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Solid state qubits realized in superconducting circuits are potentially scalable. However, strong decoherence
may be transferred to the qubits by various elements of the circuits that couple individual qubits, particularly
when coupling is implemented over long distances. We propose here an encoding that provides full protection
against errors originating from these coupling elements, for a chain of superconducting qubits with a nearest
neighbor anisotropic XY-interaction. The encoding is also seen to provide partial protection against errors
deriving from general electronic noise.
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Superconducting flux qubits have been shown to possess
many of the necessary features of a quantum bit �qubit�,
including the ability to prepare superpositions of quantum
states1,2 and manipulate them coherently.3 In these systems,
the dominating error source appears to be decoherence due to
flux noise.4 Present designs for arrays of multiple flux qubits
that are coupled through their flux degree of freedom are
easily implemented from an experimental point of view.5

However, when scaling up to large numbers of qubits, they
suffer from technical restrictions such as possible flux
crosstalk and a need for physically large coupling elements,
which are expected to act as severe antennas for decoher-
ence. The possibility of avoiding errors by prior encoding
into decoherence free subspaces �DFS� that are defined by
the physical symmetries of the qubit interaction with the en-
vironment is consequently very attractive. Such encoding is
also attractive for superconducting charge qubits,6,7 which
are subject to similar decoherence sources.8

In this work, we show how to develop such protection for
qubits coupled by the nearest neighbor XY-interaction that is
encountered in both flux and charge qubit designs.9,10 We
demonstrate that for this coupling, a two-qubit encoding into
a DFS provides full protection against noise from the cou-
pling elements. Moreover, all encoded single-qubit opera-
tions are also protected from collective decoherence deriving
from the electromagnetic environment. The protection is
seen to result from a combination of symmetry in the cou-
pling element and a restricted environmental phase space of
the multi-qubit system—the DFS alone would not be suffi-
cient. The analysis makes use of an exact unitary transfor-
mation of 1/ f phase noise in the coupling element �hence
with a sub-Ohmic power spectrum� into regular nearest-
neighbor correlated flux noise on the qubits that is character-
ized by a super-Ohmic power spectrum. To assess the perfor-
mance of the encoding we add to this coupling-derived noise
a single-qubit Ohmic noise source that represents the generic
uncorrelated environmental factors and analyze the fidelity
of encoded quantum gate operations.

The Hamiltonian of a linear chain of XY coupled qubits
reads

Hq = H0 + Hint

=�
i

��i�̂z
�i� + �i�̂x

�i� + Ki,i+1��̂x
�i��̂x

�i+1� + �̂y
�i��̂y

�i+1��� ,

�1�

where H0=�i��i�̂z
�i�+�i�̂x

�i�� is the uncoupled qubit Hamil-
tonian, and Ki,i+1 is the strength of the inter-qubit coupling,
Hint. We assume that it is possible to switch the coupling
Ki,i+1 and the flux bias �i��x,i� of each qubit separately. Such
a Hamiltonian can be realized using flux qubits with capaci-
tive coupling.10 The switch for this interaction can in prin-
ciple be implemented using PIN varactor diodes, microme-
chanical devices, or small Josephson junctions.11 Switching
on the coupling suppresses the tunnel amplitudes10 �i. The
Hamiltonian of Eq. �1� can also be readily implemented in
charge qubits, i.e., Cooper pair boxes coupled by Josephson
junctions,9 whose coupling strength can be tuned through an
external magnetic field. In both cases, the couplers are large
objects and hence act as efficient antennas for charge and/or
flux noise when the coupling is on. When the coupling is
switched off, this noise is confined within the coupler and
does not affect the qubits.

