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Summary 

 Gliotoxin is an epipolythiodioxopiperazine produced by the 

opportunistic fungal pathogen Aspergillus fumigatus. It contains an intact 

disulphide bridge, which mediates its toxic effects via redox cycling. Gliotoxin 

biosynthesis is directed by the gli gene cluster, and knowledge of the 

biosynthetic pathway which leads to gliotoxin formation is limited, although L-

Phe and L-Ser are known amino acid precursors and gliT is a gliotoxin 

oxidoreductase responsible for self-protection and disulphide bridge closure. 

Deletion of gliG, herein shown to be an epoxide-conjugating glutathione s-

transferase, from the gli cluster results in loss of gliG expression and the 

complete abrogation of gliotoxin biosynthesis. Instead, this deletion mutant, A. 

fumigatus !gliG, secretes a 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (262.1026 u), herein identified and structurally 

characterized for the first time, which is proposed to be a shunt metabolite 

formed in the absence of gliG. This putative shunt metabolite contains a 

hydroxyl group at C-6, consistent with a gliotoxin biosynthetic pathway 

involving thiolation, which is mediated by the addition of the glutathione thiol 

group to a reactive acyl imine intermediate. A new reduction and alkylation 

assay, which uses sodium borohydride and 5’-iodoacetamidofluorescein to label 

gliotoxin, yields a stable, labelled gliotoxin product, di-acetamidofluorescein-

gliotoxin (GT-(AF)2; 1103.47 Da). This species is readily detectable by RP-

HPLC and exhibits a 6.8-fold increase in molar absorptivity compared to 

gliotoxin, which results in a higher sensitivity of detection (50 ng; 125 pmol). 

Unlike gliotoxin, GT-(AF)2 is detectable by MALDI-ToF MS. 6-benzyl-6-

hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione cannot be alkylated and 

so is devoid of thiols or a disulphide bridge. Complementation of gliG restored 

gliG expression and gliotoxin production which coincided with the 

disappearance of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-

dione. In addition, gliG was confirmed, unlike gliT, not to be involved in self-

protection against gliotoxin. It is over 75 years since gliotoxin was discovered. 

The work presented herein provides the first evidential support of the thiolation 

mechanism leading to gliotoxin biosynthesis, in addition to confirming a novel 

biosynthetic role for a glutathione s-transferase in fungi.  



 

 

 

 

 

Chapter 1 

 

 

Introduction 



 1 

1. Chapter 1 Introduction 

1.1 Aspergillus fumigatus – General description  

The genus Aspergillus is a member of the ascomycete class of fungi. 

Aspergillus contains almost 200 species and less than 10 % of these are 

pathogenic (Hohl and Feldmesser, 2007). Among the disease-causing 

Aspergilli, Aspergillus fumigatus is the most pathogenic followed by A. flavus, 

A. terreus, A. niger and the model organism A. nidulans (Dagenais and Keller, 

2009). It is an ubiquitous saprophytic fungus whose ecological niche is in the 

soil or decaying vegetation (Latge, 1999). The environmental habitat of this 

fungus results in it playing a significant role in global carbon and nitrogen 

recycling (Latge, 1999).  

A . fumigatus produces small hydrophobic airborne spores (conidia) which 

are the infectious propagule of this pathogen (Figure 1.1) (Dagenais and Keller, 

2009). The conidial head produces thousands of spores which are grey-green in 

colour (Latge, 1999). Each spore is between 2 – 3 µm in diameter which keeps 

them buoyant in the environment (Latge, 1999). Conidia are estimated to be 

present at concentrations of 1 – 100 conidia / m
3
 (Denning et al., 2002). The 

small spore size means that A. fumigatus can bypass the mucociliary clearance 

mechanism upon inhalation. Therefore, it can penetrate deep into the alveoli of 

the lungs (Hohl and Feldmesser, 2007). A. fumigatus can grow rapidly on 

minimal agar plates which contain carbon (e.g., glucose), nitrogen (e.g., nitrate) 

and trace elements (Figure 1.1) (Brakhage and Langfelder, 2002). Germination 

of A. fumigatus induces the development of septate hyphae. A. fumigatus is a 

thermophilic fungus, which helps it survive in its ecological niche and within 
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the mammalian host. This thermotolerance helps the fungus to grow in 

temperatures up to 55 °C and for the conidia to withstand temperatures of up to 

70 °C (Latge, 1999).  
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Figure 1.1. Images of A. fumigatus. (A) Light microscope image of A. fumigatus conidiophores dispersing thousands of conidia. (B) Scanning 

electron microscopy (SEM) of A. fumigatus conidial head about to release asexual conidia. (C) Image of A. fumigatus  grown on minimal agar in 

a laboratory, the distinctive powdery grey – green colony morphology is observed (Images from www.aspergillus.org.uk)  

 

    A                B              C 
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The life cycle of A. fumigatus is as follows; (i) conidia are released from 

conidiophores, (ii) conidia germinate into septate mycelia and (iii) mycelia 

produce conidiophores and the cycle continues. This fungus has traditionally 

been considered an asexual organism, reproducing via haploid conidia. 

Genomic analysis confirmed that A. fumigatus contained the mating-type 

(MAT) genes associated with sexual reproduction and it also possessed genes 

associated with pheromone production and detection (Galagan et al., 2005; 

Nierman et al., 2005; Paoletti et al., 2005). Recently, the teleomorph 

(Neosartorya fumigata) has been discovered, confirming that sexual 

reproduction occurs in this fungus (O'Gorman et al., 2009).  

 

1.2 The pathobiology of A. fumigatus  

A. fumigatus is an opportunistic fungal pathogen and is the most common 

mold pathogen of humans (Denning et al., 2002). Unusually, this pathogen 

causes both invasive infection in immunocompromised individuals and allergic 

disease in a patient cohort with atopic immune systems (Denning et al., 2002). 

In modern European teaching hospitals, A. fumigatus is responsible for 4 % of 

hospital deaths and it is the number one cause of death for leukaemia and bone 

marrow transplant patients (Denning et al., 2002). The incidence of A. 

fumigatus infection has increased over the last 20 years. This can be attributed 

to the increase in patient transplants, the extensive use of immunosuppressive 

therapies and the increase in individuals infected with HIV or AIDS (Hohl and 

Feldmesser, 2007; Dagenais and Keller, 2009).  
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The primary route of A. fumigatus infection is inhalation through the 

airways. Due to the presence of conidia in the environment, it is believed that 

humans will inhale at least several hundred of these spores per day (Latge, 

1999). The small size of the conidia enable them to traverse the terminal 

respiratory airways and descend deep into the pulmonary alveoli (Ben-Ami et 

al., 2010). In immunocompetent individuals, elimination of inhaled conidia is 

mediated via alveolar macrophages that kill the conidia in an NADPH oxidase 

dependent manner and by polymorphonuclear leucocytes (PMNL) (Hohl and 

Feldmesser, 2007). In the warm and humid environment like that in the 

pulmonary alveoli, conidia that have evaded the immune response (IR) begin to 

germinate (Hohl and Feldmesser, 2007). A. fumigatus hyphae are too large to be 

engulfed by macrophages so PMNL usually target the hyphae. PMNL function 

by releasing antimicrobial peptides and reactive oxygen intermediates (Ben-Ami 

et al., 2010). Dying PMNL release nuclear DNA in the formation of a neutrophil 

extracellular trap (NET) (Bruns et al., 2010). This NET is complexed with 

fungicidal proteins that restricts hyphal growth (Bruns et al., 2010). The 

incidence of aspergillosis in neutropenic patients is indicative of the importance 

in the PMNL mediated IR.  

An infection by an Aspergillus spp is called aspergillosis and pulmonary 

infection of A. fumigatus can be classified into three categories depending on 

the site of infection; (i) allergic bronchopulmonary aspergillosis (ABPA), (ii) 

aspergilloma and (iii) invasive aspergillosis (IA) (Latge, 1999). ABPA is a 

hypersensitivity disorder and has long been associated with individuals who 

suffer with asthma and cystic fibrosis, as these conditions are both associated 
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with excess amounts of viscous mucous. This allows for A. fumigatus to 

germinate and elicit a persistent inflammatory response (Latge, 1999).  

Aspergilloma or “fungus ball” occurs in pre-existing lung cavities. The 

aspergilloma is a spherical mass of hyphae held in place by a proteinaceous 

matrix. Sporulating structures are located to the periphery of the fungal mass 

and chest radiographs usually identify the large fungal ball (Daly and Kavanagh, 

2001). Haemoptysis is a common symptom of aspergilloma, this is where there 

is a disruption of the blood vessels in the wall of the cavity or in the bronchial 

artery supply caused by the fungus (Latge, 1999). It occurs centimetres from the 

fungus and can be fatal. Treatment of this infection is usually performed by the 

surgical removal of the aspergilloma and this usually carries a high mortality 

rate (Latge, 1999).  

Invasive aspergillosis (IA) is the most fatal form of infection by A. 

fumigatus and the primary host immunodeficiencies (e.g., neutropenia) are the 

main reason for the significance of this infection (Thornton, 2010). IA is most 

commonly seen in the lungs, however dissemination to other body tissue is 

known. Diagnosis of this infection is usually mediated by a biopsy or with 

sputum culturing, however correct species identification can be problematic 

which in part is associated with the recovery of clinical samples (Tarrand et al., 

2005). Treatment with antifungal therapy is usually performed with 

voriconazole or Amphotericin B (AmpB) (Sherif and Segal, 2010). However, 

mortality rates are usually between 40 – 90 % in high-risk populations (Lin et 

al., 2001; Dagenais and Keller, 2009). Investigation into the molecular basis of 

pathogenicity was made possible through the availability of the full genome 

sequence of A. fumigatus (Nierman et al., 2005) (Section 1.3). 
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1.3 A. fumigatus genome 

The complete genome sequence of A. fumigatus AF293 was published in 

2005 (Nierman et al., 2005). The genome is 24.9 Mb consisting of eight 

chromosomes, which contain 9,926, predicted genes. The average gene length is 

1,431 bp and the genome consists of 50.1 % coding sequences (Nierman et al., 

2005). The Central Aspergillus Data REpository (CADRE) (Mabey et al., 2004) 

is an online resource available for the extraction of genomic data from eight 

Aspergillus spp (A. clavatus, A. flavus, A. nidulans, A. niger, A. oryzae, A. 

terreus and A. fumigatus; AF293, A1163) and the closely related N. fischeri. 

CADRE identifies each gene with a unique CADRE identification number and 

information on gene classification (known, putative or unknown function). 

CADRE provides in silico gene information including, splice variants, genomic 

alignments of orthologues and associated paralogues. Transcript information 

details the exon location, cDNA sequence, predicted protein sequence and a 

summary of key domain features (www.cadre-genomes.org.uk). 

Comparative genomic analysis (CGA) compared the genomes of A. 

fumigatus with A. oryzae and A. nidulans (Figure 1.2) (Galagan et al., 2005) in 

an attempt to identify the genes associated with the pathogenicity of A. 

fumigatus. A. fumigatus contained the smallest genome in comparison to A. 

oryzae (37 Mb) and A. nidulans (30 Mb). More than 500 genes were found to be 

A. fumigatus specific (Galagan et al., 2005) and most of these genes had no 

known function. A. fumigatus specific allergens were also identified (e.g. 

ribotoxin) (Galagan et al., 2005). Sub-telomeric regions of A. fumigatus and A. 

nidulans were both enriched for predicted secondary metabolite (SM) gene 

clusters (Galagan et al., 2005). In A. fumigatus eight SM clusters were located 
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within 100 kb of the nearest telomere (Galagan et al., 2005). Furthermore, over 

30 % of the predicted non-ribosomal peptide synthetases (NRPS) and 

polyketide synthases (PKS) in A. fumigatus and A. nidulans are located within 

100 kb of a telomere, which corresponds to a 5.5 – fold enrichment (Galagan et 

al., 2005). Rapid rearrangement of sub-telomeric regions may be responsible for 

species-specific evolution of these genes. The notable absence of common 

telomere-associated SM clusters between A. fumigatus and A. nidulans may 

account for the difference in virulence between these two Aspergilli spp 

(Galagan et al., 2005). Overall, CGA revealed that orthologous proteins of the 

three Aspergilli shared approximately 70 % amino acid identity. The relatedness 

of these Aspergilli is similar to the relationship of mammals and fish, an 

evolutionary divergence that took place over 450 million years ago (Galagan et 

al., 2005). 

Further CGA was performed with two (N. fischeri and A. clavatus) of the 

most closely related species to A. fumigatus (Figure 1.2) (Fedorova et al., 

2008). N. fischeri contained the largest genome, 32.6 mb, which may be 

attributed to the larger number of transposable elements within this genome 

(Fedorova et al., 2008). A. fumigatus contains 818 species-specific genes when 

compared to the other two genomes. At least 20 % of these genes are involved 

in carbohydrate and chitin catabolism, transport, detoxification, secondary 

metabolism and other functions which may help with environmental or host 

adaptation (Fedorova et al., 2008). This suggests that adaptation to the human 

host requires a high degree of catabolic flexibility (Moran et al., 2011).     
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Figure 1.2. The three most closely related Aspergilli, A. fumigatus, N. fischeri 

and A. clavatus. (Fedorova et al., 2008). CGA of A. fumigatus to A. nidulans 

and A. oryzae indicates the same evolutionary distance as humans and fish.  
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A. fumigatus-specific genes showed a bias towards telomeric location 

(Fedorova et al., 2008). Fedorova et al. (2008) suggest that telomeric regions 

may function as “gene dumps/factories” and that A. fumigatus may contain an 

elaborate genetic mechanism that facilitates adaptation to either the environment 

or host. More importantly, the location of these genes within subtelomeric 

regions would place them under the control of LaeA, which is the global 

regulator of SM (Bok and Keller, 2004). 

