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We present a scheme for correcting qubit loss error while quantum computing with neutral atoms in an
addressable optical lattice. The qubit loss is first detected using a quantum nondemolition measurement and
then transformed into a standard qubit error by inserting a new atom in the vacated lattice site. The logical
qubit, encoded here into four physical qubits with the Grassl-Beth-Pellizzari code, is reconstructed via a
sequence of one projective measurement, two single-qubit gates, and three controlled-NOT operations. No
ancillary qubits are required. Both quantum nondemolition and projective measurements are implemented
using a cavity quantum electrodynamics system which can also detect a general leakage error and thus allow
qubit loss to be corrected within the same framework. The scheme can also be applied in quantum computation
with trapped ions or with photons.
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Isolated neutral atoms in their electronic ground states are
ideal qubits. Atomic coherences can live for much longer
than observation times, and atoms in traps can be observed
for many seconds. Trap perturbations on atomic coherences,
as well as other interactions with their environment, can be
minimal and can be characterized extremely well. Single qu-
bit gates can be nearly perfectly executed on neutral atoms,
and there are several promising approaches to mutually en-
tangling pairs or groups of neutral atoms �1–3�. Large num-
bers of neutral atoms can be arrayed in optical lattices or
other atom traps �4,5�. In short, neutral atoms can demonstra-
bly meet all the criteria for scalable quantum computation
�6�. For reliable computation, one requires also the ability to
correct quantum errors. Here an unusual situation arises for
neutral atoms trapped in optical lattices because background
gas collisions can eject the atoms, causing the qubit to sim-
ply disappear from the system. A cryogenic environment can
drastically minimize background gas collisions �7�, but real-
izing reliable quantum computation in optical lattices will
require correction of such qubit loss errors.

In this paper we present a scheme to correct qubit loss
error during quantum computation with neutral atoms. We
specifically consider neutral atoms in an addressable optical
lattice, although the method could be applied to any neutral
atom system, or in fact, to any quantum computing system
that might experience qubit loss. The key idea is to translate
these nonstandard quantum errors into a standard quantum
error model, and then to correct them with known quantum
error correction schemes �e.g., those based on the
Calderbank-Shor-Steane �CSS� code �8,9� or the Grassl-
Beth-Pellizari �GBP� code for erasure error �10��. The error
is detected by a quantum nondemolition �QND� measure-
ment, implemented using a cavity quantum electrodynamics
�QED� system �11� with high numerical aperture �N.A.� op-
tics so that the cross section of the mode at its center is much
less than the cross sectional area of a lattice cell. The mea-
surement must identify whether an atom is present at the
lattice site without resolving the qubit quantum levels. Once
the error is identified, the vacated lattice site is filled with a
new atom in the qubit ground state using an optical tweezer

�12�. At this point the net quantum error is equivalent to a
standard qubit error due to spontaneous emission of a pho-
ton, so it can be corrected by standard quantum error correc-
tion. In our specific example, the logical qubit, encoded into
four physical qubits of the GBP code, is reconstructed via a
sequence of one projective measurement, two single-qubit
gates, and three controlled-NOT operations. A significant fea-
ture of the present scheme is that no ancillary qubits are
required.

SYSTEM

The quantum computer under consideration consists of a
lattice of neutral atoms, here 87Rb, trapped in perpendicular
standing waves of linearly polarized laser beams �4,13�. The
lattice is characterized by a large lattice constant a=5 �m
and is therefore addressable, meaning that each atom can be
individually controlled by an optical field. Because of this
requirement, the analysis is simplest for a two-dimensional
lattice. It is initialized into a perfect lattice with a single atom
per lattice site, each in a given internal state �4,13�.

The qubit can be any two magnetic hyperfine sublevels
mF of the electronic 5 2S1/2 ground state hyperfine manifolds
characterized by the total angular momentum of the atom
F=1 and F=2. We elect to use the field insensitive magnetic
hyperfine states, mF=0,

�0� = �5 2S1/2,F = 1,mF = 0� ,

�1� = �5 2S1/2,F = 2,mF = 0� . �1�

This choice of qubit states strongly suppresses qubit dephas-
ing due to fluctuations of lattice or magnetic fields.

