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REVIEW
The Circadian System in Alzheimer’s Disease:
Disturbances, Mechanisms, and Opportunities

Andrew N. Coogan, Barbora Schutová, Susanne Husung, Karolina Furczyk, Bernhard T. Baune,
Peter Kropp, Frank Häßler, and Johannes Thome
Alzheimer’s disease (AD) is a devastating neurodegenerative condition associated with severe cognitive and behavioral impairments.
Circadian rhythms are recurring cycles that display periods of approximately 24 hours and are driven by an endogenous circadian
timekeeping system centered on the suprachiasmatic nucleus of the hypothalamus. We review the compelling evidence that circadian
rhythms are significantly disturbed in AD and that such disturbance is of significant clinical importance in terms of behavioral
symptoms. We also detail findings from neuropathological studies of brain areas associated with the circadian system in postmortem
studies, the use of animal models of AD in the investigation of circadian processes, and the evidence that chronotherapeutic
approaches aimed at bolstering weakened circadian rhythms in AD produce beneficial outcomes. We argue that further investigation in
such areas is warranted and highlight areas for future research that might prove fruitful in ultimately providing new treatment options
for this most serious and intractable of conditions.
Key Words: Alzheimer’s disease, chronotherapy, circadian, dementia,
SCN, sleep

D
isturbances of daily behavioral and sleep patterns are
commonly described in neurological and psychiatric
disorders (1). In Alzheimer’s disease (AD) such behavioral

disturbance is a leading reason for institutional care in moderate
to severe AD (2). There is considerable evidence that disturbances
of sleep-wake cycles are related to alterations in the suprachias-
matic nucleus (SCN), the master circadian pacemaker (3). The SCN
is a small nucleus of the anterior hypothalamus located directly
dorsal to the optic chiasm (from which it receives direct retinal
innervations) that is composed of a neurochemically and func-
tionally heterogenous assembly of neurons (4). Circadian rhythms
are generated as an output of the clock gene cycle, produced by
a series of interlocking transcriptional feedback/feedforward
loops of a panel of clock genes (e.g., PER1,2, CRY1,2, CLOCK,
BMAL1). Such cycles drive the rhythmic expression of clock-
controlled genes, and ultimately such molecular cycles are
translated into physiological and behavioral circadian rhythms
(3,5). Outside of the SCN there are circadian oscillators through-
out the brain and periphery, and the circadian network normally
functions as a complex and distributed system that imposes
temporal architecture on physiology and behavior (5). There are
also circadian rhythms in neurocognitive parameters (6,7) and
disruption of circadian rhythms leads to cognitive impairments
(8). Circadian dysfunction also impacts negatively on immune,
metabolic, and cardiovascular systems (9,10). Such circadian
alterations are increasingly being explored with regard to both
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functional decline during healthy aging and in age-related
diseases (11). In this review we examine the evidence with
regard to circadian alterations in AD and explore the thera-
peutic avenues that arise and the opportunities for advan-
cement at the interface between dementia research and
chronobiology.
Functional Studies of Circadian Disruption in AD

Many studies to date have examined the relationship between
aging and circadian function, with decreased amplitude but not
period of the rhythm as well as alterations in circadian phase
being commonly reported findings (12) (see the glossary of
chronobiological terminology in Supplement 1). These alterations
in circadian parameters are exacerbated in AD, the most apparent
deficit being fragmentation of the sleep-wake cycle leading to
increased nocturnal awakenings and increased daytime sleep
bouts (13). The use of noninvasive actigraphy (usually via a wrist-
worn accelerometer) has been beneficial in monitoring rest/
activity cycles in dementia patients since the early 1990s (14,15).
Later rest/activity cycles of home-dwelling AD patients were
examined over one year, and those with mild dementia displayed
rhythms not significantly different from those of control subjects,
whereas those with moderate dementia displayed fragmentation
of the rhythm and decreased amplitude, although these effects
were not correlated with the severity of the dementia (16). Van
Someren et al. (17) reported that rhythms were most fragmented
in institutionalized AD patients and that higher levels of daytime
activity predicted more coherent rhythms, whereas lower levels
of daytime activity predicted rhythm fragmentation. Changes in
circadian parameters are not equivalent across different types of
dementias; there are differences in the nature and magnitude of
rhythm disturbance in AD, frontotemporal dementia, and diffuse
Lewy body disease (18). The overall locomotor changes that
occur in AD seem to be related to more specific behavioral
changes, for example in meal time, which in turn might be linked
to poorer nutritional outcomes (19). Further evidence for the
importance of circadian rhythms in AD is provided by the finding
that higher daytime activity levels and lower nocturnal activity
(i.e., consolidated, nonfragmented sleep/wake cycle organiza-
tion), is strongly associated with increased wellbeing and func-
tional status (20). Results from a large prospective study
indicate that changes in circadian activity patterns (decreased
BIOL PSYCHIATRY ]]]];]:]]]–]]]
& 2012 Society of Biological Psychiatry