 

1.4  A. fumigatus virulence and toxins 

A. fumigatus pathogenicity depends on various factors, which the fungus 

uses in the infection process. In theory, the loss of such factors would reduce the 

virulence of the fungus without affecting normal growth. Virulence factors are 

defined as pathogen determinants of the fungus which cause damage within the 

host (Casadevall, 2005) and they have the ability to overwhelm the host’s 

defence. A. fumigatus possesses a repertoire of genes responsible for the 

virulence of this pathogen (Abad et al., 2010). The general consensus now, is 

that A. fumigatus does not contain one single virulence factor and that 

pathogenicity is multigenic (Wezensky and Cramer, 2011). These genes are 

involved in thermotolerance, conidial surface, cell wall 

composition/maintenance, pigment biosynthesis, toxin production, nutrient 

acquisition during infection, signalling, metabolism and allergens (Latge, 1999; 

Hohl and Feldmesser, 2007; Abad et al., 2010).  

A. fumigatus is the most common cause of invasive human disease out of 

all the environmental filamentous fungi (Dagenais and Keller, 2009) and it is 
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believed that this virulence may be augmented by the number of SM clusters 

contained in the genome (Nierman et al., 2005). Generally, genes controlling 

secondary metabolism are clustered within the genome (Nierman et al., 2005). 

Secondary metabolism will be discussed in more detail in Section 1.5.  

 

1.5 Secondary Metabolism  

There are several groups of fungal SMs categorised based on the class of 

enzyme involved in their biosynthesis. They are (i) peptides, (ii) alkaloids, (iii) 

terpenes and (iv) polyketides (Keller et al., 2005). Initially, the genome of A. 

fumigatus was believed to contain 26 SM gene clusters (Nierman et al., 2005). 

This number was later revised to 22 (Perrin et al., 2007) and the genome has 

now been predicted to contain 30 SM clusters (Khaldi et al., 2010). The SM 

clusters contain genes such as PKS, NRPS and dimethylallyl tryptophan 

synthase (DMATS) (Table 1.1). SM produced by A. fumigatus include 

gliotoxin, fumagillin, fumitremorgin, gibberellin, helvolic acid and aflatoxin 

(Nierman et al., 2005). Cluster location is dispersed throughout the genome, as 

mentioned earlier, with a bias towards telomeric regions (Fedorova et al., 2008). 

It is believed that the number of SM produced by A. fumigatus augments the 

virulence of this pathogen. The transcription factor, LaeA, was implicated in the 

regulation of SM in Aspergillus spp (Bok and Keller, 2004) and the deletion of 

laeA  attenuated the virulence of A. fumigatus in a murine aspergillosis model 

(Bok and Keller, 2004; Bok et al., 2005). It is believed that the pathogenesis of 

A. fumigatus involves cross talk between SM and the immune state of the host 

(Ben-Ami et al., 2010).  
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Table 1.1. Secondary metabolite gene types in A. fumigatus (AF293) (Nierman 

et al., 2005).  

Gene Type A. fumigatus 

Polyketide synthase 14 

Non-ribosomal peptide synthetase 14 

Fatty acid synthase 1 

Dimethylallyl tryptophan synthase 7 
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1.6 Epipolythiodioxopiperazine type toxins (ETP) 

ETP are a class of SM which are characterised by a disulphide bridge that 

spans a dioxopiperazine ring which has been formed by two amino acids (Fox 

and Howlett, 2008). These toxins are produced by a phylogenetically diverse 

range of filamentous fungi, including A. fumigatus (Figure 1.3) (Patron et al., 

2007). At least 14 different ETP are known and almost all of these are produced 

by ascomycetes (Patron et al., 2007). Gene clusters responsible for the 

biosynthesis of ETP have been identified in A. fumigatus and L. maculans, 

which are responsible for the production of gliotoxin and sirodesmin, 

respectively (Gardiner et al., 2004; Gardiner and Howlett, 2005; Cramer et al., 

2006; Kupfahl et al., 2006; Sugui et al., 2007; Spikes et al., 2008). ETP clusters 

have been inherited relatively intact and are believed to have a single origin 

(Patron et al., 2007). Their distribution throughout the ascomycetes is 

discontinuous, where in two related species one will produce the toxin and the 

other will not (e.g., A. fumigatus produces gliotoxin and A. nidulans does not). 

Gliotoxin is the best characterised ETP and will be discussed in Section 1.7. 
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Figure 1.3. Comparative phylogenetic analysis of putative ETP clusters in 

ascomycetes. Each arrow indicates an individual gene (white text on black 

background) within the cluster, with best matches to the annotated non-

ribosomal peptide synthetase (P), thioredoxin reductase (T), methyl transferases 

(M and N), glutathione s-transferase (G), cytochrome P450 monooxygenase (C), 

aminocyclopropane carboxylic acid synthase (I), dipeptidase (J), as well as a 

transcriptional regulator (Z) and a transporter (A). Genes believed to be 

involved in the modification of side chains of ETP are noted (black text on 

white background). Genes with grey shading are believed to flank the ETP 

cluster, but are thought to play no role in ETP biosynthesis. Hypothetical genes 

or genes with no match to ETP genes are indicated with no lettering. Second 

ETP type clusters have been identified in A. fumigatus, N. fischeri and A. 

terreus. However, these second clusters do not contain the full suite of genes 

present in the first cluster (Patron et al., 2007).  
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1.7 Gliotoxin  

Gliotoxin, an ETP (326 Da) produced by A. fumigatus is characterised by 

a disulphide bridge which spans a diketopiperazine (DKP) ring, and contains the 

aromatic amino acid – phenylalanine as well as serine (Figure 1.4) (Gardiner 

and Howlett, 2005; Gardiner et al., 2005b; Patron et al., 2007). It is the best 

characterised and most potent SM produced by A. fumigatus (Kwon-Chung and 

Sugui, 2009). The activity of this toxin is mediated through the disulphide 

bridge. Gliotoxin was first isolated from a Trichoderma spp in 1936 (Weindling 

and Emerson, 1936). It was named in 1943 after isolation from Gliocladium 

fimbriatum (Johnson et al., 1943). Its potent anti-fungal activity was originally 

investigated in 1936 (Weindling and Emerson, 1936). Further antimicrobial 

analysis confirmed gliotoxin to be an active bacteriostatic agent and again 

confirmed its anti-fungal activity (Waksman and Woodruff, 1942; Johnson et 

al., 1943). This body of work confirmed its inhibition of growth on various 

fungal and bacteria spp (e.g., Staphylococcus aureus, Neisseria catarrhalis, 

Pseudomonas fluorescens and Blastomycoides dermitidis) (Johnson et al., 

1943). These authors concluded that a concentration of gliotoxin at 10 µg/ml 

was sufficient to stop the growth of all microorganisms tested (Johnson et al., 

1943). These early investigations into the antimicrobial activity of gliotoxin 

contributed to significant knowledge of the structure of the toxin and of the 

biosynthetic processes behind its synthesis.  
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Figure 1.4. The structure of gliotoxin (C13H14N2O4S2) (Weindling and 

Emerson, 1936; Johnson et al., 1943; Gardiner and Howlett, 2005).  
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Various analyses were performed to elucidate the structure and activity of 

gliotoxin after it was identified. Johnson and co-workers used a combination of 

elemental analysis and crystallisation to investigate the compound solubility. 

Optical activity of gliotoxin and decomposition point studies were also 

performed (Johnson et al., 1943). The molecular formula of gliotoxin was 

confirmed to be C13H14N2O4S2  (Johnson et al., 1943). This was a revision on 

the original formula reported by Weindling and Emerson (1936). Full structure 

elucidation was confirmed using x-ray crystallography in 1966 (Beecham et al., 

1966) and NMR in 1990 (Kaouadji et al., 1990). The complete organic 

synthesis was reported approximately 50 years after it was originally isolated 

(Fukuyama et al., 1981). 

Initially, much of the emphasis focused on the structure and activity of 

gliotoxin, however, very little was known about the complex biosynthesis of 

this toxin. Feeding experiments using radiolabelled isotopes were performed 

twenty years after gliotoxin was isolated and demonstrated that phenylalanine 

and serine are the amino acid precursors in gliotoxin formation (Suhadolnik and 

Chenoweth, 1958; Winstead and Suhadolnik, 1960). However, neither of these 

amino acids contain a sulphur atom meaning the origin of the reactive 

disulphide bridge remained elusive. Chemical synthesis of gliotoxin using 

radiolabelled methionine, cysteine and sodium sulphate show these amino 

acids/reagents can act as a source to donate sulphur for the disulphide bridge, 

however synthetic generation does not reflect the in vivo biosynthesis 

(Suhadolnik and Chenoweth, 1958; Gardiner et al., 2005b). Investigation into 

the enzymatic biosynthesis of gliotoxin was not performed until approximately 

seventy years after it was first isolated (Cramer et al., 2006). This was made 
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possible by advances in fungal molecular biology (Brakhage and Langfelder, 

2002; Ruiz-Diez, 2002; Meyer, 2008; Kuck and Hoff, 2010) and with the 

identification of a gene cluster in A. fumigatus which was proposed to be 

responsible for gliotoxin biosynthesis (Figure 1.5) (Gardiner and Howlett, 

2005). Functional genomics has confirmed function to some of the genes within 

this cluster and this will be discussed in detail in Section 1.7.2. 
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Figure 1.5. The biosynthetic gene clusters for gliotoxin and sirodesmin PL in A. 

fumigatus and L. maculans, respectively. Predicted enzyme function is given for 

most genes (Gardiner and Howlett, 2005).  
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1.7.1 Gliotoxin Toxicity 

Gliotoxin has a pleiotropic effect in mammalian cell lines including 

inhibition of macrophage phagocytosis, mast cell activation, cytotoxic T-cell 

response, monocyte apotosis and mitogen-activated T-cell proliferation 

(Mullbacher and Eichner, 1984; Eichner et al., 1986; Yamada et al., 2000; 

Stanzani et al., 2005). It has also been demonstrated that gliotoxin inhibits 

NADPH oxidase assembly (Tsunawaki et al., 2004), suppresses reactive oxygen 

species (ROS) production and weakens neutrophil phagocytosis (Orciuolo et al., 

2007). More recently, gliotoxin has been implicated in the inhibition of 

angiogenesis, which will be discussed in Section 1.7.2. (Ben-Ami et al., 2009). 

The toxicity of gliotoxin is mediated via the disulphide bridge through two 

modes of action (i) redox cycling between the oxidized and reduced 

conformation leads to the generation of ROS which are deleterious to the host 

cells (Figure 1.6) and, (ii) interaction with thiol residues on proteins resulting in 

their inactivation (Hurne et al., 2000; Gardiner et al., 2005b). Gliotoxin toxicity 

can be inhibited by the addition of reducing agents such as glutathione and 

dithiothreitol, which prevent redox cycling and subsequent ROS generation 

(Gardiner and Howlett, 2005; Gardiner et al., 2005b). Although the deleterious 

effects of gliotoxin have been heavily investigated over the last seventy years 

(Mullbacher and Eichner, 1984; Eichner et al., 1986; Waring et al., 1988a; 

Waring et al., 1988b; Waring et al., 1994; Waring et al., 1995; Waring and 

Beaver, 1996; Waring et al., 1997; Yamada et al., 2000; Tsunawaki et al., 2004; 

Stanzani et al., 2005), the in vivo origin of the disulphide bridge remains 

unknown. As this confers the potent toxicity of gliotoxin it poses a functional 

genomics challenge. 
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Figure 1.6. Redox cycling between oxidized and reduced gliotoxin leads to the 

generation of ROS. (Gardiner and Howlett, 2005).  
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1.7.2 Gliotoxin-mediated inhibition of angiogenesis  

More recently, gliotoxin has been suggested as a potent inhibitor of 

angiogenesis (Ben-Ami et al., 2009). During infection, A. fumigatus encounters 

various microenvironments which require the fungus to grow under different 

stress conditions during pathogenesis (Wezensky and Cramer, 2011). These 

stress conditions include; temperature, oxidative stress, pH changes and the 

availability of macro and micro-nutrients (Latge, 1999; Latge, 2001; Latge and 

Calderone, 2002; Rhodes, 2006; Askew, 2008; Dagenais and Keller, 2009). One 

stress condition that has been overlooked is reduced oxygen levels or hypoxia. 

Hypoxic environments usually exist at the site of A. fumigatus infection and 

affect both the fungus and the host (Hall and Denning, 1994; Wezensky and 

Cramer, 2011). A. fumigatus has the ability to grow in hypoxic conditions where 

the oxygen level is 0.1 % however, it does not grow in anaerobic conditions 

(Hall and Denning, 1994). At low oxygen levels the metabolism of A. fumigatus 

switches from aerobic to anaerobic respiration (Willger et al., 2009), which 

results in the detection of ethanol in broncheoalveolar lavage fluid from A. 

fumigatus infected neutropenic mice (Wezensky and Cramer, 2011). It is 

believed that the ability of A. fumigatus to grow in hypoxic environments is due 

to the multigenic virulence of this pathogen (Wezensky and Cramer, 2011). 

Adaptation to hypoxic environments in fungi is mediated by the membrane-

bound transcription factors, sterol regulatory element binding proteins 

(SREBPs) (Bien and Espenshade, 2010). Hypoxic microenvironments also 

effects the response of the host to A. fumigatus infection and the main regulator 

of this is hypoxia inducible factor-1! (HIF-1!) (Wezensky and Cramer, 2011). 

HIF is the central regulator of hypoxic gene expression in mammals (Schofield 
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and Ratcliffe, 2005; Gordan and Simon, 2007). One of the main physiological 

responses to tissue hypoxia in the host is angiogenesis (Ben-Ami et al., 2009). 

