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Abstract. We define a double affine Q-dependent braid group. This
group is constructed by appending to the braid group a set of operators
Qi, before extending it to an affine Q-dependent braid group. We show
specifically that the elliptic braid group and the double affine Hecke al-
gebra (DAHA) can be obtained as quotient groups. Complementing this
we present a pictorial representation of the double affine Q-dependent
braid group based on ribbons living in a toroid. We show that in this
pictorial representation we can fully describe any DAHA. Specifically,
we graphically describe the parameter q upon which this algebra is de-
pendent and show that in this particular representation q corresponds
to a twist in the ribbon.

1. Introduction

Representation theory is an essential tool in mathematical and physical re-
search. To this end, linear algebra, the theory of special functions, arithmetic
and related combinatorics are its usual objectives. A particularly potent ex-
ample illustrating the power of representation theory may be offered in the
context of Hecke-type algebras [1].

In this paper we define a Hecke-type structure called the double affine Q-
dependent braid group and investigate its properties. Among its quotient
groups is the double affine Hecke algebra (DAHA) which is of particular
interest as its polynomial representations [2] have close connections to Mac-
donald and Jack polynomials [3]. Furthermore, we have seen how some spe-
cific polynomials emerging from this algebra, when subject to special wheel
conditions, yield interesting q-deformed Laughlin and Haldane-Rezayi wave
functions [4, 5]. These are believed to be excellent candidates for describing
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quantum Hall effect ground states; by adjusting the wheel condition param-
eters, one may fix the filling fraction of these wavefunctions. Other polyno-
mials directly obtained from the DAHA can, in a similar fashion, be used to
describe the ground states of O(n) models [6].

We provide an intuitive pictorial representation of a DAHA in this paper. It is
difficult to overestimate the power of graphical representations in illustrating
abstract concepts in pure mathematics. Since the emergence of the intuitive
pictorial representation of the braid group there has been a massive interest
in its structure, greatly advancing the field. For example, when Kauffman
introduced diagrams [7] to explain the Jones polynomial [8] in the context of
Hecke algebras, the subject became more accessible and widely-known.

Before presenting our graphical representation which provides an interpreta-
tion of all DAHAs and their underlying parameters, we firstly establish the
relation of DAHAs to other well known abstract algebraic structures. In par-
ticular we define and give readers a clear picture of the structure of a double
affine Q-dependent braid group (DN{Q}). It is constructed by appending to
the braid group a set of N operators {Qi} = {Q1 . . . , QN}, before extending
it to an affine Q-dependent braid group.

Our interest in DN{Q} stems from its pole position with respect to other
algebraic structures whose primary element is a braid group. In fact, ap-
pending to the double affine braid group a set of operators {Qi} generalises
the underlying braid group. It does so by turning braid group strands into
ribbons and permitting 2π twists. The original braid group then corresponds
to BN{Q}/〈Qi〉, where 〈Qi〉 is freely generated by the operators Qi. Thus
the original braid group is in other words equivalent to BN{Q} where Q = 1.
Similarly the affine braid group corresponds to AN{Q}/〈Qi〉. Naturally the
elliptic braid group [9, 10] is obtained from DN{Q} by ignoring the twists or
equivalently by contracting ribbons to strands, i.e. DN{Q}/〈Qi〉. In addition,
taking the quotient DN{Q}/〈QiQ

−1
i+1〉 is equivalent to considering twists on

different ribbons as identical. Furthermore imposing the Hecke relation and
setting Qi = q1, where q ∈ C, we obtain the double affine Hecke algebra (of
type A) [1, 11]. These relations are illustrated in Figure 1. Note that BN{Q} =
BN (Q1, Q2, . . . , QN ) and BN (Q) = BN{Q}/〈QiQ

−1
i+1〉 ' BN (Q,Q, . . . , Q).

Complementing the algebraic description of a double affine Q-dependent
braid group, we provide a pictorial representation. The graphical calculus
is based on ribbons within cubes, where opposite vertical faces of the cube
are identified; a topologically equivalent presentation is given in terms of rib-
bons living inside a toroid. We clearly illustrate all of the defining relations of
DN{Q} in our new cube-ribbon representation. It provides a concrete visual
description of its structure, in particular we obtain a very straightforward
interpretation of the action of the generators Qi who create 2π twists in the
ribbons. In the quotient group DN{Q}/〈QiQ

−1
i+1〉, where we obtain the double
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Figure 1. Commutative diagram describing the relations
of DN{Q} with other algebraic structures whose primary
element is a braid group.

affine Hecke algebra, we show that q corresponds to the factor when replac-
ing a ribbon with a twist by one with no twist at all. Hence our cube-ribbon
representation describes double affine Hecke algebras for all values of q. In
DN{Q}/〈Qi〉 the ribbons are reduced to strands and twists are no longer
possible, therefore our pictorial representation gives a toroidal description of
the elliptic braid group.

The layout of this paper is as follows: in Sections 1 through 3, we define the
Q-dependent braid group and introduce the affine Q-dependent braid group.
We give their defining relations – which depend on a set of operators {Qi} –
and pictorially represent their generators.

