -1 A -1 

1 2 3

1 2 3 1 2 3

= + |2> A |3>= +A -1 |2>T'₁ = A A -1 

1 2 3

1 2 3

=

1 2 3

+ |3> |3>= +

|3>=

τ

-A 3 

|3>T'₁ = A -1 A A -1 A 

In matrix form we find:

T ′1 =

 A−1 0 0

0 A−1 0

Aα A −A3

 .
Using the same rules we obtain T ′2.

1 2 3

1 2 3

=T'₂|1> =

1 2 3

+ |1> |1>= +

|1>=

τ

-A 3 

A -1 A A -1 A 
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1 2 3

T'₂|2> =

1 2 3

=

1 2 3

+ |2>= + |1>u₁A -1 A AA -1 

1 2 3

T'₂|3> =

1 2 3

=

1 2 3

+ |3>= A+A -1 |1>u₂AA -1 

Clearly the matrix T ′2 depends on the two parameters u1 and u2, which have yet to be

determined.

T ′2 =

 −A
3 Au1 Au2

0 A−1 0

0 0 A−1

 .

To obtain the Hecke algebra generators T1 and T2, we normalise the braid group generators

by a factor of γ in order for them to satisfy the Hecke relation

γ−1T ′−1
i = γT ′i − (t1/2 − t−1/2)1.

The required normalisation factor is γ = A−1 which implies the Hecke algebra generators

are:

T1 =

 A−2 0 0

0 A−2 0

α 1 −A2

 , T−1
1 =

 A2 0 0

0 A2 0

α 1 −A−2

 ,

T2 =

 −A
2 u1 u2

0 A−2 0

0 0 A−2

 , T−1
2 =

 −A
−2 u1 u2

0 A2 0

0 0 A2

 .
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The cyclic operator σ acts on the elementary patterns as follows:
1 2 3

=σ |1> = =

1 2 3

|3>

1 2 3

=σ |2> = = |1>

1 2 3

1 2 3

=σ |3> = = |2>u₂

1 2 3

Similar to T2 the σ matrix also depends on the parameter u2:

σ =

 0 1 0

0 0 u2

1 0 0

 .

The value of the undetermined parameters u1 and u2 are easily found. The Hecke

algebra generators must satisfy the braid relation, (2.2), which in N = 3 is simply

T1T2T1 = T1T2T1. This relation implies that u2 = α−1.
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Furthermore, the T s and σ must satisfy the relations (2.12) and (2.13), that is T1σ = σT2

and T2σ
2 = σ2T1 when N = 3. Both of these relations imply that u1 = α. These

two results are consistent with the fact that u1 and u2 correspond to 2π clockwise and

anticlockwise twists around the origin. As we have already given the value α to a 2π

clockwise twist, it is then unsurprising that calculations yield u1 = α and u2 = α−1.

Therefore using these values we can now write the matrices for T2 and σ as:

T2 =

 −A
2 α α−1

0 A−2 0

0 0 A−2

 , T−1
2 =

 −A
−2 α α−1

0 A2 0

0 0 A2

 , σ =

 0 1 0

0 0 α−1

1 0 0

 .

To complete the matrix representation of A3(t) in the tangle basis, we describe the

action of the affine Hecke algebra generators Y1, Y2 and Y3 on the elementary patterns.

The matrices emerging from the tangle diagrams correspond to the affine braid group

generators Y ′i as the T ′s aren’t normalised to T yet. Thus we must normalise the Y ′i to

obtain the affine Hecke algebra generators Yi.

|1>

1 2 3

|1>Y'₁ =

1 2 3

= = α-1 

1 2 3

|2>Y'₁ =

1 2 3

= =

1 2 3 1 2 3

= |1> |3>α

A 3 - A -1 A A 3 -

A 4 -A 2 -
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1 2 3

|3>Y'₁ =

1 2 3

=

1 2 3

+ =

1 2 3

+

1 2 3

+

1 2 3

+

1 2 3

|3>= |3>+ g |2>α-1 |1>+ + A -2 A 2 α

A A -1 A A 

A A -1 A A -1 A -1 A -1 

These yield the matrix:

Y ′1 =

 α−1 −A2 1

0 0 A−2α−1

0 −A4α A2α + g

 .
To obtain the affine Hecke algebra generator Y1, we write it in terms of σ using (2.11).

This implies that Y1 = T1T2σ and so

Y1 =

 A−2 0 0

0 A−2 0

α 1 −A2


 −A

2 α α−1

0 A−2 0

0 0 A−2


 0 1 0

0 0 α−1

1 0 0



= A−2

 α−1 −A2 1

0 0 A−2α−1

0 −A4α A2α + α−1


= A−2Y ′1 when g = α−1.

This result is exactly what we expect and agrees with our tangle construction, giving the

correct normalisation factor as

Y1 = T1T2σ = A−1T ′1A
−1T ′2σ = A−2T ′1T

′
2σ = A−2Y1.
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It also fixes the value of g to be g = α−1. So the affine Hecke algebra generator Y1 is:

Y1 =

 A−2α−1 −1 A−2

0 0 A−4α−1

0 −A2α A−2α−1 + α

 .

We now find the matrix representation of Y2 in a similar fashion.

=

1 2 3

|1>Y'2

1 2 3

A -1 =

1 2 3

+ A A -1 A -1 =

1 2 3

+ A A -1 

1 2 3

+ A A -1 

1 2 3

+ A A 

1 2 3

|3>= +α-1 |1>+ + A 2 ( α) |2> A -2 

1 2 3

=|2>Y'2 A =

1 2 3 1 2 3

+ =A -1 A A 3 -

1 2 3

+

1 2 3

+

1 2 3

A A -1 A -1 A -1 

= |1> + A 4( ) 1- |2>α-1  A -2 
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1 2 3

=|3>Y'2 A -3 -=

1 2 3

A A -3 -=

1 2 3

A 3 - A -1 

1 2 3

= |1>  A -4- |2>α-1  A -2 -

This gives:

Y ′2 =

 A2α−1 + α 1− A4 −A−2

A−2 A−2α−1 −A−4α−1

1 0 0

 .
Using (2.9), we know that Y2 = T−1

1 Y1T
−1
1 meaning

Y2 =

 A2 0 0

0 A2 0

α 1 −A−2


 A−2α−1 −1 A−2

0 0 A−4α−1

0 −A2α A−2α−1 + α


 A2 0 0

0 A2 0

α 1 −A−2



=

 A2α−1 + α 1− A4 −A−2

A−2 A−2α−1 −A−4α−1

1 0 0


= Y ′2 .

Again this is perfectly consistent with the tangle construction as

Y2 = T−1
1 Y1T

−1
1 = AT ′−1

1 A−2Y ′1AT
′−1
1 = T ′−1

1 Y ′1T
′−1
1 = Y ′2 .

Therefore the affine Hecke algebra generator Y2 is:

Y2 =

 A2α−1 + α 1− A4 −A−2

A−2 A−2α−1 −A−4α−1

1 0 0

 .

Lastly, to complete the representation of A3(t) we find the action of the affine Hecke

algebra generator Y3 on the pattern basis.
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1 2 3

= =

1 2 3

=|1>Y'3

1 2 3 1 2 3

A -4 |2>= - -

A -3 - A -1 A -3 - A  A -3 -

|3> A -2 

=|2>Y'3

1 2 3

1 2 3 1 2 3 1 2 3

A -1 =

1 2 3

A +

1 2 3

=

1 2 3

A -1 A -1 

+ A A -1 + A A -1 A A +

= |1> A 2 + ( α A -2 |2>α-1 + ) + α |3>

1 2 3

=|3>Y'3

1 2 3

= = |3>g 

So the matrix for Y ′3 is:

Y ′3 =

 0 A2 0

−A−4 A−2α + α−1 0

−A−2 α g

 .
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By 2.9 we have that Y3 = T−1
2 Y2T

−1
2 which gives the normalisation factor to be

Y3 =

 −A
−2 α α−1

0 A2 0

0 0 A2


 A2α−1 + α 1− A4 −A−2

A−2 A−2α−1 −A−4α−1

1 0 0


 −A

−2 α α−1

0 A2 0

0 0 A2



= A2

 0 A2 0

−A−4 A−2α + α−1 0

−A−2 α α−1


= A2Y ′3 when g = α−1.