The decoherence sources relevant to Eq. �1� are back-
ground charges. This can be represented as 1/ f noise in the
coupler as we explain below. In addition general electromag-
netic �e.m.� noise, both local flux or electronics noise,
couples to single qubits and, for long wavelength, also to
multiple qubits. The e.m. noise is represented as usual by
Ohmic noise which has both uncorrelated and collective
components. The effect of these environmental decoherence
sources on Eq. �1� is represented by the usual �linear� cou-
pling to a bath of oscillators Hb=�i�ai

†ai+
1
2

�, characterized
by a spectral density J���=�i��i�2���−�i�, with the cou-
pling strength characterized by a dimensionless parameter12

	.
We first show how the coupling and local noise are de-

scribed in this framework. Background charge fluctuations
�q�t� arising in the capacitive coupling elements between
qubits i and i+1, induce geometric Aharonov-Casher13

phases �
�t���q�t� when the qubit flux states tunnel be-
tween eigenstates of �̂z. This results in a correlated two-qubit
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error operator exp�i�
��̂z
�i�+ �̂z

�i+1��� acting on Hq. The low-
frequency limit of this phase noise in the coupling elements
can be approximated as a Gaussian 1/ f noise process deriv-
ing from coupling to a sub-Ohmic oscillator bath with asso-
ciated spectral density12,13 J


2qb���= �	0 /�0�sign���e−�/�c.
Here and henceforth we set � ,kB=1. This leads to a classical
power spectrum in the frequency domain

S
��� = 1
2 ��
�t��
�0� + �
�0��
�t���

=J

2qb���coth��/2T�

	 �2T	0/�c�� �2�

for �T, which characterizes the environmental phase
space of the correlated two-qubit errors due to capacitive
coupling. Uncorrelated single qubit errors deriving from lo-
cal electronic elements are represented here by bath coupling
to the flux states, i.e., �̂z errors. This is typically represented
by a bath having an Ohmic spectral density,14 J�,�

1qb

=	���c
2 / ��c

2+�2�, which thus characterizes the environ-
mental phase space of the uncorrelated single-qubit errors.
We note that very recently, �̂x single-qubit errors �i.e., bit flip
errors� have also been identified.15 The third source of errors,
correlated errors deriving from long wavelength electromag-
netic radiation, can be removed by encoding into a DFS as
we show below, independent of the form of the spectral den-
sity associated with the source of such collective decoher-
ence.

We can formally introduce the noise due to background
charges into the total Hamiltonian Hq+Hb by transforming
the total Hamiltonian with a unitary operator Uqb

=exp�i�
��̂z
�i�+ �̂z

�i+1���, resulting in

H = H� + Hb = UqbHqUqb
† + Hb, �3�

with associated spectral density J

2qb���. Thus, the error acts

in the interaction picture as a time-dependent unitary trans-
formation and it can be eliminated by undoing the transfor-
mation. In NMR �nuclear magnetic resonance� language, this
is a transformation to the “co-fluctuating” frame. The unitary
transformation is properly undone by a time-dependent uni-
tary transformation in the interaction picture, which trans-
forms the states as ����=Uqb

† ��� and the coupled Hamiltonian
as

Heff = Uqb
† HUqb − iUqb

† d

dt
Uqb, �4�

− iUqb
† d

dt
Uqb =

1

2
��̂z

�i� + �̂z
�i+1���
̇ . �5�

The last term is understood as an effective system-bath in-
teraction, written more explicitly

HSB = − iUqb
† d

dt
Uqb =

1

2
��̂z

�i� + �̂z
�i+1�� � �

n

i�n�n�an − an
†� .

�6�

Note that Hq=Uqb
† H�Uqb. Physically, this arises from the

transformation into the noninertial co-fluctuating frame as an
inertial force. It is recognized that �6� is the regular spin

boson coupling HSB,eff=�i��i�ai+�i�
*ai

†� with �i�= i��i. In
this transformed representation we now have correlated flux
errors, i.e., pairwise coupling of the qubit �̂z operators to
energy fluctuations given by the time-derivative of the fluc-
tuating correlated coupler phase, �
̇. Most importantly, the
associated spectral density of the oscillator bath is also trans-
formed, becoming J�

2qb���=�2J

2qb���=	0�2 sign��� /�0,

which is now super-Ohmic. Similar arguments can be ap-
plied to the flux noise arising when two charge qubits are
coupled by a SQUID, except that here the coupling �flux�
noise is usually Ohmic rather than sub-Ohmic, so that the
transformed spectral density is proportional to �3 rather than
to �2. Note, that the flux states only get transformed by
phase factors, hence computation and measurement carried
out in this basis are unaffected by this transformation.

