
ISSC 2012, NUI Maynooth, June 28-29

A Physics-Aware Dead Reckoning Technique for
Entity State Updates in Distributed Interactive

Applications

Patrick J. Walsh, Tomás E. Ward and Séamus C. McLoone

Department of Electronic Engineering,

National University of Ireland Maynooth,

Maynooth, Co. Kildare, Rep. of Ireland.

email : pwalsh@eeng.nuim.ie; tomas.ward@eeng.nuim.ie; seamus.mcloone@eeng.nuim.ie

Abstract— This paper proposes a novel entity state update technique for physics-rich environments

in peer-to-peer Distributed Interactive Applications. The proposed technique consists of a dynamic
authority scheme for shared objects and a physics-aware dead reckoning model with an adaptive error
threshold. The former is employed to place a bound on the overall inconsistency present in shared
objects, while the latter is implemented to minimise the instantaneous inconsistency during users’
interactions with shared objects. The performance of the proposed entity state update mechanism is
validated using a simulated application.

Keywords – Distributed Interactive Applications, Physics-aware Networked Games, Consistency

I INTRODUCTION

Distributed Interactive Applications (DIAs)
allow geographically remote users to interact within
a shared virtual environment [1, 2]. Many DIAs,
such as networked computer games, strive to present
a rich and realistic virtual world to users, both on a
visual and a behavioural level. They aim to present
to users an environment whose behaviour is
consistent with the users’ experience and perception
of the real world [3]. A relatively recent addition to
DIAs to achieve this aim has been the simulation of
realistic physical phenomena between objects in the
environment.

The application of physics simulation to
virtual environments in DIAs, however, presents new
challenges in the context of maintaining consistency
among multiple users. This is particularly evident in
applications built on a peer-to-peer architecture,
where a lack of a single authority presents additional
challenges in synchronising the state of shared
objects while presenting a responsive simulation.
There is currently a dearth of suitable entity state
update mechanisms which can maintain consistency
in such physics-rich environments.

This paper proposes a novel physics-aware
technique for the synchronisation of entity states
within a peer-to-peer, physics-aware DIA that
employs dead reckoning algorithms [4] for the
purposes of traffic reduction. In doing so, the
physics-consistency-cost is introduced. It is this cost
that is subsequently used in the generation of entity

state updates. This new technique is implemented for
a physics-aware simulated application and
demonstrates a marked improvement in consistency
for this application.

The rest of this paper is structured as follows.
The next section describes the concept of consistency
in DIAs and introduces the physics-consistency-cost.
The standard dead reckoning model, used for traffic
reduction, is also presented. Section III outlines the
proposed physics-aware dead reckoning technique
for updating entity states in DIAs. Section IV
presents the simulation used to evaluate the proposed
technique, with the results given in section V. The
paper ends with some conclusions in section VI.

II PHYSICS-CONSISTENCY-COST
a) Consistency
Consistency in a DIA refers to the ability of

the DIA to ensure that each user’s view of the world
is identical, or as close to identical as can be
achieved for given conditions. Traditional
consistency metrics examine entities on an individual
basis, often giving a measure of the application’s
ability to represent a host’s controlled entity’s states
at remote hosts. A basic aspiration for a distributed
simulation is to present entities as being in the right
place at the right time and a simple metric to capture
this notion is a spatially-derived measure of
consistency that can be calculated using distance
measures between the entity positional state at its
local peer and its representations at remote peers. In
real-time applications, the consistency-throughput

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297014618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

trade-off notes that true consistency is unachievable
[3]. Hence, most real-time DIAs accept a controlled
level of inconsistency. They employ approximated
models of controlled entity motion to reduce the
traffic on the network. The recognised standard
model used within the Distributed Interactive
Simulation (DIS) is Dead Reckoning [4].

b) Dead Reckoning
Dead reckoning (DR) is a short-term linear

extrapolation algorithm which utilises information
relating to the dynamics of an entity’s state and
motion, such as position and velocity, to model and
predict future behaviour. All users model all entities,
including those local to the user. Each user knows
both the local and modelled behaviour of local
entities, and can compare them at all times. Local
users send updates to remote users when they
determine that the error between modelled and actual
behaviour has exceeded a predefined error threshold.
A first order example of DR is shown in Figure 1.