This normalisation factor is in perfect agreement with our tangle construction since:

Y3 = T−1
2 Y2T

−1
2 = AT ′−1

2 Y ′2AT
′−1
2 = A2T ′−1

2 Y ′2T
′−1
2 = A2Y ′3 .

It is also consistent with the value we previously obtained for g, notably g = α−1. Finally,

the last affine Hecke algebra generator in the N = 3 case is given by:

Y3 =

 0 A4 0

−A−2 A2α−1 + α 0

−1 A2α A2α−1

 .

This completes our construction of the tangle representation of A3(t).
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5A.2 N = 4 Tangle Representation

We have a choice: either puncture every basis element or leave them unpunctured. Here

we look only at the natural unpunctured case. By (5.1) there are two elementary pat-

terns that make the basis of this representation. Using the rules of Subsection 5.2.1, these

patterns are αβαβ and ααββ and are illustrated below.

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

αβαβ = |1>

= |2>=

==

=ααββ

As in the previous two cases we obtain the Hecke algebra generators {Ti|i = 1, 2, 3}.
These are given by:

T1 =

[
−A2 1

0 A−2

]
, T−1

1 =

[
−A−2 1

0 A2

]
,

T2 =

[
A−2 0

1 −A2

]
, T−1

2 =

[
A2 0

1 −A−2

]
,

T3 =

[
−A2 1

0 A−2

]
T−1

3 =

[
−A−2 1

0 A2

]
.

In this particular two dimensional basis σ is represented as:

σ =

[
0 1

1 0

]
, σ−1 =

[
0 1

1 0

]
.
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Finally the affine Hecke algebra generators {Yi|i = 1, 2, 3} are:

Y1 =

[
−1 0

0 −1

]
, Y −1

1 =

[
−1 0

0 −1

]
,

Y2 =

[
−A−4 A−2 − A2

0 −A4

]
, Y −1

2 =

[
−A4 A2 − A−2

0 −A−4

]
,

Y3 =

[
−A4 A2 − A−2

0 −A−4

]
, Y −1

3 =

[
−A−4 A−2 − A2

0 −A4

]
,

Y4 =

[
−1 0

0 −1

]
, Y −1

4 =

[
−1 0

0 −1

]
.

We see that this representation is not particularly interesting since σN = σ4 = 1 and

T1 = T3. Also Y1 = Y4 and Y3 = Y −1
2 which means the product of the Yi is simply the

identity.

4∏
i=1

Yi = Y1Y2Y
−1

2 Y1 = Y 2
1 = 1.
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5A.3 N = 5 Tangle Representation

In the N = 5 case, by (5.2) the basis is composed of 10 elementary patterns. Following

the rules for encoding patterns gives the basis elements pictured below.

4

5

1

2

3

ααβαβ =

4

5

1

2

3

αααββ =

4

5

1

2

3

βααβα =

4

5

1

2

3

βαααβ =

4

5

1

2

3

αβααβ =

4

5

1

2

3

ββααα =

4

5

1

2

3

βαβαα =

4

5

1

2

3

αββαα =

4

5

1

2

3

αβαβα =

4

5

1

2

3

ααββα =

The construction of the tangle representation for A5(t) is completed by describing the

action of the Hecke generators {Ti|i = 1, . . . , 4} and the affine Hecke generators {Yi|i =

1, . . . , 5} as well as the operator σ on the elementary tangles. The result is a 10 dimen-

sional matrix representation.
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5A.4 N = 6 Tangle Representation

Using (5.1) we know that 5 elementary tangles complete the basis of this representation.

All points are paired giving the basis {αβαβαβ, ααββαβ, αβααββ, ααβαββ, αααβββ}.
These elementary tangles are illustrated below.

1

2

3

4

5

6

1 2 3 4 65

1

2

3

4

5

6

1 2 3 4 65

1

2

3

4

5

6

1 2 3 4 65

1

2

3

4

5

6

1 2 3 4 65

1

2

3

4

5

6

1 2 3 4 65

= |1>=αβαβαβ =

= |2>=ααββαβ =

= |3>=αβααββ =

= |4>=ααβαββ =

= |5>=αααβββ =

Following the N = 4 case, the tangle representation of A6(t) is constructed in a very

similar fashion.
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Chapter 6

Knot Theory Connections

In this chapter we give our own understanding of the central role of the Hecke algebra

in the development of knot theory and in particular in the discovery of the two variable

knot polynomial known as the HOMFLY polynomial, discovered by Lickorish and Millett,

Freyd and Yetter, Oceanu, and Hoste in [9]. We will give a detailed presentation of the

construction of this polynomial following the approach of Jones in [25], that is via a

specific trace function defined on the Hecke algebra. Though this construction is well

known, we have included it due to the fact that it is very closely related to the tangle

representation of the previous chapter. Furthermore, readers may also be familiar with

the work contained in the remainder of this chapter. We nonetheless present it to give

our own interpretation and a clear and detailed account highlighting the importance of

the Hecke algebra to knot theory.

For example we explicitly derive the well known Jones polynomial [26] which is a

one variable specialisation of the HOMFLY polynomial. We present a detailed account

of a simple intuitive proof of its existence found by Kauffman in [23]. Furthermore we

clearly illustrate with concrete examples how to calculate, in several different ways, the

HOMFLY and Jones polynomial for some specific knots. Also, of particular interest to

us is the Jones polynomial of the operator σ, which as we previously derived, can be used

to determine the defining relations of the affine Hecke algebra. We will show that using

the trace of its graphical representation, which we constructed in Chapter 3, we obtain

all torus knots of arbitrary number of strands.

The connections between knot theory and the Hecke algebra, due to Jones, results

from studying the representation theory of the braid group BN , which is rooted in the

representation theory of the symmetric group SN . This is a consequence of the surjection

BN −→ SN , given by mapping the elementary braid to the transposition si = (i, i + 1).
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Therefore we can obtain new information about representations of BN by studying the

collection of irreducible representations of SN and lifting them to representations of BN
by deforming them.

In particular, deforming the symmetric group gives the Hecke algebra HN(q) on which

we define a Markov trace. The Markov trace on the Hecke algebra, which is due to Oceanu

in [9], is unique and describes a relation between an N and an N+1 dimensional algebraic

structure. Ensuring that this trace remains invariant under Markov moves, which one

can think of as Reidemeister moves on closed braids, means that the closure of a braid

in BN represented within HN(q) must also be invariant. The result discovered by Jones

in [25] is a two variable invariant of oriented links obtained via the closure of braids

in BN . This invariant is essentially the HOMFLY polynomial which is obtained via

reparameterisation.

6.1 Links via Braids

In Chapter 2 we defined the braid group BN and the Hecke algebra HN(q) in a somewhat

general fashion. Here to avoid confusion and as distinction between both sets of generators

is needed, we redefine the braid group BN as the group generated by elements {σi|i =

1, .., N − 1} with relations

σiσj = σjσi for |i− j| ≥ 2, (6.1)

σiσi+1σi = σi+1σiσi+1 otherwise . (6.2)

Note that one may easily recover the presentation of the braid group of Chapter 1 by

simply sending σi to Ti. Furthermore its pictorial representation is still described by

defining σi and its inverse σ−1
i to correspond to the exchange of the ith and (i + 1)th

strands as illustrated in Section 3.1.

Given a braid α ∈ BN we can always form the oriented link L = α̂, called the trace

closure of α in the following way: connect the strand at the rightmost top peg around to

the right to the strand at the rightmost bottom peg, then connect in the same way the

next to rightmost top and bottom strands and so on, until all strands top and bottom are

connected. In Figure 6.1 the trace closure of the braid α = σ1σ
−1
2 σ1σ

−1
2 is the oriented

link α̂ known as the figure-8 knot.
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α = σ σ σ σ 
-1 -1 

21 1 2
L = α̂ 

Figure 6.1: The trace closure of α = σ1σ
−1
2 σ1σ

−1
2 ∈ B3 is the link L known as the figure-8

knot.

