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Abstract 
Complex frequency modulation (FM) is a useful method for sound synthesis as it allows 

the creation of rich timbres using only a small number of waveforms. However, the 

mathematical expression for the frequency domain representation of a frequency 

modulated (FM) wave with a non-sinusoidal modulator is a complex equation with 

multiple summation terms. Its implementation in software requires nested loops, with the 

number of loops depending on the number of sinusoidal components required to describe 

the complex modulator wave. Although the spectral representation can be easily 

computed from the FFT of the time domain waveform, this is at the expense of the 

insight that can be gained by direct evaluation of the analytic expression for the 

frequency domain representation. This paper looks at creating a software implementation 

of the analytic expression that overcomes the need for many nested loops and can be 

generalized. It will also suggest how it could be applied in a distributed processing 

environment.  
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1. Introduction 
The use of sinusoidal Frequency Modulation (FM) for sound synthesis has been well 

accepted since the landmark paper of Chowning [1]. This paper showed how the 

modulation of the frequency (strictly speaking it was the phase) of a sinusoidal signal, 

termed the carrier, by another sinusoidal signal, termed the modulator, could be used to 

produce a timbre that was far richer spectrally than either the carrier or modulator 

themselves. Chowning’s ideas were eventually realized in the famous Yamaha DX7 

synthesizer, which is closely associated with music of the 1980s [2]. In collaboration with 
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Chowning, Yamaha developed the DX7 so that the sound creation algorithms on the 

synthesizer could have more than just a single modulator and carrier connection. The 

sinusoidal modulators could be arranged in series, in parallel or with feedback before 

being input to the carrier. Additionally, multiple modulated carriers could be combined 

together. All these expanded the timbral creation possibilities for the instrument. It also 

showed, indirectly, that complex frequency modulation (Complex FM) was a more 

realistic approach for FM synthesis engines if users were to be able to generate intricate 

sounds, or emulate those of acoustic instruments more accurately. Soon after the DX7, 

Casio introduced the technique of Phase Distortion as a rival technology [3], although in 

reality it was a form of complex FM [4]. The popularity of FM synthesizers waned during 

the 1990s, but FM synthesis has been given a new lease of life in recent times. This came 

with the release of the FM7 and FM8 VSTs by Native Instruments [5], the development 

of new FM-based sound synthesis techniques [6], and with work that has shown how an 

FM-oriented approach can lead to an efficient solution for creating bandlimited 

oscillators for virtual analogue applications [7].  

Most students of computer music will have learnt the expression for simple FM 

synthesis as it is a staple of many textbooks [8]. However, they may not be as familiar 

with the expressions for complex FM. This has appeared in the research literature, 

particularly for ‘Double modulator/single carrier FM’. It was used in [9], [10] and [11] 

for the creation of simulations of real-instrument sounds. More recently, it was found to 

be very useful for the bandwidth analysis of ‘Exponential FM’ signals. In this case, the 

analytical spectrum was found to be far superior to the FFT as it provided a continuous 

spectral envelope from which a highly accurate bandwidth measurement could be easily 

made [12]. Furthermore, unlike the FFT spectrum, this representation was not limited by 

the sampling frequency or subject to corruption by aliasing distortion. Another 

application area is in the design of bandlimited modulation functions for Periodic Linear 

Time-varying (PLTV) filters [13]. These PLTV filters transform their input into a 

Complex FM signal. The analytic spectral representation must be used to calculate the 

resulting bandwidth of the filter output so that an appropriate sampling frequency can be 

chosen for the PLTV implementation. Thus, there are occasions when the analytical 

spectral representation of a complex FM signal is distinctly advantageous over an FFT-

based approach.  