Depending on the error threshold employed, it
is possible, and indeed likely, that the actual and
modelled entity positions will differ somewhat. As a
result, when updates are received, modelled remote
entities may appear to jump, or ‘snap’ to the updated
position. Convergence mechanisms are usually
employed to smooth this jump [3], with a good
convergence algorithm being capable of correcting
the modelled behaviour quickly, without presenting
too distorted a world view to the user.

Figure 1: Dead reckoning (DR).

c) Physics-consistency-cost
The existing inconsistency metrics are less

than ideal for use in physics-aware DIAs, as they do
not present a clear picture of all the inconsistency in
the environment. These metrics only capture the
discrepancies between the local controlled entities
(the users’ avatars) and their remote representations.
They do not allow for discrepancies that may occur
in surrounding environmental entities. A better
inconsistency metric would ideally capture all spatial
inconsistencies present in the state of both the
controlled avatar and the physics-aware entities with
which the avatar has collided. The latter is what we
refer to as the physics-consistency-cost.

Consider the ball example given in Figure 2
where the entity represented by ball A (at its local
peer) approaches ball B but stops just short of it, as

shown. If the distance between A and B is less than
or equal to the error threshold of the dead reckoning
model then a remote peer could observe ball A
disturbing ball B, and ball B subsequently rolling
away down the hill, resulting in a spatial
inconsistency of 1 in the state of ball B. It is this
state divergence, and the resulting visual disturbance
to the application required to correct it, that is
currently missing from existing consistency
maintenance techniques. In this example, 1 is
referred to as the physics-consistency-cost associated
with entity A’s path.

Figure 2: The ball example.

Now consider the domino example presented

in Figure 3. At the local host the ball approaches a
row of dominos and stops close to them. However
the dead reckoning model is observed to collide with
the first domino, which in turn topples the entire row.
In this instance, the magnitude of the physics-
consistency-cost of the first domino, 2, is relatively
small but due to the nature of dominos, a single
incorrectly disturbed domino can in turn disturb its
neighbours, resulting in a physics-consistency-cost
of approximately N x 2, for N dominos. Arguably,
the magnitude of the inconsistency imparted to all
the dominos could still be significantly smaller than
that of the ball in the previous example. However,
the number of entities involved is significantly more
and, therefore, returning all the dominos to their
original state has a greater visual impact. Hence,
even small spatial inconsistency in physics-aware

Figure 3: The domino example.

Local

Remote δ2

Remote

δ1

A A

Local

A A B

B

Error threshold

Actual
path

Dead reckoned
path Entity

entities can result in a considerable physics-
consistency-cost, if complexity (in this case, the
number of entities affected) is considered.

It is worth noting that not all physics-enabled
interactions lead to such cascades in inconsistency.
As a counter example, consider a scenario where the
dead reckoning model of a remote entity is
incorrectly observed to collide with a much larger
physics-aware entity, with large inertia, such as a
ball avatar colliding with a van. Under realistic
physics simulation the modelled avatar may impart a
spatial disturbance to the van. However, this would
be significantly smaller than the disturbance
experienced by the ball in Figure 2 (especially in
terms of relative size) – it may even be imperceptible
to the user. In this case, the error in state is easier to
correct than the error in the domino example. The
incorrect disturbance is still a physics-consistency-
cost, but is significantly smaller than the previous
two examples.

Currently entity state update protocols for
peer-to-peer distributed simulations, such as dead
reckoning, do not explicitly take into account the
inconsistency costs associated with physics-enabled
environments. Thus, the ability of these techniques to
regulate consistency in such situations is not optimal
and improvements may be possible by incorporating
information about the local physics environment.
The next section proposes a consistency maintenance
technique that exploits such information.