https://core.ac.uk/display/297014683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:johannes.thome@med.uni-rostock.de
dx.doi.org/10.1016/j.biopsych.2012.11.021
dx.doi.org/10.1016/j.biopsych.2012.11.021
dx.doi.org/10.1016/j.biopsych.2012.11.021


2 BIOL PSYCHIATRY ]]]];]:]]]–]]] A.N. Coogan et al.
rhythm amplitude, phase-delays) are significant predictors
of subsequent AD or mild cognitive impairment, suggesting
that compromised rhythms might be a preclinical pheno-
menon (21). Another point of interest is that anti-psychotic
medication used in the clinical management of AD might impact
on circadian rhythms (22), because these medications
might impact on the molecular components of the circadian
system (23).

General activity is not the only parameter that can be used to
assess circadian rhythmicity at the gross level in AD. Skin
temperature monitoring demonstrates that proximal but not
distal skin temperature is raised in the daytime in AD patients
compared with elderly control subjects, with no nocturnal
difference in either distal or proximal skin temperature (24).
Proximal skin temperature was also positively correlated with
daytime sleepiness in both AD patients and healthy control
subjects. One explanation for these findings is that alterations in
proximal skin temperature in AD are functions of altered
circadian clock control of autonomic processes involved in the
regulation of skin temperature.

A potential consequence of disrupted circadian rhythms in AD
is the manifestation of rhythms in behavioral agitation. Patients
affected by AD often develop varying disruptive behavioral
symptoms, such as agitation and restlessness, verbal outbursts,
wandering, physical threats, and aggression (25). “Sundowning” is
the term given to the occurrence of the aforementioned
symptoms during the late afternoon or early evening (26,27).
The prevalence of sundowning in AD is reported as being
between 13% and 66% (28–30). The temporal nature of sun-
downing is suggestive of a circadian origin: nonlinear analyses
of actigraphic data in AD show that higher levels of motor
regularity, especially during the night, are associated with
aggressive behavior in AD patients (31).

Insight into the nature of the circadian disturbances that
occur in AD is provided through the analysis of actigraphic
activity data for scale invariance of activity fluctuations, which
was reduced in AD patients and most reduced in the oldest, most
severely demented patients (32). This is of interest, because scale
invariance in activity patterns is found in rodents to be depen-
dent on the SCN (33), and so the changes observed in AD might
be taken as indicative of changes occurring in the master clock
that are then translated into gross patterns of behavior. This
finding is in accordance with the findings from neuropathological
studies discussed later.

There are some significant issues that limit the interpretation
of functional studies of circadian rhythms in AD. First is the
nature of the diagnosis commonly used to select study popula-
tions, that of dementia of the probable Alzheimer’s type, which
cannot be confirmed until postmortem examination (itself not
routinely carried out). Given that dementia is a symptom of many
other diseases of old age and that postmortem examination
might not confirm a diagnosis of AD (e.g., 15% of diagnoses are
not confirmed at autopsy [34]), it seems likely that the popula-
tions examined in the aforementioned studies represent a
heterogeneous population representing both AD and non-AD
dementias. Another caveat for actigraphy-based studies is the
ease with which rhythms might be masked by environmental
factors, such as nursing care, occupational therapies, and a host
of societal factors for studies in AD patients in the home setting.
Such concerns are not just limited to dementia studies and do
not negate the usefulness of actigraphy to gain significant insight
into circadian rhythm disturbance in AD, but they do highlight
that care needs to be taken in the interpretation of results from
www.sobp.org/journal
such studies. Supplement 1 contains information on neuroendo-
crine changes in AD.
Postmortem and Neuropathology Studies