In Section 4 we present the complete construction of the double affine Q-
dependent braid group. We outline our method of graphically representing
this group structure, which depends on the set of {Qi} and obtain the main
result of this paper: that is we show that each generator Qi creates a twist in
the ribbon. We also show that when {Q} = 1 our cube-ribbon representation
describes the elliptic braid group.

In Section 5 we indicate how to obtain the double affine Hecke algebra from
DN{Q}. We highlight that our graphical calculus is valid for all DAHAs, with
no restriction on the parameter q upon which this algebra depends.
Finally we conclude with some discussion as to how this pictorial represen-
tation could settle some unresolved issues, specifically regarding matrix and
tangle representations, and outline some related future work.
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2. The Braid Group

Throughout this paper we follow the general approach of [4, 6], namely, we
present all of the algebraic relations in terms of multiplication rules for the
elements of the algebra. One could adopt a much more rigourous approach
via group quotients, etc. as in [1, 12], but here we opt for this more “physics”
approach.

2.1. The Q-Dependent Braid Group BN{Q}

We begin by reviewing the the braid group and its Q-dependent exten-
sion. These are essential to our construction of DN{Q}. Similarly its well-
established pictorial representation serves as a starting point for our cube-
ribbon representation.

The N -strand braid group BN is as follows [13]: BN is the group generated
by the N − 1 invertible elements {Ti|i = 1, .., N − 1} satisfying the relations

TiTj = TjTi for |i− j| ≥ 2, (2.1)

TiTi+1Ti = Ti+1TiTi+1 otherwise . (2.2)

(The second of the above is referred to as the braid relation.)

It is indeed well known that this algebraic description can be incorporated
into a pictorial one by defining Ti and its inverse T−1

i to correspond to the
exchange of the ith and (i+ 1)th strands as illustrated below:

Ti Ti
-1

i i+1 i i+1

Multiplication is then defined by stacking: AB is the braid obtained by stack-
ing A on top of B and gluing the bottom ends of the strands in A to the top
ends of those in B.

We now define the N -strand Q-dependent braid group, BN{Q}, as follows:
BN{Q} is the group generated by the invertible elements {Ti|i = 1, .., N − 1}
satisfying (2.1) and (2.2), in addition to a set of commuting elements {Qi|i =
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1, .., N} satisfying the relations

QiQj = QjQi for all i, j, (2.3)

TiQj = QjTi for j < i, j > i+ 1, (2.4)

TiQi = Qi+1Ti for i = 1, . . . , N − 1, (2.5)

TiQi+1 = QiTi for i = 1, . . . , N − 1. (2.6)

These relations imply T 2
i Qj = QjT

2
i for all i, j, that is the Qs commute with

all even powers of the T s but not with odd powers.

The above relations may be familiar to many readers. They appear in the
study of framed, or ribbon, braid groups, introduced in [14]. A more in-depth
and mathematically rigourous treatment of framed braids or ribbon braids
can be found in [15, 16], among others. We use this well-known structure
as a starting point for establishing the proper context for our treatment of
DAHAs.

As it stands, only the trivial braids – those whose strands go straight from
top to bottom without crossing – can represent the Qs in a way consistent
with (2.3)-(2.6). We shall see later how to introduce nontrivial graphical
representations for the Qs.

3. Affine Braid Groups

3.1. The Affine Braid Group AN

The Q-dependent braid group BN{Q} can be extended to an affine braid
group AN by appending to it N invertible operators Yi. These satisfy the
relations

YiYj = YjYi for all i, j, (3.1)

TiYj = YjTi for j 6= i, i+ 1, (3.2)

TiYi+1Ti = Yi for i = 1, . . . , N − 1. (3.3)

The last of these relations implies that we need only one of the Yi (and all of
the Ti) to generate the others. For example, (3.3) can be used to rewrite Yi
for i = 2, . . . , N as

Yi = T−1
i−1T

−1
i−2 . . . T

−1
1 Y1T

−1
1 . . . T−1

i−2T
−1
i−1.

AN is thus fully generated by Y1 and the Ti.

A more elementary presentation [1, 6] is to write all the Yi in terms of Ti and
an element σ defined as

σ := T−1
N−1T

−1
N−2 . . . T

−1
1 Y1. (3.4)
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All of the Yi can now be written in terms of σ and the Ti using (3.3):

Yi =


T1T2 . . . TN−1σ i = 1 ,
Ti . . . TN−1σT

−1
1 . . . T−1

i−1 i = 2, . . . , N − 1,
σT−1

1 . . . T−1
N−1 i = N.

The other defining relations for AN , (3.1) and (3.2), may be rewritten in
terms of σ as

Ti−1σ = σTi, i = 2, . . . , N − 1,

TN−1σ
2 = σ2T1.

Also of interest is that the above relations imply that σNTi = Tiσ
N . This

tells us that σN commutes with all the Yi, and thus σN is central in AN .
We could then label irreducible representations of AN with the eigenvalues
of σN if necessary.

3.2. The Affine Q-Dependent Braid Group AN{Q}

In a similar fashion to BN{Q}, we extend AN to an affine Q-dependent braid
group, AN{Q}, by defining how the set of elements {Qi|i = 1, .., N} interact
with the affine generators Yi.

