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ABSTRACT 

This paper will consider wave and phase signal shaping tech-
niques for the digital emulation of distortion effect processing. 
We examine in detail how to determine the wave and phase shap-
ing functions with harmonic amplitude data only first, and then 

after including the harmonic phase data. Three distortion effects 
units are used to provide test data. Wave and phase shaping func-
tions for the emulation of these effects are derived with the assis-
tance of a super-resolution frequency-domain analysis technique. 
In complement to this, we describe an alternative time domain 

method for determining phase shaping functions using Dynamic 
Time Warping. Finally, we propose a method for assessing the 
frequency dependency of distortion effects to help the design of 
multiband wave and phase shaping functions. 

1. INTRODUCTION 

Since the mid 1960s, distortion effects have played an important 
part in the timbristic definition of electric guitar sounds in popu-
lar music. Such effects have also been applied to organ and syn-

thesizer sounds. For instance, when used with the Hammond or-
gan, it creates thick, harmonic-rich tone. Another notable use is 
with the Roland TB303 bass synthesizer, producing what can be 
described as a screaming sound when the filter is fully open and 
the resonance control is at a maximum. The origin of such effects 

can be traced back to musicians exceeding the linear dynamic 
range of tube amplifiers, introducing some sort of non-linear dis-
tortion in the signal path. The characteristics of tube distortion 
provided a desirable transformation to the sound of instruments 

by adding high-frequency harmonics [1], [2]. In time, various 
types of dedicated circuitry were designed to apply different 
forms of the effect to signals at any amplitude level.  

Distortion units essentially are a non-linear waveshaping cir-

cuit to alter the shape of the input thereby modifying its spec-
trum, typically using some form of diode-based clipping [3], [4]. 
Digital emulation of these analogue processes has appeared in a 
variety of forms. In some, the aim is to directly model a specific 
analogue circuit to reproduce its behavior [5], while in others the 

aim is to create algorithms that capture the analogue processing 
in a conceptual manner [6], [7], [8]. The advantages of the latter 
approach are flexibility, in terms of the potential for added fea-
tures, and the ability to control the use of use of oversampling, 

which is a necessity for circuit modeling [9]. Furthermore, by 
keeping an algorithm’s computational requirements low means 
many more instances of it can be used in parallel within a digital 

music production environment. Emulation using the algorithmic 

approach can be divided into a nonlinear system model with 
memory or without memory [9]. However, incorporating mem-
ory for systems with strong nonlinearities is computationally ex-
pensive for real-time synthesis [10]. Thus, it is more common to 
use a nonlinear system that is memoryless.  

The action of such a nonlinear system is understood as wave-
shaping [11], a form of amplitude distortion. It has been shown 
more recently that distortion can also be applied to the signal 
phase to achieve a similar result [12], [13], [14], although no 

complete theory for this is available. In this work we establish a 
connection between the wave and phase shaping methods of am-
plitude and phase distortion [15] respectively. To illustrate the 
analysis, examples of nonlinearly shaped sinusoids that have 

been processed using analogue distortion effects will be used. 
Additionally, in reference to the multiband extension of wave-
shaping [16], an idea for examining the variation in shaping with 
respect to input sinusoid frequency will be introduced. 

This paper is organised as follows. We will first introduce 
and discuss the amplitude and phase signal shaping techniques. 
Then we will examine three distortion effects, discussing the 
general principles behind their operation. This will be followed 

by the application of the previously discussed algorithms to emu-
late these effects, with parameters derived from the analyses of 
their output signals. A brief description will also be made of us-
ing DTW as pure time domain approach to implement phase 
shaping. To finish the paper, we will look at ways to examine 

and describe the frequency dependency of these effects for poten-
tial applications in multiband processing. 

2. SIGNAL SHAPING METHODS 

2.1. Non-linear waveshaping 

One of the first studies of digital waveshaping in the litera-
ture is found in Schaefer’s work on tone generation [11]. How-

ever, J. C. Risset had already been using the method for sound 
synthesis of complex time-varying waveforms with a digital 
computer [17]. Schaefer’s motivation was the modeling of non-
linear semiconductor elements used in electronic musical de-
vices. Thorough theoretical investigations followed in [18] and 

[19]. The basic idea is that given some sinewave at a frequency  
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there is a nonlinear function f(.) that will alter the amplitude of 

x(t) to produce an output 
 

                     (2) 

 
Thus, the shape of the input wave has been changed by the func-
tion. 

