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Abstract 
This paper deals with the application of information 

extracted from AM and FM time-frequency 

representations of speech to the task of determining 

speech quality. The representations are introduced and 

then the procedure for data extraction is outlined. The 

experimental setup for the assessment of objective quality 

covers distortions typically found in speech 

communication systems.  To determine how well these 

quality measures perform, regression analysis is used to 

evaluate how well they estimate the results of subjective 

testing. Considering each class of distortions individually 

the objective measures demonstrate good performance, 

however, this level does not seem to hold as well in the 

aggregate case. This leads to suggestions as to where 

possible improvements can be made to the procedure. 

  

1. Introduction 
 
In principle, speech quality should be assessed by 

subjective methods that rely on listener judgements. 

However, subjective testing procedures have a number of 

drawbacks, the most significant being the considerable 

costs in implementing a suitable program and the 

variability of the results. To overcome such limitations, a 

number of objective measures of speech quality have 

been introduced that attempt to quantify the integrity of 

the speech signal, most often on the basis of a 

comparison between the original and a distorted or 

processed version. The validity of these objective 

measures is usually made by determining their 

correspondence with subjective measures via a series of 

controlled tests. However, developing a good speech 

quality measure that is applicable over a broad range of 

distortions is difficult. Over the years, a number of 

objective quality measures have been suggested, 

operating either in the time or frequency domain. 

Generally, results have shown that frequency domain 

measures correspond better to subjective quality than 

time domain measures [1]. 

 

A well-known class of speech quality measures, known 

as LPC-based measures, is founded on the linear source-

filter model representation of speech. The inherent 

simplicity have ensured their popularity but they are 

known to produce inaccurate and defective results due to 

limitations in the model [2]. One outstanding deficiency 

is that these methods fail to take account of both 

perceptually important dynamic changes occurring in the 

speech [3] and the finer spectral details. By way of an 

alternative, this paper proposes a novel approach that 

examines speech quality from an Amplitude Modulation-

Frequency Modulation (AM-FM) perspective. In recent 

years, there has been much interest in the amplitude and 

frequency modulation structure of speech as it attempts to 

overcome previous deficiencies in speech modelling by 

indirectly describing the non-linear and time-varying 

phenomena that occur during speech production [4]. It is 

also motivated by better understanding of the signal 

processing function performed by the inner ear, 

particularly the cochlea. The cochlea is known to 

decompose acoustic stimuli into frequency components 

along the length of the basilar membrane. This 

phenomenon is called Tonotopic decomposition. Further 

it is also known that the nerve fibres emanating from a 

high-frequency location in the cochlea “phase-lock” to 

the envelope of the stimulus around that frequency, i.e. 

convey information about the envelope modulations in 

the signal. Thus, to a first-order approximation, it is often 

argued that the tonotopic location/place along the length 

of the basiliar membrane conveys the FM or frequency 

information about the signal, and the rate of nerve fibre 

activity around that location conveys the AM or envelope 

information [5].  

 

In regards to the design of an objective measure of 

speech quality that takes account of these phenomena, 

this investigation uses information from separate time-

frequency representations that display the most 

significant features of the AM-FM speech structure. In 

particular, the Modulation Spectrogram [6] and the 

Instantaneous Frequency Distribution [7] are employed to 

detail the respective AM and FM components of the 

speech. By considering both aspects, inclusion of 

elements of the finer spectral details with the dynamic 

features of the spectral envelope is ensured. Thus, the 

objective quality measure will encompass a perceptually 

relevant set of speech features and should provide a better 

match to subjective results. 

 

2. AM-FM Time-Frequency 

Representations 
 

This section outlines the signal processing procedures 

required to form the Modulation Spectrogram and 

Instantaneous Frequency Distribution of a speech signal. 

An example is also given of each to illustrate the features 

of the speech signal that they emphasise. 

 

 



2.1 Modulation Spectrogram 
 

This representation was proposed in response to the 

significant evidence showing that much of the phonetic 

information of the speech signal is encoded by slow 

changes in gross spectral structure that characterise the 

low-frequency portion of the amplitude modulation 

spectrum. One excellent example of this is the Channel 

Vocoder [8], another is from Houtgast and Steeneken [9] 

who, in the development of the STI speech quality test, 

established that there was a significant connection 

between speech quality and the attenuation of the low-

frequency modulation components present in the signal. 

Thus, the modulation spectrogram was developed as a 

time-frequency representation to display the short-term 

low-frequency modulations present in the amplitude 

envelope of the speech. These low-frequency 

modulations are exposed across critical-band channels to 

further enhance the perceptual relevance of the 

representation [6].  