Invasion of pulmonary tissue by A. fumigatus causes the induction of pro-

angiogenic signaling pathways, such as pro-inflammatory cytokines and 

reactive oxygen intermediates (ROI) to induce neovascularisation (Ben-Ami et 

al., 2010). Chemokines recruit PMNLs to the site of infection where they 

release hydrogen peroxide (H2O2) and other ROI which upregulate NF-"B 

(Ben-Ami et al., 2010). NF-"B then induces other pro-angiogenic factors. As 

the host mounts an immune response, A. fumigatus begins to transcribe suites of 

SM clusters at the onset of invasive aspergillosis (McDonagh et al., 2008). In 

particular, the transcription of the gliotoxin gene cluster is up-regulated during 

the initiation of invasive aspergillosis (McDonagh et al., 2008). Gliotoxin 

directly downregulates the expression of NF-"B by inhibiting the proteasomal 

degradation of I"B!, which stabilizes the NF-"B-I"B! complex thus 

preventing nuclear translocation of NF-"B (Kroll et al., 1999). Gliotoxin also 

suppresses PMNL oxidative burst (Tsunawaki et al., 2004) and it detoxifies the 

H2O2 secreted by PMNL via the thioredoxin redox system (Choi et al., 2007). 

The consequences of gliotoxin production to the host is inhibition of 

angiogenesis (Ben-Ami et al., 2009) (Figure 1.7). 
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Figure 1.7. Induction of pro- and anti-angiogenic signals during invasive 

aspergillosis. Inner dashed circles represent infected tissue and the outer dashed 

circle represents hypo-perfused pulmonary tissue. Endothelial cells, 

macrophages and PMNLs secrete pro-angiogenic factors shown on the left hand 

side. The anti-angiogenic factors of gliotoxin are shown on the right hand side. 

(TNF: tumor necrosis factor, IL8: interleukin 8, VEGF: vascular endothelial 

growth factor, FGF: fibroblast growth factor) (Ben-Ami et al., 2010). 
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1.7.3 Gliotoxin biosynthetic gene cluster 

Gliotoxin biosynthesis is directed by a multi-functional gene cluster 

(Figure 1.5). CGA with another epipolythiodioxopiperazine toxin cluster, 

encoding sirodesmin PL produced by the plant pathogen Leptosphaeria 

maculans, identified a 12-membered putative gene cluster in A. fumigatus 

predicted to be responsible for gliotoxin biosynthesis (Figure 1.5) (Gardiner et 

al., 2004; Gardiner and Howlett, 2005; Schrettl et al., 2010). The cluster is 

comprised of the core “backbone” enzyme (gliP), the non-ribosomal peptide 

synthetase (NRPS), the transcriptional regulator (gliZ), and a predicted 

transporter (gliA ) (Gardiner and Howlett, 2005; Khaldi et al., 2010). The rest of 

the cluster is filled with putative “decorating” enzymes responsible for 

modification of gliotoxin biosynthetic intermediates (Gardiner and Howlett, 

2005; Khaldi et al., 2010).  

Production of gliotoxin is mediated via the NRPS, gliP (Balibar and 

Walsh, 2006; Cramer et al., 2006; Kupfahl et al., 2006; Sugui et al., 2007; 

Spikes et al., 2008). NRPS are composed of discrete domains; adenylation (A), 

thiolation (T) or peptidyl carrier protein (PCP) and condensation (C) domains 

(Stack et al., 2007). When all of these are grouped together they are generally 

referred to as a single module (Stack et al., 2007). Each module is responsible 

for incorporation of a single amino acid into a growing peptide product. Initial 

characterisation of gliP used recombinant expression to confirm that the A1 

domain of GliP is responsible for recognition and incorporation of L-

phenylalanine and that the A2 domain is responsible for recognition and 

activation of L-serine into the peptide product (Balibar and Walsh, 2006). These 

authors also demonstrate that a cyclised diketopiperazine composed of 
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phenylalanine-serine (cyclo-(L-phenylalanyl-L-seryl), is slowly released from 

GliP after biosynthesis and they postulated that further modification of the 

cyclised DKP may occur while tethered in situ (Figure 1.8) (Gardiner and 

Howlett, 2005; Balibar and Walsh, 2006). Further functional studies on A. 

fumigatus gliP confirmed that it was essential for gliotoxin production and 

absence of this gene resulted in gliotoxin deficient strains (Cramer et al., 2006; 

Kupfahl et al., 2006; Sugui et al., 2007; Spikes et al., 2008). Coordinated 

expression of constituent genes within the cluster was associated with gliotoxin 

production (Cramer et al., 2006). These A. fumigatus #gliP strains will be 

discussed in more detail in Chapter 4.  

CGA identified a transcriptional regulator within the gliotoxin cluster. A. 

fumigatus gliZ was predicted to encode a Zn2Cys6 binuclear transcription factor 

(Gardiner and Howlett, 2005; Bok et al., 2006). Functional analysis of gliZ 

confirmed it as the transcriptional regulator of the gene cluster and disruption of 

this gene also abolished gliotoxin biosynthesis (Bok et al., 2006). A. fumigatus 

gliZ was required for the expression of gliI, which has been postulated to be a 

biosynthetic enzyme required for gliotoxin production (Gardiner and Howlett, 

2005; Bok et al., 2006). However, no functional analysis has been reported to 

date on A. fumigatus gliI to support this. An A. fumigatus multi-copy gliZ strain 

exhibited an increase in gliotoxin production. Bok et al. (2006) also state A. 

fumigatus #gliZ and the complemented strain A. fumigatus gliZ
C
 affected the 

production of other unknown SM. A. fumigatus gliZ
C
 also showed helvolic acid 

production, which was not detected in either A. fumigatus #gliZ strain or the 

wild-type strain (Bok et al., 2006). However, no additional information on these 

effects that gliZ has on other SM is available. 
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Figure 1.8. Proposed biosynthetic pathway for gliotoxin biosynthesis. The only confirmed intermediate is the cyclo-(L-phenylalanine-L-seryl) 

(Balibar and Walsh, 2006). A. fumigatus gliT has been confirmed as the enzyme responsible for the closure of the disulphide bridge (Scharf et 

al., 2010; Schrettl et al., 2010). The remaining pathway is unknown and requires experimental validation to identify the genuine biosynthetic 

intermediates (Gardiner and Howlett, 2005).  

+ 

Cyclo-L-Phenylalanyl-L-Seryl Gliotoxin 

    Phenylalanine 

Serine 



 29 

The gliotoxin cluster contains a putative major facilitator superfamily 

(MFS) type efflux pump gene, A. fumigatus gliA . A. fumigatus gliA  shares 

orthology with a gene from the L. maculans sirodesmin gene cluster sirA . L. 

maculans sirA  is an ATP binding cassette (ABC) transporter. Gene deletion of 

sirA  from L. maculans resulted in increased secretion of sirodesmin (Gardiner et 

al., 2005a). The L. maculans sirA  mutant strain exhibited increased sensitivity 

to both exogenous sirodesmin and gliotoxin (Gardiner et al., 2005a). 

Interestingly, the restoration of A. fumigatus gliA  into the L. maculans !sirA  

strain abolished the sensitivity in L. maculans !sirA  to gliotoxin and not 

sirodesmin (Gardiner et al., 2005a) and the inability of gliA  to provide 

resistance to sirodesmin is believed to be related to the difference in transporter 

type or to the conformation of sirodesmin and gliotoxin (Gardiner et al., 2005a).  

More recently, gliT has been shown to completely protect A. fumigatus 

against auto-toxicity of exogenous gliotoxin. Gliotoxin secretion was abolished 

in independent A. fumigatus !gliT studies (Scharf et al., 2010; Schrettl et al., 

2010). A. fumigatus gliT is the key enzyme responsible for gliotoxin 

oxidoreductase activity. This activity confirms that gliT is responsible for the 

last biosynthetic step in gliotoxin biosynthesis, disulphide bridge formation 

something which had been speculated upon before experimental validation 

(Howlett, 2008). Transformation of gliT into gliotoxin-naïve strains such as A. 

nidulans and Saccharomyces cerevisiae rendered the strains resistant to 

gliotoxin, and gliT was also shown to be independently regulated compared to 

other gli cluster components (Schrettl et al., 2010). Sequence analysis 

performed during gliT functional analysis identified an additional gene (gliH) 

belonging to the gliotoxin cluster (Schrettl et al., 2010). A. fumigatus gliH is 
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located adjacent to gliT. This brought the total number of genes in the cluster to 

13.  

Although some investigation into the function of several genes within the 

gliotoxin cluster has been performed, very little is known about the genes 

involved in “decorating” the gliotoxin intermediates. To date, recombinant gliP 

studies have confirmed the enzyme to be responsible for biosynthesis of cyclo-

L-phenylalanyl-L-seryl, however the native intermediate was not identified in 

culture supernatant (Balibar and Walsh, 2006). Simultaneously, biochemical 

and enzymatic studies performed on recombinant gliT and gliotoxin sensitivity 

experiments on !gliT confirmed it to be a gliotoxin oxidoreductase (Scharf et 

al., 2010; Schrettl et al., 2010). However, reduced gliotoxin or dithiogliotoxin 

was not identified in A. fumigatus culture supernatants. These functional studies 

have confirmed the genes responsible for the very first and last biosynthetic step 

in gliotoxin formation, yet no genes have been confirmed to be involved in 

gliotoxin intermediate modification. Without isolation of native on or off-

pathway intermediates, the biosynthesis behind gliotoxin formation and more 

importantly the mode of sulphur incorporation, remains purely speculative 

(Figure 1.8) 
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1.7.4 A. fumigatus gliG  

Among the genes with unconfirmed function within the gliotoxin cluster 

is a glutathione s-transferase (GST), gliG (CADRE Identification number: 

AFUA_6G09690). GST are commonly known as detoxification enzymes, which 

are responsible for elimination of harmful xenobiotics via a glutathione-

conjugation mechanism (Sheehan et al., 2001). GST will be described in more 

detail in Section 1.8. Phylogenetic analysis on the origin and distribution of ETP 

in fungi identified 11 orthologues of A. fumigatus gliG (Patron et al., 2007). 

Prior to the work described in this thesis, the role of A. fumigatus gliG within 

gliotoxin biosynthesis was unknown and although its possible role has received 

some attention, it is just conjecture without experimental validation (Gardiner et 

al., 2004; Howlett, 2008). The non-enzymatic formation of glutathione-

gliotoxin conjugates (Bernardo et al., 2001) and the importance of glutathione 

(GSH) for the intracellular accumulation of gliotoxin in target cells (Bernardo et 

al., 2003) have both been addressed in this speculation (Gardiner et al., 2004). 

Gardiner et al. (2004) postulated that ETP-GSH conjugates may accumulate 

during biosynthesis of gliotoxin and that degradation of these conjugates may be 

performed by the reverse reaction of a GST. These authors also stated that the 

role of L. maculans sirG, a paralogue to A. fumigatus gliG, predicted to be 

involved in auto-detoxification may function instead as a biosynthetic enzyme. 

The incorporation of sulphur atoms into a biosynthetic intermediate of gliotoxin 

is believed to be performed by an enzyme that forms or breaks bonds between 

carbon and sulphur (Howlett, 2008). Both A. fumigatus gliG and gliI have been 

linked to performing this function (Howlett, 2008).  
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1.8 Glutathione s-transferase  

1.8.1 General Information 

Glutathione s-transferases (GST) (EC 2.5.1.18) are phase II detoxification 

enzymes (Hayes et al., 2005). These enzymes function by catalysing the 

nucleophilic attack of glutathione (GSH: !-Glu-Cys-Gly) on non-polar 

compounds that contain an electrophilic carbon, nitrogen or sulphur atom 

(Hayes et al., 2005). This process results in a more soluble, non-toxic derivative, 

which can be compartmentalised into vacuoles or excreted from these 

compartments via an ATP-dependent vacuolar pump (Klein et al., 2002; Frova, 

2006). They also function in the cellular elimination of hydrophobic compounds 

(e.g., heme, drugs and carcinogens) through a covalent/non-covalent interaction 

(Shankar et al., 2005; Kulinskii and Kolesnichenko, 2009). This mechanism 

allows GST to metabolise toxic xenobiotics. GST are universal enzymes and are 

found in almost all organisms from eubacteria to mammals (Kulinskii and 

Kolesnichenko, 2009). The best characterised GST are the mammalian kind 

which consist of four different families, cytosolic, mitochondrial, microsomal 

and the bacterial fosfomycin-resistance kind (Dourado et al., 2008; Morel et al., 

2009). The cytosolic classes (alpha, pi and mu) are the most extensively studied 

and abundant kind of GST (Dourado et al., 2008). Advances in molecular 

biology over recent years have revealed broader roles for this class of enzyme. 

Evidence that GST are involved in the biosynthesis and metabolism of 

prostaglandins (Jakobsson et al., 1999), steroids (Johansson and Mannervik, 

2001) and leukotrienes (Anuradha et al., 2000) has been uncovered. They have 

also been identified to play a role in the management of toxic products 

generated by lipid oxidation and s-glutathionylated proteins generated by 
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oxidative stress (Alin et al., 1985; Awasthi et al., 2004; Listowsky, 2005). GST 

have also been implemented in the ability to acquire resistance to 

chemotherapeutic agents (Tew, 1994; Hayes and Pulford, 1995; Lo and Ali-

Osman, 2007). Recently, GST have been identified in the control of cell 

signaling pathways that control cell proliferation and apoptosis (Adler et al., 

1999; Cho et al., 2001; Ruscoe et al., 2001; Romero et al., 2006).  

 

1.8.2 GST classification 

GST classification is subdivided into an ever-increasing number of classes 

based on (i) sequence similarity and subsequent immunological reactivity, (ii) 

substrate specificity and (iii) structural characteristics (Sheehan et al., 2001; 

Hayes et al., 2005). With respect to sequence similarity, the general concept is 

that GST with more than 40 % similarity are grouped within a class and those 

with less that 25 % identity are assigned to a separate class (Frova, 2006). 

Structural similarities are primarily concerned with the N-terminus as this tends 

to be better conserved within a class. This region contains an important part of 

the active site (Morel et al., 2009). The N-terminus contains either one of the 

catalytically active tyrosine, serine or cysteine residues, which are responsible 

for interaction with the thiol group of GSH (Frova, 2006). Immunological 

reactivity of GST showed that antisera generated against a particular class of 

GST will cross-react with the same class from another species (Bowyer and 

Denning, 2007). No cross-reactivity is observed between GST classes, even if 

they are derived from the same species (Hayes and Mantle, 1986; Sheehan et al., 

2001). Substrate specificity is often used to distinguish GST, however, broad 

and overlapping values do not give the ideal distinction between classes as some 
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of the other classification methods (Sheehan et al., 2001). Structural 

characteristics such as the formation of stable dimers of subunits within a class, 

and the inability to dimerize with subunits from another class, show the class-

specific conserved architecture that helps define GST classification (Frova, 

2006). 