    In [11] Chebyshev polynomials were introduced as a use-
ful description for such nonlinearities. The output of eq. 2 can be 
written as a power series 
 

y t( ) = d0 + d1 cos t( ) + d2 cos
2 t( ) +…     (3) 

 
or more compactly 

                   (4) 

 

Using a Fourier decomposition to determine the coefficients 
of eq.4 is difficult because of the expansion of the trigonometric 
product terms. The useful property of Chebyshev polynomials is 

that 
 

Tk cos t( )( ) = cos k t( )        (5) 

 
where Tk denotes a Chebyshev polynomial of order k. Applying 
these polynomials to describe eq. 4 results in  
 

y t( ) =
a0
2
T0 + a1T1 + a2T2 +…+ aNTN                   (6) 

 
where a0, a1, a2 ... are the Fourier series coefficient of y(t). 

The original work of [11] was extended by [19] to the syn-
thesis of complex dynamic spectra. In particular, [19] provided a 

matrix based technique for computing the coefficients of the 
power series in eq.4 using the Fourier series coefficients of eq.6. 
This simplified the procedure for calculating the waveshaping 
transfer function given a set of spectral harmonic magnitudes. 

Using an (N+1) (N+1) generative matrix P the relationship is 
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The first row of the generative matrix P is  

 

 
  
p 1, j( ) = 1 0 2 0 2 0 2 …[ ]          (8) 

 

and subsequent rows can be computed using the recursion 

 

 p i, j( ) = p i 1, j 1( ) p i, j 2( )                      (9) 

 

It can be noted from eq.7 that the harmonic phase is missing 
from the relationship. To include this means a phase quadrature 
form of waveshaping [18]. Each harmonic magnitude, except the 

DC component, has an associated phase. Defining these as  

 

= 0 1 2… N[ ]                         (10) 

 

To take account of the phase two waveshaping polynomials 
now need to be generated. Furthermore, the second polynomial 
requires Chebyshev polynomials of the second kind. Again, fol-
lowing the example of [19] matrix relationships can be expressed 

for phase quadrature waveshaping 
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and 
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where the first row of the generative matrix Q is  

 

  
q 1, j( ) = 1 0 1 0 1 0 1…[ ]  (13) 

 

and subsequent rows can be computed using the recursion 

 

  (14) 

 

The quadrature waveshaper output is then given by 

 

        (15) 

2.2. First relationship between wave and phase shaping 

LeBrun [18] also provided a waveshaping implementation of 
Frequency Modulation (FM) synthesis [20] (normally described 
in the form of Phase Modulation, PM). This was a significant 

result as it first established the link between waveshaping, an 
amplitude based shaping technique, with frequency modulation, a 
phase-based shaping technique.  

In outline, a FM (PM) signal can be written as  

 

            (16) 

 

where c is the carrier frequency, m is the carrier frequency and 

I is the index of modulation. 

Ignoring the carrier for the moment, eq.16 can be written as 

 

     (17) 

 
Substituting eq.1 into eq.17 gives 
 

                  (18) 
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This is similar to eq.(2) with the waveshaping function 
 

                  (19) 

 

The carrier can also be reintroduced to give 
 

      (20) 

 
with g(x) = sin(x). 

Thus demonstrating frequency modulation can be cast as a 

form of waveshaping. The work in [21] elaborates this further, 
expanding it to provide independent control over partial groups. 
However, for our purpose more analysis is needed to have an 
equivalent procedure for computing the phase shaping function 
given a set of harmonic amplitudes and phases. 

2.3. Non-linear phaseshaping 

The technique of phase distortion, which is the core of our phase-

shaping approach, was originally proposed as a digital synthesis 
method for the generation of complex time-varying tones [15]. 
More recently, in [13] and [14], it was explored as an efficient 
alternative for the design of virtual analogue oscillators. In [12] it 

was proposed to implement it using allpass filters as an effect for 
distorting sinewaves, though in principle it could be applied to 
any allpass filter input.  