Therefore in addition to all of the defining relations of AN , the generators of
AN{Q} must also satisfy

YiQj = QjYi for all i, j. (3.5)

Using the definition of σ, (3.4), one can rewrite (3.5), to obtain AN{Q} purely
in terms of Ti, σ and Qi:

σQi = Qi−1σ for i = 2, . . . , N,

σQ1 = QNσ.

These relations also imply that σNQi = Qiσ
N . Having fully described our

definition of an affine Q-dependent braid group, AN{Q}, we now incorporate
its algebraic structure into an intuitive graphical one.

3.3. Pictorially Representing AN{Q}

We have already seen that in the pictorial representation of the braid group
BN , the braiding of the strands takes place in the strip in a strict top-to-
bottom direction. Now we turn the strip into a cylinder by identifying the
left and right edges; to highlight this point, we represent these edges with
dashed lines. This means that we can now braid in a left-to-right (or vice
versa) fashion by wrapping strands around the cylinder. This application of
cyclic boundary conditions is what gives us a pictorial representation for the
affine Q-dependent braid group AN{Q}. (The braid group generators Ti still
braid top-to-bottom as they did before we identified the sides.)
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To illustrate this, we define the pictorial representations of the AN{Q} gen-
erator Yi and its inverse Y −1

i as follows:

i i+1i-1

Yi

i i+1i-1

Yi
-1

So we see that Yi takes the strand starting at point i on the top edge and
takes it to the same point on the bottom edge and leaves all other strands
untouched, and does so such that it goes over all strands to the right (i +
1, . . . , N) and under all strands to the left (1, . . . , i− 1). For example, in the
N = 3 case, Y1 is given by either of the two pictures below:

Y1

=

1 2 3

1
2

3

Multiplication is now defined by stacking cylinders on top of one another,
and so given Y1 and the Ti, we can construct all other Yi via (3.3). Looking
at the N = 3 case again, we can now construct Y2 = T−1

1 Y1T
−1
1 and see that

our pictorial representation is consistent:

-1

Y1

T1

-1T1

Y

=

2

=

1
2

3

1 2 3

1 2 3

Recall, from (3.4), that σ was defined in terms of Y1: σ = T−1
N−1T

−1
N−2....T

−1
1 Y1.

Therefore, for N = 3, we have σ = T−1
2 T−1

1 Y1, which looks like
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-1T
2

-1T1

Y1

=

σ

=

1
2

3

1 2 3

1 2 3

σ has the same general form for all N , namely, it acts as a kind of raising op-
erator on the indices by taking point i on the top to point i+1 on the bottom
(with the cylindrical topology identifying point N + 1 with 1). Therefore, we
take this to be the pictorial definition of σ, and so together with the cylinders
representing the Ti, all of the defining relations of the AN{Q} follow suit.

At this point we have a complete pictorial representation for the Y s. However,
the Qs are still only representable by trivial braids. Despite this we can extend
AN{Q} to a double affine Q-dependent braid group by incorporating a whole
new set of generators and their graphical representations, as we will now show.

4. Double Affine Braid Groups

4.1. The Double Affine Q-Dependent Braid Group DN{Q}

We can extend AN{Q} to a double affine Q-dependent braid group DN{Q}
[1, 11] by introducing a further N invertible generators Zi satisfying the
relations

ZiZj = ZjZi for all i, j, (4.1)

TiZj = ZjTi for j 6= i, i+ 1, (4.2)

TiZi+1Ti = Zi for i = 1, . . . , N − 1, (4.3)
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together with the set of elements {Qi|i = 1, .., N} which commute with all
the Zi and appear explicitly in relations intertwining the Yi and the Zi [1]:

ZiQj = QjZi for all i, j, (4.4)

Y1Z2Y
−1
1 Z−1

2 = T 2
1 , (4.5)

Yi

 N∏
j=1

Zj

 = Qi

 N∏
j=1

Zj

Yi, (4.6)

Zi

 N∏
j=1

Yj

 = Q−1
i

 N∏
j=1

Yj

Zi. (4.7)

We can choose to eliminate the Yi in favour of the cyclic operator σ, and then
(4.5) and (4.6) can be rewritten as

Zi−1σ = σZi, i = 2, . . . , N,

ZNσ = Q−1
N σZ1.

Using the above relations, one can quickly see that

Ziσ
N = Q−1

i σNZi, (4.8)

and this, in addition to the identity
∏N

j=1 Yj = σN [1] (a proof of which we

include in Appendix A for the interested reader) gives us (4.7). Therefore it
is not independent of the other relations.

To summarise, we define a DN{Q} to be the group generated by Ti, Yi, Zi and
Qi which satisfy equations (2.1)-(2.6), (3.1)-(3.3) alongside (3.5) and (4.1)-
(4.6). We shall see shortly that the appearance of the operators Qi in the
last of these defining relations will strongly influence our choice of pictorial
representation for DN{Q}.