Postmortem studies have assessed neuropathological changes
within the SCN in both healthy aging and in dementia and
neurodegenerative disease (12). Stopa et al. (35) evaluated the
degenerative changes in the SCN from patients with severe AD
and found neuronal loss and tangles, indicating that the SCN is
affected by AD, whereas amyloid plaques were only seldom
noted in the SCN. Overall SCN volume has been reported to
decrease in dementia of the Alzheimer’s type (36), and the
expression of the neuropeptide vasoactive intestinal polypeptide
(VIP) was found to be decreased in the presenile male SCN (37).
There is also a loss of rhythmicity of SCN arginine vasopressin
(AVP) during aging (38), and in AD this loss of AVP neurons and
rhythmicity is accelerated (39,40). Loss of neurotensin-expressing
neurons in the SCN of AD patients is also reported along with
increased astrocytes (35). Because VIP, AVP, and neurotensin are
known to alter SCN neuronal function (41,42), their loss during
AD might be of particular functional consequence. Interestingly,
there is evidence to suggest that neuropeptide alterations in the
SCN occur at early stages of AD and might preface cognitive
decline (43). Harper et al. (44) also provide evidence that
neuropathological progression (as measured by Braak stage) in
postmortem AD brains is associated with the severity of circadian
abnormalities, suggesting that the circadian rhythm disturbances
in AD are directly linked to the central neuropathology of the
disease. There is also evidence for neurodegeneration in the SCN
in both AD and frontotemporal dementia, as determined by the
neuron/glia ratio, and this degeneration correlates to the magni-
tude of circadian rhythm impairment in core body temperature
and activity parameters (45). Loss of SCN neurotensin cells was
also associated with dampened activity rhythm amplitude but
not with increased fragmentation of the rhythm, although loss of
AVP neurons in the dorsomedial SCN was associated with rhythm
fragmentation but not dampened amplitude (45). Expression of
the MT1 melatonin receptor in the SCN is also markedly
decreased in late stage AD (40). Supplement 1 contains an
overview of circadian influences on Ab levels.

Another area that undergoes neurodegeneration in AD and
might be important for circadian rhythm disturbance is the
cholinergic basal forebrain. Cells of the nucleus basalis project
to the SCN (46), there is cholinergic innervations of the SCN (47),
and cholinergic agents act in the SCN to modulate circadian
rhythms (48). The question should then be posed as to what
effect the loss of cholinergic cells in the basal forebrain in AD
might have on circadian function. Lesion of the cholinergic
projection to the SCN in rats leads to alterations in the phase-
shifting effects of light on circadian rhythms (49), although
another study in using lesions of the cholinergic medial septum
did not find alterations in circadian parameters (50). Differences
between these studies might be due to the neuroanatomical
locations of the lesion as well as differences in the behavioral
paradigms examined. The study of Wisor et al. (51) reports that
alterations in non–rapid eye movement sleep in the Tg2576
mouse model of AD might be due to alterations in cholinergic
transmission. On balance, it seems reasonable to suggest that
further studies examining the role of cholinergic depletion in
circadian disturbance in AD (e.g., postmortem analysis of acet-
ylcholine fibers in the SCN) are needed (Figure 1).



SCN Effects
AVP cell loss/Loss of AVP rhythm/Neurotensin cell loss/VIP cell loss

Tangle formation/Increased astrocyte/neuron ratio
Loss of melatonin receptors

Neuroinflammation?

Photic input to SCN
Reduced transmission via RHT:
Decreased environmental illumination
Cataract
Retinal degeneration

Cholinergic Effects
Loss of cholinergic cells in
basal forebrain.
Decreased cholinergic input to SCN?

Hippocampal Effects
Loss of clock gene expressing cells?
Loss of circadian influence on 
declarative memory acquisition?

Hypothalamic Effects
Loss of circadian function in 
neuroendocrine centers?
HPA dysregulation?

Amygdala Effects
Loss of clock gene expressing cells?
Weakening of circadian influence on 
affective processes?

Cortical Effects
Loss of clock gene expressing 
cells?
Weakening of circadian influence 
on cognitive and executive 
function?

Weakened SCN output to ancillary central circadian 
oscillators

Pineal Effects
Weakened sympathetic input
Loss of β-receptor on pinealocytes 
Loss of rhythmic clock gene expression
Weakened melatonin rhythm.