ERRORS

A quantum computer based on neutral atoms trapped in an
addressable optical lattice is exposed to two types of errors,
�i� qubit errors, which may be accounted for by standard
quantum error correction, and �ii� general leakage errors. A
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quantum leakage error is an uncontrolled rotation of the qu-
bit state vector ��� from the qubit subspace H� to the rest of
the physical Hilbert space H�

�. There are two types of leak-
age, nonqubit atomic hyperfine levels can be populated, for
example, by spontaneous emission or imperfect quantum
computing operations; and atoms can be lost from the lattice
due to collisions with background gas particles. Both pro-
cesses typically occur on a time scale from �10 to 100 s.

ERROR CORRECTION

The essential first step in correcting a qubit loss is to
transform the loss into a standard quantum error using a se-
quence of physical operations. The standard errors can then
be corrected with a known quantum error correction scheme.
Formally, the process of qubit loss and its correction can be
described as the following sequence:

�1� �� � �00,out
�n →

�2� �err,i � �00,out
�n →

�3� �err,i � �00,i � �00,out
��n−1�→

�4� �� � �00,out
��n−1�. �2�

Here ��= ������ is the density matrix describing the pure
state of the quantum computer, and �err,i is the quantum com-
puter state after the qubit loss error at the site i is detected.
�00,out is the ground state atom prepared outside the compu-
tational lattice, and �00,i describes this atom when inserted
onto the vacated lattice site i. Stage �1� describes the initial
pure state of the quantum computer that, in stage �2�, loses a
qubit at the site i. The QND measurement results in the
ejected atom being traced out from the density matrix, so that
after stage �2� �err,i=Tri��. QND measurements are made
periodically on all atoms in order to identify the presence or
absence of atoms at each site. These measurements leave the
qubit states unperturbed. At stage �3�, a new atom in the
qubit ground state is inserted at the empty site by action of a
source that is conditional on the QND measurement. The
effect of this sequence is to transform the qubit loss to an
error that is equivalent to spontaneous emission �also known
as amplitude damping, see e.g., Ref. �14��. This error is then
corrected in stage �4� by standard quantum error correction
methods.

The quantum error described above is equivalent to an
erasure error because its location is revealed by the QND
measurement. We seek an encoding that satisfies two criteria,
�i� all states of code words stay distinguishable when one
physical qubit is lost, and �ii� the code words then preserve
coherences of the encoded logical qubit. A quantum erasure
encoding satisfying these requirements was previously de-
veloped in Ref. �10� and applied to error correction for pho-
ton loss in Ref. �15� in a scheme that encoded two logical
qubits and used two ancillas. Here we also use the GBP code
of Ref. �10� to encode one logical qubit and show that this
can be combined with the above error correction procedure
to correct loss of single qubits without ancillas. The correc-

tion procedure proposed here is specially tailored for experi-
mental implementation with neutral atoms in an addressable
optical lattice; it avoids ancillary qubits and uses only a
small number of operations.

The logical qubit ���L=c0�0�L+c1�1�1 is encoded as

�0�L =
1
	2

��0000� + �1111�� ,

�1�L =
1
	2

��0011� + �1100�� . �3�

Using the density matrix notation of Ref. �15�, i.e., �
=�k

mpk��k���k�= 
��1 , p1�¯ ��m , pm��, the initial state of the
logical qubit is given by

�i = � 1
	2

�c0��0000� + �1111�� + c1��0011� + �1100���,1 .

�4�

We now demonstrate the error correction procedure in
detail for the case when qubit loss occurs in the first physical
qubit position. Losing the first qubit into the environment
causes the density matrix to be traced over this qubit and
results in an equal mixture of two pure state projections onto
the even and odd bit-string parity sector of the Hilbert space
of the remaining three qubits. After inserting a new ground
state qubit atom into the vacant site with the conditional
source, the mixed state then becomes

�e = 
�c0�0000� + c1�0011�, 1
2�,�c0�0111� + c1�0100�, 1

2�� .

