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_______________________________________________________________________________ 
Abstract— This paper proposes a novel entity state update technique for physics-rich environments 

in peer-to-peer Distributed Interactive Applications. The proposed technique consists of a dynamic 
authority scheme for shared objects and a physics-aware dead reckoning model with an adaptive error 
threshold. The former is employed to place a bound on the overall inconsistency present in shared 
objects, while the latter is implemented to minimise the instantaneous inconsistency during users’ 
interactions with shared objects. The performance of the proposed entity state update mechanism is 
validated using a simulated application. 
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I  INTRODUCTION 

Distributed Interactive Applications (DIAs) 
allow geographically remote users to interact within 
a shared virtual environment [1, 2]. Many DIAs, 
such as networked computer games, strive to present 
a rich and realistic virtual world to users, both on a 
visual and a behavioural level. They aim to present 
to users an environment whose behaviour is 
consistent with the users’ experience and perception 
of the real world [3]. A relatively recent addition to 
DIAs to achieve this aim has been the simulation of 
realistic physical phenomena between objects in the 
environment. 

The application of physics simulation to 
virtual environments in DIAs, however, presents new 
challenges in the context of maintaining consistency 
among multiple users. This is particularly evident in 
applications built on a peer-to-peer architecture, 
where a lack of a single authority presents additional 
challenges in synchronising the state of shared 
objects while presenting a responsive simulation. 
There is currently a dearth of suitable entity state 
update mechanisms which can maintain consistency 
in such physics-rich environments. 

This paper proposes a novel physics-aware 
technique for the synchronisation of entity states 
within a peer-to-peer, physics-aware DIA that 
employs dead reckoning algorithms [4] for the 
purposes of traffic reduction. In doing so, the 
physics-consistency-cost is introduced. It is this cost 
that is subsequently used in the generation of entity 

state updates. This new technique is implemented for 
a physics-aware simulated application and 
demonstrates a marked improvement in consistency 
for this application.  

The rest of this paper is structured as follows. 
The next section describes the concept of consistency 
in DIAs and introduces the physics-consistency-cost. 
The standard dead reckoning model, used for traffic 
reduction, is also presented.  Section III outlines the 
proposed physics-aware dead reckoning technique 
for updating entity states in DIAs. Section IV 
presents the simulation used to evaluate the proposed 
technique, with the results given in section V. The 
paper ends with some conclusions in section VI. 

 
II  PHYSICS-CONSISTENCY-COST 
a) Consistency 
Consistency in a DIA refers to the ability of 

the DIA to ensure that each user’s view of the world 
is identical, or as close to identical as can be 
achieved for given conditions. Traditional 
consistency metrics examine entities on an individual 
basis, often giving a measure of the application’s 
ability to represent a host’s controlled entity’s states 
at remote hosts.  A basic aspiration for a distributed 
simulation is to present entities as being in the right 
place at the right time and a simple metric to capture 
this notion is a spatially-derived measure of 
consistency that can be calculated using distance 
measures between the entity positional state at its 
local peer and its representations at remote peers. In 
real-time applications, the consistency-throughput 
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trade-off notes that true consistency is unachievable 
[3]. Hence, most real-time DIAs accept a controlled 
level of inconsistency. They employ approximated 
models of controlled entity motion to reduce the 
traffic on the network. The recognised standard 
model used within the Distributed Interactive 
Simulation (DIS) is Dead Reckoning [4].  

 
b) Dead Reckoning 
Dead reckoning (DR) is a short-term linear 

extrapolation algorithm which utilises information 
relating to the dynamics of an entity’s state and 
motion, such as position and velocity, to model and 
predict future behaviour. All users model all entities, 
including those local to the user. Each user knows 
both the local and modelled behaviour of local 
entities, and can compare them at all times. Local 
users send updates to remote users when they 
determine that the error between modelled and actual 
behaviour has exceeded a predefined error threshold.  
A first order example of DR is shown in Figure 1. 

Depending on the error threshold employed, it 
is possible, and indeed likely, that the actual and 
modelled entity positions will differ somewhat. As a 
result, when updates are received, modelled remote 
entities may appear to jump, or ‘snap’ to the updated 
position. Convergence mechanisms are usually 
employed to smooth this jump [3], with a good 
convergence algorithm being capable of correcting 
the modelled behaviour quickly, without presenting 
too distorted a world view to the user.  