Weakened melatoninergic feedback to 
SCN

Non photic input to SCN
Decreased exercise
Decreased exposure to social zeitgebers
Dysregulation of feeding times

Behavioral  Disturbance, Cognitive Decline

Figure 1. Graphic illustrating potential pathways by which circadian rhythms might be disturbed in Alzheimer’s disease and how such disturbances
might impact on physiological, cognitive, and behavioral changes in Alzheimer’s disease. AVP, arginine vasopressin; HPA, hypothalamic-pituitary-adrenal;
RHT, retinohypothalamic tract; SCN, suprachiasmatic nucleus; VIP, vasoactive intestinal polypeptide.
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Clock Gene Cycles in AD

Given the key roles played by clock genes in the generation of
physiological and behavioral circadian rhythms, it is of particular
interest to inquire how clock gene expression cycles are affected
in AD and other dementias. Such work is difficult, due to the
dependence on postmortem tissue to examine clock gene
expression in the SCN and other central sites. Recently, the
expression of the clock genes PER1, PER2, and BMAL1 was
examined in the bed nucleus of the stria terminalis (BNST), the
cingulate cortex, and the pineal gland (52). These are core clock
genes that serve to regulate the near–24 -hour regulation of
clock-controlled gene transcription and ultimately manifest cir-
cadian rhythmicity at the physiological level. Both the BNST and
the cingulate cortex have previously been shown to express
rhythmic clock genes (10,53). Similar peak times for PER1 and
PER2 in control subjects in the active phase were reported,
whereas BMAL1 was shown to peak in the night (52). Interest-
ingly, PERs and BMAL1 displayed significant 24-hour rhythmicity
in the brains of AD patients. However, a state of desynchrony in
oscillation between cortex, pineal gland, and the BNST in AD
patients was found, possibly caused by the degeneration of the
SCN cells in AD brains (52). Given the roles of the BNST and
cingulate cortex in decision-making and motivated behaviors and
the position of the pineal gland as a major output of the SCN,
abnormal rhythms in these brain regions or lack of coordination
between them might contribute to cognitive and sleep-wake
deficits in AD patients. Rhythmic expression of BMAL1, CRY1, PER1
in human pineal has been reported, and these rhythms are lost in
pineals from both preclinical and clinical AD patients (40). Tseng
et al. (54) examined expression of PER1 in peripheral leukocytes
during different sleep stages in healthy control subjects, those
with mild cognitive impairment, and patients with AD and
reported no difference across the groups in terms of PER1
expression. Although such observations are valuable, their inter-
pretation is hampered by the lack of data on clock gene
expression in SCN tissue. There seems to be an opportunity here
to use recently developed methods of assaying molecular
rhythms in peripheral tissues (55,56) in AD to gain a more
systematic insight into circadian rhythm dysfunction than is likely
to be afforded by postmortem studies (Supplement 1 contains an
overview of clock gene polymorphisms in AD).
Findings from Animal Models of AD

Given the difficulty in assessing core circadian processes in
demented patients (e.g., the unsuitability of forced desynchrony
or constant condition protocols needed to assess parameters
such as circadian period), attention has been paid to using animal
www.sobp.org/journal



4 BIOL PSYCHIATRY ]]]];]:]]]–]]] A.N. Coogan et al.
models of AD to assess circadian alterations. There is no one
animal model of AD that recapitulates fully AD (57), and many
animal models of AD model the amyloid but not the t pathology
associated with AD. However, such models can provide valuable
insight and allow for full behavioral and molecular characteriza-
tions from a circadian standpoint. There is the added complexity
of the age � background interactions in transgenic animals, and
not all studies examining circadian rhythms in animal models of
AD have adopted longitudinal approaches sufficient to address
this important concern. Furthermore, many studies to date do
not undertake a comprehensive circadian analysis, and so only
part of the picture is available for many of these AD models.

In rats, injection into the SCN of transgenic cells overexpres-
sing b/A4 leads to significant deterioration of the circadian
rhythm, in terms of both fragmentation and rhythm period and
power (58). In hamsters, injection of b amyloid 25-35 into the SCN
resulted in phase-advanced and less consistent diurnal rhythms,
effects that were attenuated by melatonin (59). In the amyloid
precursor protein (APP)23 mouse model activity levels centered
around “dusk” were diminished, although overall activity levels in
the active dark phase were increased (60). In a further study on
APP23 mice, activity in the second half of the active phase is
increased (61), and this might be analogous to sundowning in AD
patients, which also occurs in the second half of the active phase.
In the APP mouse there are alterations in the temporal organiza-
tion of anxiety-like symptoms that emerge when compared with
age-matched control subjects (62) and again suggest that such
changes might be important for understanding circadian influ-
ences on sundowning.