A major issue in writing a program to evaluate the general expression for the 

analytical spectrum of the Complex FM signal is that multiple nested loops can be 

required, depending on the number of sinusoidal modulators. By examining the 

expression, a more efficient approach was identified that minimizes this requirement. As 

a result the depth of nested loops executed by the program will not increase regardless of 

the number of modulation terms. Also, if a distributed computing environment is 

available it is possible to deconstruct this approaches computations into a form that 

suitable for implementation on this type of platform. This paper gives the background to 

the Complex FM expression, then details our implementation, and finishes with some 

discussion and conclusions. 
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2. Complex Frequency Modulation 
To begin with we will consider a general FM synthesis equation where the carrier is a 

sinusoid and the modulation is some time-varying function f(t) 

  

( ) ( )( )tftts c +ω= sin     (1) 

where the carrier frequency in radians is ωc 

 

The simple case is where the frequency modulation is a cosine and thus by integration the 

phase modulation can be found 

 

( ) ( ) ( )∫ ω=ωω= tIdtttf mmD sincos    (2) 

 

where the modulating frequency in radians is ωm and I represents the modulation index, 

the ratio of the peak frequency deviation, ωD, to the modulating frequency, that is 

 

m

DI
ω

ω
=     (3) 

   

Substituting (2) into (1) gives 

( ) ( )( )tItts mc ω+ω= sinsin    (4) 

 

The Fourier series for an equation of the form of (4) can be found in terms of Bessel 

functions of the first kind. This is available in many computer music textbooks, [8] and 

[13] for example. It is 

 

( )( ) ( ) ( )∑
∞

−∞=

ω+ω=ω+ω
k

mckmc tktIJtIt sinsinsin   (5) 

 

Considering the carrier frequency as a central point, (5) states that the spectrum contains 

an infinite number of components extending to the left and right of this at both positive 

and negative frequencies located at ωc+kωm and ωc-kωm respectively. These components 

are termed sidebands. The magnitude of each component is Jk(I), a Bessel function order 

is given by the index k and whose argument is the modulation index I. Negative 

frequency components are reflected back into the positive spectrum [1].  

When the modulator f(t) of (1) is not a simple sinusoidal signal the expansion of 

(5) grows in complexity in relation to the number of harmonic components that can 

describe the modulation. For example, if a purely sinusoidal expansion, with a maximum 

of K components, is used to describe f(t) then we can write 

 

( ) ( )( ) ( ) 







θ+ϕ+ω+ω=θ++ω= ∑

=

K

i

imicc tiIttfttd
1

sinsinsin  

 (6) 
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where θ is an arbitrary phase shift of the carrier, and the function f(t) is described by a 

number of harmonically related components of fundamental frequency ωm, each one with 

a phase shift of ϕi and magnitude Ii. The spectrum of (6) can be written as 

 

( ) ( ) ( )∑ ∑∏∑∑ 
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           (7) 

 

This expression has appeared in a number of works from early papers on communications 

technologies [14] to later articles in the Computer Music Journal ([9] and [15]). It is also 

important to other fields such as radar signal processing. Comparing (7) and (5) it is clear 

that the interpretation is much more difficult. General observations on the shape of a 

spectrum of a Complex FM signal, as given by (7), include:  

 

The energy in the sidebands tends to distribute itself in accordance with the shape of the 

modulating wave [14]. In general, the effective bandwidth of the signal depends on 

whether or not the harmonics of the modulating signal add in phase, in a way that will 

increase or decrease the peak frequency deviation of the resulting signal.   

 

The sidebands produced by the modulation of the carrier by the first modulating 

oscillator are modulated again as a carrier by the next modulation term. This process 

repeats for each successive modulation term [16].  

 

3. Implementation of Complex FM 
A direct implementation of (7) would require the use of nested loops. One nested loop is 

for each modulation term. This could easily become very large and time consuming. 

Furthermore, if the number of time points for analysis is also big this could act as a 

further drain on processing resources.  

It is difficult to see immediately how (7) could be re-interpreted to speed up its 

implementation. First, in theory the Bessel function indices given by ki will go from ∞−  

to ∞ . This needs to be truncated to some reasonable limit. An accepted approximation 

for the bandwidth (BW) of an FM signal is to use Carson’s rule [17], which states 

 

max2 ffBW +∆=     (8) 

 

where ∆f is the total width of the band traversed by the instantaneous frequency and fmax 

is the maximum frequency present in the modulating signal. [17] cautions, however, that 

this rule will not apply to all cases. In particular, this was not designed with digital 

signals in mind and it is most likely that most of the time it will not be stringent enough 

to act as a limit for the prevention of audible aliasing distortion. An alternative approach 

is to analyze Bessel functions at different orders for various values of argument. It can be 

observed that, in all cases, as the order increases the amplitude of the Bessel function 

reaches zero. This is illustrated in Figure 1 for arguments of 0, 5, 10 and 20 respectively. 
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From the Figure it can be seen that the greater the value of the argument the higher the 

order before the amplitude becomes zero.  
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Figure 1 Relationship between Bessel Function order and its argument for values of 0, 5, 

10, and 20. 