 

To generate the Modulation Spectrogram, the incoming 

speech is separated into critical-band-wide channels 

using a Mel-spaced FIR filter bank; in this work 19 

channels are used. To ensure that there is minimal 

overlap between the channels, the critical-band filters are 

designed to have a twenty-fourth octave bandwidth. In 

each channel, the signal envelope is derived using a 

Hilbert transformer and is normalised1 by its power, 

filtered with a 50 Hz lowpass filter and then decimated 

by a factor of 100. In [6], the low-frequency modulations 

present in these decimated envelope signals were found 

by computing a 128-point FFT over a 250 ms Hamming 

window which is updated every 12.5 ms in order to 

capture their dynamic properties. However, an alternative 

to the FFT for the computation of the desired low 

frequency modulation spectrum of the decimated 

envelope signals is to use the Chirp z-transform [10]. 

This algorithm determines samples of the z-transform of 

the signal along an equally spaced spiral contour defined 

between two desired frequency points. It has the 

advantage of being able to calculate the samples with an 

arbitrary starting point and frequency range, and it allows 

calculation of an arbitrary number of samples along this 

contour thus reducing the error in frequency 

representation. One potential drawback is that, depending 

on the number of sample points, it may be slower than 

the FFT. Finally, the power of the modulation 

components from 0-8 Hz in each channel is then plotted 

in spectrographic format, and for visual enhancement 

both thresholding and smoothing can be applied.  

 

Figure 1 shows a Modulation Spectrogram of the 

utterance “Do not present the prize”. The darker areas in 

the figure show greater intensities of low frequency 

modulations, appearing most noticeably at the output of 

the channels in the proximity of 1000Hz. Also, the 

dynamics of the transitional events in the utterance are 

highlighted. 

 

                                                           
1 By this normalisation, the intensity envelope is actually 

obtained. This was found to give a superior peak 

resolution and visual representation than if the 

normalisation was performed by subtracting the DC 

component from the decimated envelope signals as in [6]. 
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Figure 1: Modulation Spectrogram of a Speech 

Utterance 

 

 

2.2 IF Distribution 
 

In keeping with the AM-FM model of speech, a 

complementary representation to that of the Modulation 

Spectrogram is one that displays the underlying FM 

structure of the signal. The first significant investigation 

into a representation of the FM or instantaneous 

frequency structure of the speech signal was carried out 

in [7]. Experiments using the Phase Vocoder have 

demonstrated the perceptual relevance of the 

instantaneous frequency structure of a speech signal [10]. 

The representation suggested by [7] is achieved through 

an FFT based signal processing scheme where the 

running short-time Fourier transform (RSTFT) is 

interpreted in terms of simultaneous outputs of a bank of 

band-pass filters with successively offset centre 

frequencies, all having the given signal waveform as 

input. This is defined as 
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A convenient method for computing ( )v nω, , without 

explicit differentiation of the actual time functions, can 

be derived by manipulation of (1) and (2) to give the 

Instantaneous Frequency Distribution (IFD) across time  
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When calculating the IFD for speech signals of greater 

duration than 1 second, it is desirable to introduce a 

running short-time averaging step to the data contained in 

the IFD to aid clarity of presentation. Assuming that the 

phonetic content of the speech signal is adequately 

represented by a vector frame interval of 10 to 20 msec, 

averaging over this time period should not significantly 

affect the nature of the data. One approach [11] is to 

weight the IFD by the corresponding squared amplitude 

before averaging, which can be conveniently expressed 

as  
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where ( )X en

j′ ω
 is the time derivative of ( )X en

jω
 as 

given by (1), ( )X en

j* ω
 is the complex conjugate, N is 

the length of the averaging window and m is the frame 

index. 

Figure 2 shows a plot of the average weighted IFD 

calculated with (4) applied to the sentence  “You are the 

biggest man” where averaging was performed over a 10 

msec frame interval with a frame update of 5 msec.  
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Figure 2: Average Weighted IFD of an Utterance 

 

The formant locations are readily seen in the figure as 

dense areas of concentration in a similar way to the high 

Fourier amplitudes that outline the formant tracks in the 

speech spectrogram. However, in the IFD, the resolution 

of the formants is clearer and the tracks of the higher 

frequency formants are more easily distinguished. Areas 

of low density can also be seen which possibly represent 

spectral zeros [7].  