 
 
 
 
 
 
 
 
 
 

Figure 1: Dead reckoning (DR). 
 
c) Physics-consistency-cost 
The existing inconsistency metrics are less 

than ideal for use in physics-aware DIAs, as they do 
not present a clear picture of all the inconsistency in 
the environment. These metrics only capture the 
discrepancies between the local controlled entities 
(the users’ avatars) and their remote representations. 
They do not allow for discrepancies that may occur 
in surrounding environmental entities. A better 
inconsistency metric would ideally capture all spatial 
inconsistencies present in the state of both the 
controlled avatar and the physics-aware entities with 
which the avatar has collided. The latter is what we 
refer to as the physics-consistency-cost. 

Consider the ball example given in Figure 2 
where the entity represented by ball A (at its local 
peer) approaches ball B but stops just short of it, as 

shown. If the distance between A and B is less than 
or equal to the error threshold of the dead reckoning 
model then a remote peer could observe ball A 
disturbing ball B, and ball B subsequently rolling 
away down the hill, resulting in a spatial 
inconsistency of 1 in the state of ball B. It is this 
state divergence, and the resulting visual disturbance 
to the application required to correct it, that is 
currently missing from existing consistency 
maintenance techniques. In this example, 1 is 
referred to as the physics-consistency-cost associated 
with entity A’s path.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The ball example. 
 
Now consider the domino example presented 

in Figure 3. At the local host the ball approaches a 
row of dominos and stops close to them. However 
the dead reckoning model is observed to collide with 
the first domino, which in turn topples the entire row. 
In this instance, the magnitude of the physics-
consistency-cost of the first domino, 2, is relatively 
small but due to the nature of dominos, a single 
incorrectly disturbed domino can in turn disturb its 
neighbours, resulting in a physics-consistency-cost 
of approximately N x 2, for N dominos. Arguably, 
the magnitude of the inconsistency imparted to all 
the dominos could still be significantly smaller than 
that of the ball in the previous example. However, 
the number of entities involved is significantly more 
and, therefore, returning all the dominos to their 
original state has a greater visual impact. Hence, 
even small spatial inconsistency in physics-aware 
  

 
 
 
 
 
 
 
 
 
 
 

Figure 3: The domino example. 
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entities can result in a considerable physics-
consistency-cost, if complexity (in this case, the 
number of entities affected) is considered. 

It is worth noting that not all physics-enabled 
interactions lead to such cascades in inconsistency.  
As a counter example, consider a scenario where the 
dead reckoning model of a remote entity is 
incorrectly observed to collide with a much larger 
physics-aware entity, with large inertia, such as a 
ball avatar colliding with a van. Under realistic 
physics simulation the modelled avatar may impart a 
spatial disturbance to the van. However, this would 
be significantly smaller than the disturbance 
experienced by the ball in Figure 2 (especially in 
terms of relative size) – it may even be imperceptible 
to the user.  In this case, the error in state is easier to 
correct than the error in the domino example. The 
incorrect disturbance is still a physics-consistency-
cost, but is significantly smaller than the previous 
two examples. 

Currently entity state update protocols for 
peer-to-peer distributed simulations, such as dead 
reckoning, do not explicitly take into account the 
inconsistency costs associated with physics-enabled 
environments. Thus, the ability of these techniques to 
regulate consistency in such situations is not optimal 
and improvements may be possible by incorporating 
information about the local physics environment. 
The next section proposes a consistency maintenance 
technique that exploits such information.  

 
III  PHYSICS-AWARE DR TECHNIQUE 

a) Dynamic Authority in Physics-aware DIAs 
In traditional peer-to-peer DIAs, each peer is 

authoritative on the state of its local entities. This 
authority is static in nature as it is assigned when the 
peer joins the DIA and is not changed or reassigned 
thereafter. Theoretically, authority over physics-
aware entities could be granted to a single peer, with 
all other peers having to validate or seek approval of 
interactions between their local entities and the 
physics-aware entities. However, this would place a 
significant burden on that one peer, effectively 
turning it into a server for physics simulation. In 
addition, the application becomes less fault-tolerant 
as the entire physics simulation is dependent on that 
peer. 

Dynamic authority refers to being able to 
change which peer provides authoritative state for an 
entity while the application is running.  Our proposed 
algorithm makes use of a dynamic authority scheme, 
whereby each peer assumes authority over entities 
with which it interacts. This removes the need for a 
peer to remotely validate interactions of its entities 
with physics-aware entities who might otherwise 
have had remote authoritative peers. Under such an 
authority scheme, each peer would be responsible for 
notifying other remote peers of the resulting state 
from interactions between their local entities, and 
physics-aware entities. In addition, controlled entities 

are simulated using dead reckoning models as 
outlined in section II.  