 

To find an upper limit we try to measure a relationship between the value of the argument 

and the order at which the Bessel function will be a consistently low value.  
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Figure 2 Bessel function order for different arguments at which the value of the function 

is consistently below 1x10
-4

 

 

For example in Figure 1 in the bottom right panel it can be seen that for an argument of 

20 the Bessel Function will reach a value close to zero at approximately an order of 30. If 

we measure the point at which the Bessel function consistently has a low value for a 
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range of arguments we can find a relationship. Figure 2 shows a plot of the point where 

the Bessel Function value is consistently smaller than 1x10
-4

 (i.e. -80dB which is 

sufficient to prevent audible aliasing) for arguments ranging from 0 to 100. Results are 

only shown for the case where the order is positive, because it can be shown [15] that the 

positive order amplitude is related to the negative order amplitude by 

 

( ) ( ) ( )IJIJ k

k

k 1−=−     (9) 

 

In Figure 2 it can be seen that the relation is almost linear. Fitting a line as shown in 

figure 2 we get the expression 

 

625,52185.1 += ii Ik    (10) 

 

This provides an approximate upper limit on ki depending on the modulation index Ii. 

Note that the value of ki must be an integer so the ceiling of (10) should be computed. 

Note too that due to the product term of the Bessel functions in (7) the overall spectral 

magnitude at a particular frequency could possibly be very small (of the order 10
-4(K)

).  A 

qualification could also be added to (10) because in the case where the modulation index 

is less than 0.2 the order is simply 1, that is 

 

If 2.0≤iI   then 1=ik     (11) 

 

This is known as narrowband FM [17] where, in the single sinusoidal modulator case, the 

magnitude spectrum is almost the same as that of sinusoidal amplitude modulation (AM).  
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Figure 3 Sample evolution of Indices for a three modulator signal 
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Next, it is worth examining the evolution of the indices ki in (7). There are as many 

indices as modulation components. If the evolution of the indices is plotted a pattern can 

be observed. Figure 3 illustrates this for a signal with three modulators (K=2) whose 

modulation indices are I1=1, I2=0.7, and I3=0.2. Using (10), we obtain maximum values 

for k of k1=6, k2=5, and k3=5. In Figure 3 it can be seen that the indices are periodic, with 

those of k3 having period 1. The shapes of the evolutions are approximately like either a 

staircase or sawtooth. This suggests that one could streamline the implementation of (7) if 

this phenomenon could be exploited. 

If we define a waveform period as 

 

( )∏
=

−=
K

i

ikT
1

12     (12) 

and a time vector as 

[ ]
T

T 1,,0 −
=τ

K
    (13)  

 

Defining a vector of maximum indices 

 

[ ] 1,,2 1 −= Ki kk Kk     (14) 

 

where the scaling by 2 and subtraction of 1 is because the indices must be symmetric 

around 0. Another k vector must also be written 

 

[ ] 1,,,12 1 −= Kf kk Kk    (15) 

 

and a rising sawtooth function of frequency ω0 at time t which is written as  

 

( ) ( )tsawtx ,0ω=     (16) 

 

Then the evolution of each index ki can be written as 

 

( ) ( ) ( ) ( ) 















τπ−








τπ=τ ∏∏

==

i

l

i

i

l

fii lsawlsawx
11

,25.0,25.0 kkk  (17) 

 

where i=1,…,K-1, and assuming that the vectors ki is indexed from 1 to K, and kf is 

indexed from 1 to K+1. 

