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ABSTRACT 

The Modal distribution is a time-frequency distribution 
specifically designed to model the quasi-harmonic, 
multi-sinusoidal, nature of music signals and belongs to 
the Cohen general class of time-frequency distributions. 
A streaming, object-oriented implementation of the 
Modal distribution is presented which forms the basis 
for designing other members of the Cohen class.  
Implementation of this routine in the C++ Sound Object 
Library provides a fully portable tool for time-frequency 
analysis across multiple platforms. The theoretical 
background to the Cohen general class is outlined  
followed by an explanation of the design and 
implementation of the Modal distribution in the SndObj 
library. Suggestions for future extensions to the new 
Modal class and its integration with the entire library 
are explored.  

1. INTRODUCTION 

The Modal distribution was introduced by Pielemeier 
and Wakefield [1] as a member of the Cohen general 
class of time-frequency distributions [2] for the analysis 
of music signals. It is primarily a Wigner distribution, or 
more specifically, a smoothed pseudo-Wigner 
distribution (SPWD), with a kernel that takes account of 
the modes present in quasi-harmonic, multi-sinusoidal 
music signals. Being based on the Wigner distribution, it 
provides a more accurate measure of time-frequency 
localisation and does not suffer from the time-bandwidth 
trade-off inherent in spectrogram implementations. 
Superior accuracy in time and frequency localisation is 
desirable for the analysis of music signals where, for 
example, time resolutions of a few milliseconds are 
required for onset analysis and where partials may often 
have broadband characteristics.  One drawback of  the 
Wigner distribution is the existence of cross-terms 
amounting to beats between partials not existing in the 
original signal. The Modal distribution kernel is designed 
to minimize the effect of these cross terms for music 
signals.  

A C++, object oriented, implementation would allow 
for integration of the Modal distribution routine with a 
variety of existing signal processing tools in the Sound  
Object Library[5]. The Sound Object Library is an 
object-oriented library for audio programming, written in 
C++. The library code is fully portable across Windows, 
Linux/Unix (with OSS/ALSA), Irix and MacOS X. The 

SndObj library provides more than 100 classes that can 
be used for time- and frequency-domain signal 
processing, as well as sound and MIDI input/output. 
With its SndThread class, it can also manage audio 
processing threads. Particularly important for this work is 
the support found in the library for partial tracking and 
additive synthesis, which can be used to build analysis-
resynthesis programs using the Modal transform for 
spectral analysis. The current implementation also 
implements the pseudo-Wigner and smoothed pseudo-
Wigner distributions, and allows for further extension to 
the Modal class, thus, facilitating development of other 
members of the Cohen general class or the investigation 
of new time-frequency distributions through novel kernel 
design. 

2. THEORETICAL BACKGROUND 

Leon Cohen [2] proposed a general class of time-
frequency distributions which are related through linear 
transformations.  The set of all linear transformations of 
the Wigner distribution has come to be known as the 
Cohen general class.  A two-dimensional kernel  
determines the linear transformation involved. Included 
in the Cohen general class are the spectrogram and 
distributions due to Riahaczek [4]. Further investigation 
has been carried out by O’ Donovan [11]. The Cohen 
general class is given by: 
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where ( )τθφ ,  is a two dimensional kernel function which 
determines the distribution and its properties. ( )τθφ ,  
typically implements filtering in time or frequency or 
both. The Wigner distribution in terms of the signal ( )ts  
and the spectrum ( )ωS  is given by: 
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Here the kernel is unity. The Wigner distribution is said 
to be bilinear in the signal as the signal enters twice in 
the calculation and is the sum of products of the signal at 
past and future times, both past and future lengths of 
time being equal. This is in effect an autocorrelation 
with the lag variable, τ, producing the time-relative-time 
or temporal autocorrelation function (TCF) given in (4). 
An important property of the Wigner distribution is that 
it is real with ( ) ( )ωω ,,* tWtW = . Also, the Wigner 
distribution gives a clear picture of the instantaneous 
frequency and group delay which is not the case for the 
spectrogram. These are important for resynthesis [1,7]. 