III PHYSICS-AWARE DR TECHNIQUE

a) Dynamic Authority in Physics-aware DIAs
In traditional peer-to-peer DIAs, each peer is

authoritative on the state of its local entities. This
authority is static in nature as it is assigned when the
peer joins the DIA and is not changed or reassigned
thereafter. Theoretically, authority over physics-
aware entities could be granted to a single peer, with
all other peers having to validate or seek approval of
interactions between their local entities and the
physics-aware entities. However, this would place a
significant burden on that one peer, effectively
turning it into a server for physics simulation. In
addition, the application becomes less fault-tolerant
as the entire physics simulation is dependent on that
peer.

Dynamic authority refers to being able to
change which peer provides authoritative state for an
entity while the application is running. Our proposed
algorithm makes use of a dynamic authority scheme,
whereby each peer assumes authority over entities
with which it interacts. This removes the need for a
peer to remotely validate interactions of its entities
with physics-aware entities who might otherwise
have had remote authoritative peers. Under such an
authority scheme, each peer would be responsible for
notifying other remote peers of the resulting state
from interactions between their local entities, and
physics-aware entities. In addition, controlled entities

are simulated using dead reckoning models as
outlined in section II.

In the event of a controlled entity interacting
or colliding with a physics-aware entity, the resulting
state of both the controlled entity and the physics-
aware entity is supplied by the local peer to all
remote peers. Deterministic physics simulation at
each peer means that once supplied with the state
immediately after the collision, the simulation of the
play out at each peer will result in the same final
state. Finally, collisions between modelled remote
entities and physics-aware entities are ignored unless
a collision notification, or state update, for the
physics-aware entity is received.

b) Updating state of physics-aware entities
Initial tests showed that providing a single

update at the instant of contact between an avatar and
the colliding body proved to be unreliable and
insufficient, with inconsistency manifesting after
collisions. Many collisions persisted beyond a single
simulation frame. Consequently, the potential for
user input over the course of the collision meant that
the play-out was not guaranteed to be deterministic
after the initial contact. If a user were to change their
speed or direction slightly during the collision, they
could potentially remain within the threshold of the
dead-reckoned model, and thus not generate an
update. Traditionally this would not be an issue in
peer-to-peer simulation, but with the sensitivity of
physics engines to variation in initial conditions such
slight changes were still a source of significant
inconsistency.

In order to resolve this issue, we require that
all peers also update the state of their avatar and the
colliding body once the collision had ceased, i.e. the
bodies are no longer in contact.

Figure 4: In a collision by proxy, user-controlled
entity A collides with entity B, and during this collision,

entity B contacts entity C.

c) Collisions by proxy
A shortcoming of the proposed approach for

updating entities is illustrated in Figure 4. A collision
by proxy is where in the course of the user’s (circle
A) collision with an environmental body (circle B),
the body in turn touches a second environmental
body (circle C). In this instance, the ultimate path of
body C will be inaccurately modelled, as during the
collision, bodies A and B’s paths are approximated.
The motion of the latter two bodies will be corrected
once they separate, but at this point the remote state
of body C will be inaccurate, and will remain
inconsistent. This problem can easily be solved by

A

B

C

A

B

C

carrying out a recursive check, for collisions, of all
bodies that the user’s entity is in contact with. In
other words, if the controlled entity is in contact with
another body, that body is then checked for contacts,
and if any are found, those other bodies in the
collision are subsequently checked, and so on. A
record is kept of these contacts, and if a contact ends,
then any bodies no longer in contact are updated. If
the controlled entity loses its contact with the first
object, then all objects can be updated, as the play
out will be deterministic with the possibility of user
input having been removed from the system.

d) Minimising the physics-consistency-cost
As already outlined, the physics-consistency-

cost occurs as a result of the inconsistency in
controlled entities being transferred to physics-aware
entities in their surrounding environment. The
aforementioned authority scheme now ensures that
the inconsistency in the physics-aware entities is
controlled in the same manner that dead reckoning
permits a controlled level of inconsistency in the
controlled entities.