4.2. Graphical Representation of DN{Q}

Recall that we extended the standard pictorial representation of the braid
group to that of an AN{Q} by identifying the two vertical edges and defin-
ing the action of the Yi generators on the strands as wrapping around the
resulting cylinder. We would now like to extend this AN{Q} representation
to one for a DN{Q} by somehow incorporating the new generators Zi into
the picture.

Our method for doing so is motivated by the AN{Q} construction: the braid
group generators do not wind strands at all; they simply connect points on
the top edge to ones on the bottom. The Yi generators, however, do wind
the strands “perpendicular” to the Ti, namely, left-to-right (or vice versa)
instead of top-to-bottom.
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The new Zi generators have exactly the same relations between themselves
and the T s as the Y s do, so this suggests that we need a third direction. This
suggests that instead of a strip whose two vertical sides are identified, we now
use a cube whose opposite vertical faces are identified. So the left and right
faces of the cube are identified with the Yi operators taking strands through
them, while the front and back faces are identified with the Zi generators
taking strands through them.

To see this, first consider drawing each braid group generator Ti in a cube.
The braiding now takes place within the cube from top to bottom:

T1

Multiplication is defined in the usual way, by stacking one cube onto another.

This representation is essentially the same as that for the elliptic braid group
on a torus [9, 10], which is generated by Ti, Yi and Zi but requires all the
Qi to be unity. In Section 4.3, we show that the Qi are indeed 1 for our
representation, as expected. This is not a surprising result though as the
elliptic braid group is simply DN{Q}/〈Qi〉. However, using three-dimensional
cubes rather than a two-dimensional torus will allow us to generalise to values
of Qi other than unity, as we illustrate in Section 4.3.2.

Recall that the affine Q-dependent braid group generators Yi identified the
left and right sides with each other to give braiding on a cylinder. In the
cube representation, we identify the left and right faces of the cube with each
other. In the figure below, the turquoise arrows traverse the coloured blue
planes and wrap the strand around the cube from one to the other.
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Y1
-1
Y
1

The additional DN{Q} generators Zi identify the front face of the cube with
its back face. In the figure below, we use red tips to indicate that the strand
passes out through the coloured front face of the cube, then wraps around
until it meets the strand that passes out the back face. More specifically, for
the N = 3 case we define Z1 (and its inverse) as

1Z
-1

1Z

Having defined Z1, we can now obtain all of the other Zi for i = 2, . . . , N
using TiZi+1Ti = Zi. So, for example, Z2 = T−1

1 Z1T
−1
1 :
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-1T1

-1T1

1Z =

Z2

One may proceed in this manner to construct Zi for any i, and we see that
its action is to take the ith point on the top face, bring it out the front face
of the cube, wrap around to come in the back face, and connect to the ith

point on the bottom, with all other strands simply going straight from top
to bottom.

At this point, we note that our cube is topologically equivalent to a hollowed-
out toroid: identification of the opposing sides of any horizontal slice of the
cube gives a 2-torus, and the region between the top and bottom faces – a
time interval I if we view our strands as worldlines – gives the thickness.
Thus, each of our generators is represented as N strands within the toroid
S1 × S1 × I.

To illustrate this further, define two angles, θ and ϕ. We let θ be the direction
in which the Yi generators wrap around the toroid and ϕ is the direction the
Zi wrap around the toroid. So, in effect, the AN{Q} generators Yi encircle the
torus within the toroid whereas the additional DN{Q} generators Zi encircle
the empty space bounded by the toroid, as illustrated below:
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θ φ

θ

φ

s

s

where s ∈ I is the time parameter. In this toroidal representation, one can
now clearly see the distinct directions in which the different generators wrap.

1

2

3

1

2

3

T2 Y1

1Z

Multiplication is defined by stuffing toroids inside each other: this is done such
that the points on the inner boundary of the first (in order of multiplication)
generator correspond to the points on the outer boundary of the second
generator. In Figure 2 we illustrate the product T2Y1: we stuff Y1 into T2
such that the numbered points on the outer boundary of Y1 correspond to
the points on the inner boundary of T2.

4.3. Graphical Representation of the action of Qi

4.3.1. The case Qi = 1. We must confirm that our cubic/toroidal repre-
sentation works for all the DN{Q} axioms. We start by verifying (4.5), i.e.
Y1Z2Y

−1
1 Z−1

2 = T 2
1 . From Figure 3, we see that this is satisfied by our cube

representation.
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T2Y1

1

2

3

Figure 2. Toroidal representation of the product T2Y1.

(4.6) and (4.7) must also hold in our representation, of course. These are
the relations that depend explicitly on the elements Qi. In fact, they give
us various ways of writing the Qi; for example, in the N = 3 case, we find
Q3 = σZ1σ

−1Z−1
3 . We have pictorial representations for all the generators

on the right-hand side of this relation, so we may explicitly find the pictorial
representation of Q3. From Figure 4, we see that Q3 acts only on the third
strand while leaving the other two untouched. For clarity, we have indicated
the twisting using arrows; one must start form the top of the third strand
and follow the arrows around all faces of the cube.

This is the pictorial representation of Q3. By pulling the strands tight, we find
that this is precisely the operator which leaves the strands entirely alone: the
identity 1, namely, the trivial braid. This result is not unique to Q3; we find
that the graphical representation for each of the Qs is simply the identity.