To protect against these correlated errors we employ a
two-qubit encoding �0�L= �01�, �1�L= �10� which is recogniz-
able as the smallest DFS encoding that can protect against
collective dephasing.16 It, therefore, automatically protects
against any correlated phase errors, including our third
source of error deriving from long wavelength e.m. noise.

We will show that as a result of the symmetry in the bath,
in particular, because of the form of its spectral density, this
encoding also provides complete protection against the noise
arising during capacitive coupling. This results in perfect
performance of both encoded single qubit and two qubit op-
erations when correlated errors during two-qubit operations
are the only source of decoherence. Uncorrelated single qubit
errors are then the only remaining mechanism leading to a
reduced fidelity of quantum gates. We find below that for
single qubit errors of less than or equal strength to two qubit
errors, the DFS encoding still provides a significant, al-
though now incomplete, protection.

The two logical qubits are encoded into four physical qu-
bits using the encoding scheme �00�L= �0101�P , �01�L
= �0110�P , �10�L= �1001�P , �11�L= �1010�P, where L and P de-
note logical and physical states, respectively. We assume that
the four physical qubits constitute a linear array �this need
not be contiguous� which we label 1,2,3,4. This four-
dimensional subspace is left invariant by collective errors
involving qubits 1 and 2, Uqb with i=1, as well as by errors
involving qubits 3 and 4, Uqb with i=3, but not by collective
errors involving qubits 2 and 3, i.e., Uqb with i=2, see Ref.
16. A simple counting argument shows that a DFS that pro-
tects against all two-qubit errors including those between the
two encoded qubits does not exist.

The latter errors arise when switching on the coupling
between qubits 2 and 3 with Hint as described above, in order
to perform logical two- qubit operations. Thus, in a Hamil-
tonian formulation within the basis spanned by the encoded
subspace vectors, the coupling error �̂z

�2�+ �̂z
�3� between qu-

bits 2 and 3 does not have identical degenerate eigenvalues
as would be required for a DFS.17 Moreover, the physical
single qubit errors also do not fulfill this requirement of de-
generate eigenvalues. In the language of quantum error cor-
recting codes �QECC�18 where a DFS is a particular example
of a degenerate QECC16 we, therefore, conclude that our
encoding is not fully degenerate under the action of both the
correlated two-qubit and single qubit errors and does not
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constitute a true DFS for both classes of errors. A true DFS
would be completely degenerate, giving identical syndromes
of unity for all of these errors. As a result of this lack of
degeneracy, additional operations are in principle needed for
correction of the uncorrelated noise, i.e., of the physical
single-qubit errors, as well as for correction of the coupling
error Uqb, i=2. Nevertheless, we will see below that the lat-
ter coupling errors resulting from the background charge
fluctuations are actually suppressed by the bath properties
and its symmetry after application of the transformation Uqb,
so that only the single qubit errors need to be actively cor-
rected.

The encoded single-qubit operations, given here without
loss of generality for the first encoded logical qubit only, can
be shown to be

e−i�̄z
�1�� = e−i�̂z

�2�� �7�

e−i�̄x
�1�� = e−iH̃int

12� �8�

e−i�̄y
�1�� = ei�̄z

�1� �
4 ei�̄x

�1��e−i�̄z
�1� �

4 , �9�

where H̃int= �Hint /�0� and �= t�0. The first operation is
straightforwardly achieved by tuning the flux bias. To imple-
ment the second operation, �̄x

�1�, we need to cancel the effect
of H0. This is also straightforward, if �i and �i can be tuned
to zero. If � cannot be tuned to zero, it is nevertheless still
possible to act with Hint alone, by combining a short time
Trotter expansion with operator conjugation as follows. First,
we recognize that conjugation of Hq with �̂z can invert the
sign of �i

e−iHq�−�1,−�2�t = e−i��̂z
�1�+�̂z

�2���/2e−iHq��1,�2�tei��̂z
�1�+�̂z

�2���/2.