2.1. The Time-Relative-Time Function 

The Wigner distribution is obtained by taking the Fourier 
transform with respect to τ of the 2-dimensional ( )τ,tb f  
autocorrelation function. given in Equation (4). The 
terminology used is this section is that of Poletti [6]. The 
temporal and spectral ranges of this function are first 
outlined before discussing the discrete implementation of 
the Wigner distribution.  For a bandlimited and 
timelimited function: 

                    ( ) ( ) ( )[ ] ( )twthtftf hw �=                (3) 

the corresponding time-relative-time function is given  
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Here 
t

� denotes convolution in the t direction. If ( )th  is a 

β  bandlimited function, then the function 

( ) ( ) ( )thtftfh �=  has a time-relative-time function: 

             ( ) ( ) ( )τττ
τ

,,, tbtbtb h
t

ff
h ��=                (5) 

that is β  bandlimited in τ and β2  bandlimited in t .  

Also, given the function ( )tw  as δ  time limited, then 
the function ( ) ( ) ( )twtftf w =  has a time-relative-time 

function: 

( ) ( ) ( )τττ ,,, tbtbtb wff
w =                  (6) 

that is δ  time limited in t  and δ2  time limited in τ . 
Using a discrete Fourier transform to obtain a discrete 
version of the Wigner distribution from the ( )τ,tb f  
function, the sample rate in t  of the original signal must 
be β4>sf  in order to satisfy the sampling theorem, i.e., 

sampling is at twice the Nyquist rate. The sample rate in 
τ  is β2>sf . The continuous ( )τ,tb f

hw  function, 

sampled in t  at a rate of sf2 , and in τ  at rate sf  has 

the following discrete formulation: 
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This function, then, has duration T2  in τ  as shown in 
Figure 1.  
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Figure 1. Extent of the windowed Time-relative-time 

function. 

2.2. The Wigner Distribution 

The discrete Wigner distribution [3] is written as the 
discrete Fourier transform of (7) with respect to n for 
each value of k: 
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where 1,, −−= NNmk . By windowing the function in 
Equation (7) above with the window function: 
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diamond-shaped region in the ( )τ,t  plane in Figure 1 is 
limited to the rectangular region: 
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The discrete implementation of the pseudo-Wigner 
distribution with a frequency smoothing window 
function ( )kw , with length 12 −= LM , 

( ) Lkw ≥= kfor    0  is then defined by: 
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where 

( ) ( ) ( ) ( ) ( ) ( )knfknfkngkwkwkp −+=−= ** ,  and   
 

2.2.1. Cross terms 

Given a music signal model as follows: 
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where k  is the partial series index, t  is time, and the 
k th term in the summation represents a partial with 

constant amplitude kA , frequency kω , and  phase kφ , 

the Wigner distribution is: 
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The partials of ( )ts  (auto terms) are given by the first 
term in (13). The second double summation indicates the 
cross terms, arising from products between partials, 
which lie between any pair of auto terms. The magnitude 
of the cross terms is the product lk AA of the amplitudes 

of auto terms k  and l  and they oscillate at a frequency, 
( ) 2//ωω +k  equal to the difference between the 

frequencies of the two auto terms.  For strictly harmonic 
signals, the cross terms form a partial series an octave 
below the fundamental, resulting in cross terms which 
fall at the same frequencies of and therefore corrupt the 
autoterms. Other cross terms occur at partial frequencies 
not in the original signal. 

2.3. The Modal distribution 

The modal distribution was designed to minimise these 
cross terms for music signals. The modal kernel consists 
two different filter functions.  The time-smoothing 
window, ( )phLP , has the effect of smoothing the cross 
terms in the time direction, and the frequency-smoothing 
window, ( )lgLP

, implements cross term suppression in 
cases of frequency modulation. ( )phLP

, is chosen to be a 
low pass filter with an upper cut-off just below the 
minimum frequency spacing in the distribution, this 
being the fundamental frequency for quasi-harmonic 

signals. The discrete form of the modal distribution is 
defined by: 
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where ( ) ( ) ( )� −=
−= P

Pp LPsls phlpnRlnR ,,,
 is the time-

smoothed temporal autocorrelation function. 

3. IMPLEMENTATION 

The modal distribution (MD) class Modal encapsulates 
all processing involved in the computation of the modal 
distribution and is modelled on existing time-frequency 
classes within the SndObj library, namely, the phase 
vocoder analysis (PVA) class and the spectrogram class 
(IFgram).  These classes are derived from the FFT base 
class, which provides the mechanisms for short-time 
Fourier analysis. The FFT class itself is derived from 
SndObj. Figure 2 illustrates this inheritance structure.  