Some GST function can overlap with the thiol-dependent peroxidases 

(e.g., peroxiredoxins and glutathione peroxidases) in the reduction of by-

products of oxidative stress (Morel et al., 2009). Most GST classification has 

focused on the function and diversity in animals and plants (Dixon et al., 2010) 

and an extensive amount literature is available on this area (Hayes et al., 2005; 

Kulinskii and Kolesnichenko, 2009). It is beyond the scope of this work to 

discuss the classification of all GST so this chapter will focus on microbial 

GST, and specifically fungal ones.  

 

1.8.3 Fungal GST 

Fungal GST classification is not as well-defined as that in mammals 

(Morel et al., 2009), most of the classification has been performed on the yeasts 

and data indicate that GST function is mainly concerned with protection against 

oxidative stress damage, heavy metals and antifungal compounds (Choi et al., 

1998; Veal et al., 2002; Garcera et al., 2006). Ascomycetes and basidiomycetes 

contain a higher number of GST in comparison to the yeasts (Morel et al., 2009) 

and this is most likely due to the saprophytic nature of some of these fungi and 

their involvement in the degradation of organic matter (Morel et al., 2009).  
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As more fungal genomes are sequenced (Galagan et al., 2005; Nierman et 

al., 2005; Fedorova et al., 2008) fungal GST classification will improve and the 

divergence of functional relationships amongst the GST will become apparent. 

In contrast to the cytosolic class of mammalian GST, fungal GST, which also 

have several classes, rarely group with the pre-existing classes (McGoldrick et 

al., 2005). Classification in S. cerevisiae identified the omega, GTT (glutathione 

transferase), Ure2p, MAK16 and EFB! classes (Wickner et al., 1987; Koonin et 

al., 1994; Choi et al., 1998; Rai et al., 2003; Garcera et al., 2006). McGoldrick 

et al. (2005) screened 67 GST-like sequences from 21 fungal species and 

comparative multiple sequence alignment revealed five clusters of GST-like 

proteins. These were identified as cluster 1, 2, EFIB!, Ure2p and MAK16, with 

the last three previously identified and related to the GST superfamily 

(McGoldrick et al., 2005). Cluster 1 was later shown to contain GTT1 from S. 

cerevisiae and cluster 2 contained a Ure2p like GST from A. nidulans (Morel et 

al., 2009). A further amendment to the fungal GST classification split the GTT 

class into GTT1 and GTT2, both of which are fungal specific (Morel et al., 

2009). The addition of a new class called GTE (glutathione transferase etherase-

related), which shared sequence homology to the bacterial etherases, brought the 

fungal GST class number to seven in total (Morel et al., 2009). These are 

omega, GTT1, GTT2, Ure2p, EFIB!, MAK16 and GTE (McGoldrick et al., 

2005; Morel et al., 2009).  
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1.8.4 GST and detoxification 

Fungi are continuously exposed to non-nutritional chemical species, 

which can be harmful to the organism and can cause toxic side effects (Sheehan 

et al., 2001). Naturally generated toxic compounds produced by fungi include 

toxins (e.g., aflatoxin) or ROS such as the superoxide radicals and hydrogen 

peroxide. Detoxification processes involve the elimination of these toxic 

xenobiotics (Sheehan et al., 2001). This process can be broken down into three 

phases; phase I, phase II and phase III (Figure 1.9). Phase I involves the 

activation of xenobiotics by the introduction of reactive functional groups. This 

phase is normally catalysed by the cytochrome P450 system, which is normally 

responsible for oxidation reactions (Jancova et al., 2010). Phase II involves the 

conjugation of activated xenobiotics to a water-soluble substrate, such as GSH. 

Conjugation to GSH is the major phase II reaction in many species (Jancova et 

al., 2010). GST play a critical role in this process where they catalyse the 

reaction with the thiolate group of GSH. This neutralises the electrophilic site 

and increases the water solubility of the product prior to detoxification (Habig 

and Jakoby, 1981; Sheehan et al., 2001). Phase III is where the soluble 

conjugated xenobiotics are pumped out of the cell. Followed by further 

metabolic activity and downstream pathways to eliminate the compound (Hayes 

and McLellan, 1999).  
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Figure 1.9 
Figure 1.9. Schematic overview of the three phase enzymic detoxification process. Phase I, involves the cytochrome P450 activation of 

xenobiotics with a functional group. Phase II, the activated xenobiotic is neutralised by conjugation through functional groups. Phase III, 

conjugated xenobiotics are pumped out of the cell and eventually eliminated (Sheehan et al., 2001). 
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1.8.5 Functionally characterised fungal GST  

Fungal GST, specifically from ascomycetes, are poorly characterised in 

comparison to their mammalian counterparts. Fungal GST characterisation has 

predominantly come from the yeasts where they have been implicated in the 

protection against oxidative stress, heavy metal damage and antifungal toxicity 

(Choi et al., 1998; Veal et al., 2002; Garcera et al., 2006) and this range of roles 

indicates the functional diversity of these enzymes. In particular, yeast GST 

characterisation has mostly been performed on S. cerevisiae (Morel et al., 

2009). To date seven proteins in S. cerevisiae have been confirmed to have GST 

activity (Ma et al., 2009). Early characterisation of S. cerevisiae GST identified 

two of this class of enzyme, GTTI and GTT2 (Choi et al., 1998), both of which 

exhibited GST activity against 1-chloro-2,4-dinitrobenzene (CDNB) substrate, 

yet they both have divergent physiological functions. GTT1 catalyses the 

reduction of hydroperoxides while GTT2 is involved in cadmium (Cd) 

detoxification, where it catalyses the conjugation of GSH-Cd conjugates 

(Adamis et al., 2004; Herrero et al., 2006). Both GST are crucial in the 

oxidative stress response to H2O2 (Mariani et al., 2008).  

Two glutaredoxins (Grx1 and Grx2) have also been identified in S. 

cerevisiae (Collinson et al., 2002; Collinson and Grant, 2003). Both exhibited 

GST activity against DCNB and CDNB, which indicates an overlapping 

function between glutaredoxins and GST (Collinson et al., 2002; Collinson and 

Grant, 2003). This overlapping activity confirms that these enzymes are suitable 

for the detoxification of a wider range of xenobiotics.  

Three yeast GST with sequence similarities to the human omega class 

were identified in S. cerevisiae, Gto1, Gto2 and Gto3 (Garcera et al., 2006). 
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Recombinant analysis confirmed all three had activity as glutaredoxins, 

dehydroascorbate reductases and dimethylarsinic acid reductases, yet no activity 

against the GST substrate CDNB was detected (Garcera et al., 2006). 

In S. pombe three GST were identified, Gst1, Gst2 and Gst3 (Veal et al., 

2002). Comparative sequence analysis revealed that Gst3 shared significant 

sequence homology to S. cerevisiae GTT1. Gst1 and Gst2 were identified as 

potential homologues of human GST theta class and they were thought to be 

closely related to S. cerevisiae Ure2 (Veal et al., 2002). All three GST exhibited 

activity against CDNB (Veal et al., 2002) and expression of the three GST 

(gst1, gst2, gst3) was induced by peroxide (Veal et al., 2002). Mutational 

analysis of these genes identified a significantly reduced cellular response to 

peroxide stress and these authors showed that the three GST mutants (!gst1, 

!gst2, !gst3) exhibited more sensitivity to the anti-fungal agent fluconazole – 

implicating the three GST in anti-fungal drug detoxification (Veal et al., 2002).  

Sequence analysis of the C. albicans genome using the S. cerevisiae Gto1 

sequence identified one open reading frame (ORF) in the genome, which was 

annotated as CaGto1 while sequence analysis with S. cerevisiae Gtt1 identified 

four ORFs in the genome and were annotated CaGtt1 – 4 (Garcera et al., 2010). 

However, only CaGto1 and CaGtt1 were expresses significantly under oxidative 

stress with activity analysis confirming that CaGtt1 displays GSH-conjugating 

activity with CDNB. CaGto1 exhibited thiol oxidoreductase activity and both 

recombinantly expressed enzymes exhibited GSH-dependent peroxidase activity 

(Garcera et al., 2010).  



 40 

Analysis of an A. nidulans GST performed using a deletion strain (A. 

nidulans !gstA), revealed a theta class GST (Fraser et al., 2002) and this protein 

was subsequently classed as Ure2p like (Morel et al., 2009). Functional analysis 

showed that GstA contributed to metal detoxification as the enzyme exhibited 

sensitivity to selenium, silver and nickel. Increased expression of A. nidulans 

gstA upon exposure to CDNB and H2O2 was also apparent (Fraser et al., 2002). 

Also, a fungal-specific GST (gstB) in a glutathione reductase deletion strain 

(!glrA ) has been identified in A. nidulans (Sato et al., 2009). 

Similarity searches of the A. fumigatus genome using A. nidulans gstA  

(Fraser et al., 2002) and S. pombe gst1 and gst2 (Veal et al., 2002) identified 

three GST, A. fumigatus gstA , gstB and gstC (Burns et al., 2005). Expression of 

all three GST was induced by CDNB. Strong expression of A. fumigatus gstA  

was noted upon exposure to H2O2 with a weaker induction of A. fumigatus gstC 

observed (Burns et al., 2005). No expression of A. fumigatus gstB was observed 

in the presence of H2O2 (Burns et al., 2005) and the absence of expression of A. 

fumigatus gstB in response to H2O2 contrasted with the observed expression of 

the homologue S. pombe gst1 (Burns et al., 2005). This difference correlated to 

the greater sequence divergence between these two homologues (Burns et al., 

2005). Identification of an elongation factor 1B protein from A. fumigatus, 

termed ElfA (CADRE identification number; AFUA_1G17120) exhibited GST 

activity with CDNB (Carberry et al., 2006).  

The identification of new fungal GST classes which have no similarity to 

the mainstream GST class indicates the highly divergent evolution amongst 

fungal GST (McGoldrick et al., 2005) and sequences obtained from both 
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Alternaria alternata and Pichia augusta showed almost no similarity to any 

previously defined GST class (McGoldrick et al., 2005). The A. alternata GST, 

shared 59 % sequence identity to a GST (sirG) from the L. maculans genome 

(McGoldrick et al., 2005). Interestingly, sirG forms part of the predicted 

biosynthetic gene cluster of sirodesmin, an ETP produced by L. maculans 

(Gardiner et al., 2004). The sirG paralogue, gliG, part of the gliotoxin cluster 

was also predicted to be a GST, using comparative genomics on the gliotoxin 

biosynthetic gene cluster (Gardiner and Howlett, 2005). It is believed that GST 

which form part of SM clusters (e.g., ETP) and that do not group with other 

known GST classes, are involved in self-protection or biosynthesis of the toxin 

produced (McGoldrick et al., 2005). A summary of some of the fungal GST, 

which have been previously characterised is described in Table 1.2. 

GST have also been implicated in the allergic response to A. fumigatus 

(Bowyer and Denning, 2007). These authors proposed that the GST, GliG 

(Carberry, 2008), which they define as Asp f GST, is a fungal allergen based on 

in silico analysis. The incidence of cross-reactivity of antibodies towards GST 

from different fungal sources, including A. fumigatus, has been demonstrated 

(Shankar et al., 2005). These authors also identified a rGST allergen from A. 

alternata (Alt a GST), which shares significant sequence homology to Asp f 

GST (94.8 %) (Shankar et al., 2006; Bowyer and Denning, 2007). 
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Table 1.2. Some fungal GST which have been functionally characterised. 

Fungal spp  Gene Name Class GST  Other Activity References 

S. cerevisiae  Gtt1  Gtt1 !  (Choi et al., 1998) 

S. cerevisiae Gtt2 Gtt2 !  (Choi et al., 1998; Ma et al., 

2009) 

S. cerevisiae Gto1 Omega !  (Garcera et al., 2006) 

S. cerevisiae Gto2 Omega !  (Garcera et al., 2006) 

S. cerevisiae Gto3 Omega !  (Garcera et al., 2006) 

S. cerevisiae Grx1  ! !Glutathione peroxidase (Collinson et al., 2002) 

S. cerevisiae Grx2  ! !Glutathione peroxidase (Collinson and Grant, 2003) 

S. pombe  Gst1  Human theta !  (Veal et al., 2002) 

S. pombe Gst2  Human theta !  (Veal et al., 2002) 

S. pombe Gst3  Human theta ! !Glutathione peroxidase (Veal et al., 2002) 

C. albicans CaGto1 Omega ! !Glutaredoxin (Garcera et al., 2010) 

C. albicans CaGtt11 Gtt1 ! !Glutathione peroxidase (Garcera et al., 2010) 
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A. nidulans GstA Human theta !  (Fraser et al., 2002) 

A. nidulans GstB    (Sato et al., 2009) 

A. fumigatus  GstA  !  (Burns et al., 2005) 

A. fumigatus  GstB  !  (Burns et al., 2005) 

A. fumigatus  GstC  !  (Burns et al., 2005) 

A. fumigatus  GliG  ! !Glutathione reductase  (Carberry et al., 2006) 

A. fumigatus  elfA  EF1! !  (Carberry et al., 2006) 
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1.8.6 A. fumigatus GST 

The genome of A. fumigatus is predicted to contain 23 GST (Morel et al., 

2009). This compares to the prediction that A. clavatus and A. nidulans both 

contain 18 GST (Table 1.3) (Morel et al., 2009). To date, only four A. fumigatus 

GST have been fully characterised (Burns et al., 2005; Carberry et al., 2006). 