Although this cube representation is successful in describing the Ti, Yi and Zi

generators of DN{Q}, it still only allows the Qi to be represented by trivial
braids, and so is really only valid when Qi = 1. Therefore, this is simply a
representation of DN{Q}/〈Qi〉, i.e. the elliptic braid group [9, 10] (see Figure
1). However, if we wish to allow for values of Qi other than unity, we need to
modify our cube representation in some way, which we now describe.

4.3.2. The General Case Qi 6= 1: Introducing Ribbons. To obtain a non-
trivial pictorial representation which accommodates Qi 6= 1, we modify our
cube representation by replacing the strands by ribbons. This modification
is not unmotivated: in order to extend the AN{Q} representation to one for
a DN{Q}, we increased the dimension of our space from two to three, and so
it is reasonable to increase the dimension of our strands.

Doing so is precisely what we need in order for our representation to work for
all DN{Q}s, not just those where the Qi = 1. We therefore no longer braid
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Z2

= =

= =

2

T

=

Y
1

Y
1

-1

Z2
-1

1

Figure 3. Step-by-step verification of the relation
Y1Z2Y

−1
1 Z−1

2 = T 2
1 in the cube representation.
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=

Figure 4. Pictorial representation of Q3 = σZ1σ
−1Z−1

3 .
Pulling all strands tight yields the identity.

one-dimensional strands, but do so instead with two-dimensional ribbons.
This extra degree of freedom will enable us to completely describe a double
affine Q-dependent braid group for any Qi.

However, before we revisit the elements Qi, we must verify that all of the
previous DN{Q} axioms still hold when using ribbons within our cube repre-
sentation. It is straightforward to show that they do; to illustrate this point,
we explicitly show (4.5), as this relation contains all three types of generators,
the Ti, Yi and Zi. (For clarity, we have coloured the front and back of each
ribbon respectively by black and green.) This example, illustrated in Figure
5, also allows us to clearly lay out the braiding conventions that we use.

When the ribbon wraps in a left/right direction – representing a Yi operator
– we use turquoise for the tips that are identified with each other. It is
vital to stress that these link the left and right faces of the cube in a very
particular fashion: the ribbon must pass through a left or right face of the
cube oriented vertically. This condition ensures that the ribbon doesn’t twist
while wrapping around the cube.

In a similar fashion, the ribbons representing the Zi generators are coloured
so that when a red tip is visible, this implies that the ribbon passes through
either the back or front face of the cube. We require that whenever such
a ribbon intersects the front or back face of the cube, it does so oriented
horizontally.

These conventions give Figure 5 for Y1Z2Y
−1
1 Z−1

2 = T 2
1 , and pulling the

ribbons tight we can clearly see that the relation holds. All of the other
relations are satisfied in a similar manner.

One of the major advantages of our cube-ribbon representation is that specific
crossing rules are not required when one ribbon crosses another. This is due
to the fact that, following the conventions outlined above, the ribbons can
braid in three distinct orthogonal directions and hence no such rules are
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Y1

Z2

-1
Y
1

Z2
-1

=

2

T1

Figure 5. The relation Y1Z2Y
−1
1 Z−1

2 = T 2
1 using ribbons

instead of strands. Note the colour conventions.

necessary. In contrast, for framed braids in an infinitely long strip as in [14]
more complicated crossing conditions are needed.

We now revisit the relation Q3 = σZ1σ
−1Z−1

3 which, when represented by
1-dimensional strands, was equivalent to the identity element. Now using
ribbons instead of strands, we construct the pictorial representation of Q3.
(For clarity, we show only the third ribbon, as this is the only one which
behaves nontrivially.) Keeping with the colour convention defined earlier, we
obtain Q3, and, by pulling the ribbons tight, yields the key result we require:
a twist in the ribbon is created! This important result is illustrated in Figure
6 below.

As this is the most important feature of our ribbon representation, let us
explain in detail how this comes about: in constructing σZ1σ

−1Z−1
3 , both the
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=

σ

-1

1Z

-1

3Z

σ

Figure 6. Q3, the creation of a twist in the third ribbon.
The full anticlockwise twist makes clearly visible both front
and back faces of the ribbon, coloured black and green re-
spectively. Note that we illustrate only the third ribbon.

black and green faces of the ribbon are clearly visible. Upon closer inspection,
we see that the ribbon undergoes a full anticlockwise twist in going from
the top face to the bottom one. First, the front black face of the ribbon is
visible. Then, having undergone half an anticlockwise twist, the back green
face becomes visible until finally the full anticlockwise twist leaves the black
face facing forwards.

This significant result can be generalised. We have just shown that in our
cube-ribbon representation Q3 creates a twist in the third ribbon. It is easily
shown, following the construction of Q3, that in our particular representation
the action of Qi is to create a single full anticlockwise twist in the ith ribbon.
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As the creation of a full anticlockwise twist in the ribbon may be somewhat
difficult to visualise we have included a more rigorous argument to convince
the reader in Appendix B.