A further enhancement can be achieved by
actually minimising the physics-consistency cost in
the first instance. Since such costs arise as a result of
the error in the dead reckoning model of entities, it is
proposed that peers should attempt to minimise the
error present in these models at the time of
collisions. This can be achieved by using a DR
model with a small error threshold. However, this
has the negative impact of unnecessarily utilising
bandwidth when collisions are not occurring. Thus,
we propose using a variable, or adaptive, threshold.

Although adaptive threshold dead reckoning
models already exist [5, 6], these only serve to
control the level of inconsistency between an
avatar’s entity and its remote representations, while
reducing the number of updates generated by an
application. In this paper, the DR threshold can also
be adapted in response to a predicted measure of the
physic-consistency-cost, i.e. a physics-aware
adaptive threshold DR algorithm.

One means of predicting collisions between a
locally-controlled entity and a physics-aware entity
is to predict the future states of the environment
based on current and/or past states, and then
checking for collisions between the locally
controlled entity and any physics-aware entities in
each future state. This could be accomplished by
copying the environment within a certain radius of
the controlled entity, and advancing the copied
simulation a set number of steps, checking for
collisions between steps. If a collision is imminent,
the physics-consistency cost increases and the DR
error threshold can be reduced to ensure that more
updates are communicated between peers in order to
minimise the overall inconsistency. Similarly, if no
collisions are imminent then the DR error threshold
can remain relatively large so that less updates are

required and the bandwidth between peers can be
better utilised.

An alternative and heuristic means of
predicting an increase in the physics-consistency-
cost is to relate this cost to the density of entities in
the immediate vicinity of a controlled entity, or along
its projected path. Clearly, the likelihood of physics-
consistency-costs arising (i.e. collisions occurring) is
dependent on the number of physics-aware entities in
the surrounding environment. It should be intuitive
that for two environments, identical in every way
except for the number of entities present, there is a
greater likelihood of colliding with a physics-aware
entity in the environment with more entities.

e) The proposed technique
Figure 5 shows the entity state management

process followed by each peer using the proposed
state management technique. Taking each loop to
start at the Sample User Input block, the proposed
physics-aware dead reckoning entity state update
technique operates as follows.

The user’s input is sampled from their input
device(s) (e.g. keyboard/mouse), and these inputs are
applied to the user’s controlled entity. The network
connection is checked for state updates from other
peers that have yet to be applied to the local world
database. The local world simulation is advanced by
one frame based on existing state information and
the newly applied information (inputs and updates).

Figure 5: Flowchart of proposed authority scheme with
adaptive threshold dead reckoning model.

The controlled entity’s list of contacts is then

checked to see if it has begun a new collision or
ended an existing collision. If it has, a state update is
sent for both the controlled entity and the entity that
it collided with and the loop repeats once more. If no
collision has occurred, then the technique checks for
possible future increases in the physic-consistency-

No

Sample user
input

Check network
for updates

Send
update for
colliding
bodies

Step physics
simulation

Loosen
threshold

Tighten
threshold

Tight
threshold
required?

Collision
started or
ended?

Threshold
exceeded?

Yes

Send DR
Update

Yes

No

Yes No

cost. The DR error threshold is adapted accordingly,
i.e. either increased or decreased (one of which will
be the current position). If the error threshold in use
for dead reckoning in this simulation tick has been
exceeded, a state update for the controlled entity is
sent to remote peers. Either way, the process returns
to the start of the loop and the process repeats once
more.

IV SIMULATION

The previous section outlined a state
management technique for physics-aware peer-to-
peer DIAs. Here, we briefly outline the development
of a simple simulated application, used to illustrate
the performance of this technique.