As discussed in Section 2.2, the similarities between wave 

and phase shaping are substantial. To establish the connection 
fully, we again start with the same sinusoidal signal of eq. 4, and 
propose that there is a non-linear function f(.) such that 

 

                                  (21) 

 
will produce a complex signal. A detailed analysis of its spec-
trum is found in [14]. In a typical scenario, ƒ(.) will be such that 
the result signal will be equivalent to a complex-FM tone. More 
importantly for this work, it is also possible to establish a con-

nection between the harmonic magnitudes of a signal and its in-
stantaneous phase. First, defining a N harmonic analytic signal of 
fundamental frequency  and amplitudes a1...aN  as 

 

  s t( ) = a1e
t + a2e

2 t + a3e
3 t +…+ aN e

N t
 (22) 

 

This can be written as into its real and imaginary components 
 

  s t( ) = u t( ) + jv t( )         (23) 

 

where u(t) and v(t) denote the real and imaginary parts respec-
tively. If the relationship between the harmonic magnitudes satis-
fies the conditions given in [22], then the instantaneous fre-
quency of this signal can be written as [23] 

        

 ˙  s t( ) =
u t( ) ˙ v t( ) ˙ u t( )v t( )

A 2
  (24) 

 

where ˙ u t( )  and ˙ v t( )  are the first differences of the real and im-

aginary parts, respectively, and  
 

                     (25) 

 

Substituting for u(t), v(t), ˙ u t( )  and ˙ v t( )  the above will lead 

to an expression from which the Instantaneous frequency can be 

directly calculated.  

Defining the combination 

 

   C =
N

2

 

 
 

 

 
      (26) 

 

This will have the set of combinadics denote M(N,2) that con-
tains L = N!/(2!(N-2)!) vectors each denoted as M(N,2)(.). Also, 
the vectors of magnitudes and frequencies are  

 

           (27a) 

 
and 

            (27b) 

 

Then, defining two terms 
 

 

snum t( ) = a2. +

i=1

L

MN,2 i( )( )
i=1

L

a MN ,2 i( )( ) cos   MN ,2 i( )( ) t( )

      (28a) 

 
where  is the difference between the pair of frequencies deter-

mined by M(N,2)(.)  and 
 

sden t( ) = a2 +

i=1

L

2

i=1

L

a MN ,2 i( )( ) cos   MN ,2 i( )( ) t( )       (28b) 

 

The instantaneous frequency is given by 
 

   ˙  s t( ) =

˙  snum t( )
˙  sden t( )

           (29) 

 

The instantaneous frequency can be written in terms of the 
fundamental frequency and frequency deviation 

 

   ˙  s t( ) = + ˙  sdev t( )                           (30) 

 

This deviation term can be integrated to convert it into an 
equivalent modulation or phase shaping 

 

   smod t( ) = ˙  sdev t( )
n

  (31) 

Thus it is possible to represent a harmonic signal as the phase 
shaping of a cosine signal at the same fundamental frequency. 

No harmonic phases have been taken into account so far and 

the equations need to be extended to achieve this. Using our 
phase vector definition in eq. 10, the terms in eq. 28a and 28b 
can be redefined 
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snum t( ) = a2. +

i=1

L

MN ,2 i( )( )
i=1

L

a MN ,2 i( )( ) cos   MN ,2 i( )( ) +   MN ,2 i( )( ) t( )

(32a) 

 
where  is the difference between the pair of phases determined 

by M(N,2)(.)  and 

 

sden t( ) = a2 +

i=1

L

2

i=1

L

a MN ,2 i( )( ) cos   MN ,2 i( )( ) +   MN ,2 i( )( ) t( )

       (32b)  

 

These can be substituted into eq.29, eq. 30 and eq. 31 to find 

the phase shaping that will produce the signal s(t). 

3. THE DISTORTION EFFECTS  

     Distortion is a waveshaping operation, altering the contour of 
its input, and therefore its harmonic content. In transistor-based 

distortion effects the primary circuit element that alters the signal 
is the diode. Two broad classes of circuits exist: (a) Hard clip-
ping and (b) Soft clipping [3], [4]. While hard clipping cuts the 
peaks of the input signal to create a strong distortion, soft clip-

ping enacts this in a gentler manner producing a warmer, over-
driven sound. For this work, three distortion circuits were used. 
These were built from schematics and PCBs purchased from 
[24]. The schematics are available on the website [24]. The first 
was El Griton, a Tubescreamer-type circuit that gave an asym-

metrical soft clipping. The second was Disto-Uno, a Boss DS-1 
type circuit and the third was MAS Distortion, a MXR distortion-
type circuit, both of which were hard clippers. These circuits will 
be termed as ‘Overdrive’, ‘Clipper 1’ and ‘Clipper 2’ in the fol-

lowing. The output waveform from all three circuits is shown in 
fig 1. The circuits were driven by a 2V peak-peak sinewave at 
frequency 146.8 Hz (note D) and the output was sampled at 
44100Hz using an M-audio Audiophile soundcard. The three 
panels from top to bottom show the waveforms for the Over-

drive, Clipper 1 and Clipper 2 respectively.  