�5�

We note that the second physical qubit provides a label
for the two pure state projections in �5�. The mixed state can
then be purified by projective measurement of this qubit.
Thus, if the projective measurement result on the second
qubit is 0, the state �e is collapsed into the pure state �p
= 
�c0�0000�+c1�0011� ,1��. Applying a Hadamard gate on
the first qubit gives the superposition

� c0

	2
��0000� + �1000�� +

c1

	2
��0011� + �1011��,1 . �6�

This state is then transformed back into the initial state �i
�Eq. �4�� by CNOT gates which are conditional on the first
qubit and act on each of the other qubits �i.e., if the first qubit
is 1, then all other qubits are flipped�. If however the projec-
tive measurement on the second qubit yields 1, the state �e is
collapsed onto the pure state �p= 
�c0�1111�+c1�0100� ,1��.
The same sequence of operations as in the previous case, i.e.,
the same Hadamard and CNOT gates, results in the state

� c0

	2
��1000� + �0111�� +

c1

	2
��1011� + �0100��,1 . �7�

which becomes the initial state �i after the first qubit is
flipped by �x operation conditional on result of the projective
measurement on the second qubit. In both cases, the same
sequence of operations, illustrated by error correction circuit
shown in Fig. 1, leads to the complete reconstruction of the
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initial state and thus correction of the quantum error due to
qubit loss.

This qubit loss error correction scheme can also accomo-
date a leakage error. The QND measurement in principle
allows one to identify that quantum states have leaked out of
the qubit Hilbert space, without perturbing the qubit states. It
can hence act as a projective �von Neumann� measurement
that collapses a leaked state into a particular detected state
that can then be tranformed back to the qubit ground state via
a sequence of unitary operations. The leakage error is
thereby transformed to a qubit error that can be dealt with by
standard quantum error correction, just as was done for qubit
loss above.

We now discuss physical implementation of the various
elements required for this qubit loss error correction scheme,
namely QND measurements, projective measurements, and a
conditional source.

ERROR DETECTION

Identification of qubit loss error is the central component
of the scheme. This can be achieved with a QND measure-
ment of the presence or absence of atoms on individual op-
tical lattice sites using a cavity QED system �11� with a small
mode volume. In particular, when the optical field is far red-
detuned from the excited state 5 2P1/2, the measurement out-
come distinguishes only whether an atom is present in the
field. It does not resolve the qubit levels, identified with the
field-insensitive magnetic hyperfine 5 2S1/2 states �mF=0�,
which impose nearly identical distinct phases to the cavity
optical field. The measurement is illustrated in Fig. 2. We
remark that the measurement imposes a small deterministic
relative phase onto the qubit levels which can be inverted by
an additional single qubit operation or simply taken into ac-
count in the quantum compiler.

The observable of this QND measurement is the phase
shift exerted on the cavity field due to the interaction with an
atom. The total phase shift, �, is determined by the finesse of
the cavity, f , �= f�1 where �1 is the phase shift for a single
scattering event. �1 is given by �1=D0 /4�� /��, with � the
spontaneous emission rate, � the detuning of the field from

the transition frequency, and D0 the resonant optical density,
which is proportional to the resonant cross section �0
=	2 /2
. D0 is equal to nL�0 �16�, where nL=C /�, with the
geometric factor C defined for tight focus as an overlap of
the Gaussian beam of width w in the plane perpendicular to
the direction of propagation, with the cylinder given by the
atomic cross section � of the radius w0, C
= �
 /4�erf��w /w0� /	2�. The calculation of the phase shift
may include additional geometric factors arising from the
atomic dipole moment orientation. High N.A. cavity optics
can be used to make w�w0, thus maximizing �. For a 3D
lattice geometry, high N.A. is further needed to minimize
phase shift contributions from nontarget atoms. Different at-
oms could be measured by translating either the optical lat-
tice or the high finesse cavity, in two or three directions.
Assuming that the photons in the cavity are in a coherent
state and that the detection of photons outside the cavity is
shot-noise limited, the uncertainty of the phase shift �� de-
pends on the number of photons in the cavity N according to
���1/	N �17�. This means that in order to successfully
measure whether an atom is present in the cavity, we need to
simultaneously satisfy two conditions. �i� The phase shift
must be larger than its uncertainty, ���. Using the equa-
tions above, this implies N�2 /�2f2. �ii� The number of
photons scattered from the measured atom must be small,
Nsc�1. Using Nsc=N�� /��2f , the condition �i� translates as
Nsc1/ f . For realistic cavities, f can exceed 105, so both
conditions can be well satisfied.