GST play a significant role in detoxification and considering the pathogenicity 

of A. fumigatus and the obvious GST divergence and evolution in fungi 

(McGoldrick et al., 2005), it is surprising that the presence of 23 putative GST 

in this pathogenic fungi has warranted little attention. A. fumigatus gliG forms 

part of the co-regulated gliotoxin gene cluster. This GST has showed little 

phylogenetic comparison to A. fumigatus gstA, gstB and gstC (Burns et al., 

2005). The presence of a GST in the gliotoxin cluster suggests a possible role 

for this GST against the toxicity of gliotoxin or in the biosynthesis of this ETP 

(McGoldrick et al., 2005). The potential role of gliG in the biosynthesis of 

gliotoxin as opposed to the detoxification or self-protection of this compound 

would represent a novel role for a GST, and therefore it would constitute a 

significant advance in our understanding of the function of GST both in fungi, 

and in general.  
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Table 1.3. Comparative analysis of GST genes in A. clavatus, A. nidulans and A. fumigatus (Morel et al., 2009).  

 Genome (Mb) Gene Models GTT1 GTT2 URE2p Omega EFB!  MAK16 GTE Others Total 

A. clavatus  27.9 9,121 2 1 4 5 3 1 2 0 18 

A. nidulans  30.1 10,701 1 0 3 5 5 1 3 0 18 

A. fumigatus  29.4 9,887 4 1 4 5 3 1 2 3 23 
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1.9 Fungal transformation systems  

The investigation of gene function in fungi involves gene deletion or gene 

disruption, whereby the mutant strain differs from the parental strain by the 

missing gene of interest and different transformation systems are available for 

the genetic manipulation of fungi (Brakhage and Langfelder, 2002). Several 

advances in this area have facilitated more efficient genetic manipulation. 

Specifically, techniques used for the generation of DNA constructs for gene 

deletion/disruption have improved (Nielsen et al., 2006) and the generation of 

strains deficient in non-homologous end joining (NHEJ) have also had 

significant impact on fungal transformation (Ninomiya et al., 2004; da Silva 

Ferreira et al., 2006; Krappmann et al., 2006). Overall these improvements have 

assisted with successful genetic manipulation of filamentous fungi (Kuck and 

Hoff, 2010) and details of these tools for genetic manipulation will be discussed 

in this section. 

Various transformation systems are available for the genetic manipulation 

of A. fumigatus including (i) protoplast transformation, (ii) Agrobacterium-

tumefaciens mediated transformation and (iii) electroporation transformation 

(Brakhage and Langfelder, 2002). This Section will focus on the transformation 

strategies, which are relevant to the work described in this Thesis. Protoplast 

transformation involves the degradation of the fungal cell wall of young 

mycelium by using a mixture of lytic enzymes and the protoplasts are then 

osmotically stabilised before DNA uptake, which occurs in the presence of 

calcium ions and polyethylene glycol (PEG). Once DNA uptake has been 

completed, the transformed protoplasts require regeneration on osmotically-

buffered medium that facilitates the growth of potential transformants (Ruiz-
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Diez, 2002). Although there are several different A. fumigatus transformation 

methods available, the protoplast-based system is used more frequently. This 

system is more common for the deletion of genes involved in secondary 

metabolite pathways such as the gliotoxin, siderophore and ergot alkaloid 

biosynthetic pathways in A. fumigatus (Bok et al., 2006; Cramer et al., 2006; 

Kupfahl et al., 2006; Schrettl et al., 2007; Sugui et al., 2007; Spikes et al., 2008; 

Coyle et al., 2010; Scharf et al., 2010; Schrettl et al., 2010).  

Preparation of the transformation constructs can be performed by various 

methods such as (i) plasmid integrations (Kubodera et al., 2002), (ii) linear 

constructs (Kuwayama et al., 2002), (iii) double-joint PCR method (Yu et al., 

2004) and (iv) the bipartite method (Nielsen et al., 2006). An important 

consideration in the generation of the deletion construct is the selectable marker. 

A. fumigatus is sensitive to antibiotics such as phleomycin and hygromycin B 

and bacterial genes that confer resistance to these antibiotics can be used as 

dominant selectable markers for gene deletion and complementation (Spikes et 

al., 2008). Targeted gene deletion is facilitated by homologous recombination 

(HR) whereby the homologous flanking regions recombine in vivo and the 

selectable marker replaces the gene of interest producing a mutant strain (Figure 

1.10).  
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Figure 1.10. Schematic illustration of gene replacement by homologous 

recombination (HR). The gene replacement construct contains 5’and 3’ flanking 

regions that are homologous to the target locus. HR facilitates the integration of 

the selection marker in place of the gene of interest and generates a mutant 

strain, which lacks the target gene.  
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construct 

Mutant locus 
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Molecular approaches to construct generation initially involved several 

Escherichia coli cloning steps which were both time consuming and tedious 

(Nielsen et al., 2006). A new PCR-based strategy for construct generation has 

been described in A. nidulans (Nielsen et al., 2006) which employs the 

generation of two constructs each containing either the 5’ or 3’ flanking region 

fused to a partial region of the selection marker. Reconstitution of the marker 

occurs in vivo by HR, forming the deletion construct. The homologous flanking 

regions align the deletion construct to the target locus and facilitate the 

replacement of the gene of interest with the selectable marker (Figure 1.11). 

Three HR events are required before a successful gene-targeting event will take 

place, however, DNA recombination in A. nidulans occurs primarily through 

NHEJ rather than HR, which makes the HR events seem unfavourable (Nielsen 

et al., 2006). These HR events are believed to force the DNA recombination 

machinery into HR rather than NHEJ and produce directed gene deletions rather 

than ectopic integrations. Nielsen et al. (2006) state that targeted gene deletion 

with the bipartite construct method is three-fold higher when compared to a 

continuous construct. However, these authors point out that the overall 

transformation efficiency is reduced when bipartite constructs are used instead 

of the continuous construct method and this is believed to happen as less ectopic 

integration occurs using bipartite constructs. Transformation is only successful 

upon integration of the reconstituted construct, as this will contain the full 

selectable marker (Nielsen et al., 2006). The bipartite construct approach has 

been used successfully in A. fumigatus and it has been used in the deletion of 

gliT from the gliotoxin cluster (Schrettl et al., 2010).  
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Figure 1.11. Schematic illustration of gene replacement facilitated by bipartite 

constructs. Two constructs containing partial regions to the selection marker 

reconstitute in vivo. HR of the 5’ and 3’ flanking region occurs facilitating the 

integration of the selection marker in place of the gene of interest, thereby 

producing a mutant strain.  
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Selection of transformants against a wild-type non-transformed 

background depends on the expression of genes conferring resistance to 

additives such as antibiotics. In A. fumigatus, there are three main selection 

marker options (i) antibiotic resistance, (ii) nutritional deficiency or (iii) 

compound toxicity resistance (Brakhage and Langfelder, 2002) and these 

resistance genes form part of the construct, which replaces the gene of interest 

in the mutant strain. 

In A. oryzae, resistance to pyrithiamine (PT) was conferred by ptrA  and 

PT is a potent antagonist of thiamine that functions by reducing thiamine 

transport and inhibiting the activity of thiamine pyrophosphokinase (TPK). TPK 

is an essential enzyme for the synthesis of thiamine pyrophosphate (TPP) from 

thiamine. TPP is an essential co-factor for several critical enzymes and lack of 

production is lethal (Kubodera et al., 2000). In Aspergilli the use of ptrA  as a 

resistance marker to PT was successful in A. nidulans (Kubodera et al., 2000). It 

was later used successfully in other filamentous fungi such as A. fumigatus, A . 

kawachii, and T. reesei (Kubodera et al., 2002) and PT selection has also been 

used for the deletion of gliT in A. fumigatus (Scharf et al., 2010; Schrettl et al., 

2010). 

Although construct generation is extremely important for successful 

transformation, targeted gene replacement in A. fumigatus is extremely low, 

with targeted integration reported as low as 5 % (da Silva Ferreira et al., 2006). 

In filamentous fungi, the integration of transforming DNA is carried out by the 

cellular machinery responsible for DNA repair and recombination (Krappmann 

et al., 2006). In eukaryotes, double-strand breaks (DSB) have two main 

pathways to repair this type of DNA damage (i) homologous recombination and 
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(ii) nonhomologous end-joining (NHEJ) (da Silva Ferreira et al., 2006). HR 

involves the recombination of sequences that are homologous to one another, 

while NHEJ involves the direct ligation of strand ends and does not require a 

region of homology. Non-targeted integration (ectopic integration) of constructs 

is frequently observed and a contributing factor to this high frequency in fungi 

is the NHEJ pathway of DNA recombination (Kuck and Hoff, 2010). 

Integration of DNA via NHEJ is mediated by the Ku70/Ku80 heterodimer and 

the DNA ligase IV-XRCC4 complex (Critchlow and Jackson, 1998; Walker et 

al., 2001; Krappmann et al., 2006). Homologues to the human Ku70 and Ku80 

genes were identified in Neurospora crassa and deleted to generate two mutant 

strains termed mus-51 and mus-52 (Ninomiya et al., 2004). These authors state 

that transformations using these strains resulted in 93 – 100 % homologous 

integration compared to 9 – 21 % in the wild-type when a 0.5 – 1 kb long 

flanking region was used for transformation. This indicates that the suppression 

of genes associated with NHEJ increased the frequency of HR (Ninomiya et al., 

2004) and led to the development of several strains deficient in NHEJ in other 

filamentous fungi such as A. nidulans (Nayak et al., 2006), and A. fumigatus (da 

Silva Ferreira et al., 2006; Krappmann et al., 2006). In A. fumigatus, a strain 

deficient in Ku80 termed !akuA exhibited 96 % HR when using flanking 

regions of 1 kb and 1.5 kb in length and HR increased to 95 % when flanking 

regions of 2 kb in length were used. Interestingly, 84 and 75 % HR was reported 

for a shorter flanking region of 500 and 100 bp respectively (Krappmann et al., 

2006) and the rate of HR in the Ku70 deficient strain, !akuB, was as much as 

80 % when using a flanking region between 1.5 - 2 kb in length (da Silva 

Ferreira et al., 2006). These HR events contrasted drastically to those observed 
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in wild-type strains, where only 3-5 % HR was observed with the intact Ku80 

and Ku70 (da Silva Ferreira et al., 2006). Since the breakthrough of NHEJ 

deficient strains, successful transformations using !akuB have been reported in 

A. fumigatus for the deletion of genes from the gliotoxin cluster, such as gliP 

and gliT (Kupfahl et al., 2006; Scharf et al., 2010). Overall, the low frequency 

of HR observed when transforming A. fumigatus means that the use of a mutant 

strain like !akuB should increase the percentage of successful transformants. 

Also a more efficient DNA transformation methodology, such as the bipartite 

strategy increases the likelihood of a successful targeted gene deletion.  
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1.10 Objectives of this thesis 

Biosynthesis of gliotoxin is directed by the multi-gene (gli) cluster in the 

opportunistic fungal pathogen, Aspergillus fumigatus (Gardiner and Howlett, 

2005). Apart from gliP, gliZ and gliT minimal functional cluster annotation is 

available (Cramer et al., 2006; Kupfahl et al., 2006; Sugui et al., 2007; Spikes et 

al., 2008; Scharf et al., 2010; Schrettl et al., 2010). The gene gliG, located in the 

gli cluster, is classified as a glutathione s-transferase by in silico analysis and 

recombinant GliG exhibits GST and glutathione reductase activity (Carberry, 

2008). Speculation as to a role for gliG within the gene cluster has indicated it 

may play a role in self-protection against gliotoxin or that it may have a role in 

gliotoxin biosynthesis (Gardiner et al., 2005b; Howlett, 2008). This plausible 

speculation warrants functional characterisation to determine the role of A. 

fumigatus within the gliotoxin gene cluster.  

Therefore, the overall work objectives presented in this thesis are as follows; 

(i) The targeted deletion of A. fumigatus gliG in AF293 and !akuB strains. 

(ii) Phenotypical characterisation of A. fumigatus !gliG in response to various 

stresses and the abolition of identified phenotype through restoration of gene 

functionality via complementation of A. fumigatus !gliG.  

(iii) Characterisation of putative on or off-pathway gliotoxin biosynthetic 

intermediates identified using various structural elucidation protocols, such as 

mass spectrometry, NMR and elemental analysis.  

(iv) Development of an analytical method to functionally detect gliotoxin with 

respect to, (a) the detection of thiol groups following reduction with various 
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reagents and subsequent alkylation, (b) the application of reduction and 

alkylation of gliotoxin in a novel diagnostic method to detect native gliotoxin 

secreted into culture supernatant of A. fumigatus.  
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2. Chapter 2 Materials and Methods 

2.1 Materials 

All chemicals were purchased from Sigma-Aldrich Chemical Co. Ltd. 

(U.K.), unless otherwise stated. 

2.1.1 Aspergillus Media and Agar 

2.1.1.1 Sabouraud Dextrose Broth 

Sabouraud-dextrose broth (30 g) (Oxoid, Cambridge, UK) was added to 1 

L distilled water, and dissolved. The solution was autoclaved and stored at 4 
o
C. 

2.1.1.2 Sabouraud Agar 

Sabouraud agar (65 g) (Oxoid, Cambridge, UK) was added to 1 L distilled 

water and dissolved. The solution was autoclaved, and allowed to cool to ~50 

o
C. Agar (25 ml) was subsequently poured into 90 mm petri dishes, under sterile 

conditions. The plates were allowed to set and stored at 4 
o
C. 

2.1.1.3  Malt Extract Agar 

Malt extract agar (50 g) (Difco, Maryland, USA) was added to 1 L 

distilled water, and dissolved. The solution was autoclaved, and allowed to cool 

to ~50 
o
C. Agar (25 ml) was then poured into 90 mm petri dishes, under sterile 

conditions. The plates were allowed to set and stored at 4 
o
C.  

 

 



 

 
57 

2.1.1.4 Aspergillus Minimal Media 

2.1.1.4.1  50 X Salt Solution 

KCl (26 g), MgSO4.7H2O (26 g), and KH2PO4 (76 g) was dissolved in 1 L 

distilled water and autoclaved. The solution was stored at 4 
o
C. 