Figure 6.1 also highlights another point. In [27], J. Alexander asserts that any tame

oriented link is isotopic to the closure of a braid in BN . We highlight though, that the

representation of a link as a closed braid is non-unique; that is the closure of many

different braids give rise to the same link.

However Markov’s Theorem [28] states that if braids α ∈ BN and δ ∈ BM have

isotopic closures, then there is a finite sequence of Markov moves which takes one to the

other. For its complete proof readers are referred to Birman in [29] which published the

first detailed proof. There are two types of permissible moves. A Markov move of type I,

called conjugation, changes α ∈ BN to βαβ−1 ∈ BN for any braid β ∈ BN , as described

in Figure 6.2.

OR

Figure 6.2: Markov move of type I. Conjugation by σj leaves the braid and the oriented
link corresponding to the braid closure unchanged.

The Markov moves of type II, called stabilisation (and destabilisation respectively),

change α ∈ BN to ασ±1
N ∈ BN+1. We illustrate this in Figure 6.3.

Therefore under Markov moves, the oriented link corresponding to the closed braid

remains unchanged. This property is crucial in describing the construction of a two

variable polynomial invariant arising from the representations of the braid group BN .
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OR

Figure 6.3: A Markov move of type II. Stabilisation adds a loop to the closed braid.
Similarly destabilisation deletes a loop from the closed braid.

6.2 HN(q) and SN revisited

In this section we describe all representations of the braid group in which its generators σi

have at most two eigenvalues. Writing gi for the image of σi, under such a representation

we must have a quadratic equation of the form g2
i + agi + b = 0, where a, b are scalars.

It is common convention to assume one of the eigenvalues is 1 and eliminate one of the

variables to obtain the quadratic relation

g2
i = (q− 1)gi + q, q a scalar.

This familiar expression is of course the Hecke relation. Therefore it is now evident that

knowledge of representations of BN in which the σis have at most two eigenvalues is the

same as knowledge of the Hecke algebra HN(q).

Recall that HN(q) is the algebra with generators g1, . . . , gN−1, satisfying the relations

gigj = gjgi for |i− j| ≥ 2, (6.3)

gigi+1gi = gi+1gigi+1 otherwise , (6.4)

g2
i = (q− 1)gi + q. (6.5)

From the above definition of HN(q) it is clear that for each q 6= 0, BN has a repre-

sentation inside HN(q) obtained by sending σi to gi.

It is at this point useful to highlight the reason for our change in notation. In Chapter

2 we defined the Hecke algebra in terms of generators Ti and parameter t. Here we repre-

sent the generators by gi and the parameter by q. The reason being, that in this section

we describe all representations of BN where its generators have at most two eigenvalues.

This is the general case, whereas in Chapter 2 we defined HN(t) where the braid group
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generators have eigenvalues given specifically by t1/2 and −t−1/2. Furthermore the gen-

erators gi are a scaled version of the Ti and hence a change of notation is necessary. If

one desires, simply substituting t for q and sending gi −→ t1/2Ti in the above relations,

one recovers the initial definition of HN(t) in Chapter 2.

Now recall that in Subsection 2.3, we saw pointed out that the Hecke algebra can

be thought of as a “deformation” of the symmetric group SN , which is generated by

s1, . . . , sN−1 with relations

sisj = sjsi for |i− j| ≥ 2, (6.6)

sisi+1si = si+1sisi+1 otherwise , (6.7)

s2
i = 1. (6.8)

Irreducible representations of SN are parameterised by Young Tableaux. Furthermore

as a vector space, it is shown in [30] that SN is spanned by N ! reduced words in the

transpositions si:{
(si1si1−1 . . . si1−k1)(si2si2−1 . . . si2−k2) . . . (sipsip−1 . . . sip−kp)

}
, (6.9)

where 1 ≤ i1 < i2 < . . . < ip ≤ N − 1 and ij − kj ≥ 1.

Now imagine trying to reduce words on the gis and σis to words of minimal length.

Then relation (6.8) is as good as the Hecke relation (6.5) for this purpose. Thus a system

of reduced words of the si ∈ SN will furnish a N ! dimensional basis for HN(q). By

simply writing gi for si in (6.9), a convenient such basis is:

{
(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp)

}
, (6.10)

where 1 ≤ i1 < i2 < . . . < ip ≤ N − 1 and ij − kj ≥ 1 [25].

Before we introduce a trace function on HN(q), it is essential to give the following

important statement due to Jones in [25]. By [31], given q is not a root of unity or zero,

the quadratic irreducible representations of BN are in one-to-one correspondence with

Young Tableaux. Therefore their decomposition rules and their dimensions are the same

as for SN .

We are now in a position to define Oceanu’s trace on the Hecke algebra.
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6.3 Oceanu’s trace on HN(q)

In the following we will always consider HN(q) as embedded in HN+1(q) via (6.10), and

the representation of BN inside HN(q) will be denoted by f , so that f(σi) = gi.

The trace on HN(q) is due to Oceanu [9]. It states that for every z ∈ C, there is a

linear trace function tr:
⋃∞
N=1HN(q) −→ C uniquely defined by

1) tr(1) = 1,

2) tr(ab) = tr(ba),

3) tr(xgn) = ztr(x) for x ∈ HN(q).

The uniqueness of this trace function is proved inductively in [25] using the N ! element

basis given by (6.10). Due to its significance, we outline this proof in Appendix 6A.1.

Note the similarity between the third property of the trace function and the Markov move

of type II. Both expressions describe a relation between an N and a N + 1 dimensional

structure. As such this property is known as a Markov property and the trace tr is a

Markov trace.

It is now clear that given the properties of the trace function in addition to the Hecke

relation (6.5), it is possible to calculate the trace of any element of HN(q).

As an example consider the braid word α = σ3
1 ∈ B2, where we note that its trace

closure α̂ is the right handed trefoil and that f(σ3
1) = g3

1.

tr(g3
1) = tr(g2

1g1)

= tr
(
(q− 1)g2

1 + qg1

)
by (6.5)

= (q− 1)tr(g2
1) + qtr(g1)

= (q− 1)tr ((q− 1)g1 + q) + qz by (6.5) and property 3

= (q− 1)2z + q(q− 1) + qz by property 3

= (q2 − q + 1)z + q(q− 1).

The calculation of the trace of all other elements of HN(q) follows in a similar fashion.
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6.4 The two variable Knot Polynomial

The key to the construction of this knot invariant lies in the fact that the trace function

on the Hecke algebra is a Markov trace. Therefore we slightly modify the function f :

f(σi) = gi, to obtain from a given braid, a two variable knot polynomial which is also

invariant under the stabilisation move. Such a polynomial will be Markov invariant and

hence an invariant of the knot type of the closed braid.

Algebraically, stabilisation and destabilisation take the form α ∈ BN → ασ±1
N ∈

BN+1. It is then necessary to rescale our representation f in such a way that both

Markov moves of type II have the same effect on the trace function. We do this as

follows:

Suppose there exists θ ∈ C such that tr(θgi) = tr((θgi)
−1), then solving for θ gives

tr(θgi) = tr(g−1
i θ−1)

⇒ θ2tr(gi) = tr(g−1
i ).

But using the Hecke relation (6.5) and the third property of the trace tr, we obtain

θ2 =
tr(g−1

i )

tr(gi)
=

tr(q−1gi − 1 + q−1)

z
=

z − q + 1

qz
.

Letting λ = θ2 and solving for z gives

z =
−(1− q)

1− λq
. (6.11)

Defining fλ : BN → HN(q) by fλ(σi) =
√
λσi, the action of the trace tr on the represen-

tation f of BN now acts as follows:

tr (fλ(σi)) = z
√
λ = −

√
λ

(
1− q

1− λq

)
.