The Tg2576 mouse model shows marked lengthening of the
free-running period in constant darkness, although under a light/
dark cycle activity was confined mostly to the dark period,
indicating that—although there might be alterations to the
period—these are compensated by normal entrainment mechan-
isms under a light/dark cycle (51). In a further study of the
Tg2576 model, no changes across the lifecourse in period, activity
onsets, or offsets were reported, although there were ultradian
changes in activity parameters (63). This finding might be
consistent with the finding that there was no evidence of
amyloid deposits in or nearby the SCN in the Tg2576 mice. In
the TgCRND8 model diurnal organization of behavior was altered,
with more daytime activity and lessened levels of nocturnal
activity, suggesting rhythm fragmentation, and these effects are
noted before the appearance of A-b neuropathology (64).
Modifications of diurnal patterns of activity in APP knockout
animals can be rescued by the secreted b-amyloid precursor
protein ectodomain APPsa (65).

The 3xTg mouse model, which displays both A-b and t
pathology, did not display abnormalities in free-running period
or photic phase-shifting but did display markedly reduced activity
levels after the onset of A-b pathology (66). These mice also
displayed changes in the neuropeptidergic content of the SCN
(AVP- and VIP-expressing neurons), a situation that echoes
findings from postmortem studies of the SCN in AD. Another
recent study on the 3xTg model shows exaggerated amplitude
and a phase advance of the core body temperature rhythm, and
these effects were not dependent on cyclooxygenase and
occurred in the absence of neuropathology in the hypothalamus
(67). Analysis of the AbPPswe/PSEN1A246E mouse—which carries
transgenes for both APP and presenilin-1—shows that, although
activity levels are increased, circadian organization of behavior is
not increased (68). Likewise, the doubly transgenic model
SPPswe/PS1dE9 mouse (up to 7 months of age) does not display
www.sobp.org/journal
marked abnormalities in its circadian organization of behavior,
although there is an increase in daytime core body temperature
compared with wildtypes (69). The APPxPS1 mouse displays a
phase delay of its daytime wakefulness bout, although most
parameters of the activity rhythms were not altered (70).
Furthermore, old APPxPS1 animals displayed blunted diurnal
variation in the SCN expression of Per2.

Overall, although studies of individual animal models of AD
yield varying results, possibly due to the different natures of
these models, some interesting points emerge. One is that there
is not necessarily a link between alterations in activity levels and
the temporal organization of that behavior. This might be
explained if the SCN and by extension SCN output is spared,
but neuropathology impacts on cortical and subcortical areas
implicated in motor control. There are undoubtedly further
opportunities to gain more insight from such animal models,
for example by using luciferase-based reporter systems for clock
gene expression monitoring in real time in transgenic mouse
models of AD as well as the application of electrophysiological
examination of SCN neuronal function in AD models.
Chronotherapeutics in AD

Given that there is considerable evidence of circadian dys-
function in AD, therapeutic approaches that seek to target
circadian abnormalities might provide novel avenues of treat-
ment for AD. Such chronotherapeutic interventions might involve
environmental (e.g., light therapy), behavioral (e.g., exercise),
and/or pharmacological (e.g., melatonin) approaches (71). Satlin
et al. (14) reported that evening light therapy led to stabilization
of rhythms and improved sleep, although morning light therapy
also significantly improved sleep (72). Morning light therapy also
bolsters circadian rhythms and improves mini mental state
examination scores, especially in the early stages of AD (73).
Morning light therapy also seems to delay the onset of sundown-
ing by an hour and a half, although the ratings of the agitation
are not altered (74). Even in severe dementia morning light
therapy might lead to phase advances of circadian rhythms and
improve behavioral symptoms (75), and both morning and
evening light therapy improves circadian parameters and leads
to consolidation of sleep (74). Dowling et al. (76) did not report
beneficial effects of light therapy on sleep parameters in
institutionalized AD patients, but the light therapy did lead to a
more stable circadian phase, and it has been suggested that
those AD patients with the most severe circadian abnormality are
most likely to respond to light therapy (77). Efficacy of light
therapy might also be enhanced significantly in combination
with melatonin treatment (78). The use of light to simulate dawn
and dusk, a more naturalistic light therapy approach, was found
not to improve circadian amplitude or stability or cognitive
parameters but did advance sleep onset, shorten sleep latency,
and consolidate nocturnal sleep episodes (79).