2.1.1.4.2 100 X Ammonium Tartrate 

Ammonium Tartrate (92 g) was dissolved in 1 L distilled water. The 

solution was autoclaved and stored at room temperature. 

2.1.1.4.3 0.3 M L-Glutamine 

L-glutamine (43.8 g) was dissolved in 800 ml distilled water. One or two 

drops of conc. HCl was added to aid dissolution. The pH was adjusted to pH 6.5 

and the final volume was brought up to 1 L. The solution was filter sterilised 

and stored at room temperature. 

2.1.1.4.4 Trace Elements 

Na2B4O7.7H2O (40 mg), CuSO4.5H2O (400 mg), FeSO4.7H2O (800 mg), 

Na2MoO.2H2O (800 mg), and ZnSO4.7H2O (8 g) were dissolved in order, in 

800 ml distilled water allowing each to dissolve completely before addition of 

the next component. A few drops of conc. HCl was added to maintain the 

solution. The solution was then brought up to 1 L with distilled water, and filter 

sterilised.  
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2.1.1.5 Aspergillus Minimal Media Liquid 

2.1.1.5.1  AMM with Ammonium Tartrate 

Salt solution (50 X, 20 ml), Ammonium Tartrate (100 X, 10 ml), and 

Glucose (10 g) were added to 800 ml distilled water. Trace elements containing 

iron (1 ml) (Section 2.1.1.4.4) was added and the pH of the solution was 

adjusted to pH 6.8. The solution was brought to 1 L distilled water, mixed, 

autoclaved at 105 
o
C for 30 min and stored at room temperature. 

2.1.1.5.2 AMM with L-glutamine 

Salt solution (50 X, 20 ml), glucose (10 g) and trace elements containing 

iron (1 ml) (Section 2.1.1.4.4) were added to 800 ml distilled water and 

dissolved. The pH of the solution was adjusted to pH 6.5 and made up to 1 L 

distilled water. The solution was autoclaved at 105 
o
C for 30 min. Filter 

sterilised L-glutamine (0.3 M, 66.3 ml) (Section 2.1.1.4.3) was added to the 

solution. The solution was stored at room temperature.  

2.1.1.6 Aspergillus Minimal Media Agar 

2.1.1.6.1 AMM Agar with Ammonium Tartrate 

Agar (18 g) was added to 1 L of AMM liquid medium with ammonium 

tartrate (Section 2.1.1.4.2). The solution was autoclaved and allowed to cool to 

about 50 
o
C and the agar mixture (25 ml) was poured into 90 mm petri dishes 

under sterile conditions and stored at 4 
o
C. 

2.1.1.6.2 AMM Agar with L-glutamine 

Agar (20 g) was added to 1 L of AMM liquid medium without added L-

glutamine (Section 2.1.1.4.3). The solution was autoclaved and allowed to cool 
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to about 50 
o
C. L-glutamine (0.3 M; 66.3 ml) was mixed into the cooling agar 

solution and the agar mixture (25 ml) was poured into 90 mm petri dishes under 

sterile conditions and stored at 4 
o
C. 

2.1.1.7 Regeneration Agar 

2.1.1.7.1 1.8 % (w/v) Regeneration Agar 

Aspergillus salt solution (50 X; 20 ml), Ammonium Tartrate (100 X; 10 

ml), and Trace elements (1 ml) (Section 2.1.1.4) were added to 800 ml distilled 

water and dissolved. The solution was adjusted to pH 6.8. Sucrose (342 g) was 

added and the solution was made up to 1 L distilled water. Agar (18 g) was 

added to the solution. The solution was autoclaved and kept at 65 
o
C until 

required. 

2.1.1.7.2 0.7% (w/v) Regeneration Agar 

Aspergillus salt solution (50 X; 20 ml), Ammonium Tartrate (100 X; 10 

ml), and Trace elements (1 ml) (Section 2.1.1.4) were added to 800 ml distilled 

water and dissolved. The pH of the solution was adjusted to pH 6.8. Sucrose 

(342 g) was added and the solution was made up to 1 L distilled water. Agar (7 

g) was added to the solution. The solution was autoclaved and kept at 65 
o
C 

until required. 

2.1.2 Solutions for pH Adjustment 

2.1.2.1 5 M Hydrochloric Acid (HCl) 

Deionised water (40 ml) and hydrochloric acid (43.64 ml) were added 

slowly to a graduated cylinder (glass). The final volume was adjusted to 100 ml. 

The solution was stored at room temperature. 
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2.1.2.2 5 M Sodium Hydroxide (NaOH) 

NaOH pellets (20 g) were added to deionised water (80 ml) and dissolved 

using a magnetic stirrer. The final volume was adjusted to 100 ml. The solution 

was stored at room temperature. 

2.1.3 Phosphate Buffer Saline 

One PBS tablet (Oxoid, Cambridge, UK) was added to 200 ml of distilled 

water, and dissolved by stirring. The solution was autoclaved and stored at room 

temperature. 

2.1.4 Phosphate Buffer Saline-Tween 20 (PBST) 

Tween-20 (0.5 ml) was added to 1 L PBS (Section 2.1.3). The solution 

was stored at room temperature. 

2.1.5 Phosphate Buffer Saline-Tween 80 (PBST-80) 

Tween-80 (0.5 ml) was added to 1 L PBS (Section 2.1.3). The solution 

was stored at room temperature. 

2.1.6 Antibiotics and Supplements 

All antibiotics and supplements were prepared as stock solutions in water 

or methanol and filter sterilised. All were stored at – 20 °C. Further information 

is provided in Table 2.1. 
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Table 2.1. Additives and antibiobics used during this study. 

Condition Tested Reagent Used Stock Concentration Tested Concentration 

Sensitivity to Oxidative Stress H2O2  1 M (prepared in H2O) diluted 

from stock bottle (concentration 

11.6 M) 

1 mM, 2 mM  

Anti-fungals Sensitivity Voriconazole (Vfend; Pfizer) 

Amphotericin B 

0.5 mg/ml (prepared in H2O) 

250 µg/ml (prepared in H2O)  

0.15 µg/ml, 0.25 µg/ml  

1 µg/ml, 2 µg/ml, 5 µg/ml 

Gliotoxin Sensitivity Gliotoxin  1 mg/ml (prepared in methanol) 10 µg/ml, 30 µg/ml, 50 µg/ml 

Pyrithiamine Resistance Pyrithiamine  Hydrochloride 0.1 mg/ml (prepared in H2O)  0.1 µg/ml 

Phleomycin Resistance Phleomycin 25 mg/ml (prepared in H2O)  40 µg/ml 

Ampicillin Resistance Ampicillin 100 mg/ml (prepared in H2O)  0.1 µg/ml 
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2.1.7 Luria-Bertani Broth 

LB Broth (25 g) (Difco, Maryland, USA) was dissolved in 1 L distilled 

water and dissolved. The solution was autoclaved and stored at 4 
o
C. 

2.1.8 Luria-Bertani Agar 

LB Agar (40 g) (Difco, Maryland, USA) was dissolved in 1 L distilled 

water.  The solution was autoclaved, and allowed to cool to ~50 
o
C. Agar (25 

ml) was then poured into 90 mm petri dishes, under sterile conditions and 

allowed to set. They were stored at 4 
o
C. 

2.1.9 80 % (v/v) Glycerol 

Glycerol (80 ml) was added to 20 ml deionised water. The solution was 

autoclaved and stored at 4 
o
C. 

2.1.10 Molecular Biology Reagents 

2.1.10.1 Agarose Gel Electrophoresis Reagents 

2.1.10.1.1  0.5 M Ethylenediaminetetraacetic acid (EDTA) 

Ethylenediaminetetraacetic acid disodium salt dihydrate (186.12 g) was 

dissolved in 800 ml distilled water. The pH was adjusted to pH 8.0 using 5 M 

NaOH (Section 2.1.2.2) and the final volume was brought up to 1 L. 

2.1.10.1.2 50 X Tris-Acetate Buffer (TAE) 

Trizma base (242 g) was added to 57.1 ml glacial acetic acid and 100 ml 

of 0.5 M EDTA, pH 8.0 (Section 2.1.10.1.1). The volume was adjusted to 1 L 

with distilled water. The solution was stored at room temperature. 
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2.1.10.1.3 1 X Tris-Acetate Buffer (TAE) 

50 X TAE (20 ml) (Section 2.1.10.1.2) was added to distilled water (980 

ml). The solution was stored at room temperature. 

2.1.10.1.4 Ethidium Bromide 

Ethidium bromide was supplied at 1 mg/ml of which 7 µl was used per 

100 ml agarose gel. 

2.1.10.1.5 SYBR!  Safe DNA Gel Stain 

A 10,000 X concentrate solution of SYBR! Safe was diluted into 1 % 

(w/v) agarose gel at a 1 X concentration.  

2.1.10.1.6 6 X DNA Loading Dye 

Loading dye (Promega, Southampton, UK) was used at the concentration 

supplied. 

2.1.10.1.7 1 % (w/v) Agarose Gel 

Agarose powder (1 g) was dissolved into 100 ml 1 X TAE (Section 

2.1.10.1.3). This mixture was heated in a microwave oven until the agarose had 

dissolved and the mixture was molten. Ethidium Bromide solution (Section 

2.1.10.1.4), or 10 !l SYBR® Safe gel stain (Section 2.1.10.1.5) was added. The 

gel was left to set for at least 30 minutes. 
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2.1.10.1.8 Molecular Weight Markers 

2.1.10.1.8.1 Roche Molecular Weight Marker vii  

Image of the Roche molecular weight marker vii.  

 

2.1.10.1.8.2 Directload"  Step Ladder, 50 bp, Sigma 

Image of the Directload
TM 

Step Ladder, 50 bp.  
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2.1.10.2 DNA Reagents 

2.1.10.2.1 100 % (v/v) Ice-cold Ethanol  

Molecular biology grade ethanol (100 % (v/v)) was aliquotted into a 

sterile tube and stored at – 20 °C.  

2.1.10.2.2 70 % (v/v) Ice-cold Ethanol 

Molecular biology grade ethanol (70 ml) was added to molecular biology 

grade sterile water (30 ml) and stored in a sterile tube at – 20 °C. 

2.1.10.2.3 3 M Sodium Acetate 

Sodium acetate (12.3 g) was dissolved in molecular biology grade sterile 

water (50 ml). The pH was adjusted to 5.2 and the solution was stored at room 

temperature.  

2.1.11 Aspergillus Transformation Reagents 

2.1.11.1 0.7 M Potassium Chloride 

KCl (26.1 g) was dissolved in 500 ml distilled water. The solution was 

autoclaved and stored at room temperature. 

2.1.11.2 25 mM Potassium Phosphate Monobasic 

KH2PO4 (1.7 g) was dissolved in 500 ml distilled water. 

2.1.11.3 25 mM Potassium Phosphate dibasic 

K2HPO4 (0.87 g) was dissolved in 200 ml distilled water. 

2.1.11.4 Lysis Buffer and Lytic Enyzmes 

2.1.11.4.1 Lysis Buffer 
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KCl (26.1 g) was dissolved in 25 mM KH2PO4 (350 ml) (Section 

2.1.11.2). The pH was adjusted to pH 5.8 with 25 mM K2HPO4 (Section 

2.1.11.3). The solution was brought to 500 ml with distilled water. 

 

2.1.11.4.2 Lytic Enzymes solution for protoplast generation 

Lytic enzymes from Trichoderma harzianum (0.45 g) were added to 15 ml 

lysis buffer (Section 2.1.11.4.1) and filter sterilised with a 0.45 µm filter, 

changing the filter after every 10 ml. 

2.1.11.5 Buffer L6 

Sorbitol (1 M), Tris-HCl (10 mM), and CaCl2 anhydrous (10 mM) was 

prepared by dissolving sorbitol (72.88 g), Tris-HCl (0.484 g), and CaCl2 (0.444 

g) in distilled water. The pH was adjusted to pH 7.5 before the final volume was 

adjusted to 400 ml with distilled water. The solution was autoclaved and stored 

at room temperature. 

2.1.11.6 Buffer L7 

PEG 6000 (60 g) was dissolved in distilled water (40 ml). Tris-HCl (0.157 

g) and CaCl2 anhydrous (0.444 g) was added and the solution was heated gently 

whilst covered with tin foil until completely dissolved. After dissolution the 

solution was placed on a cool plate. To adjust the pH, concentrated HCl was 

added dropwise. This was done over a time period of 1 – 2 hr until the pH was 

7.5. The solution was autoclaved and stored at room temperature. The solution 

was discarded once precipitation was observed as particulate matter may burst 

protoplasts during transformation.  
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2.1.12 Southern and Northen Blotting reagents 

2.1.12.1 Southern Transfer buffer 

Sodium hydroxide (0.6 M; 16 g) and Sodium chloride (0.4 M; 35.07 g) 

were dissolved in 800 ml distilled water. The volume was adjusted to 1 L with 

distilled water.  

2.1.12.2 20 X SSC 

Sodium chloride (175.3 g) and sodium citrate (88.2 g) were added to 

distilled water (800 ml). The pH was adjusted to pH 7 and the volume brought 

up to 1 L distilled water. The solution was autoclaved and stored at room 

temperature.  

2.1.12.3 10 X SSC (Northern transfer buffer) 

20 X SSC (500 ml) (Section 2.1.12.2) was added to distilled water (500 

ml) and mixed. The solution was stored at room temperature.  

2.1.12.4 2 X SSC 

SSC (100 ml, 20 X) (Section 2.1.12.2) was added to 900 ml distilled water 

and stored at room temperature. 

2.1.12.5 10 % SDS (w/v) 

SDS (10 g) was dissolved into I L distilled water. The solution was stored 

at room temperature.  
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2.1.12.6 0.1 % (w/v) SDS / 1 X SSC 

20 X SSC (50 ml) (Section 2.1.12.2) and 10 ml of SDS 10 % (w/v) 

(Section 2.1.12.5) were dissolved in 1 L distilled water. The solution was stored 

at room temperature. 