 

3. Time-Frequency Distance Measures 
 

To quantify speech signal distortions using the AM-FM 

based time-frequency representations described above 

some form of processing to parameterise the information 

is desirable. A possible solution is to convert the 

information at each instant in the time-frequency plane 

into a set of Cepstral-like coefficients which will thus 

allow a degree of data reduction that will diminish the 

complexity of the processing procedure [11]. Each time-

frequency slice is concatenating a mirrored replica of 

itself so as to define it up to the speech sampling 

frequency. As in conventional homomorphic processing, 

the natural logarithm of this concatenated section is 

taken, followed by an inverse FFT to transform it to the 

Cepstral domain. A suitable number of Cepstral 

coefficients can then be extracted depending on the 

required accuracy or smoothness. For the IFD, however, 

it is necessary to convert the densities that appear in the 

plot into a form that indicates the level of concentrations 

at each frequency bin. This can be done by forming a 

histogram of the time-frequency slice, where the maxima 

in each histogram represent spectral areas of dense 

component concentration. Simple thresholding can also 

be applied to these histograms to remove peaks indicating 

areas of small concentrations. Experimental evaluation 

found that 40 Cepstral coefficients were sufficient in both 

cases to describe the information in each time-frequency 

slice. The distance measures for each time frequency 

representation, MSD  and IFDD  can then be taken as 

the average mean square difference of the Cepstral 

coefficients for the original and distorted speech 

waveforms over all the speech frames. This can be 

written as 
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 is the mean square frame difference and 

D , the distance value, is the average of 
2

e  over the 

total number of frames M.  

 

3.1 Experiments 
 

To test the AM-FM speech quality measure, a speech 

database was created using the list of 48 phonetically 

balanced sentences provided in [2]. The sentences were 

recorded in four separate groups using two male and two 

female speakers. The types of distortion applied to the 

speech in the tests were based on frequently occurring 

distortions in communication channels [3]. These were 

applied in various degrees, resulting in a total of 18 

conditions, as specified in Table 1. 

 

 

Distortion Degree 

  

Masking 

noise 

SNR= 35, 25, 15, 10, 5 dB 

Peak 

clipping 

7,30,50,70, 90 % (cut-part/whole) 

Band-pass 

filtering 

0.8-1.3,1.3-1.9,1.9-2.6,1.4-3.2 kHz 

Single 

echoes 

1.25ms 

(reflection coefficient 0.5 and 0.6), 

6.25 and 12.5 ms 

(reflection coefficient 0.5) 

 

Table 1: Distortions Applied to the Speech 

 

 



Subjective assessment of the distorted speech signals was 

made using the Mean Opinion Score (MOS). To assess 

how well the distance values could predict the subjective 

results, a Multiple Linear Regression procedure [2] was 

used. To validate the procedure the data was split in two, 

the first half being used to estimate the regression 

weights and the second to compute the figure-of-merit, 

here the correlation coefficient. Table 2 shows the results 

of this procedure.  

 

It is clear that when the distance measures are examined 

for each individual distortion, there is a very high 

correlation between the subjective and objective results. 

However, when the correlation is calculated over all the 

distortions, it is not so high. Still, a correlation coefficient 

of 0.75 sets it above those found for the class of LPC-

based measures examined in [2]. It seems that the quality 

measure works least well in the case of echo distortion. 

This could be attributed to the fact that although an echo 

may cause significant spectral deformities, the perceptual 

quality of the speech may not suffer proportionally.  

 

 

Distortion Correlation Coefficient 

  

Masking noise 0.9974 

Peak clipping 0.9874 

Band-pass filtering 0.9785 

Single echoes 0.9479 

All distortions 0.7509 

 

Table 2: Correlation Coefficients between Objective and 

subjective Results for Various Distortions 

 

 

4. Conclusion and Future Work 
 

In conclusion, this paper has proposed a methodology has 

for the construction of a speech quality measure based on 

AM-FM time-frequency representations of speech. This 

measure was shown to correlate very well with subjective 

results for each individual class of distortion, however, 

this performance diminished when considering its 

correlation with the aggregate distortion set. 

 

A number of suggestions can then be made that could 

improve the performance of the AM-FM distance 

measure. The first would be to enhance the Instantaneous 

Frequency distribution by making it more perceptually 

relevant. One approach to achieve this would be to warp 

the speech segments in time before taking the FFT as 

proposed in [12]. Another would be to take account of the 

importance of human judgement in speech perception by 

employing the Measuring Normalising blocks procedure 

described in [13]. Finally, better correlation with the 

subjective results could be obtained by using an 

alternative methodology to combine the distance values 

from both distributions, such a Neural Network or 

Multivariate Polynomial Regression [14]. 
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