We would like to define a map BN → Z[q±1, λ±1] which is Markov invariant. Presently

we have that

tr
(
f(α ·

√
λσN)

)
= −
√
λ

(
1− q

1− λq

)
= tr

(
f(α ·

√
λσ−1

N )
)
,

for any α ∈ BN . However we see that the quantity(
−(1− λq)√
λ(1− q)

)N−1

tr (fλ(α)) for α ∈ BN ,
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depends only on the link formed by the closure of α, that is, α̂. Hence the two variable

invariant XL(q, λ) of the oriented link L is given by

XL(q, λ) =

(
−(1− λq)√
λ(1− q)

)N−1 (√
λ
)e

tr (f(α)) , (6.12)

where α ∈ BN is any braid with closure L = α̂, e being the the sum of the powers of α

as a word on the σi and f the representation of BN in HN(q), f(σi)→ gi.

The two variable knot polynomial, a Laurent polynomial PL(t, x), is obtained via

substitution. Letting t =
√
λ
√
q and x =

√
q − 1/

√
q in (6.12), then PL(t, x) =

XL(q, λ).

Moreover, PL(t, x) is uniquely defined by the skein relation

t−1PL+ − tPL− = xPL0 , (6.13)

where L+, L− and L0 are any three oriented links that are identical except near a point

where they are as in Figure 6.4.

L+ L- L0

Figure 6.4: Crossing types L+, L− and L0.

To illustrate in detail how to evaluate the knot polynomial PL(t, x) by firstly calcu-

lating the invariant XL(q, λ), we present the following example.

Example

We calculate XL(q, λ) for the right handed trefoil. Recall that the right handed trefoil is

given by the closure of the braid α = σ3
1.

We have that α = σ3
1 = σ1σ1σ1 ∈ B2 ⇒ N = 2 and e = 3. Hence with f(σ3

1) = g3
1

(6.12) becomes

XL(q, λ) =
−(1− λq)√
λ(1− q)

(√
λ
)3

tr(g3
1).
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We already calculated that tr(g3
1) = (q2 − q + 1)z + q(q− 1), hence using the value of z

given by (6.11), we find that

XL(q, λ) =

(
−(1− λq)√
λ(1− q)

(√
λ
)3
)(
−(q2 − q + 1)

(1− q)

1− λq
+ q(q− 1)

)
=

(
−λ(1− λq)

(1− q)

)(
−(1− q)(q2 + 1− λq2)

1− λq

)
= λ(q2 + 1− λq2).

Its corresponding two variable knot polynomial PL(t, x) is given by the substitution t =√
λ
√
q and x =

√
q− 1/

√
q . For the right handed trefoil it is the polynomial

PL(t, x) = λq
(
(
√
q− 1/

√
q)2 + 2− λq

)
= t2(x2 + 2− t2)

= x2t2 + 2t2 − t4.

Let us now verify this result by explicitly evaluating PL(t, x) using the skein relation

(6.13). However before using the skein relation on the right handed trefoil, it is neces-

sary to know the polynomial PL(t, x) associated with the N -component unlink. This is

particularly simple since the N -component unlink is given by the closure of the identity

braid ∈ BN . Therefore (6.12) simply becomes

XL(q, λ) =

(
−(1− λq)√
λ(1− q)

)N−1

,

and hence after substitution its associated polynomial is

PL(t, x) =

(
t−1 − t
x

)N−1

. (6.14)

It is also convenient to firstly find PL(t, x) for the Hopf link with orientation as pictured

in the resolving tree below.
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=

=

K1 K2

L0L-

Note that this link is the closure of the braid σ2
1, and since both links have the same

orientation, the crossing encircled in red is an L+ crossing, hence we replaced it with L−

and L0 crossings respectively. So this Hopf link decomposes into the unknot in addition

to the disjoint union of two unknots. Using the skein relation (6.13), as well as (6.14) we

get

PL+(t, x) = xtPL0 + t2PL−

= xtPL0(K2) + t2PL−(K1)

= xt(1) + t2
(
t−1 − t
x

)
= xt+ x−1t− x−1t3.

Similarly the right handed trefoil is the closure of the braid σ3
1 and hence its resolving

tree is given by the following diagram:

L0 L-

We see that the trefoil breaks into a Hopf link of L+ crossing, where both links have the

same orientation, in addition to the unknot. Hence its two variable polynomial PL(t, x)

is

PL+(t, x) = xtPL0 + t2PL−

= xt(xt+ x−1t− x−1t3) + t2(1)

= x2t2 + 2t2 − t4,

as expected. This is in perfect agreement with the polynomial obtained via the invariant
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trace function on HN(q).

6.5 When BN has eigenvalues t1/2, −t−1/2

For completeness we derive PL(t, x) in the case when BN has two eigenvalues, namely t1/2

and −t−1/2. These eigenvalues correspond to the braid group BN introduced in Chapter

2 with relations (2.1)-(2.2), and whose associated Hecke algebra HN(t) satisfies the Hecke

relation (2.3) given by T 2
i −

(
t1/2 − t−1/2

)
Ti = 1.

For convenience we let k =
(
t1/2 − t−1/2

)
1. This implies that the Hecke relation is

given by T 2
i = kTi + 1 and furthermore we have T−1

i = Ti − k. We now follow the

derivation of PL(t, x) in Section 6.4 to firstly find the two variable invariant XL(k, λ) of

the oriented link L.

Simple calculations show that z = k/(1− λ) and hence

tr (fλ(Ti)) = z
√
λ =

√
λ

(
k

1− λ

)
.

Therefore in this specific case, equation (6.12) for the invariant XL(k, λ) becomes

XL(k, λ) =

(
1− λ√
λk

)N−1 (√
λ
)e

tr (f(α)) , (6.15)

where as before α ∈ BN is any braid with closure L = α̂, e is the exponent sum of α as

a word on the σi and f the representation of BN in HN(t).

Its two variable knot polynomial Laurent polynomial PL(t, x) is obtained via the substi-

tution t =
√
λ and x = k.

As an example we consider the right handed trefoil again. We already know that

f(α) = T 3
1 , N = 2 and e = 3. Using the properties of the trace function on HN(t) from

Section 6.3 we find that

tr(T 3
1 ) = tr(T 2

1 T1)

= ktr(T 2
1 ) + tr(T1)

= (k2 + 1)z + k

=
k(k2 + 2− λ)

1− λ
.
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The invariant XL(k, λ) resulting from the trace on HN(t) when the representation of BN
within it has eigenvalues t1/2 and −t−1/2 is from (6.15)

XL(k, λ) =

(
1− λ√
λk

)(√
λ
)3
(
k(k2 + 2− λ)

1− λ

)
= λ(k2 + 2− λ).

Substituting t =
√
λ and x = k, we obtain

PL(t, x) = x2t2 + 2t2 − t4,

as anticipated.

6.6 HOMFLY Polynomial

It is important to note that the two variable knot polynomial PL(t, x) derived in Section

6.4 is essentially the HOMFLY polynomial, but not exactly the original HOMFLY that

appeared in [9] and not the one that is quoted in literature.

Given the invariant XL(q, λ) defined by (6.12), the HOMFLY polynomial P (L), of

the oriented link L, is obtained by the reparameterisation of the variables t and x to

` = it−1 and m = ix, where i2 = −1.

Therefore in terms of λ and q we have

` = it−1 ⇒ t = i`−1 =
√
λ
√
q

m = ix ⇒ x = −im =
√
q− 1/

√
q.

Furthermore the HOMFLY polynomial is defined by the following skein relation

`P (L+) + `−1P (L−) +mP (L0) = 0, (6.16)

where L+, L− and L0 are the crossings as in Figure 6.4. In addition to this P (©) = 1,

that is, the unknot has HOMFLY polynomial 1.

Using the skein relation (6.16), we can immediately evaluate the HOMFLY polynomial

of two disjoint unknots.

P ( ) ( ) P
-1

+ + P( ) = 0l l m
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We see that P (L+) and P (L−) are simply slightly twisted unknots, therefore:

P (L+) = P (L−) = 1

⇒ P (L0) = −m−1(`+ `−1).

So the HOMFLY polynomial of two disjoint unknots is given by −m−1(`+ `−1). We will

now use this result to evaluate the HOMFLY polynomial for the left handed trefoil.

In the resolving tree below, replacing the highlighted L− crossing with L0 and L+

crossings, the left handed trefoil breaks down into a Hopf link in addition to the unknot.