Other expressions could be used to determine Qi; for example, (4.6) gives

Qi = Yi

 N∏
j=1

Zj

Y −1
i

 N∏
j=1

Z−1
j

 .

Or we could use (4.8): Qi = σNZiσ
−NZ−1

i . For these and any other rep-
resentation for Qi, the result is the same, namely, Qi creates a single full
anticlockwise twist in the ith ribbon.

We can also verify that an expression like Z3σZ
−1
1 σ−1, which the DN{Q}

axioms require to be Q−1
3 for N = 3, is indeed a full clockwise twist in the

third ribbon, again totally consistent with our interpretation of Qi.

The interpretation of Qi is now clear: it is the generator that creates a full
anticlockwise twist in the ith ribbon. Similarly Q−1

i creates a full clockwise
twist in the ith ribbon. As these are no longer trivial actions on the ribbons,
we have a pictorial representation for Qi 6= 1, and a full description for
DN{Q}.

5. Double Affine Hecke Algebras

In the previous section we highlighted the fact that the elliptic braid group is
given by DN{Q}/〈Qi〉. Similarly readers familiar with double affine Hecke al-
gebras [1, 11] may recognise that our definition of a DN{Q} closely resembles
that of a double affine Hecke algebra (DAHA) without the Hecke relation.
We will in fact show precisely how to obtain a DAHA given our construction
of a double affine Q-dependent braid group DN{Q}.

5.1. The Double Affine Hecke Algebra within DN{Q}

Consider the subgroup C of the Q-dependent braid group BN{Q} defined as

C = 〈QiQ
−1
i+1, i = 1, . . . , N − 1〉.

It can easily be shown that C is a normal subgroup of BN{Q}, and so we
can construct the quotient G = BN{Q}/〈C〉, which is precisely the group we
require to define a DAHA. Within G, the Qi are indistinguishable from one
another; therefore, we refer to each of their cosets [Qi] asQ. Most importantly,
using (2.3)-(2.6), we see that Q now commutes with not only the squares of
the braid group generators T 2

i , but also with the Ti themselves. We are now
in a position to extend the quotient group G to a Hecke algebra.
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5.2. The Hecke Algebra HN (t)

Before defining a DAHA, we must extend our quotient group G to an algebra
in which the Ti generators satisfy a particular relation; this defines the Hecke
algebra.

Associate with G the Hecke algebra HN (t). This is the group algebra of G
over a field k parametrised by t ∈ k such that each generator Ti satisfies the
Hecke relation (

Ti − t1/21
)(

Ti + t−1/21
)

= 0. (5.1)

It is worth noting that even though T−1
i was assumed to exist in G, this

relation gives its form explicitly:

T−1
i = Ti −

(
t1/2 − t−1/2

)
1.

5.3. The Double Affine Hecke Algebra DN (t, q)

To complete the DAHA construction we must firstly extend the Hecke al-
gebra HN (t) to an Affine Hecke Algebra AN (t). This is achieved with the
introduction of N invertible operators Yi which satisfy (3.1)-(3.3).

Recall that the AN was fully generated by Y1 and the Ti. It is perhaps worth
pointing out that the affine Hecke algebra is also fully generated by Y1 and
the Ti, and we can reorder them as necessary. This was not true for the
AN{Q} as we need the full Hecke algebraic structure in order to consistently
order the operators. For example, T1 and Y3 can be reordered as we like, but
this is true for T1 and Y2 only if we invoke the Hecke relation:

T1Y2 = Y2T
−1
1

= Y2

[
T1 −

(
t1/2 − t−1/2

)
1
]

= Y2T1 −
(
t1/2 − t−1/2

)
Y2.

Following [1, 4] we take a DAHA DN (t, q) of type A to be the algebra gener-
ated by Ti, Yi and Zi which satisfy equations (2.1)-(2.2), the Hecke relation
(5.1) along with (3.1)-(3.3) and (4.1)-(4.3).

In addition to these the Yi and Zi obey the intertwining relations [1]

Y1Z2Y
−1
1 Z−1

2 = T 2
1 , (5.2)

Yi

 N∏
j=1

Zj

 = q

 N∏
j=1

Zj

Yi, (5.3)

Zi

 N∏
j=1

Yj

 = q−1

 N∏
j=1

Yj

Zi, (5.4)

where q ∈ k.
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(As in the DN{Q} (5.4) is not independent of the other relations, although
it is often included in the literature as part of the definition of a DAHA.)

One must note that unlike our definition of the DN{Q} where we have a set
of elements Qi, in the DAHA q is simply a parameter. So a DAHA DN (t, q)
depends on the two variables t, q. This is entirely consistent with our construc-
tion of a DAHA from DN{Q} via the quotient group G if we set Q = q1. We
therefore have a representation of a DAHA in BN{Q}/〈C〉 when we impose
Q = q1.