The application contains two separate copies
or instances of a single world, with entity state being
shared from one (local environment) to the other
(remote environment). A facility to simulate latency
and jitter in the connection between these two
environments is required, as these are real world
scenarios and problems affecting DIAs. With this in
mind, a packetPipe class was implemented, which
could be extended and modified, depending on the
nature of the updates being transmitted. This class
would serve as a link between the two simulation
instances, and be capable of simulating typical
network conditions such as latency and jitter.

The test environment consists of an
arrangement of physics-aware entities and a single
controlled entity, which are randomly positioned
within an enclosed space. The controlled entity
moves along a pre-defined path. The physics state
resulting from the controlled entity’s motion is then
simulated by the Box2D engine, an open-source,
two-dimensional physics simulation engine that can
be integrated into applications as middleware [7].
For simulation of the controlled entity’s motion, a
path, collected from real user motion, was read from
comma separated values (CSV) files, with a force
being applied to the controlled entity in order to
move it to the next point along its path. A sample
path is shown in Figure 6 below.

In the following section, several simulations
were carried out for several different paths and
environments. However, due to lack of space, only
the results for the sample path in Figure 6 are

Figure 6: A sample user path.

presented. These results are a representative sample
of the results obtained.

V RESULTS AND DISCUSSION

a) The need for an authority scheme
The first set of simulations was run for a

range of fixed DR error thresholds. However, only
the DR models of the controlled entity were supplied
to the simulated remote peer. Latency is set to zero
for the ease of illustration, as it does not impact on
the key observations and conclusions.

Figure 7 shows the combined inconsistency of
all physics-aware entities in the test environment
over a period of time. It can be easily seen that
uncontrollable inconsistency occurs in the absence of
an authority scheme. Note that, here, inconsistency
refers to both the spatial error in the controlled entity
and the spatial error in all the physics-aware
environment entities. This inconsistency clearly
increases over time, reflecting the fact that physics-
aware entities have been disturbed and are not
corrected. Hence, it is obvious that there is a need for
an authority scheme to update these entities and to
ensure a bound on inconsistency. The dynamic
authority scheme, as outlined in section III (a), is
employed in all test simulations for the remainder of
this paper.

Figure 7: Combined inconsistency of all physics-

aware entities

b) Using DR with fixed thresholds
Figure 8 shows the variation of inconsistency

for all entities, as a result of the controlled entity
following the sample path, for a fixed threshold dead
reckoning model and the dynamic authority scheme.
Results are presented for three different thresholds,
namely 0.8m, 0.5m and 0.3m respectively.

Considering the graph for the 0.8m threshold,
note how most of the inconsistency is bounded at this
value. In most of these instances no collisions have
taken place and the inconsistency shown is solely
that of the avatar, i.e. the error between the local and
remote representation of the controlling entity. As
latency is set to zero, this error is limited to the value
of the error threshold employed by the avatar’s DR
model. When the inconsistency exceeds the threshold

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Graph of Inconsistency Development Over Time

Time(s)

In
co

ns
is

te
nc

y
(m

)

Loose Threshold (0.8m)
Medium Threshold (0.5m)
Tight Threshold (0.3m)

-200 -150 -100 -50 0 50 100 150
-300

-250

-200

-150

-100

-50

0

50

X Dimension (m)

Y
D

im
en

si
on

 (m
)

Path locus for an entity following "Path C"

value, it is clear that a collision has taken place and
the resulting measure includes the error in both the
avatar’s position and that of the environmental entity
with which the avatar collided. Similar observations
can be made for the other two graphs.

 Furthermore, it can be observed that the use
of a tighter threshold produces a reduction in the
magnitude of the peaks of the physics-aware
inconsistency. In general, utilising a tighter threshold
for a DR model produces less inconsistency in
physics-aware entities at the time of collisions.
However, employing a tight threshold for the entire
simulation means that more unnecessary updates are
sent at times when no collisions are taking place and,
as such, the bandwidth is being flooded with
unnecessary packets of information. Hence, a DR
with adaptive thresholds offers the optimal solution,
whereby extra update packets are only sent when
collisions are imminent.