L0 L+

Therefore we find that its HOMFLY polynomial is given by

P (L−) = −m`P (L0)− `2P (L+)

= −m`(−m`+m−1`3 +m−1`)− `2(1)

= m2`2 − `4 − 2`2.

Note that in the above calculation we used the fact that the HOMFLY polynomial of

a Hopf link with L− crossing is P (L−) = −m` + m−1`3 + m−1`. (We have included a

complete description of Hopf links in Appendix 6A.2.)

In a similar fashion we can easily evaluate the HOMFLY polynomial for the right

handed trefoil, by observing its decomposition into a Hopf link with L+ crossing in

addition to the unknot. In this case we obtain P (L+) = m2`−2−2`−2− `−4. Clearly this

resulting polynomial is not the same as the one we calculated for the left handed trefoil.

The point being that the HOMFLY polynomial differentiates between right handed and

left handed trefoils. This leads us to introduce the following nice property of P (L): the

HOMFLY polynomial of a composite knot is simply the product of the individual link

polynomials, that is

P (L1#L2) = P (L1)P (L2). (6.17)
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A particularly transparent example is that of the reef knot and the granny knot, which

we illustrate below.

granny knotreef knot

The reef knot combines a left handed trefoil and a right handed trefoil. Hence its HOM-

FLY polynomial by (6.17) in addition to the results we previously obtained, is

P (reef) = (−2`2 − `4 +m2`2)(−2`−2 − `−4 +m2`−2),

which can be easily verified using the skein relation (6.16).

Similarly the granny knot is the product of two left handed trefoils, so unsurprisingly its

HOMFLY polynomial is

P (granny) = (−2`2 − `4 +m2`2)2.

In the following section we will derive the Jones polynomial [26], which is a one variable

specialisation of the HOMFLY polynomial. Interestingly the Jones polynomial is unable

to distinguish between a granny knot and a reef knot.

6.7 The Jones Polynomial

The Jones polynomial [26], V (L), is a one variable polynomial invariant for oriented links.

It is a Laurent polynomial in the variable t1/2 which satisfies

V (unknot) = 1,

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0, (6.18)

where L+, L− and L0 are as in Figure 6.4.

It is important to note that in a projection of an oriented link L, the crossings are of two

types; that of L+ in Figure 6.4 is called positive, that of L− is negative.
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As we previously mentioned, the Jones polynomial is a specialisation of the HOMFLY

polynomial. As such V (L) is obtained from P (L) by the substitution

(`,m) =
(
it−1, i(t−1/2 − t1/2)

)
, where i2 = −1.

However, there exists a much more intuitive way to find V (L). Following [32] we

outline an almost trivial proof of the existence of the Jones polynomial found by L. H.

Kauffman [23]. This remarkable proof provides the reader with an excellent insight in

calculating the Jones polynomial of any link.

We begin by considering projections of unoriented links. For each such projection L

define a Laurent polynomial 〈L〉 in one variable A by the following three rules:

(i)                =  1 ,

(ii)                =  A           +  A            ,

(iii)                   =  (-A  - A  )        .

< <
-1< < < < < <

2 -2
U < << <L L

This 〈L〉 is called the bracket polynomial of L. (It is also known as the Kauffman bracket).

Rule (i) states that 1 is the polynomial of the particular projection of the unknot that has

no crossing at all. Rule (ii) describes how to write a crossing in terms of a combination

of two other projections where that crossing has been destroyed. The last rule states

that the polynomial of the union of L with a disjoint loop can be rewritten as the factor

(−A2 − A−2) times the polynomial of L.

It is evident from the above rules that the choice of order in which the crossings are

chosen is irrelevant. Furthermore, each application of rule (ii) reduces the number of

crossings in the projections until there are no crossings at all. To verify that 〈L〉 is in

fact an invariant of real links, we must see if it remains unchanged by the Reidemeister

moves introduced in 5.2.

Recall that Reidemeister Move I allowed us to include or exclude twists:

(i)                 =  A           +  A

(i)                 =  (A (-A  - A  ) + A  )

(i)                 =  -A         .

-1

3

< < -1

2 -2

< <
< <

< < < <
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In a similar fashion we show that:

(i)                 =  A          +  A

(i)                 =  (A + A  (-A  - A  ))

(i)                 =  -A          .

-1

-3

-1

2 -2

< <
< <

< << << <

Thus the bracket polynomial fails to be invariant under Move I. Let us see if this is also

true for Move II.

< <
< <(i)                 =  A             +  A

(i)                 =  - A             + A  (                               )

(i)                 =            .

-1

-1

-2

< < < <
< < A           +  A-1< < < <

The calculation above shows that the bracket polynomial is in fact invariant under Move

II. Finally Move III allowed us to move a string from one side of a crossing to the other

side of the crossing:

< <(i)                 =  A              +  A

(i)                 =  A              +  A

(i)                 =               .

-1

-1< < < <
< < < <

< <
Hence there is also invariance under Move III.

Now give L an orientation. Let w(L), the writhe of L, be the algebraic sum of the

crossings of L, counting +1 for a positive crossing and -1 for a negative crossing. It is clear

that Move I adds or subtracts 1 to w(L), so the writhe of L is certainly not invariant under

this move. However w(L) is invariant under Moves II and III. Thus any combination of

w(L) and L will be invariant under Moves II and III, and their non-invariant behaviours

under Move I cancel in the expression of the Kauffman polynomial X(L) defined as:

X(L) = (−A)−3w(L)〈L〉.

The above completes Kauffman’s remarkable proof that the polynomial X(L) is a well

defined invariant of oriented links. Using the above expression for X(L) we can now

obtain the skein relation (6.18) of the original Jones polynomial V (L) in several simple

steps.
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Rule (ii) implies that:

< <
< <=  A           +  A            , and

=  A           +  A            .

-1< < < <
-1< < < <

Therefore:

A           -  A             =  (A  -  A  )          .2 -2 < <-1< < < <
Suppose that orientations can be chosen for these last three projections so that the

arrows point approximately upwards as in Figure 6.4. Call them L+, L− and L0. Then

w(L±) = w(L0)± 1 and direct substitution gives:

A(−A)3X(L+)− A−1(−A)−3X(L−) = (A2 − A−2)XL0 .

Writing A = t−1/4 this becomes

t−1X(L+)− tX(L−) + (t−1/2 − t1/2)X(L0) = 0,

completing the fact that under the substitution A = t−1/4, X(L) is the original Jones

polynomial V (L), for they satisfy the same defining formula.

In the next section we describe explicitly how to evaluate the Jones polynomial of a

given link by calculating its Kauffman bracket using the method outlined above.

6.8 Tracing over AN(t) elements

In Section 6.4 we presented Jones’ discovery in [25] of a two variable knot polynomial

PL(t, x), arising from the study of representations of the Hecke algebra. The existence of

this knot polynomial, which is related to the HOMFLY polynomial, is dependent on the

Markov trace, tr, defined on the Hecke algebra. In this section we investigate the effect

of tracing over elements of the affine Hecke algebra. In particular we look at the trace

closure of the operator σ, (2.11), which yields interesting results.

Recall that in Subsection 2.2.1 we defined the affine Hecke algebra AN(t), purely in

terms of the Hecke algebra generators, Ti, and an operator σ defined as

σ := T−1
N−1T

−1
N−2 . . . T

−1
1 Y1. (6.19)
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We also derived that σN is central in AN(t). Subsequently in Chapter 3 we constructed

its pictorial representation and saw that it acts as a kind of raising operator on the in-

dices. In the 3 strand case, N = 3, σ is described by

σ

=

1
2

3

1 2 3

We now investigate the effect of the trace closure, as described in Section 6.1, on σ.

Graphically, tracing over the element σ is equivalent to identifying the top and bottom

edges of the cylinder with each other. The trace closure of σ, denoted tr(σ), therefore

represents a particular type of knot. The resulting knot is a torus knot T(p,q), where the

strand wraps p times in the meridional direction and q times in the longitudinal direction

of the torus.

σ =

1 2 3

=3

1

meridian longitude

p

q

tr (    )

Note that in the diagram above we depicted σ in the N = 3 strand case, where the sub-

script 3 denotes the number of strands and also p, the number of times, when opposite

edges are identified, that the resulting strand wraps in the meridional direction of the

torus.