In fig. 1 the soft clipping action of the Overdrive contrasts to 
the hard clipping of the others as some of the roundness of the 
input sinewave is still visible in the output. The waveform of 

Clipper 1 is very strongly clipped and also has two significant 
transients each period. The Clipper 2 output appears to be the 
result of a straightforward clipping operation. Fig. 2 plots the 
normalized magnitude spectra of these three waves from 0Hz to 

5000 Hz. The spectrum of Clipper 1 in the middle panel has the 
most harmonics implying it has the most distorted sound. The 
strong high frequency harmonics are most likely the result of the 
transients. The spectrum of the Overdrive in the top panel has the 
least number of high frequency harmonics and the fundamental 

component is at least 20dB stronger than any of the others. 

The spectrum of Clipper 2 output is not the same as that of a 
square wave but it may be more similar to that of a pulse-width 

modulation (PWM) wave as it appears to have spectral minima 
around approximately 1800 Hz, 2800 Hz, 3800 Hz and 4800 Hz. 

 

 

Figure 1: Waveform outputs from the three distortion cir-

cuits fed by a sinewave signal. 

 
Figure 2: Magnitude spectra of outputs from the three distor-
tion circuits 

4. DIGITAL MODELLING BY MEANS OF WAVE AND 

PHASE SHAPING 

Once the output waveforms were recorded the next task was to 

find the spectral peaks for input to the amplitude and phase shap-
ing algorithms. However, to use the FFT for this would require a 
very long dataset as the fundamental frequency of the output was 
146.8Hz.  To overcome this, a super-resolution frequency analy-

sis technique was applied. Exact values for the harmonic magni-
tudes and phases of the measured waveforms were derived using 
the Complex Spectral Phase Evolution (CSPE) algorithm [25]. Its 
algorithm can be described as follows: 

Firstly, assume a real signal s0(t), and a one-sample shifted 
version of this signal s1(t). Also, its frequency is  = q +  where 
q is an integer and  is a fractional number. If w(t) a window 
function, Fws0 is windowed Fourier transform of s0(t), and Fws1 
is the windowed Fourier transform of  s1(t),  then, from [25], first 

define  

 

                                               (33) 

 

The frequency dependent CSPE function can be written as 
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CSPEw = Fws0F
*
ws1 = (

a

2
)2

D* Fw (D
n )

2

+2Re e j2bDFw (D
n ) Fw

* (D n ){ }

+D Fw (D
n )

2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

           (34) 

 

The windowed transform requires multiplication of the time 
domain data by the analysis widow, and thus the resulting trans-
form is the convolution of the transform of the window function 

with the transform of a complex sinusoid. Since the transform of 
a complex sinusoid is a pair of delta functions in the positive and 
negative frequency positions, the result of the convolution is 
merely a frequency-translated copy of the window function fre-

quency response centred at +  and - . Consequently, with a stan-
dard windowing function, the ||Fw (D

n
)|| term is only consider-

able when k   and it decays rapidly when k is far from . If the 
analysis window is chosen carefully so that it decays rapidly to 

minimize any spectral leakage into adjacent bins, the second and 
third terms become negligible in eq. 34. Thus, the CSPE for the 
positive frequencies gives: 

 

                     (35) 

 

From eq. 35 the CSPE exact frequency value is obtained 
 

 (36) 

 

In addition to providing an exact frequency measurement, 
with the CSPE, the amplitude and phase of the kth frequency 
component can be found using the following equations, where 
W( -fcspe(k)) is the Fourier Transform of window function 

which has been shifted to fcspe(k) in frequency domain [25]:  

 

 Ak =
2Fws0

W ( fcspe(k))
   (37) 

 

k =
2Fws0

W ( fcspe(k))

 

 

 
 

 

 

 
                     (38) 

 

   Empirically it was found that 40 harmonics only were re-
quired from the spectrum of the Overdrive for the analysis, 
otherwise the output of the waveshaper (eq. 4) was prone to in-
stability.  It was the weakness of the higher harmonics that gave 

rise to this. The magnitude of the 40
th

 harmonic relative to the 
fundamental was -60dB so the timbral reproduction should not be 
overly compromised. To be consistent the same upper limit on 
the number of harmonics was used for the others also.  