In the event of a controlled entity interacting 
or colliding with a physics-aware entity, the resulting 
state of both the controlled entity and the physics-
aware entity is supplied by the local peer to all 
remote peers. Deterministic physics simulation at 
each peer means that once supplied with the state 
immediately after the collision, the simulation of the 
play out at each peer will result in the same final 
state. Finally, collisions between modelled remote 
entities and physics-aware entities are ignored unless 
a collision notification, or state update, for the 
physics-aware entity is received.  

 
b) Updating state of physics-aware entities 
Initial tests showed that providing a single 

update at the instant of contact between an avatar and 
the colliding body proved to be unreliable and 
insufficient, with inconsistency manifesting after 
collisions. Many collisions persisted beyond a single 
simulation frame. Consequently, the potential for 
user input over the course of the collision meant that 
the play-out was not guaranteed to be deterministic 
after the initial contact. If a user were to change their 
speed or direction slightly during the collision, they 
could potentially remain within the threshold of the 
dead-reckoned model, and thus not generate an 
update. Traditionally this would not be an issue in 
peer-to-peer simulation, but with the sensitivity of 
physics engines to variation in initial conditions such 
slight changes were still a source of significant 
inconsistency. 

In order to resolve this issue, we require that 
all peers also update the state of their avatar and the 
colliding body once the collision had ceased, i.e. the 
bodies are no longer in contact. 

 
 
 
 
 
 

Figure 4: In a collision by proxy, user-controlled 
entity A collides with entity B, and during this collision, 

entity B contacts entity C. 
 

c) Collisions by proxy 
A shortcoming of the proposed approach for 

updating entities is illustrated in Figure 4. A collision 
by proxy is where in the course of the user’s (circle 
A) collision with an environmental body (circle B), 
the body in turn touches a second environmental 
body (circle C).  In this instance, the ultimate path of 
body C will be inaccurately modelled, as during the 
collision, bodies A and B’s paths are approximated. 
The motion of the latter two bodies will be corrected 
once they separate, but at this point the remote state 
of body C will be inaccurate, and will remain 
inconsistent. This problem can easily be solved by 
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carrying out a recursive check, for collisions, of all 
bodies that the user’s entity is in contact with. In 
other words, if the controlled entity is in contact with 
another body, that body is then checked for contacts, 
and if any are found, those other bodies in the 
collision are subsequently checked, and so on. A 
record is kept of these contacts, and if a contact ends, 
then any bodies no longer in contact are updated.  If 
the controlled entity loses its contact with the first 
object, then all objects can be updated, as the play 
out will be deterministic with the possibility of user 
input having been removed from the system. 

 
d) Minimising the physics-consistency-cost 
As already outlined, the physics-consistency-

cost occurs as a result of the inconsistency in 
controlled entities being transferred to physics-aware 
entities in their surrounding environment. The 
aforementioned authority scheme now ensures that 
the inconsistency in the physics-aware entities is 
controlled in the same manner that dead reckoning 
permits a controlled level of inconsistency in the 
controlled entities.  

A further enhancement can be achieved by 
actually minimising the physics-consistency cost in 
the first instance. Since such costs arise as a result of 
the error in the dead reckoning model of entities, it is 
proposed that peers should attempt to minimise the 
error present in these models at the time of 
collisions. This can be achieved by using a DR 
model with a small error threshold. However, this 
has the negative impact of unnecessarily utilising 
bandwidth when collisions are not occurring. Thus, 
we propose using a variable, or adaptive, threshold.  

Although adaptive threshold dead reckoning 
models already exist [5, 6], these only serve to 
control the level of inconsistency between an 
avatar’s entity and its remote representations, while 
reducing the number of updates generated by an 
application.  In this paper, the DR threshold can also 
be adapted in response to a predicted measure of the 
physic-consistency-cost, i.e. a physics-aware 
adaptive threshold DR algorithm.  