 
SndObj 

FFT PVA 

PVS 

IFgram 

Modal 

 
Figure 2. Inheritance diagram for the Modal class. 

3.1. The Modal class  

The design of the Modal class models each process 
needed in computing the modal distribution function. 
Figure 3 is a program flow diagram of the processes 
involved in this computation. It takes as input a sampled 
sound file and kernel functions as well as other necessary 
parameters shown in the constructor definition following. 
 

signal 
input STCF 

( )LPg

Rotate 

DFT 

TCF 
 

MD ( )LPh

⊗ ∗

Figure 3. Stages of Modal distribution computation. 
 
Modal::Modal(Table*window, Table* 
swindow, SndObj* input, float scale, 
int fftsize, int hopsize,float sr). 

For the modal distribution computation, although cross 
term filtering allows for FFT sub sampling at hop 
periods equal to the filter length, the temporal 
correlation function must be computed at each sample 
point. Furthermore, any streaming computation of the 
Modal distribution needs to take account of the fact that 
both past and future samples are needed to compute the 
autocorrelation function at each sample point. Therefore, 
for each hop period, upon the invocation of the Modal 
class DoProcess() method, hopsize number of 



  
 

 

samples are buffered in m_samplesframe 
implemented as a circular array. Beginning with the first 
signal sample at point –(T-Tm)/2 (Figure 1) in the t-
direction, the number of samples in each successive TCF 
frame, increases in the τ direction as the number of past 
and future samples grows. This number keeps increasing 
until the number of samples in each TCF frame reaches 
the FFT length, 2Tm. Up to this point each TCF 
computation requires an odd number of input samples. 
From this point onwards each TCF computation requires 
2Tm. samples. The most important attributes and 
methods of the Modal class are shown in Figure 4. 

 
class Modal : public PVA  

attributes 
 
float* m_samplesframe  array holds input samples 
float** m_tcfframe    array holds TCF frames 
float *m_stcfframe    buffer holds STCF frame    
float** m_modframe    hold MD frame 
Table *m_stable       cross-term filter window 

methods 
 
TCFsamples(int overlap)  compute TCF frames 
TCFconvolv()             convolve TCF frames 
RotateRenum()            rotate windowed STCF 
TCFAnalysis()            compute FFT of STCF 

Figure 4. The Modal class. 

 

Figure 5. Modal Distribution of Trumpet note F#3 

The TCF function is smoothed in the time 
direction in order to implement cross-term suppression. 
With streaming it is necessary to buffer a number of 
TCF frames up to the smoothing filter length. A 2-D 
buffer m_stcfframe holds these frames and the 
smoothed result is stored in m_stcfframe. The FFT 
sub sampling determines the hop period or the interval 
between smoothing operations carried out by the 
TCFconvolv() method. Before applying the FFT, 
each STCF frame is windowed with the frequency 
smoothing window and then rotated by switching the 
positive and negative halves of the window. Only the 
real coefficients of the FFT are used to compute the 
Modal distribution output amplitudes due to the 
distribution being real valued. The frequency positions 
are estimated in Hertz from the corresponding bin 
values. A modal distribution for the lower partials of a 
trumpet tone (F#3 ≈ 193Hz) is shown in Figure 5. 

4. CONCLUSIONS AND FUTURE WORK 

The streaming, object-oriented implementation of the 
Modal distribution within the SndObj library described 
in this paper provides an easily accessible tool for music 
signal analysis and processing. The class structure of the 
design makes possible the integration of the Modal 
routine with many of the tools necessary for sound 
analysis and modification such as time stretching and  
vocoding. In particular, the support found in the library 
for partial tracking and additive synthesis can be used to 
build analysis-resynthesis programs using the Modal 
transform. Furthermore, this implementation provides a 
convenient basis on which to implement other members 
of the Cohen general class and novel time-frequency 
distributions derived from specialised kernels. Future 
work will involve an analysis of the speed of 
computation of the Modal distribution within the library 
and of real-time realisations of the routine on various 
platforms. 
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