 

 

Figure 3: Output of the standard waveshaper 

 

For the first emulation no harmonic phases were included. 

The output of the waveshaper formed using eq. 7 and 3 for all 
three waves is given in fig. 3. Clearly, by omitting the phase the 
original waveform shape is lost.  

  

Figure 4: Output of the phase quadrature waveshaper 

Using the phase quadrature waveshaping with eq. 11, 12 and 
15, and thus including the phase, produces the plot in fig. 4. The 
reproduction of the original waveshape is much better now and 

they compare very well to the originals in fig. 1. Computing eqs. 
28-31 with the harmonic magnitudes only the phase shaping 
function was computed for the three waveforms. Fig. 5 shows the 
output.  

The phase shaping for the Overdrive is the smoothest func-
tion. This suggests that it might not be difficult to find a low 
order parametric model for this function. However, the phase 
shaping functions for the others are more jagged, implying that 

modelling might be more difficult. 
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Figure 5: Phase shaping function computed using har-

monic magnitudes only 

Fig. 6 plots the phase shaping functions when the phase in-
formation is included using eqs. 32a and 32b. All three functions 

appear smoother. Notably the phase excursion for the Clipper 1 is 
greatest whilst that for the Overdrive is smallest. The phase shap-
ing function for Clipper 2 is like a succession of sawtooths whose 
periods alternate between long and short.  
 

 

Figure 6: Phase shaping functions computing using har-

monic magnitudes and phases 

Reconstructing the time waveforms from the phase shaping 
functions given in fig. 6 gives the result in fig. 7.  Comparing the 
waveforms of fig.7 with the originals in fig. 1 they have a good 
visual match. This demonstrates how amplitude and phase shap-

ing can both produce equivalent results. 

4.1. Modelling phaseshapers with Dynamic Time Warping 

As an alternative to expressing phaseshaping using eqs. 28-
32, it is also possible to represent it as a time warping. This is 
because of the equivalence of phase and time shifting. This 
would also obviate the need to find the harmonic magnitudes and 

phases as the warping can be done explicitly in the time domain. 
The warping function between the input sine and the distorted 
wave can be determined using the well-known Dynamic Time 
Warping algorithm (DTW) [26]. This should be done using sin-
gle periods of the input sine and the output distorted wave.  

 

Figure 7 Reconstructed waveforms using Phase shaping 

functions derived from harmonic magnitudes and phases 

Denoting the vector of one period of the input sine samples 
as x = ‹ xn ›  and one period of the distorted wave as y = ‹ yn ›, 
with n as the sample index, the goal of applying DTW is to align 
these two vectors by finding the lowest cost path through the 

field F, defined as 
      

               (39) 

 

where d(.) is some appropriate distance metric such as 
 

  (40) 

 

A matrix G is defined that contains the accumulated cost in 
the matching process. A number of different formulas are avail-

able for computing G, it was found empirically that the Asym-
metric 2 DTW algorithm from [26] performed best. This is de-
fined as  

 

Gi, j =min

Gi 1, j 3 + d xi ,y j 2( ) + d xi ,y j 1( ) + d xi ,y j( ) 3

Gi 1, j 2 + d xi ,y j 1( ) + d xi ,y j( )( ) 2
Gi 1, j 1 + d xi ,y j( )
Gi 2, j 1 + d xi 1,y j( ) + d xi ,y j( )
Gi 3, j 1 + d xi 2,y j( ) + d xi 1,y j( ) + d xi ,y j( )

 

 

 
 
 
 

 

 
 
 
 

 (41)

 

 
where i and j denote sample indices of x and y respectively. 

The upper panel of Fig. 8 illustrates the linear phase plus 

Phase Shaping function (solid line) for the Overdrive with the 
DTW warping function (dashed line) superimposed. The match is 
reasonably good but is not perfect. This is attributable to limita-
tions in the DTW matching process used.  