One means of predicting collisions between a 
locally-controlled entity and a physics-aware entity 
is to predict the future states of the environment 
based on current and/or past states, and then 
checking for collisions between the locally 
controlled entity and any physics-aware entities in 
each future state. This could be accomplished by 
copying the environment within a certain radius of 
the controlled entity, and advancing the copied 
simulation a set number of steps, checking for 
collisions between steps.  If a collision is imminent, 
the physics-consistency cost increases and the DR 
error threshold can be reduced to ensure that more 
updates are communicated between peers in order to 
minimise the overall inconsistency. Similarly, if no 
collisions are imminent then the DR error threshold 
can remain relatively large so that less updates are 

required and the bandwidth between peers can be 
better utilised.  

An alternative and heuristic means of 
predicting an increase in the physics-consistency-
cost is to relate this cost to the density of entities in 
the immediate vicinity of a controlled entity, or along 
its projected path. Clearly, the likelihood of physics-
consistency-costs arising (i.e. collisions occurring) is 
dependent on the number of physics-aware entities in 
the surrounding environment. It should be intuitive 
that for two environments, identical in every way 
except for the number of entities present, there is a 
greater likelihood of colliding with a physics-aware 
entity in the environment with more entities.   

 
e) The proposed technique 
Figure 5 shows the entity state management 

process followed by each peer using the proposed 
state management technique. Taking each loop to 
start at the Sample User Input block, the proposed 
physics-aware dead reckoning entity state update 
technique operates as follows. 

The user’s input is sampled from their input 
device(s) (e.g. keyboard/mouse), and these inputs are 
applied to the user’s controlled entity. The network 
connection is checked for state updates from other 
peers that have yet to be applied to the local world 
database. The local world simulation is advanced by 
one frame based on existing state information and 
the newly applied information (inputs and updates).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Flowchart of proposed authority scheme with 
adaptive threshold dead reckoning model. 

 
The controlled entity’s list of contacts is then 

checked to see if it has begun a new collision or 
ended an existing collision. If it has, a state update is 
sent for both the controlled entity and the entity that 
it collided with and the loop repeats once more. If no 
collision has occurred, then the technique checks for 
possible future increases in the physic-consistency-
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cost. The DR error threshold is adapted accordingly, 
i.e. either increased or decreased (one of which will 
be the current position). If the error threshold in use 
for dead reckoning in this simulation tick has been 
exceeded, a state update for the controlled entity is 
sent to remote peers. Either way, the process returns 
to the start of the loop and the process repeats once 
more.  

 
IV  SIMULATION 

The previous section outlined a state 
management technique for physics-aware peer-to-
peer DIAs. Here, we briefly outline the development 
of a simple simulated application, used to illustrate 
the performance of this technique. 

The application contains two separate copies 
or instances of a single world, with entity state being 
shared from one (local environment) to the other 
(remote environment). A facility to simulate latency 
and jitter in the connection between these two 
environments is required, as these are real world 
scenarios and problems affecting DIAs. With this in 
mind, a packetPipe class was implemented, which 
could be extended and modified, depending on the 
nature of the updates being transmitted.  This class 
would serve as a link between the two simulation 
instances, and be capable of simulating typical 
network conditions such as latency and jitter.   

The test environment consists of an 
arrangement of physics-aware entities and a single 
controlled entity, which are randomly positioned 
within an enclosed space. The controlled entity 
moves along a pre-defined path. The physics state 
resulting from the controlled entity’s motion is then 
simulated by the Box2D engine, an open-source, 
two-dimensional physics simulation engine that can 
be integrated into applications as middleware [7]. 
For simulation of the controlled entity’s motion, a 
path, collected from real user motion, was read from 
comma separated values (CSV) files, with a force 
being applied to the controlled entity in order to 
move it to the next point along its path. A sample 
path is shown in Figure 6 below. 

In the following section, several simulations 
were carried out for several different paths and 
environments. However, due to lack of space, only 
the results for the sample path in Figure 6 are 
 

 
 
 
 
 
 
 

 
                                     

 
 

Figure 6: A sample user path. 
 

presented. These results are a representative sample 
of the results obtained.  

 
V  RESULTS AND DISCUSSION 

a) The need for an authority scheme 
The first set of simulations was run for a 

range of fixed DR error thresholds. However, only 
the DR models of the controlled entity were supplied 
to the simulated remote peer. Latency is set to zero 
for the ease of illustration, as it does not impact on 
the key observations and conclusions.  