In terms of the cube representation we can replace a ribbon with a full anti-
clockwise twist by one with no twist at all, only if we multiply the resulting
cube by a factor of q. One may see this explicitly in Figure 6. As a result,
one may view this twist as the first Reidemeister move on a ribbon:

∝

∝

Therefore the interpretation of q is clear: it is the multiplicative factor in front
of a DAHA element whenever we replace a ribbon with a full anticlockwise
twist by one with no twist at all. Furthermore since q does not describe the
actual position of the twist in the ribbon, one can have a factor of qn in
front of a DAHA element corresponding to n anticlockwise twists occurring
anywhere in the cube. As there is no restriction on what value q can take, we
are not limited to the case q=1 and have a pictorial representation that fully
describes any DAHA.

6. Summary and Discussion

In this paper we have defined and presented a graphical representation of
the double affine Q-dependent braid group. Following the method of extend-
ing the pictorial representation of the Q-dependent braid group to one for
an AN{Q}, we found that all of the relations not explicitly involving the
operators Qi could be satisfied by a DN{Q} depicted using 1-dimensional
strands embedded in a cube whose opposing vertical sides were identified,
i.e. a hollowed-out toroid.
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This representation was consistent only for a DN{Q} where all the Qi =
1; that is, the elliptic braid group. However, by replacing the strands with
ribbons, our cube representation allowed us to capture all aspects of a DN{Q}
and gave us a nice interpretation of the action of any Qi as a single full
anticlockwise twist in the ith ribbons. We thus obtain an intuitive pictorial
representation which clearly incorporates all of the structure of the more
abstract DN{Q}.

We showed that our new graphical representation is also valid for all DAHAs.
Our definition of a DN{Q} reduced to one of a double affine Hecke algebra
simply by attaching the Hecke algebra to one of its quotient groups. The
DAHA depends on two parameters t and q. We found that graphically, the
parameter q corresponds to a full anticlockwise twist in the ribbon.

By construction, our representation should be closely related to tangles and
knot theory. Using elementary tangles via Reidemeister moves to describe
this algebra appears quite possible; in fact, the replacement of a full twist
by a factor of q is very much a Reidemeister-like move. This would indicate
a relation between our cube-ribbon representation and elementary tangle
representations of affine Hecke algebras; we hope to look further into this
suspected relationship.

Similarly, transforming this cube-ribbon representation to an equivalent ma-
trix representation is an interesting challenge. We hope to use our new pic-
torial representation to bring this closer to reality.
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Appendix A

In this Appendix, we show that
∏N

j=1 Yj = σN . Although this identity is

already well-known [1], we present a proof for the interested reader.

Define the operator Pk by

Pk : = σk (T1 . . . Tk)
−1

(T2 . . . Tk+1)
−1
. . . (TN−k . . . TN−1)

−1
. (A.1)

We want to show by induction that this is equal to Pk =

N∏
j=N−k+1

Yj .
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1. For k = 1:

P1 := σ1 (T1)
−1

(T2)
−1
. . . (TN−1)

−1

= σT−1
1 T−1

2 . . . T−1
N−1

= YN ,

so P1 is indeed equal to

N∏
j=N−1+1

Yj = YN , and the assertion is true

for k = 1.

2. Now assume that our assertion is true for some k, namely,

Pk = σk (T1 . . . Tk)
−1

(T2 . . . Tk+1)
−1
. . . (TN−k . . . TN−1)

−1
=

N∏
j=N−k+1

Yj .

If this holds, then PkYN−k is

N∏
j=N−k

Yj because all the Yi commute.

Using YN−k = TN−k . . . TN−1σT
−1
1 . . . T−1

N−k−1, we can rewrite this
same expression as

PkYN−k =
[
σk (T1 . . . Tk)

−1
(T2 . . . Tk+1)

−1
. . . (TN−k . . . TN−1)

−1
]

×
[
TN−k . . . TN−1σT

−1
1 . . . T−1

N−k−1

]
=

[
σk (T1 . . . Tk)

−1
(T2 . . . Tk+1)

−1
. . . (TN−k−1 . . . TN−2)

−1
]

×
[
σT−1

1 . . . T−1
N−k−1

]
.

Using T−1
i σ = σT−1

i+1, all σs can be moved to the left:

PkYN−k =
[
σk+1 (T2 . . . Tk+1)

−1
(T3 . . . Tk+2)

−1
]
. . .

. . .
[
(TN−k . . . TN−1)

−1
T−1
1 . . . T−1

N−k−1

]
.

Ti commutes with all other T s except Ti+1 and Ti−1, so we may pull
the rightmost operators T−1

1 to T−1
N−k−1 as far as possible to the left:

PkYN−k = σk+1
[
(T2 . . . Tk+1)

−1
T−1
1

] [
(T3 . . . Tk+2)

−1
T−1
2

]
. . .

. . .
[
(TN−k . . . TN−1)

−1
T−1
N−k−1

]
= σk+1 (T1 . . . Tk+1)

−1
(T2 . . . Tk+2)

−1
. . . (TN−k−1 . . . TN−1)

−1
.

But (A.1) tells us that this is precisely the definition of Pk+1. Thus,

PkYN−k = Pk+1, so Pk+1 =

N∏
j=N−k

Yj and our assertion holds for

k + 1 if it holds for k.
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This therefore verifies that

σk (T1 . . . Tk)
−1

(T2 . . . Tk+1)
−1
. . . (TN−k . . . TN−1)

−1
=

N∏
j=N−k+1

Yj

for all k = 1, 2, . . . , N − 1. For k = N − 1, this gives

σN−1 (T1 . . . TN−1)
−1

=

N∏
j=2

Yj .