Care settings for dementia patients are often dimly illumi-
nated, a factor that might be of consequence when considering
the potential beneficial impact of light on strengthening dis-
rupted rhythms. Van Someren et al. (80) first reported on the
potential therapeutic benefit of increasing incident illumination in
care settings. Increasing light exposure of dementia patients does
not impact on depression ratings, although there are suggestions
that individual cases might benefit (81). Riemersma-van der Lek
et al. (82) conducted a large randomized control trial increasing
illumination levels in care facilities for elderly persons and found
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that long-term (approximately 1.5 years) increase in illumination
levels slowed the decline in mini mental state examination scores
(on average by .9) and lessened depression ratings and functional
impairments. Such an approach is being trialled in AD patients,
and the results of this study will be very illuminating with regard
to the efficacy of a simple environmental intervention in improv-
ing cognitive, psychological, and behavioral symptoms of AD (83).
A recent study has indicated that lower levels of light exposure in
AD patients during the winter might be associated with greater
circadian rhythm abnormalities (84), highlighting the putative link
between light exposure, seasonal effects, and circadian rhythm
disturbances.

The therapeutic use of melatonin has also been examined in
AD. Melatonin treatment in the evening is usually used to achieve
a phase advance of the circadian rhythm, although morning
melatonin might be used to produce a phase delay (85). A
double-blind study of melatonin in AD revealed improvements in
cognition as well as decreasing nocturnal activity and increased
nocturnal sleep (86). A larger, multicenter study trial did not
report any beneficial effects of melatonin on actigraphically
determined sleep patterns in AD, although it is worthwhile to
note that the timing of melatonin treatment in this trial (1 hour
before bedtime, and so after the onset of endogenous melatonin
synthesis) was specifically selected so as not to elicit phase shifts
(87). Another trial examining the effects of melatonin on agita-
tion, sleep, or circadian rhythms in AD failed to find any benefit of
melatonin (88). There are many issues left to resolve with respect
to the usefulness of melatonin in AD. If it is not effective in
improving circadian rhythms and sleep on its own, then does it
augment the effects of light therapy (78)? What dose of
melatonin is used? And at what time is melatonin treatment
administered? Is a long- or short-release formulation used? How
well are different melatonin formulations tolerated in AD? Does
the antidepressant agomelatine, which is an agonist for the MT1/
2 melatonin receptors, have any efficacy in improving rhythms,
sleep, or cognitive, behavioral, and/or psychological symptoms in
AD? Another general point about light therapy versus pharma-
cological studies is the difficulty in achieving blinding in studies
of light therapy, as opposed to trials with drug treatments. This
factor might be important when considering the relative effica-
cies of light-based treatments versus drug-based treatments.
Supplement 1 provides an overview of the roles of activity-
based therapies in circadian rhythms in AD (89).
Conclusions and Perspectives

It is apparent that considerable circadian dysfunction occurs in
AD, that such dysfunction seems to preface the clinical onset, and
that disease severity seems to correlate with the magnitude of
circadian dysfunction. With regard to chronotherapeutics, there
are encouraging signs from studies of simple environmental
interventions such as increasing the ambient illumination in care
facilities, and light therapy also has shown some promise to date.
It is important to note that the most marked circadian abnorm-
alities noted in AD are dampened amplitude and rhythm
fragmentation rather than circadian misalignment (a more pre-
valent feature of mood disorders [90]). As such, interventions
focusing on strengthening zeitgebers rather than phase-resetting
might prove most fruitful. There is a need for large, randomized
controlled clinical trials of chronotherapeutics in AD.

With regard to the nature of the circadian disruption that
occurs in AD, there is much still to be understood. One aspect
that might be of importance is the role of neuroinflammation in
AD on SCN and circadian function. Alzheimer’s disease, like many
other neurodegenerative diseases, is associated with neuroin-
flammation (91) which can impact on SCN and circadian function
(9,92,93). Another area worthy of further investigation is the role
that cholinergic cell loss has in circadian rhythm disturbance in
AD and whether anti-cholinesterase drugs might impact on such
rhythms in AD.

In conclusion, understanding the nature of circadian rhythm
disturbance in AD and how such disturbances might be amelio-
rated for the improvement of patients and caregivers is a topic
worthy of considerable future effort.
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