Figure 7 shows the combined inconsistency of 
all physics-aware entities in the test environment 
over a period of time. It can be easily seen that 
uncontrollable inconsistency occurs in the absence of 
an authority scheme. Note that, here, inconsistency 
refers to both the spatial error in the controlled entity 
and the spatial error in all the physics-aware 
environment entities. This inconsistency clearly 
increases over time, reflecting the fact that physics-
aware entities have been disturbed and are not 
corrected. Hence, it is obvious that there is a need for 
an authority scheme to update these entities and to 
ensure a bound on inconsistency. The dynamic 
authority scheme, as outlined in section III (a), is 
employed in all test simulations for the remainder of 
this paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Combined inconsistency of all physics-

aware entities 
 
b) Using DR with fixed thresholds   
Figure 8 shows the variation of inconsistency 

for all entities, as a result of the controlled entity 
following the sample path, for a fixed threshold dead 
reckoning model and the dynamic authority scheme. 
Results are presented for three different thresholds, 
namely 0.8m, 0.5m and 0.3m respectively. 

Considering the graph for the 0.8m threshold, 
note how most of the inconsistency is bounded at this 
value. In most of these instances no collisions have 
taken place and the inconsistency shown is solely 
that of the avatar, i.e. the error between the local and 
remote representation of the controlling entity. As 
latency is set to zero, this error is limited to the value 
of the error threshold employed by the avatar’s DR 
model. When the inconsistency exceeds the threshold 
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value, it is clear that a collision has taken place and 
the resulting measure includes the error in both the 
avatar’s position and that of the environmental entity 
with which the avatar collided. Similar observations 
can be made for the other two graphs. 

   Furthermore, it can be observed that the use 
of a tighter threshold produces a reduction in the 
magnitude of the peaks of the physics-aware 
inconsistency. In general, utilising a tighter threshold 
for a DR model produces less inconsistency in 
physics-aware entities at the time of collisions. 
However, employing a tight threshold for the entire 
simulation means that more unnecessary updates are 
sent at times when no collisions are taking place and, 
as such, the bandwidth is being flooded with 
unnecessary packets of information. Hence, a DR 
with adaptive thresholds offers the optimal solution, 
whereby extra update packets are only sent when 
collisions are imminent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Physics-aware inconsistency for entity 

following sample path, with three fixed threshold DR 
models, 0.8m, 0.5m and 0.3m respectively. 
 
 
 
 
 
 
 
Figure 9: Physics-aware inconsistency for entity 

following sample path, with adaptive threshold DR model, 
using thresholds of 0.8 and 0.3m respectively. 
 
c) Using DR with adaptive thresholds   
Here, an adaptive DR threshold is employed, 

in which the threshold is switched between two 
different values, 0.8m and 0.3m respectively, in 
response to a prediction of possible imminent 
collisions. The results are given in Figure 9. With 
careful examination, we can see that, in general, the 
DR model uses the higher threshold while no 
collisions are predicted. Hence the inconsistency, for 

the most part, is bounded by the upper threshold of 
0.8m. When collisions are predicted, and 
subsequently occur, the DR model employs the 
lower threshold bound. This can be deduced from the 
peaks of the inconsistency in all physics-aware 
entities, which have similar magnitudes as those 
obtained for the 0.3m fixed threshold in Figure 8.  

The results clearly show that the adaptive 
threshold DR model is performing as expected, using 
the lower threshold when collisions are predicted and 
using the higher threshold otherwise. However, it 
should be noted that in some instances inconsistency 
seems to be bounded to the lower threshold of 0.3m. 
This occurs when collisions are predicted but do not 
actually occur. Hence the avatar’s entity is 
unnecessarily updated when its error exceeds the 
lower bound. A better prediction model would 
alleviate this issue.   

 
VI  CONCLUDING DISCUSSION 

A novel physics-aware, adaptive threshold 
dead reckoning technique for entity state 
management has been proposed for peer-to-peer 
DIAs. Inconsistency, in this case, is taken as the 
overall physics-aware inconsistency present in the 
application, or the sum of the spatial inconsistencies 
in both the local peer’s controlled entity and all 
physics-aware entities. Simulation results illustrate 
the usefulness of the proposed technique. They show 
that adapting the dead reckoning model to utilise a 
tighter threshold for the motion of controlled entities 
in advance of collisions can lead to more accurate 
simulation of those collisions. In addition, the 
threshold remains looser (or larger) in cases where 
collisions are not predicted and, as such, the 
bandwidth is freed up to be utilised in a more 
optimal manner. 

Future work will examine the performance of 
the proposed technique for more realistic virtual 
environments. 
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