But σ−1(T1 . . . TN−1)−1 = Y −1
1 , so we find that

N∏
j=1

Yj = σN . �

Appendix B

Here we show that the twist in the ribbon generated by Q3 is precisely 2π. We
demonstrate this specifically for the case of Q3 = σZ1σ

−1Z−1
3 as in Figure

(6) where, from top to bottom, a full anticlockwise twist in the third ribbon
is obtained. For clarity we illustrate only the third ribbon as it is the only
one that behaves non-trivially.

Firstly let z(s), (0 ≤ s ≤ 1) denote the position of a point on the ribbon.
Then v̂ is the unit vector indicating the ribbon orientation and always lies on
the surface of the ribbon. The direction of motion is given by the unit vector
û, where at all times û.v̂ = 0. The vector ŵ = û × v̂ defines the normal to
the ribbon.
So there is an orthogonal frame g(s) = [û, v̂, ŵ] attached to each point on the
ribbon as indicated in the diagram below.

s

s=0 s=1

z(s)

û

v̂

ŵ

g(s)=[û,v̂,ŵ]

We now follow a point as it travels down the ribbon. Attached to this point
is the orthogonal frame g(s). We impose that the ribbon cannot twist around
the direction of motion, that is; ω.û = 0 where ω is the angular velocity of
the frame g(s). We measure the degree of rotation of g(s), between the top
and bottom of the ribbon, relative to a fixed frame. This yields the size of
the twist in the ribbon.
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The Figure 7 (a) below shows the frame g(s) at various points along the
ribbon, from the top of the ribbon labelled point (A), to the bottom of the
ribbon; point (B). Between these points we show that the moving frame g(s)
undergoes a full 2π rotation relative to the inertial reference frame (x̂, ŷ, ẑ).

Notice that between points (A) and (0), the ribbon itself does not undergo
any rotation. Therefore without losing any information we can measure the
twist starting from point (0), which we now call time t = 0, as in Figure 7
(b).
Furthermore in Figure 7 (b), the bottom of the ribbon is redrawn in such a
way that the extra turns do not contribute to the overall twist. Then following
g(s) from t = 0 to t = 1, one can immediately see that û rotates only in the
ŷ− ẑ plane. In fact it does exactly a 2π clockwise rotation. So at any time t,
û can be written as follows:

û(t) = cos(2πt)ŷ + sin(2πt)ẑ.

One can easily check this holds. For example at time t = 1/2, û(1/2) = −ŷ.
This is verified upon inspection of point (2) in the diagram.

Further inspection reveals that as û rotates in the ŷ − ẑ plane, the vectors v̂
and ŵ rotate in a clockwise fashion around û.
We introduce a frame [ê1, ê2, ê3], where ê1 = û and ê2, ê3 are functions of v̂
and ŵ, to measure the rotation of v̂ and ŵ around û. Impose that at t = 0,
ê1 = û, ê2 = v̂ and ê3 = ŵ. It is important to note that ê1 = û at all times;
that is we have û(t) = ê1.
Therefore in terms of this frame [ê1, ê2, ê3] we can write:

v̂(t) = cos(2πt)ê2 − sin(2πt)ê3,
ŵ(t) = sin(2πt)ê2 + cos(2πt)ê3.

Again these can easily be verified through simple substitution and by referring
to the above diagram.

û was fixed to ê1 so in terms of the inertial reference frame we have:

ê1(t) = cos(2πt)ŷ + sin(2πt)ẑ.

Following the vector ê2 between t = 0 and t = 1 we see that it always points
in the negative x̂ direction. This implies that:

ê2(t) = −x̂.

Since [ê1, ê2, ê3] form an orthogonal frame we must have that:

ê3(t) = − sin(2πt)ŷ + cos(2πt)ẑ.
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①

②

③

ⓞ

û
ŵ

t=0

t=1

④

①

②

③

ⓞ

û

ŵ

Ⓐ

Ⓑ

= +

x̂

ŷ

ẑ(a) (b)

Figure 7. Figure (a) shows g(s) at various points along
the ribbon Q3 = σZ1σ

−1Z−1
3 . In Figure (b) we redraw the

relation such that between times t = 0 and t = 1 one can see
û rotating by 2π in the ŷ − ẑ plane.

Finally in terms of the fixed frame (x̂, ŷ, ẑ);

û(t) = cos(2πt)ŷ + sin(2πt)ẑ,

v̂(t) = − cos(2πt)x̂+ sin2(2πt)ŷ − sin(2πt) cos(2πt)ẑ,

ŵ(t) = − sin(2πt)x̂− sin(2πt) cos(2πt)ŷ + cos2(2πt)ẑ.
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One can clearly see that v̂ undergoes a full 2π clockwise rotation from t = 0 to
t = 1. v̂ lies on the ribbon surface at all times, therefore requiring the ribbon
to undergo the same rotation. This yields precisely the required result; Q3

creates a full anticlockwise twist in the third ribbon.
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