2.1.12.7 Digoxigenin (DIG) Detection Buffers 

2.1.12.7.1 10 % (w/v) Lauroylsarcosine 

Lauroylsarcosine (1 g) was dissolved in 10 ml distilled water. 

2.1.12.7.2 Membrane Pre-hybridisation Buffer 

SDS (35 g), formamide (250 ml), 100 ml 10 % Blocking reagent (Roche 

Applied Science, Mannheim, Germany), 5 ml 10 % (w/v) laurylosarcosine were 

dissolved in 500 ml distilled water. The solution was prepared under sterile 

conditions and stirred well before storage at 4 °C. Before use the solution was 

pre-heated at 65 
o
C for 15 minutes. 

2.1.12.7.3 DIG Buffer 1 (1 X) 

Maleic Acid (2.32 g) (0.1 M) and NaCl (1.75 g) (0.15 M) were added to 

180 ml distilled water. The pH was adjusted to pH 7.5 before the final volume 

was adjusted to 200 ml with distilled water. The solution was filter sterilised and 

stored at room temperature for up to one month. 

2.1.12.7.4 Antibody Blocking Reagent 

Blocking reagent (0.4 g) (Roche Applied Science, Mannheim, Germany) 

was dissolved in 40 ml of DIG buffer 1 (Section 2.1.12.7.3) at 50 °C. The 

solution was prepared fresh on the day.  



 

 
69 

2.1.12.7.5 DIG Buffer 3 

Tris-HCl (1.575 g) (0.1 M), NaCl (0.584 g) (0.1 M) and MgCl2.6H20 

(1.02 g) (50 mM) were dissolved in distilled water (80 ml). The pH was 

adjusted to pH 9.5 and the final volume brought up to 100 ml. The solution was 

filtered sterilised and then stored at room temperature for up to one month. 

2.1.12.7.6 DIG Wash Buffer  

Tween 20 (0.15 g) was dissolved in DIG Buffer 1 (50 ml) (Section 

2.1.12.7.3). The solution was mixed and filter sterilised before being stored at 

room temperature. 

2.1.12.7.7 Anti-Digoxigenin-Alkaline Phosphatase (AP), Fab fragment 

conjugate 

Anti-Digoxigenin- AP, Fab fragments (Roche, Mannheim, Germany) (1 

µl) was added to 10 ml antibody blocking reagent (Section 2.1.12.7.4). 

2.1.12.7.8 Chemiluminescent substrate phosphatase detection (CSPD) 

Substrate 

CSPD (50 µl) (Roche, Mannheim, Germany) was added to DIG Buffer 3 

(4.95 ml) (Section 2.1.12.7.5). 

2.1.12.7.9 DIG-labelled deoxynucleotide Triphosphates (dNTP’s) 

Pre-mixed DIG-labelled dNTPs were purchased from Roche and used 

according to the manufacturers guidelines for the generation of DIG-labelled 

probes for Southern and Northern detection probes.  
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2.1.12.8 Chemicals for developing Southern and Northern blots 

2.1.12.8.1 Developer Solution 

Developer (Kodak) was diluted 1/4 in distilled water and stored in a tinfoil 

covered Duran in a dark room. 

2.1.12.8.2 Fixer Solution 

The fixer solution (Kodak) was diluted 1/5 in distilled water and stored in 

a tinfoil covered Duran in a dark room. 

2.1.12.9 RNA Electrophoresis Reagents 

2.1.12.9.1 RNA Glassware 

All glassware, microcentrifuge tubes and general disposable material used 

for RNA reagent preparation and RNA extraction was double autoclaved before 

use.  

2.1.12.10 10 X Formaldehyde Agarose (FA) Gel Buffer 

MOPS (41.9 g) (0.2 M), sodium acetate (6.8 g) (82 mM) and 0.5 M 

EDTA pH 8 (20 ml) were dissolved in 800 ml double-autoclaved water. The pH 

of the solution was adjusted to pH 7.0 and the final volume brought up to 1 L 

with double-autoclaved water. The solution was autoclaved and stored at room 

temperature.  

2.1.12.11 1 X Formaldehyde Agarose (FA) Running Buffer 

FA gel buffer (10 X, 100 ml) (Section 2.1.12.10), 37 % (v/v) (12.3 M) 

formaldehyde (20 ml) and  double-autoclaved water (880 ml) were added to a 
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double-autoclaved 1 L Duran bottle. The solution was stored at room 

temperature. 

2.1.12.12 RNA Master Mix (20 X) 

FA gel buffer (10 X, 50 µl) (Section 2.1.12.10), 37 % (v/v) (12.3 M) 

formaldehyde (80 µl), formamide (240 µl) and ethidium-bromide (1 mg/ml) (2 

µl) (Section 2.1.10.1.4) were added together. The master mix was aliquotted 

(18.5 µl) before RNA was added. Samples were heated at 60 °C for 15 min, 

before loading dye (Section 2.1.10.1.6) was added prior to electrophoresis.  

2.1.12.13 RNA Agarose Gel (1.2 %) 

Low-melt agarose (Carl Roth, Germany) (1.8 g) was heated and dissolved 

in 135 ml double-autoclaved water. FA gel buffer (10X, 15 ml) (Section 

2.1.12.10) was added in a fume hood and mixed before casting.  

2.1.13 Reverse-Phase High Performance Liquid Chromatography (RP-

HPLC) Solvents 

2.1.13.1 RP-HPLC Mobile Phase Solvents 

2.1.13.1.1 Solvent A: 0.1 % (v/v) Trifluoroacetic acid (TFA) in HPLC grade 

water 

TFA (1 ml) was added to HPLC Grade Water (1 L) in a darkened Duran. 

2.1.13.1.2 Solvent B: 0.1 % (v/v) Trifluoroacetic acid (TFA) in HPLC grade 

Acetonitrile 

TFA (1 ml) was added to HPLC Grade Acetonitrile (1 L) in a darkened 

Duran. 
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2.1.14 Carbonate Dialysis Buffer 

Sodium carbonate (2.65 g) was dissolved into 300 ml deionised water, the 

pH adjusted to pH 9.4 with 5M HCL. The final volume was made up to 500 ml 

with deionised water, and stored at 4 °C.  

2.1.15 Enzyme Activity Assay Reagents 

2.1.15.1 1M Potassium Phosphate Monobasic 

KH2PO4 (68.05 g) was dissolved in 500 ml distilled water. 

2.1.15.2 1M Potassium Phosphate dibasic 

K2HPO4 (87.08 g) was dissolved in 500 ml distilled water. 

2.1.15.3 Potassium Phosphate Buffer (PPB) 

KH2PO4 (12.38 ml) (1M) and K2PO4 (7.62 ml) (1M) were added to 80 ml 

deionised water to a final pH of 6.6. 

2.1.15.4 1-Chloro-2, 4-dinitrobenzene (CDNB) Assay 

CDNB (0.10 g) was added to 10 ml Ethanol (100 %). Reduced glutathione 

(0.078 g) was added to 10 ml PPB (Section 2.1.15.3).  

2.1.15.5 1, 2- Epoxy- (3- (4- nitrophenoxy) propane (EPNP) Assay  

EPNP (97.5 mg) (Acros Scientific) (50 mM) dissolved in 10 ml Ethanol 

(100 %). Reduced glutathione (0.1536 g) dissolved in 10 ml PPB (Section 

2.1.15.3). 
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2.1.16 Reduction and Alkylation Assay 

2.1.16.1 Gliotoxin (1 mg/ml) 

Gliotoxin (25 mg) was dissolved in 25 ml Methanol (HPLC grade).  

2.1.16.2 Gliotoxin (100 µg/ml) 

Gliotoxin (1 ml; 1 mg/ml) was added to Methanol (HPLC Grade) (9 ml).  

2.1.16.3 1M Sodium Phosphate Monobasic 

Sodium phosphate monobasic (NaH2PO4) (29.99 g) was dissolved in 

water (250 ml).  

2.1.16.4 1M Sodium Phosphate Dibasic 

Sodium phosphate monobasic (Na2HPO4) (35.49 g) was dissolved in 

water (250 ml).  

2.1.16.5 1M Sodium Phosphate pH 8.0 

Sodium phosphate dibasic (93.2 ml) (1 M) and sodium phosphate 

monobasic (6.8 ml) (1 M) were mixed together. The pH was checked brought to 

pH 8.0.  

2.1.16.6 50 mM Sodium Borohydride 

Sodium borohydride (18.9 mg) was dissolved in water (HPLC Grade) (10 

ml).  

 



 

 
74 

2.1.16.7 500 mM Sodium Borohydride 

Sodium borohydride (189 mg) was dissolved in water (HPLC Grade) (10 

ml).  

2.1.16.8 50 mM TCEP  

TCEP.HCl (14.3 mg) was dissolved in deionised water (1 ml). The pH 

was adjusted to pH 7.6 with 5M NaOH (Section 2.1.2.2). 

2.1.16.9 1 M DTT 

DTT (154 mg) was dissolved in distilled water (1 ml).  

2.1.16.10 10 mM DTT 

DTT (1 M) (1 ml) (Section 2.1.16.9) was added to distilled water (99 ml). 

2.1.16.11 20 mM 5’ Iodoacetamidofluorescein (5’-IAF) 

5’-IAF (10 mg) was dissolved in DMSO (1ml). The solution was wrapped 

in tinfoil and stored at -20 °C.  

2.1.16.12 6 mM 5’ Iodoacetamidofluorescein (5’-IAF) 

5’-IAF (3 mg) was dissolved in DMSO (1ml). The solution was wrapped 

in tinfoil and stored at -20 °C.  

2.1.17 MALDI-ToF Reagents 

2.1.17.1 Matrix (!-cyano-4-hydroxycinnamic acid) (4-HCCA) Preparation 

Aqueous trifluoroacetic acid (TFA) (0.1% (v/v)) (500 !l) was added to an 

equal volume of acetonitrile. To 200 µl of this solution 4-HCCA (5 mg) was 

added. The mixture was vortexed for 2 min and allowed to stand at room 
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temperature for 15 min. The mixture was vortexed for 30 sec and centrifuged at 

12,000 x g for 1 min. The supernatant was retained as the matrix sample.  

2.1.18 TLC Reagents 

2.1.18.1 Dichloromethane : Methanol (90 : 10: 0.5 % (v/v) acetic acid) 

Dichloromethane (90 ml) was mixed with methanol (10 ml), acetic acid 

(0.5 ml). The solution was prepared in a fume hood and stored in a Duran bottle 

until use.  

2.1.18.2 Dichloromethane : Methanol (97 : 3: 0.5 % (v/v) acetic acid) 

Dichloromethane (97 ml) was mixed with methanol (3 ml), acetic acid 

(0.5 ml). The solution was prepared in a fume hood and stored in a Duran bottle 

until use.  

2.1.19 
13

C L-Phenylalanine (C6H5
13

CH2CH(NH2)CO2H) 

13
C L-Phenylalanine (20 mg) was dissolved in sterile molecular grade 

water (1 ml). The sample was filter sterilised before use.  

 

13
C 
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2.2 Methods 

2.2.1 Microbiological Methods – Strain Storage and Growth 

Fungal and bacterial strains used in this study are listed in Table 2.2 and 

Table 2.3, respectively. 

2.2.1.1 A. fumigatus Growth, Maintenance and Storage 

A. fumigatus strains were maintained on AMM agar (Section 2.1.1.6.1). A 

loop of spores from a stock spore solution was streaked onto a plate and 

incubated at 37 
o
C in a static incubator for 5-7 days with periodic checking. 

Once grown, conidia were harvested from the plate by adding sterile PBST (10 

ml) (Section 2.1.4) to the conidia and rubbing the surface with a sterile 

inoculation loop to dislodge the spores. The spore solution was centrifuged at 

2000 x g for 5 min. The supernatant was removed and the spore pellet was 

resuspended in sterile PBS (5 ml) (Section 2.1.3). This was repeated. The spores 

were counted using a haemocytometer to determine the spore density 

(spores/ml). The spores solution was stored at 4 
o
C, until required. 
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Table 2.2. Aspergillus fumigatus fungal strains, including antibiotics and supplements used. 

Strain Genotype Antibiotics/Supplements Reference 

A. fumigatus AF293 Wild-type  N/A (Nierman et al., 2005) 

A. fumigatus CEA17 !akuB Hygromycin (250 µg/ml) (da Silva Ferreira et al., 

2006) 

A. fumigatus !gliG
!akuB 

 !gliG::ptrA  Pyrithiamine (100 ng/ml) This Thesis 

A. fumigatus !gliG
AF293 

!gliG::ptrA  Pyrithiamine (100 ng/ml) This Thesis 

A. fumigatus gliG
C
 15.1 !gliG

AF293
::(p)topogliGPhleo

 
Phleomycin (80 µg/ml)  This Thesis 

A. fumigatus gliG
C
 15.4 !gliG

AF293
::(p)topogliGPhleo

 
Phleomycin (80 µg/ml)  This Thesis 

A. fumigatus gliG
C
 17.1  !gliG

AF293
::(p)topogliGPhleo Phleomycin (80 µg/ml)  This Thesis 
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Table 2.3. Bacterial strains, including antibiotics and supplements used. 

Species Strain Antibiotics/Supplements 

E. coli TOP 10 Ampicillin (100 !g/ml) 

E.coli pSK275 Pyrithiamine (100 ng/ml) 

E. coli pPhleo Phleomycin (40 µg/ml) 
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2.2.1.2 E. coli Growth, Maintenance and Storage 

E. coli strains were grown on Luria-Bertani agar (Section 2.1.8) overnight 

at 37 
o
C or in Luria-Bertani broth (Section 2.1.7) at 37 

o
C overnight, shaking at 

200 rpm. Where appropriate, media was supplemented with suitable antibiotics.  

2.2.2 Molecular Biological Methods 

2.2.2.1 Isolation of Genomic DNA from A.fumigatus  

A. fumigatus conidia were harvested from five day old plates as described 

in Section 2.2.1.1. An aliquot of the resulting conidial suspension (100 µl) was 

used to inoculate 100 ml cultures of AMM (Section 2.1.1.5.2). The cultures 

were incubated at 37 
o
C for 24 hr with constant agitation. The cultures were 

then filtered through autoclaved miracloth and the mycelia collected. The 

mycelia mass was flash frozen in liquid Nitrogen and ground to a fine powder 

using a pestle and mortar. The DNA extractions were carried out using the ZR 

Fungal/Bacterial DNA Kit! supplied by Zymo Research (California, U.S.A). 