Thus we have just shown that tracing over σ1
3, that is the element σ in the N = 3 case,

generates the torus knot T(3,1). It is then clear that every torus knot can be written in

terms of the trace closure of σ; increasing the number of strands gives the parameter p,

while raising σ to different powers yields q:

tr
(
σqp
)

= T(p,q)
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As we have previously mentioned, every oriented link is isotopic to the closure of a

braid in BN . Hence, associated to every torus knot is a braid word ω; for the torus knot

T(p,q) the braid word given in terms of the Hecke algebra generators Ti is

ω = (Tp−1 . . . T1)q.

So in the case of the trace closure of σ1
3, we obtain the braid word ω = (Tp−1 . . . T1)q =

(T2T1)1, as we have illustrated in the diagram below.

σ =

1 2 3

=3

1tr (    ) => T T2 1=ω

1 2 3

Having found that the tr(σ1
3) is given by the closure of the braid T2T1, we can easily

evaluate its HOMFLY polynomial as we described in Section 6.5. However before doing

so we will firstly evaluate the Jones polynomial V (L) of the trace closure of σ1
3. We

choose to do this as an explicit example to demonstrate Kauffman’s intuitive approach

to calculate the Jones polynomial of any link.

Following our description of Kauffman’s proof in Section 6.7, we begin by finding the

bracket polynomial of the tr(σ1
3), before calculating its Kauffman polynomial X(L) and

then using the substitution A = t−1/4 to obtain its associated Jones polynomial.

The Kauffman polynomial of the trace of σ1
3 is given by

X(L) = (−A)−3w(L)〈L〉,

with L = tr(σ1
3). Firstly we find the bracket polynomial of the trace closure of σ1

3. In

the following diagram we provide the resolving tree for its evaluation. At each step we

have encircled in red, the crossing chosen to be decomposed. We decompose every such

crossing using the rules derived in Section 6.1. It is also worth mentioning that we have

assigned an orientation to the knot to enable the calculation of its writhe.
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σ ==3

1tr (    )

K1 K2

K3

K4
K5

K6

τ
τ

1 2 3

From the resolving tree we find that the bracket polynomial of the tr(σ1
3) is

〈tr(σ1
3)〉 = A〈K1〉+ A−1〈K2〉

= A
(
A〈K3〉+ A−1〈K4〉

)
+ A−1τ

(
A〈K5〉+ A−1〈K6〉

)
= A2〈o〉+ τ〈o〉+ τ〈o〉+ A−2τ 2〈o〉

= A−6,

where we used the substitution τ = (−A2 − A−2).

Now using the writhe of the tr(σ1
3) we evaluate its Kauffman polynomial X(L). With the

given orientation there are two negative crossings implying that w(L) = −2 and hence:

X(tr(σ1
3)) = (−A)−3(−2)(A−6) = 1.

Since there are no As in the final expression, the Jones polynomial of the trace of σ1
3 is

V (tr(σ1
3)) = 1.

But by (6.18), the Jones polynomial of the unknot has the value 1. Therefore σ1
3 is a

particular projection of the unknot. This somewhat surprising result is verified given the

following expression for the Jones polynomial of a torus knot T(p,q):

V (t) = t(p−1)(q−1)/2

(
1− tp+1 − tq+1 + tp+q

1− t2

)
. (6.20)

Clearly this equation is interchangeable for p and q as desired and given p=1, q arbitrary

or q=1, p arbitrary we obtain the Jones polynomial of the unknot V (t) = 1. In the case
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of tr(σ1
3), q=1 and hence it is completely anticipated that its Jones polynomial is that of

the unknot.

Since the Jones polynomial of the trace closure of σ1
3 is simply 1, then the HOMFLY

polynomial of the tr(σ1
3) must also necessarily be equal to 1. We will explicitly verify

this.

To find its HOMFLY polynomial we evaluate its associated two variable invariant

XL(k, λ), which by (6.15) is given by

XL(k, λ) =

(
1− λ√
λk

)N−1 (√
λ
)e

tr (f(α)) ,

and then use the substitutions t = i`−1 =
√
λ and x = −im = k. We already know

that f(α) = T2T1 ∈ B3, hence N = 3 and e = 2. Furthermore using the properties of

the trace function on HN(t) from Section 6.3, we find that

tr(T2T1) = ztr(T1) = z2.

Therefore, using the value for z, that is z = k/(1− λ), the two variable invariant of the

trace closure of σ1
3 is

XL(k, λ) =

(
1− λ√
λk

)2 (√
λ
)2

z2 =

(
1− λ√
λk

)2 (√
λ
)2
(

k

1− λ

)2

= 1.

As a result, the HOMFLY polynomial of the tr(σ1
3) is also equal to 1, as expected.

This concludes the final chapter of this thesis which described the importance of the

Hecke algebra in the development of knot polynomials. In summary, we presented the

discovery by Jones of a two variable invariant for oriented links obtained by studying

representations of the braid group. The construction of this invariant was largely due

to a specific trace, called the Markov trace, on the Hecke algebra. We showed that

the resulting invariant is a two variable knot polynomial. Under reparameterisation this

polynomial gave the HOMFLY polynomial, which we also described in terms of its skein

relation. In addition to this we also gave a detailed account of Kauffman’s construction of

the Jones polynomial, which is a one variable specialisation of the HOMFLY polynomial.

Finally using the graphical representation of the operator σ, which we constructed

in Chapter 3, we explicitly evaluated the Jones and HOMFLY polynomials of the trace
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closure of σ. We also highlighted that the fact that every torus knot can be written purely

in terms of the trace closure of σ.
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Appendix 6

6A.1 Oceanu’s tr is unique

We provide a detailed description of Jones inductive proof which can be found in [25].

We prove that for every z ∈ C, there is a linear trace function tr:
⋃∞
N=1HN(q) −→ C

uniquely defined by

1) tr(1) = 1,

2) tr(ab) = tr(ba),

3) tr(xgn) = ztr(x) for x ∈ HN(q).

The uniqueness of this trace function is proved inductively using the N ! element basis

given by

{
(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp)

}
, (6A.1)

where 1 ≤ i1 < i2 < . . . < ip ≤ N − 1 and ij − kj ≥ 1.

It suffices to show that a trace on HN(q) can be uniquely extended to a trace on

HN+1(q). The basic elements of HN+1(q) which do not belong to HN(q) are of the form

xgNy with x , y ∈ HN(q). This follows from the fact that by (6A.1), we note that any

word for HN+1(q) contains gN at most once.

We must define the extension of the trace by:

tr(xgNy) = ztr(x) for xgNy ∈
WN+1(gi)

WN(gi)
,

where WN+1(gi) is all the words of the gi in HN+1(q), and WN(gi) is all the words of the

gi in HN(q).

We have to show that the linear extension of this definition to HN+1(q) is in fact a trace.

We are free to define a linear functional inductively from tr(1) = 1 and tr(xgn) = ztr(x)

for x , y ∈ HN(q). Therefore we need to show the second property, namely that tr(ab) =

tr(ba).
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By induction we may suppose it for a , b ∈ HN(q). The only non trivial case, where

all elements do not commute is

tr(gNxgNy) = tr(xgNygN) ,

but since by (6A.1) any word forHN+1(q) contains gN at most once, we need only consider

the following four cases:

(A) When x , y ∈ HN−1(q),

(B) When x = agN−1b with a , b , y ∈ HN−1(q),

(C) When y = agN−1b with a , b , x ∈ HN−1(q),

(D) When x = agN−1b and y = cgN−1d with a , b , c , d ∈ HN−1(q).

To verify all of the four cases we will use the following relations: the three properties

of the trace function tr denoted (1), (2) and (3), the braid relation (6.4) and the Hecke

relation (6.5).

(A) We begin by examining case (A). We have that x , y ∈ HN−1(q) and need to show

that tr(gNxgNy) = tr(xgNygN).