Figure 8: Physics-aware inconsistency for entity

following sample path, with three fixed threshold DR
models, 0.8m, 0.5m and 0.3m respectively.

Figure 9: Physics-aware inconsistency for entity

following sample path, with adaptive threshold DR model,
using thresholds of 0.8 and 0.3m respectively.

c) Using DR with adaptive thresholds
Here, an adaptive DR threshold is employed,

in which the threshold is switched between two
different values, 0.8m and 0.3m respectively, in
response to a prediction of possible imminent
collisions. The results are given in Figure 9. With
careful examination, we can see that, in general, the
DR model uses the higher threshold while no
collisions are predicted. Hence the inconsistency, for

the most part, is bounded by the upper threshold of
0.8m. When collisions are predicted, and
subsequently occur, the DR model employs the
lower threshold bound. This can be deduced from the
peaks of the inconsistency in all physics-aware
entities, which have similar magnitudes as those
obtained for the 0.3m fixed threshold in Figure 8.

The results clearly show that the adaptive
threshold DR model is performing as expected, using
the lower threshold when collisions are predicted and
using the higher threshold otherwise. However, it
should be noted that in some instances inconsistency
seems to be bounded to the lower threshold of 0.3m.
This occurs when collisions are predicted but do not
actually occur. Hence the avatar’s entity is
unnecessarily updated when its error exceeds the
lower bound. A better prediction model would
alleviate this issue.

VI CONCLUDING DISCUSSION

A novel physics-aware, adaptive threshold
dead reckoning technique for entity state
management has been proposed for peer-to-peer
DIAs. Inconsistency, in this case, is taken as the
overall physics-aware inconsistency present in the
application, or the sum of the spatial inconsistencies
in both the local peer’s controlled entity and all
physics-aware entities. Simulation results illustrate
the usefulness of the proposed technique. They show
that adapting the dead reckoning model to utilise a
tighter threshold for the motion of controlled entities
in advance of collisions can lead to more accurate
simulation of those collisions. In addition, the
threshold remains looser (or larger) in cases where
collisions are not predicted and, as such, the
bandwidth is freed up to be utilised in a more
optimal manner.

Future work will examine the performance of
the proposed technique for more realistic virtual
environments.

VII REFERENCES

[1] M. R. Macedonia and M. J. Zyda, "A Taxonomy for
Networked Virtual Environments", IEEE Multimedia Systems’ 98,
4(1), 1997, pp. 48-56.

[2] E. Churchill, D. Snowdon and A. Munro,
“Collaborative Virtual Environments: Digital Places and Spaces
for Interaction”, UK: Springer- Verlag, 2002.

[3] S. Singhal and M. Zyda, “Networked Virtual
Environments: Design and Implementation”, New York ACM
Press/Addison-Wesley Publishing Co., 1999.

[4] “IEEE Standard for Distributed Interactive Simulation
- Application Protocols”, 1998, IEEE Std 1278.1a-1998.

[5] W. Cai, F.B.S. Lee and L. Chen, “An auto-adaptive
dead reckoning algorithm for distributed interactive simulation”,
Proceedings of the thirteenth workshop on Parallel and
distributed simulation, Atlanta, Georgia, US: IEEE Computer
Society, 1999.

[6] F.B.S. Lee, W. Cai, S.J. Turner and L. Chen,
“Adaptive Dead Reckoning Algorithms for Distributed Interactive
Simulation”, Int. Journal of Simulation: Systems, Science &
Technology, 1, 2000, pp.21-34.

[7] E. Catto, “Box2D User Manual”, 2007,
www.box2d.org/manual.html (accessed 23/09/11).