The lower panel of fig. 8 shows the match between the phase 
shaped emulation of the Overdrive output and a time warped 
sinewave. The worst alignment is around 5 msec at the most 
clipped part of the waveform but otherwise it is close. Thus, the 

match between the two waveforms is better than for the phase, 
suggesting that small differences in the phase match are not so 
significant. The main conclusion to draw from this is that the 
DTW approach has potential but needs more investigation to cre-
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ate a refined set of constraints that will improve the performance 

of DTW for this application. 

 

Figure 8: Phase match between Phase shaped phase for 

Overdrive (solid line) and DTW algorithm warping func-

tion (dashed line) (upper panel) and time waveform 

match between sine altered by these quantities (lower 

panel) 

5. DYNAMIC SHAPING ANALYSIS 

    The shaping functions for both phase and amplitude can be 
made frequency dependent to create a multiband distortion effect 
[16]. Although the study so far has been confined to one wave-

form measurement it should be possible to determine how the 
waveform shape is affected by the circuitry as the frequency of 
the input changes. In cases where frequency dependency does not 
have a significant effect in the output signal, a single shaper 
could be employed. In other situations, it would be useful to es-

timate the number of shaping functions required. Such an analy-
sis could be done in the frequency domain but a difficulty is that 
the number of output signal harmonics diminishes as the fre-
quency increases. An alternative is a time waveform based analy-

sis. A useful tool for this type of measurement is the Scale Trans-
form [27]. In other work, it has been applied to speech spectra 
analysis for formant normalization [28]. The equation for the 
scale transform of signal f(t) is  
 

             (42) 

 

The useful property of this transform is that a time scaling of 

the input will not affect the magnitude of the transform output. A 
scale modification is a compression or expansion of the time axis 
of the signal. For example if there is a function g(t) that is a 
scaled version of f(t) by a factor   

 

      (43) 

then 

         (44) 

 

Thus, the transform magnitude is the same for waveforms at dif-
ferent frequencies in that they only differ by a simple scaling fac-
tor. To implement the Scale transform the matlab toolbox of [29] 
was used. This takes the approach of an exponential resampling 
of the signal followed by an FFT. For the three distortion circuits 

the output was recorded from frequencies of 82.4 Hz up to 

1318.5 Hz, corresponding to a low to high E. All frequencies in-
between were selected to correspond to the notes of the chro-
matic scale. All measurements were done at the maximum set-
tings of the pedal controls only. One period was extracted from 

the recorded waveforms and the Scale Transform was found of 
each.  Each Scale Transform was normalised and then all were 
subtracted from the transform of the first note. The mean square 
difference for each was found and plotted in fig. 9. 
 

 
Figure 9: Scale transform analysis of the distorted waveforms 
for each circuit with respect to the first measurement 

 

It appears that the Overdrive is the most consistent in terms 

of its waveform with respect to frequency. There is a change as 
the input frequency increases but this flattens out. The change in 
waveform of Clipper 2 is slightly more pronounced with an in-
creasing difference with respect to input frequency. This could be 

emulated using a dual-band waveshaper for the low and high fre-
quencies. Clipper 1 has the most significant differences as the 
input frequency changes, particularly in the low frequency range 
and would be better represented by a tri-band waveshaper.  

To illustrate the changing shape of the output waveforms as 
indicated by the Scale Transform, Figure 10 plots three periods at 
the lowest and highest measurement frequencies of 82.41Hz and 
1318.5 Hz respectively for Clipper1, upper panels, and Clipper 2, 
lower panels. The change in waveshape for Clipper 1 from the 

lowest to highest frequencies is greater than for Clipper 2. This 
helps in the interpretation of the Scale transform results in Fig. 9.  

 

 

 
Figure 10: Waveform outputs from the three distortion cir-
cuits fed by a sinewave signal at 1318.5Hz. 
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6. CONCLUSION 

In this article, we have explored two techniques of signal shap-
ing. Expressions were presented that extended the matrix ap-

proach of [19] to include quadrature waveshaping, and to com-
pute a phase shaping function given a set of harmonic magni-
tudes and phases. These methods were applied to the emulation 
of distortion effects We were able to demonstrate a good signal 

match by utilising both amplitude and phase information from 
spectral analyses in both phase quadrature waveshaping and 
phase shaping algorithms. In addition, we briefly explored an 
alternative method of extracting phase distortion functions via 
Dynamic Time Warping. Finally, the paper described a method 

of analysing the frequency dependency of shaping functions util-
ising the Scale transform, which could be of help for the design 
of multiband distortion effects.   
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