This follows simply because since x , y ∈ HN−1(q) and gN ∈ HN+1(q), then gN commutes

with both x and y. Therefore:

gNx = xgN and gNy = ygN

⇒ tr(gNxgNy) = tr(xgNygN)

(B) Now we look at case (B). We have that x = agN−1b with a , b , y ∈ HN−1(q) and

need to show that

tr(gNagN−1bgNy) = tr(agN−1bgNygN). (6A.2)

We look at the LHS of (6A.2) firstly and note that a and b commute with gN ; hence

tr(gNagN−1bgNy) = tr(agNgN−1gNby)

= tr(agN−1gNgN−1by) by (6.4)

= ztr(agN−1gN−1by) by (3)

= ztr(ag2
N−1by).
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Now we use the Hecke relation (6.5) to rewrite g2
N−1 as g2

N−1 = (q− 1)gN−1 + q. Substi-

tution means we now have that

tr(gNagN−1bgNy) = ztr(a(q− 1)gN−1by) + ztr(aqby)

= (q− 1)ztr(agN−1by) + qztr(aby).

We look at the RHS of (6A.2) and see that b and y commute with gN ; therefore

tr(agN−1bgNygN) = tr(agN−1bg
2
Ny)

= tr(agN−1b(q− 1)gNy + agN−1bqy) by (6.5)

= (q− 1)tr(agN−1bgNy) + qtr(agN−1by)

= (q− 1)ztr(agN−1by) + qztr(aby) by (3).

Since the expressions we derived for the LHS and RHS are equal, then

tr(gNagN−1bgNy) = tr(agN−1bgNygN). (6A.3)

(C) Case (C) follows analogously from case (B) above since the roles of x and y are

simply reversed.

(D) Lastly we show case (D). We have that x = agN−1b and y = cgN−1d with a , b , c , d ∈
HN−1(q) and need to show that

tr(gNagN−1bgNcgN−1d) = tr(agN−1bgNcgN−1dgN). (6A.4)

We look at the LHS of (6A.4) firstly and note that a and b commute with gN ; hence

tr(gNagN−1bgNcgN−1d) = tr(agNgN−1gNbcgN−1d)

= ztr(ag2
N−1bcgN−1d) by (6.4) and (3)

= (q− 1)ztr(agN−1bcgN−1d) + qztr(abcgN−1d) by (6.5)

= (q− 1)ztr(agN−1bcgN−1d) + qz2tr(abcd) by (3).
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We look at the RHS of (6A.4) and see that b and d commute with gN ; therefore

tr(agN−1bgNcgN−1dgN) = tr(agN−1bcgNgN−1gNd)

= ztr(agN−1bcg
2
N−1d) by (6.4) and (3)

= (q− 1)ztr(agN−1bcgN−1d) + qztr(agN−1bcd) by (6.5)

= (q− 1)ztr(agN−1bcgN−1d) + qz2tr(abcd) by (3).

Clearly we now have that the LHS is equal to the RHS and hence

tr(gNagN−1bgNcgN−1d) = tr(agN−1bgNcgN−1dgN). (6A.5)

As we have proved all four cases this completes the proof that the linear trace function

tr is uniquely defined.

6A.2 Hopf Links

This appendix is included to highlight the subtleties involved in calculating the HOM-

FLY and Jones polynomials of Hopf links with various orientations. It is an important

example because the Hopf link is a two component link, hence we must account for the

orientation of each individual link. An important feature of the HOMFLY polynomial is

that it gives the same polynomial for a knot with given orientation as for the same knot

with the orientation reversed. This is not true for the Jones polynomial.

A knot is a one component link, therefore with Hopf links reversing the orientation

of both links leaves its HOMFLY polynomial unchanged, whereas we obtain a different

polynomial is we reverse the orientation of one of the links. The same holds true for the

Jones polynomial. We demonstrate these subtleties in the following examples.

Case 1:

Consider the HOMFLY polynomial for the Hopf link where both links have opposite

orientations. In the diagram below the first link has anticlockwise orientation and the

second link has clockwise orientation. The crossing encircled in red is a negative L−

crossing, hence we find the HOMFLY polynomial for this Hopf link for L−. Replace this

crossing with an L+ and with an L0 crossing and evaluate the resulting knots.
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=

=

L+

K1 K2

L0

From skein relation (6.16) and resolving tree above:

P (L−) = −m`P (L0)− `2P (L+)

= −m`P (K2)− `2P (K1)

= −m`(1)− `2(−m−1(`+ `−1))

= −m`+m−1`3 +m−1`,

where we used that the HOMFLY polynomial of two disjoint unknots is given by−m−1(`+

`−1).

Since the Jones polynomial V (L) is obtained from the HOMFLY polynomial P (L) by

the substitution (`,m) = (it−1, i(t−1/2 − t1/2)), the Jones polynomial for the Hopf link

where both links have opposite orientations is given by

P (L−) = −m`+m−1`3 +m−1`

⇒ V (t) = `
(
−m+m−1(1 + `2)

)
= it−1

(
−i(t−1/2 − t1/2) +

(1− t−2)

i(t−1/2 − t1/2)

)
= t−1

(
t−1/2 − t1/2 − (1− t−1)(1 + t−1)

t1/2(1− t−1)

)
= −t−1/2 − t−5/2.

We verify this result in the following calculation.
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K1 K2

K3 K4

The bracket polynomial is given by

〈Hopf〉 = A〈K1〉+ A−1〈K2〉

= −AA3〈K3〉 − A−1A−3〈K4〉

= −A4 − A−4.

This Hopf link contains two negative crossings, hence its writhe w(L) = −2 and its

Kauffman polynomial X(L) is

X(L) = (−A)−3w(L)〈L〉

= (−A)−3(−2)
(
−A4 − A−4

)
= −A10 − A2.

Finally with the substitution A = t−1/4 we obtain the Jones polynomial to be, as expected

V (t) = −t−1/2 − t−5/2.

Case 2:

Now consider the HOMFLY polynomial of the same Hopf link with the orientation of the

first link reversed. So both links are in the clockwise direction. This time the crossing

circled in red is a positive L+ crossing so the resulting polynomial will be for L+.

=

=

K1 K2

L0L-

158



From skein relation and resolving tree above:

P (L+) = −m`−1P (L0)− `−2P (L−)

= −m`−1P (K2)− `−2P (K1)

= −m`−1(1)− `−2(−m−1(`+ `−1))

= −m`−1 +m−1`−1 +m−1`−3.

Comparing this polynomial with the one obtained in Case 1, it is clear that changing the

orientation of one of the links results in a different polynomial, ` −→ `−1.

Via the substitution (`,m) = (it−1, i(t−1/2 − t1/2)), the Jones polynomial for this

particular Hopf link is therefore

P (L+) = −m`−1 +m−1`−1 +m−1`−3

⇒ V (t) = `−1
(
−m+m−1(1 + `−2)

)
= −it

(
−i(t−1/2 − t1/2) +

(1− t2)

i(t−1/2 − t1/2)

)
= −t

(
t−1/2 − t1/2 +

(1− t)(1 + t)

t−1/2(1− t)

)
= −t1/2 − t5/2.

Reversing the orientation of one of the links changes the Jones polynomial as t −→ t−1,

which we verify in the following calculation.

K1 K2

K3 K4

The bracket polynomial is given by

〈Hopf〉 = A〈K1〉+ A−1〈K2〉

= −AA3〈K3〉 − A−1A−3〈K4〉

= −A4 − A−4.
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This Hopf link contains two positive crossings, hence its writhe w(L) = 2 and its Kauff-

man polynomial X(L) is

X(L) = (−A)−3w(L)〈L〉

= (−A)−3(2)
(
−A4 − A−4

)
= −A−2 − A−10.

Finally with the substitution A = t−1/4 we obtain the Jones polynomial to be, as expected

V (t) = −t1/2 − t5/2.

The last two cases are merely different projections of the first two cases. However we

have included them to complete all of the possible orientations of the Hopf link.

Case 3:

The third case involves calculating the HOMFLY and Jones polynomial of the Hopf link

where the orientation of both links has been reversed. One can see that it is a different

projection of the Hopf link in Case 1, obtained by turning it upside-down. However

changing the orientation of both of the links does not affect these polynomials as we

retain the same crossings. Consider the Hopf link pictured below:

The first link is in the clockwise direction and the second link is in the anticlockwise

direction. This is equivalent to reversing the orientation of both links from Case 1.