�10�

The alternation of Hq��1 ,�2 ,K12� with Hq�−�1 ,−�2 ,K12�
results in the desired action of Hint, up to commutator errors
between Hint and ��̂x

�i�,�j� which can be suppressed by mak-
ing a Trotter expansion:

lim
n→�

�e−iHq��1,�2,K12�t/2ne−iHq�−�1,−�2,K12�t/2n�n = e−iH̃int
12�.

�11�

This scheme requires only relatively small values of n to be
effective. Direct simulation shows that for n
10, the rela-
tive deviation of individual matrix elements Unm from Unm

ideal

is smaller than 1%. During all these encoded single qubit
operations the encoded qubit remains in the DFS encoded
subspace and so is fully protected against correlated two-
qubit errors deriving from both the capacitive coupling and
from any other electromagnetic correlated noise.

Encoded two-qubit operations require pairwise coupling
of physical qubits from the two encoded qubits �0�L and �1�L,

e.g., qubits 2 and 3 as mentioned above. The encoded Ūzz�t�
two-qubit controlled-phase operation is

Ūzz�t� = e−i�̄z
�1��̄z

�2��=eiSx
�
4 eiH̃int

23�/2e−i�x
�2� �

2 eiH̃int
23�/2eiSx�

�
4 ,

�12�

where Sx�= �̂x
�2�− �̂x

�3� and Sx= �̂x
�2�+ �̂x

�3�. This can be com-
bined with an encoded single qubit Hadamard gate to pro-
duce the controlled NOT �CNOT� gate.14 Now the first ele-

ment of Ūzz�t� ,eiSx��/4, takes the DFS states outside the
subspace to form superpositions of DFS and non-DFS states
and populate the non-DFS states �0111�, �0100�, �1011� and
�1000�. Detailed analysis reveals that the two-qubit operation
Eq. �12� will always take the encoded qubits out of the DFS
encoded subspace. However, during these excursions out of
the DFS, when only coupling errors are present, only pure
dephasing processes which do not flip eigenstates can con-
tribute to decoherence,14 since the coupling to the bath com-
mutes with the interqubit coupling. The rates of these
dephasing processes are proportional to S�0�
=lim�→0J�

2qb���coth�� /2T�, which vanishes as a result of
the super-Ohmic shape of J�

2qb derived from the tunneling-
flux transformation introduced above. Consequently these
processes “lack phase space” in the environmental degrees of
freedom and hence are fully suppressed. This excursion out
of the DFS encoded subspace into a larger region of the full
Hilbert space in which only pure dephasing processes con-
tribute to the decoherence can alternatively be viewed as an
excursion into a larger subspace that is characterized by sup-
pression of relaxation processes.

We demonstrate the benefits of the DFS encoding by nu-
merical studies of the CNOT gate, calculated from the simu-
lated evolution of the reduced density matrix for the coupled
flux qubits using the Bloch-Redfield description of the spin-
boson model of the qubit and its bath coupling characterized
by14 J���. This approach is valid for 	0 ,	�1. To quantify
the gate performance we evaluate the fidelity19 F of the en-
coded quantum gate operation, defined by F
= 1

16� j=1
16 ��in

j �UG
+ �G

j UG��in
j �. Here UG is the unitary matrix

describing the desired ideal gate, and �G
j =��tG� is the density

matrix obtained from attempting a quantum gate operation in
a hostile environment, i.e., with errors, evaluated for all ini-
tially unentangled product states19 from the encoded logical
basis, ��0�= ��in

j ���in
j �. The states ��in

j � are defined in Ref.
20.