In the case where i=K, then the expression is simpler 

 

( ) ( ) ( ) 5.0,25.0
1

11 +







τπ=τ ∏

=

−−

K

l

fKK lsawx kk   (18) 

 

The total number of frequencies at which (7) will be evaluated will be  
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∏
−

=

−
1

0

12
K

i

ik      (19) 

 

Note that the expression for (19) is the same as that for (12). However, there will be 

duplicates of frequency values because of the way indices combine. Assuming that the 

modulation is harmonic the total number of unique frequencies will be 

( )∑
=

++
K

i

iki
1

121      (20) 

 

It was found through experiment that the distribution of duplicates will approximately 

follow a Gaussian distribution. Figure 4 demonstrates this for the example given above. 

This is a histogram illustrating the distribution of the number of combinations of the 

index values generated by (17) after multiplication by the harmonic frequencies of the 

modulator (ωm, 2 ωm, 3 ωm,…, K ωm). In the plot it is assumed that the carrier frequency 

is 0Hz, however, in the actual signal this will be translated to the true carrier frequency, 

ωc.  
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Figure 4: Number of instances of duplicates of sideband frequencies after combination of 

indices in (16) and (17) with harmonic frequency values of the modulation 

 

The Bessel Function evaluations using the indices returned by (17) and (18) will also 

follow a periodic pattern. This is shown in Figure 5. As would be expected the periodicity 

will mirror that of the indices in Figure 3.  

There are two possibilities for making the Bessel function evaluations in (7). The 

first is to do it directly by substituting in the index values ki. However, because of 

duplications in the indices many evaluations will be repeated. Alternatively, we could 

make an evaluation only for the unique set of indices and use this to create a repeating 

waveshape that matches those in Figure 5. This second option can be implemented using 

scaled and shifted Pulse Width Modulation functions in a similar manner to a zero-order 

hold operation [18]. Another consideration is the actual computation of the Bessel 

functions themselves. Many computing languages have a procedure available in a math 

library for computing them. However, more efficient alternatives have been proposed, for 

example see [19], [20], and [21]. In particular, the trigonometric approximations of [21] 

could be easily implemented. However, they are only available up to a maximum 

modulation index of 9 [21].  
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Figure 5: Periodicity in evaluation of Bessel function evaluations at successive indices for 

each value of the modulation index 

 

3.1 Implementation outline 

Table 1 shows an outline of the algorithm to compute (7) and its spectrum using 

equations (12)-(18). The common programming convention that the first index of an 

array is 0 is adopted. The input is the carrier and modulation frequencies, ωc and ωm, an 

array of modulation indices I=[I0 I1 ….] and an array of phases ϕϕϕϕ=[ϕ0 ϕ1 ….], the carrier 

phase shift θ and, finally, an array of time values t.  

The vectors ki, kf, and the scalar T are initialized using (12)-(15). Then, (17)-(18) 

provides the evolution of the index values. Once these are known the frequencies Ω, 

phases Γ and Amplitudes A (i.e. the product of the Bessel functions at each index) in (7) 

can be found. The frequencies at which (7) is evaluated are Ω (see (19)) while the 

number of unique frequencies is given by (19). If we iterate through all the Ω, we can 

locate all duplicates of each unique frequency and sum their amplitudes together to get 

the set of spectral magnitudes, which we denote by D(ω). The time domain signal d(t) 

can also be synthesized directly from (7) too if desired. 

 

Function ComplexFM{ωc,  ωm, I, ϕϕϕϕ, θ, t }  { 

K=length(I); 

T=1; 

TotalNumFreq=0; 

TotalUniqueFreq=0 

for index0=0:K-1    { 

( )( )625.502185.1 += indexIceilk i ; 

T=T*2*(ki -1); 

( ) 120 −= ii kindexk ; 

TotalUniqueFreq= TotalUniqueFreq +1+2*(index0+1)*ki; 
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                                  } 

[ ]if kk 1= ; 

for index1=0 to T-1     { 

               for index2=0 to K-1   { 

                                τ(index2)=index2/T ; 

       if index1<K-1  

( ) ( )( ) ( ) ( ) ( ) ( ) 















τπ−








τπ= ∏∏

==

2

0

2

0

2,25.02,225.02,1
index

l

i

index

l

fii indexlsawindexlsawindexindexindexx kkk ; 

         else 

              ( ) ( )( ) ( ) 5.0,215.02,1
1

0

+







τπ−=− ∏

−

=

K

l

fii lsawKindexKx kk ; 