A QND measurement can also be used to distinguish the
magnetic field-sensitive leaked states from the qubit states,
since they impose distinct phase shifts on a circularly polar-
ized cavity field. In the case of 87Rb, a qubit can leak to six
other levels in the electronic ground state, mF=1= ±1, mF=2
= ±1, and mF=2= ±2. The states mF=2= ±2 cause opposite
phase shifts of the same magnitude and hence can be indi-
vidually resolved. The other states require a more subtle pro-
cedure because the levels mF=1= +1 and mF=1=−1 impose
the same phase shift as mF=2=−1 and mF=2= +1, respec-
tively. Assuming, for example, that the measurement out-
come corresponds to the mF=1= +1 and mF=2=−1 states, one
can first apply a state selective unitary operation �4� which
transforms the mF=1= +1 into the mF=2=0 state. A second

FIG. 1. Qubit loss error correction circuit. In this example, the
first qubit of the GBP code is lost to the environment. Quantum
nondemolition measurements �QND� indicate the location of the
error and trigger the conditional source �CS� to inject a new atom in
state �0� into the optical lattice site. A projective measurement �PM�
purifies the mixed state resulting from tracing out the lost qubit.
Subsequent single qubit and two qubit operations reconstruct the
encoded logical qubit.

FIG. 2. �Color online� Scheme illustrating the implementation of
the quantum nondemolition measurement using the cavity QED
system.
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QND measurement can now discriminate between these
states. When a leaked state has been identified, i.e., the
atomic wave function has collapsed to that particular quan-
tum level, a short sequence of unitary operations can be
made to rotate the wave function from the leaked state into
the qubit ground state. At this point, the situation is equiva-
lent to the result of the first stage of qubit loss correction �see
Eq. �2��. We note that an alternative approach to leakage
error can be arrived at using a general leakage detection cir-
cuit with ancillary qubits as proposed in Ref. �18�. Applica-
tion of this alternative approach to quantum computing with
neutral atoms in an addressable optical lattice will be ana-
lyzed elsewhere �19�.

PROJECTIVE MEASUREMENT

Projective measurement can be realized using the cavity
QED system. For example, the qubit levels which are stored
originally in mF=0 states, can be distinguished by a QND
measurement after unitary rotation into the mF=1=1 and
mF=2=1 levels, respectively. Since the cavity system is a part
of the error correction setup, this solution may be more con-
venient than one based on fluorescence from the 5 2P3/2 state
�illustrated in Fig. 3�.

Projective measurement is a rather demanding operation.
An alternative is a “destructive” measurement in which the
particle carrying the qubit is “destroyed” during the measure-

ment process, i.e., it is removed from the lattice after or
before the measurement. There are several possible imple-
mentations of this option within the present scheme. The
simplest is to make the “destructive” measurement, and then
replace the atom. The state can then be reset with a single
qubit-flip operation conditional on the “destructive” mea-
surement result. This procedure has the same effect in the
error correction scheme as the original projective measure-
ment.

CONDITIONAL SOURCE

The conditional source can be implemented in an addres-
sable optical lattice using an optical tweezer dipole trap to
transport an atom in the qubit ground state �0� from a reser-
voir lattice �conveyor belt lattice� to the computation lattice.
The dipole trap is loaded with an atom in the field insensitive
state, mF=0, from an optical lattice made by the interference
of two beams with perpendicular linear polarization vectors,
�=
 /2. The dipole trap has a harmonic potential near the
trap minimum and experiences translational displacement
during tranportation of an atom but no change in well-depth
or other parameters. If the time scale of the shift operation
along one direction corresponds to an integer multiple of the
vibrational period of a trapped atom, then the extent of vi-
brational excitation during transportation can be effectively
suppressed to zero �4�.

CONCLUSION

We have presented a scheme for the correction of qubit
loss and leakage errors during quantum computation with
addressable atoms in optical lattices. It uses the GBP code to
protect one logical qubit without any additional ancillary qu-
bits and employs only a small number of elementary quan-
tum gates, together with a projective measurement and con-
ditional source. It can also be applied in quantum
information processing with trapped ions and photons.
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