Figure 1 shows the calculated gate fidelity for an encoded

CNOT operation ŪCNOT, obtained from Ūzz together with the
relevant encoded single qubit gates. We see that, as predicted
by the above analysis, when only two-qubit errors are active
�	1qb=0� the gate performance is perfect. When additional
uncorrelated single-qubit errors during single qubit opera-
tions occur �	1qb�, the gate fidelity is seen to decrease as the
strength of these errors increases. The DFS encoding is thus
seen to give 100% protection against the primary coupling
errors in addition to correlated background errors. It does not
protect against uncorrelated single qubit errors, in fact, due
to the larger overhead, DFS encoding alone is sensitive
against these �compare sets I and II�. However, the uncorre-
lated single qubit errors can be well treated by active quan-
tum error correction, particularly if the error rates for single
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qubit and correlated errors are comparable. It is also possible
to combine this encoding scheme with a QECC in order to
achieve fault-tolerance. Using the scheme proposed in Ref.
21, the leakage problem of standard QECC methods can be
overcome.

Saturation of the gate quality at low temperatures occurs
because all decohering processes �except spontaneous emis-
sion� are frozen out. This occurs when kBT	Emin, where
Emin is the lowest energy splitting in the system. Here, Emin
=�0. Even during the excursion out of the DFS, transitions
between the eigenstates of the Hamiltonian involving spon-
taneous emission are forbidden by symmetry. Thus, at low
temperatures, only energy-conserving “pure dephasing” pro-
cesses influence the gate. These are proportional to the noise
power S��→0�. For an Ohmic environment, this noise is
purely thermal,14 S�0��T, so that the gate performance is
still limited at any finite temperature. For the super-Ohmic
case, S�0�=0 at any T �Fig. 1�. When 	� is small, the fidelity
can be considerably increased because the errors from the
coupling elements introduce no new constraints; i.e., if, for

equal coupling strength to the electromagnetic environment,
the appropriate relative weight of two qubit errors is larger
than that of one qubit errors, it is evident that the DFS en-
coding provides considerable protection. Thus, for optimiz-
ing two-qubit gates it is of crucial importance to identify,
whether or not the noise is correlated between qubits. This is
a critical challenge for experiment. An experimental signa-
ture of correlated noise is, e.g., the superior coherence of the
states used as logical qubits in this work.

In conclusion, we have shown that using a DFS encoding
of superconducting flux or charge qubits can significantly
enhance their gate performance for the entangling two-qubit
operations that are required to implement quantum computa-
tion. The DFS-encoding proposed here ensures that all en-
coded single-qubit operations are protected against 1 / f noise
in the capacitive coupling elements, as well as from corre-
lated electromagnetic noise. The latter are the errors originat-
ing from the coupling of the qubits to a common electromag-
netic environment. When only the capacitive coupling errors
arising during two-qubit operations are present, even though
these are not automatically protected by this DFS encoding,
we find that perfect fidelity can still be achieved. We have
shown that this is a consequence of two symmetries of the
bath. First, commutation of the system-bath coupling with
the interqubit coupling results in elimination of spontaneous
emission between qubit eigenstates. Second, a vanishing bath
spectral density for dephasing processes results from the ex-
act correspondence of the 1/ f sub-Ohmic charge noise in the
coupler to super-Ohmic flux noise on the qubits.

The phase space restriction found here derives from the
choice of the XY-interaction between the qubits: coupler
noise from other interactions would explore the full phase
space during the two-qubit operation. Thus the XY-coupling
is a very attractive coupling scheme whenever decoherence
is a major concern. From the results presented here, we ex-
pect that this DFS-inspired encoding, which is also very ef-
ficient, requiring only two physical qubits per logical qubit,
will therefore be useful for reducing the noise in quantum
circuits based on superconducting qubits.
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