 

         ( ) ( )2,1*2*2,1 indexindexxindexindexindex imω=ω ; 

            ( ) ( ) ( )2,1*22,1~ indexindexxindexindexindex iϕϕϕϕϕϕϕϕ =  

                ( ) ( ) ( )( )22,1 2,1 indexIJindexindex indexindexxi
=J  

                                                         } 

                          ( ) ∑=Ω
2

1
index

index ω  

                          ( ) ∑=Γ
2

~1
index

index ϕϕϕϕ  

                          ( ) ∏=
2

1
index

indexA J  

                                         } 

TotalNumFreq=T; 

for index3=0 to TotalUniqueFreq-1     { 

        FreqIndex=index3-TotalUniqueFreq/2; 

            indexF=[]; 

                for index4=0 to TotalNumFreq-1      { 

                     if  Ω(index4)==FreqIndex*ωm 

                          [indexF]=[indexF    index4]; 

                                                                             } 

                                              ( ) ∑=ω+ω
indexF

mc AFreqIndexD *  

                                                                    } 

if resynthesis==True 

                                           ( ) ( )( )∑ θ+Γ+Ω+ω=
1

sin
index

c tAtd  

      } 

 

Table 1: Suggested algorithm for computing the magnitude spectrum and time-domain 

signal for the Complex FM equation. 
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3.2 Sample Results 

Figure 6 provides an example of the program output. The parameters used were 

ωc= ωm=2π100rad/s, I=[1 0.7 0.2], ϕϕϕϕ=[0  0  0], and θ=0. The upper panel of Figure 7 

shows the waveform output which perfectly matches the direct implementation using the 

left-hand side of (7). The lower panel shows the magnitude spectrum computed using the 

FFT with the solid line. The Spectral magnitudes, computed using the program in Table I, 

are also shown with asterisks. These can be seen to coincide perfectly to the peaks of the 

FFT output, verifying the accuracy of the program implementation. The execution time 

was 0.157 seconds using the Matlab programming environment on a Dell D620 Latitude 

laptop with an Intel core2 processor running at 1.66Ghz. 
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Figure 6: The upper panel shows the waveform of the Complex FM signal where 

ωc= ωm=2π100rad/s, I=[1 0.7 0.2], ϕϕϕϕ=[0  0  0] and θ=0. The lower panel shows its 

spectrum computed using the FFT (solid line) and the program in Table (1) that compute 

the theoretical spectrum using Bessel Functions 

 

3.3 Discussion 

The operation of this program is flexible with regard to the number of modulation terms. 

However, its implementation can be time consuming particularly with a large number of 

modulators. Another issue is in cases when the harmonic modulators have large 

modulation indices as this means that the signal bandwidth will be greater, and thus the 

evaluations must be carried out at a greater number of frequencies. If a distributed 

computing environment is available it would be useful to split the computation of (17) 

and (18) across several threads or processors. This is possible because the dependence of 

(17) and (18) on the variable  τ means that the evaluation can be cut into shorter time 

segments with each machine processing an individual segment. The loop for computing 

the final spectral magnitudes could also be split, but the final compilation of these would 

need to be done altogether.  

This program could also be vectorized for a serial machine if a matrix oriented 

programming environment such as Matlab is available. However, if the number of 

frequency components Ω is very high (greater than 1x10
6
) then there will be memory 
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allocation issues and the program may not run. It is then necessary to implement this 

either on a sample by sample basis or to work with smaller vectors, store the results, and 

then combine them at the end of the evaluation. 

 

4. Conclusion 
This paper has offered an implementation for the equation for Complex Frequency 

Modulation where the modulation signal can have many harmonically related terms. It 

aimed to avoid the need for a large number of nested loops and to ensure that the program 

could cope with an arbitrary number of modulation terms. Finally, it suggested how it 

could be computed in a distributed manner if such an environment was available. This 

could significantly reduce the computation time. Along with making a complete open 

source implementation available, future work will include benchmarking tests for the 

program. This will be done to assess performance in relation to the number of modulators 

and the magnitudes of the modulation indices.  