Therefore we expect to obtain the same polynomial.

Clearly the encircled crossing is a negative L− crossing, and one can calculate, as expected

that:

P (L−) = −m`+m−1`3 +m−1`,

V (t) = −t−1/2 − t−5/2.
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Case 4:

Finally for completeness we consider the Hopf link pictured below. We expect to get the

same results as in Case 2, since, with respect to it, we have reversed the orientation of both

links here. In fact it is just a different projection of the Hopf link in Case 2 obtained by

turning it upside-down. In this case both links are oriented in the anticlockwise direction.

Examining the highlighted crossing tells us it is a positive L+ crossing and hence as

expected we find

P (L+) = −m`−1 +m−1`−1 +m−1`−3,

V (t) = −t1/2 − t5/2.
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6A.3 Glossary

Bijection: A bijection is a one-to-one and onto correspondence giving an exact pairing

between all elements of two sets.

Homomorphism: A homomorphism is a structure preserving map between two alge-

braic structures.

Homeomorphism: A homeomorphism is a continuous bijection from one topological

space to another, with continuous inverse.

Isomorphism: An isomorphism is a bijective homomorphism. Therefore it is a structure

preserving map with a one-to-one and onto correspondence between all elements of two

sets.

Automorphism: An automorphism of an algebra is a mapping of the algebra onto itself

which preserves all of its structure.

Antiisomorphism: An antiisomorphism θ between A and B is an isomorphism from A

to the opposite of B and vice versa which must satisfy:

θ(ab) = θ(b)θ(a).

Involution: An involution θ from G −→ G, is a mapping which satisfies the following

relations:

θ(g1g2) = θ(g2)θ(g1), with θ2 = 1.

Normal Subgroup: A subgroup H of G is called a normal subgroup if for every g ∈ G
and h1 ∈ H, there exists a h2 ∈ H such that

h1g = gh2 or gh2g
−1 = h1.

SL(2,Z): Is the special linear group of 2×2 matrices with integer entries and determinant

1.

Modular Group PSL(2,Z): Is the projective special linear group of 2×2 matrices with

integer entries and determinant 1. It is a quotient of SL(2,Z) by Z and can be shown
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to be generated by the two transformations S : z → z + 1 and T : z → −1/z. S is a

translation and T is inversion in the unit circle followed by reflection about Re(z) = 0.

The modular group Γ can be written as

Γ ∼= 〈S, T |S2 = 1, (ST )3 = 1〉.

We point out that the above definition of the modular group is the most widely used one,

however in this thesis we take the modular group to be generated by the two transfor-

mations S and U instead of S and T . This is to avoid confusion with the braid group

generators denoted Ti. Therefore we say that

Γ ∼= 〈S, U |S2 = 1, (SU)3 = 1〉.

Ambient Isotopy: An ambient isotopy between two subspaces X and Y of RN is a

continuous function H :RN × [0, 1]→ R
N satisfying:

H(·, 0) = identity ,

H(X, 1) = Y ,

H(·, t) : R
N → R

N is a homeomorphism for all t ∈ [0, 1].

If H exists, then X and Y are called ambient isotopic.

Knot: A knot is an embedding of a circle S1 into Euclidean 3-space, R3, or the 3-sphere,

S3.

Unknot: The unknot is the trivial knot, that is, the unknotted circle.

Link: A link, also known as a knot of multiplicity µ > 1, is an embedding of a disjoint

union of 1-spheres S1
i , i ≤ µ ≤ 1, into S3 or R3.
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Chapter 7

Conclusions

In conclusion we reiterate the most notable points of this thesis and refer to possible

further work.

This thesis centres around the investigation of Hecke-type algebraic structures. In

Chapter 3 we construct such a structure called a double affine Q-dependent braid group

DN(t, q). The underlying structure of this particular group is the N -strand braid group,

which is rendered “Q-dependent” by appending to it a set of N commuting operators

{Qi}. Using all of the knowledge acquired of affine and double affine Hecke algebras from

Chapter 1, the Q-dependent braid group is extended firstly to an affine Q-dependent

braid group and then to a double affine Q-dependent braid group. This is achieved by

the addition of two extra sets of generators; the affine generators Yi, and the double affine

generators Zi.

To complement the algebraic definition of the double affine Q-dependent braid group

we put forward a graphical representation that fully describes its structure. We extend

the pictorial representation of the braid group, whose generators braid strands in an

infinitely long strip, to one of an affine braid group by defining braiding on the surface

of a cylinder. Further extension to describe the action of the double affine braid group

generators is obtained in the cube representation. In the cube representation, strands

run from the top to the bottom face of the cube. As opposite faces are identified, an

equivalent form of these cubes is in terms of toroids, which we illustrate in detail in

Chapter 3.

We show that when strands are used in the cube representation, we cannot fully

capture all off the structure of the double affine Q-dependent braid group. Instead we

have a pictorial description of the elliptic braid group. However using ribbons, and not

strands, enables the complete description of the structure of DN(t, q). Of particular

importance is the interpretation of the action of the Qi operators; we can consistently
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show that the operator Qi generates a full anticlockwise twist in the ith ribbon.

Also of note is that when the operators Qi are simply parameters, that is Qi = q1,

and the double affine braid group generators satisfy the Hecke relation, then DN(t, q)

reduces to a double affine Hecke algebra. In terms of the cube-ribbon representation, we

now have a graphical representation for any DAHA, for all values of the parameter q.

In Chapter 4, we presented the polynomial representation U of the double affine Hecke

algebra and described its close connection to Macdonald polynomials. We also explicitly

obtained Macdonald polynomials by simultaneously diagonalising matrices representing

the action of affine Hecke algebra generators within U . As we know that any DAHA

can be obtained from DN(t, q), possible future work is to construct a polynomial rep-

resentation for the double affine Q-dependent braid group. By restricting the action of

the operators Qi one should recover the polynomial representation of DAHAs. This is

particularly interesting as it may lead to the discovery of a wide family of polynomials,

of which Macdonald polynomials are given by setting the Qi = q1.

The tangle representation which we developed in Chapter 5 provides finite dimen-

sional representations of the affine Hecke algebra AN(t). As the AN(t) generators can be

simply mapped to the Temperley-Lieb generators, we also have finite dimensional matrix

representations of the Temperley-Lieb algebra in terms of the elementary pattern basis.

The pattern basis has many similarities to the path model representation of the braid

group described in [8]. As such, using the tangle representation as an algebra of pictures

to calculate the Kauffman bracket and hence the Jones polynomial of certain knots is

certainly a direction worthy of research.

An even bigger challenge is the extension and generalisation of the tangle represen-

tation of AN(t), to one valid for all double affine Hecke algebras. This exciting prospect

would therefore result in finite dimensional representations of DAHAs. The foundations

for such an extension are already in place as in the cube-ribbon representation we can

successfully illustrate any DAHA generator. However, as stated at the end of Chapter 5,

we must also find a means of decomposing non planar crossings into a linear combination

of elementary patterns. A possible way of achieving this may be by assigning various

weights to these crossings and then evaluating them using the defining relations of a

DAHA.

Lastly, in Chapter 6 we gave our own interpretation of previous works by presenting

a clear and detailed account of the central role of the Hecke algebra in the development
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of knot theory. Though readers may have been familiar with the majority of this work

we included it due to its close connections with our tangle representation and also as a

application of the algebraic description of Hecke algebras that we presented in Chapter

2. Many of the ideas in this chapter may be generalised given all of the new insights

provided in this thesis. For example, of particular interest for future work is to investigate

the Markov trace on the affine Hecke algebra. In the second chapter we detailed the

construction of AN(t) in terms of the operator σ, and the Hecke algebra generators Ti.

Therefore we can write all words in AN(t) purely in terms of σ and any one of the Ti. In

addition to this, since we showed that the Jones and HOMFLY polynomial of the trace of

σ is 1, then by the Markov property of the Markov trace there is an interesting prospect

of defining a trace invariant on the affine Hecke algebras.
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