 

5. References 
[1] J. Chowning, ‘The Synthesis of Complex Audio Spectra by Means of Frequency Modulation’, Journal 

of the Audio Engineering Society, Vol. 21, no. 7, Sept. 1973, pp. 525-534. 

 

[2] J. Chowning and D. Bristow, FM theory and applications – By Musicians for musicians, Yamaha, 

Tokyo, Japan, 1986. 

 

[3] M. Ishibashi, Electronic Musical Instrument, U.S. Patent no. 4,658,691, 1987. 

[4] J. Timoney, V. Lazzarini, B. Carty and J. Pekonen, ‘Phase and amplitude distortion methods for digital 

synthesis of classic analogue waveforms’, AES Convention 126, Munich, Germany, May 7-10, 2009. 

 

[5] FM8, Native Instruments, 2011, 

http://www.native-instruments.com/#/en/products/producer/fm8/ 

[Accessed April 11
th

 2011] 

 

[6] V. Lazzarini and J. Timoney, ‘New Perspectives on Distortion Synthesis for Virtual Analogue 

Oscillators’, Computer Music Journal, Vol. 34, No. 1, Mar. 2010, pp. 28-40. 

 

[7] V. Lazzarini, J. Timoney and T. Lysaght, ‘The generation of natural-synthetic spectra by means of 

adaptive frequency modulation’, Computer Music Journal, Vol. 32, no. 2, summer 2008, pp. 9-22. 

 

[8] K. Steiglitz, A digital signal processing primer, Prentice Hall, USA, Jan. 1996. 

 

[9] B. Schottstaedt, ‘The Simulation of Natural Instrument Tones Using Frequency Modulation with a 

Complex Modulating Wave’, Computer Music Journal, Winter 1977, Vol. 1, no. 4, pp.46-50. 

 

[10] B. Tan et al, ‘Real-time implementation of double frequency modulation (DFM) synthesis’, Journal of 

Audio Engineering Society, Vol. 42, no.11, Nov. 1994, pp. 918-926.  

 

[11] B. Tan S. Lim, ‘Automated parameter optimization for double frequency modulation synthesis using 

the genetic annealing algorithm’, Journal of Audio Engineering Society, Vol. 44, no.1/2, Feb. 1996, 3-15. 

 

[12] J. Timoney and V. Lazzarini, ‘Exponential frequency modulation bandwidth criterion for virtual 

analog applications’, submitted to Digital Audio Effects (Dafx) 2011, March 2011. 



 13 

 

[13] J. Timoney, V. Lazzarini, J. Pekonen and V. Valimaki, ‘Spectrally rich phase distortion sound 

synthesis using an allpass filter’, Proc. of IEEE ICASSP, Taipei, Taiwan, April 2009, pp. 293-296. 

 

[13] D. Benson, Music: a mathematical offering, Cambridge University Press, UK, Nov 2006. 

 

[14] L. Giacoletto, ‘Generalized theory of multitone amplitude and frequency modulation’, Proc. IRE, Vol. 

35, July 1947, pp. 680-693. 

 

[15] M. LeBrun, ‘A Derivation of the Spectrum of FM with a Complex Modulating Wave’, Computer 

Music Journal, Vol. 1, no. 4, Winter 1977, pp.51-52. 

 

[16] T. Mitchell and J. Sullivan, ‘Frequency modulation tone matching using a fuzzy clustering evolution 

strategy’, AES Convention 118, Barcelona, Spain, May 2005.  

 

[17] H. Rowe, Signals and noise in communications systems, D. Van Nostrand, Princeton, NJ, USA, 1965. 

 

[18] O. Esbach et al, Esbach’s handbook of engineering fundamentals, 4
th

 ed., Wiley, USA, 1990. 

 

[19] R. Millane, ‘Polynomial approximations to Bessel functions’, IEEE Trans. Ant. And Prop., June 2003, 

Vol. 51, no. 6, pp. 1398-1400. 

 

[20] L. Li, ‘A new polynomial approximation for Jv Bessel functions’, Applied mathematics and 

computation, Vol.  183, no. 2, Dec. 2006, pp. 1220-1225. 

 

[21] M. AbuelMa’atti, ‘Trigonometric approximations for some Bessel functions’, Active and passive Elec. 

comp., Vol. 22, pp-75-85. 