All buffers and reagents were supplied with the kit. For each sample, mycelia (1 

g) was added to 750 µl DNA buffer in the ZR Bead Bashing tube. DNA 

extraction was carried out according to the manufacturers instructions. DNA 

was eluted in sterile molecular grade water (100 µl). 

2.2.2.2 Precipitation of A. fumigatus Genomic DNA 

Sterile molecular grade water was added to the DNA sample until the 

final volume was 100 µl. Sodium acetate (10 µl) (Section 2.1.10.2.3) and 250 µl 

of ice-cold ethanol (100 % (v/v)) (Section 2.1.10.2.1) was added and the 

samples were mixed by gentle inversion. Samples were incubated at – 20 °C for 

at least 1 hr. Samples were then centrifuged at 13,000 x g for 10 min at 4 °C. 
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Supernatants were discarded and the DNA pellet was washed with ice-cold 

ethanol (70 % (v/v) (Section 2.1.10.2.2). At this point, care was taken not to mix 

the solution as this would disturb the DNA pellet. Subsequently, samples were 

centrifuged at 13,000 x g for 10 min at 4 °C. The supernatant was discarded. A 

quick spin on the microfuge was carried out (approximately 10,000 x g, 15 sec). 

Any ethanol droplets on the inside of the tube was removed carefully using a 

sterile pipette tip. The pellet was let to air dry and finally resuspended in 16 µl 

of sterile molecular grade water.  

2.2.2.3 Polymerase Chain Reaction (PCR) 

Polymerase chain Reaction (PCR) was used to amplify fragments of DNA 

for cloning, transformation constructs, DIG-labelled probes, confirmation of A. 

fumigatus gene deletion and complementation and to test E. coli for 

recombinant plasmid presence. PCR was carried out using either AccuTaq LA 

polymerase (Sigma-Aldrich) or Expand Long Template PCR system (Roche). 

Annealing temperatures were estimated as ca. 4 
o
C below the melting 

temperature (Tm) of the primers used. Extension times used were ca. 1 min/kb of 

DNA to be synthesised. Reactions were carried out using either the Eppendorf 

PCR or G-Storm PCR (Roche) Systems.  
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The general reaction constitutes for both polymerases used was as follows: 

AccuTaq LA polymerase 

10X reaction buffer  2 µl 

dNTP mix (10 µM)  2 µl 

Primer 1 (100 pmol/µl) 1 µl 

Primer 2 (100 pmol/µl) 1 µl 

DMSO    0.8 µl 

DNA template   10 – 100 ng 

AccuTaq   0.2 µl 

Sterile water   to a total of 20 µl 

 

Expand Long Template PCR system 

10X Reaction Buffer  5 µl 

dNTP mix (5 µM)  5 µl 

Primer 1 (100 pmol/µl) 2 µl 

Primer 2 (100 pmol/µl) 2 µl 

DNA template   up to 500 ng 

ExpandTaq   1 µl 

Sterile water   to a total of 50 µl 

 

The following reaction cycle was used unless otherwise stated: 

95 
o
C (denaturing) 5 min 

95 
o
C (denaturing) 1 min 

55 
o
C (annealing) 1 min 30 sec             x 30 – 40 cycles 

72 
o
C (extending) 1 min 

72 
o
C (extending) 10 min 

 

When AccuTaq was used, extension temperature was reduced to 68 
o
C as per 

manufacturers guidelines. 
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2.2.2.4 DNA Gel Electrophoresis  

2.2.2.4.1 Preparation of Agarose Gel 

Agarose gel electrophoresis was used to visualise restriction digest 

reactions, to separate DNA for Southern analysis, to separate differently sized 

DNA fragments prior to purification and for estimation of DNA yield. Agarose 

gels were cast and run using Bio-Rad electrophoresis equipment. Agarose gels 

of between 0.7 – 2 % (w/v) in 1X TAE buffer (Section 2.1.10.1.3) were used, 

although for the majority of applications a 1 % (w/v) agarose content was 

suitable. Powdered agarose was added to the appropriate volume of 1X TAE 

buffer (Section 2.1.10.1.3) in a 200 ml flask with loose stopper. This was then 

gently heated in a microwave, with frequent mixing, until the agarose had 

dissolved. While allowing the gel to cool, a mould was prepared by inserting the 

casting unit in a casting holder and sealed. A gel comb was inserted. After 

allowing the gel to cool to 40 – 50 
o
C, ethidium bromide (Section 2.1.10.1.4) or 

SYBR-Safe was used (Section 2.1.10.1.5). The molten gel was then poured into 

casting unit, and allowed to set on a level surface. Once set, the gel comb was 

removed gently, and the gel casting unit containing the set gel was placed into 

the gel tank, with the wells nearer the negative (black) electrode. 1 X TAE 

buffer (Section 2.1.10.1.3) was then poured into the gel tank to fully submerge 

the gel. 

2.2.2.4.2 Loading and Running Samples 

DNA samples were prepared for loading by adding 5 volumes of DNA 

sample to 1 volume of 6 X loading dye (Section 2.1.10.1.6). DNA fragment size 

was estimated by running molecular weight markers alongside the unknown 
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samples. Two different molecular weight markers were used throughout this 

study; marker VII (Roche) and 50 bp ladder (Roche). Gels were electrophoresed 

at 50 – 100 volts for 30 – 90 min. 

2.2.2.4.3 DNA Gel Extraction 

DNA gel extraction was carried out using the QIA quick gel extraction kit 

(Qiagen, UK). All reagents and columns were supplied with the kit and the 

procedure was carried out according to the manufacturer’s instructions. DNA 

was eluted in 30 µl of sterile molecular grade water. 

2.2.2.5 Restriction Enzyme Digest 

Restriction enzymes, 10 X reaction buffers, and bovine serium albumin 

(BSA) were obtained from either Promega or New England Biolabs. Reactions 

were carried out according to the manufacturer’s instructions as follows; 

DNA  1- 5 µg 

Enzyme  1 µl 

10 X buffer 2.5/5 µl  

10 B BSA 2.5/5 µl  

Sterile water to a total of 25/50 µl  

 

2.2.2.6 Ligation of DNA Fragments 

Ligation of DNA fragments was required for the generation of gene 

disruption constructs. DNA was digested (Section 2.2.2.5) to produce 

compatible fragments. These fragments were then separated by DNA gel 

electrophoresis (Section 2.2.2.4). Ligation of DNA fragments was carried out 

using the Ligafast! Rapid DNA Ligation System (Promega) which employs T4 
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DNA ligase. Ligations were carried out as per manufacturer’s instructions. 

Restriction digests either produce a DNA fragment with an overhang of single-

stranded DNA at either end of the double-stranded section, called a cohesive 

end or where no overhangs exist, called a blunt end. For cohesive ended 

ligation, the preferred molecular ration of insert to backbone is 3 : 1. This was 

estimated based off the sixe of the DNA fragment using the following formula; 

 

 

 

Ligations were carried out using 50 – 200 ng of vector DNA. T4 DNA 

ligase (1 µl), and 2X Rapid ligation buffer. For ligations where inserts were 

ligated to vectors, a control ligation was also carried out where the insert DNA 

was omitted from the reaction. For the generation of complementation 

constructs a ratio of insert to backbone of 3 : 1 and 2 : 1 was used. This was 

estimated based on the above formula. All reactions were carried out in a 

thermal cycler to ensure the ligation temperature was constant.  

 

2.2.2.7 Transformation of DNA into Competent DH5! Cells 

LB agar plates (Section 2.1.8) containing Ampicillin (Section 2.1.6) were 

pre-heated to 37 
o
C for at least one hr. For DH5! transformation, competent 

cells (50 µl) were removed from -70 
o
C freezer and were defrosted on ice for 2 

min. DNA (1-10 ng) was added to the DH5! cells. The mixture was incubated 

(ng of vector) * (kb of insert)             3 (molar ratio of insert/vector) 

kb size of vector   1 

 

 

= ng of insert 
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on ice for 5 min. The mixture was spread onto the agar plates as quickly as 

possible and the plates were incubated at 37 
o
C overnight.  

2.2.2.8 TOPO TA Cloning 

One step cloning of PCR products were carried out using the TOPO TA 

Cloning kit from Invitrogen, according to the manufacturer’s instructions. The 

principle behind one step Cloning is based on the non-template dependant 

activity of Taq polymerase that results in the addition of a single 

deoxyadenosine (A) to the 3’ ends of the PCR products. The linearised cloning 

vector has single 3’ deoxythymidine (T) residues therefore facilitating PCR 

inserts to ligate efficiently with the vector. The TOPO TA Cloning vector map 

is presented in Figure 2.1. The TOPO TA Cloning kit contains TOP 10 One 

Shot competent E. coli cells, Super Optimal Catabolite repression (SOC) media, 

TOPO vector and salt solution. Prior to cloning, TOP10 cells were thawed on 

ice and LB agar plates (Section 2.1.8) containing 100 µg/ml Ampicillin (Section 

2.1.6) pre- warmed in a 37
 o

C incubator. Genomic DNA PCR product (4 µl), 

Salt solution (1 µl) and TOPO vector (1 µl) were added to a sterile 0.5 ml tube 

and left at room temperature for 30 min. A 2 µl aliquot of this reaction mixture 

was added to a vial of TOP10 E. coli cells and placed on ice for 30 min. Cells 

were heat shocked at 42
 o

C for 30 s in a water bath and pre-warmed SOC media 

(200 µl) was added to the vial. The cell suspension was transferred to a 15 ml 

tube and incubated at 37 
o
C for 1 hr with constant agitation (200 rpm). During 

this incubation period, 32 µl of 5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside (X-gal) (Promega) (Southampton, UK) (40 mg/ml) was 

spread over the pre-warmed agar plates using a sterile glass spreader and the 

plates were returned to the incubator. This reagent facilitates blue/white colony 
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screening which greatly aids in the identification of desired clones. A 50 µl 

aliquot of the cell suspension was spread on the selection plates using a sterile 

disposable spreader and the plates were incubated overnight at 37 
o
C. White 

colonies were selected and sub-cultured on to LB agar plates (Section 2.1.8) 

with Ampicillin (100 µg/ml) (Section 2.1.6). Restriction digest (Section 2.2.2.5) 

was carried out to verify the presence and orientation of the desired insert in the 

vector of the sample clones. 
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Figure 2.1. Vector map of the TOPO® TA Cloning® vector (Invitrogen, The 

Netherlands). 
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2.2.2.9 Small Scale Plasmid Purification 

Plasmid purification was carried out according to the Qiagen Plasmid 

purification manual using the QIA prep Mini-prep kit. All buffers and columns 

were supplied with the kit and details of buffer constituents are outlined in the 

Qiagen Plasmid Purification Handbook. An isolated colony was picked 

aseptically and used to inoculate LB broth (Section 2.1.7) (3 ml) containing 100 

µg/ml Ampicillin (Section 2.1.6). Cultures was grown overnight at 37 °C and 

the cells harvested by centrifugation at 13,000 x g for 10 min at 4 °C. 

Procedures were then carried out according to the manufacturer’s guidelines. 

Purified plasmids were subsequently analysed by restriction digestion followed 

by DNA gel electrophoresis (Section 2.2.2.4 and 2.2.2.5).  

2.2.3 Generation of A. fumigatus "gliG Mutant Strains 

2.2.3.1 Generation of Constructs for A. fumigatus gliG Gene Deletion 

The bipartite gene disruption strategy was employed for the generation of 

A. fumigatus mutant strains in this study. This method involved the generation 

of gene deletion constructs by PCR and a ligation (Nielsen et al., 2006). Briefly, 

this strategy involved the generation of two constructs which each contain a 

partial fragment to the pyrithiamine (PT) resistance gene (ptrA ) from A. oryzae 

(Kubodera et al., 2000) which is ligated to respective 5’ and 3’ flanking regions 

of A. fumigatus  gliG. This facilitates overlapping of the two constructs and 

reconstitution of the deletion cassette in vivo. The ptrA  gene was excised from a 

plasmid vector pSK275 (a kind gift from Prof. Sven Krappmann, Göttingen, 

Germany), using two restriction enzymes. Both the 5’ and 3’ flanking regions of 

A. fumigatus gliG were amplified from A. fumigatus genomic DNA by PCR 
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(Section 2.2.2.3), where a SpeI and XhoI restriction sites were incorporated to 

the PCR products. This facilitates cloning of the PCR products to ptrA . About 

1.0 – 1.2 kb of the flanking region were amplified. The resulting PCR products 

were digested with the same enzymes (SpeI and XhoI) as ptrA  to make the ends 

compatible for ligation (Section 2.2.2.6). The ligation products were used as 

template for a subsequent second round of PCR, where nested primers amplified 

the majority of the flanking region and only a partial section of ptrA . Schematic 

representation of the bipartite gene deletion strategy is illustrated in (Chapter 3, 

Figure 3.4). All primers used in this study are listed in Table 2.4.  

Both first and second round PCR were performed with the Expand Long 

Range Template PCR System (Roche). PCR products were extracted from 1 % 

(w/v) agarose gels and purified using a Qiagen gel extraction kit (Section 

2.2.2.4.1 and 2.2.2.4.3). Successful transformation of A. fumigatus protoplasts 

generated potential A. fumigatus transformants which had the ability to grow on 

pyrithiamine (PT) selection plates. This ability only occurred with the 

successful integration of a fully reconstituted ptrA . These transformants were 

then screened by Southern blot analysis where a single homologous integration 

of ptrA  in place of A. fumigatus gliG was desired.  
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Table 2.4. Oligonucleotide primers used for the creation of constructs for the 

transformation of gliG. Engineered restriction sites are underlined for XhoI and 

SpeI in ogliG-3 and ogliG-4 respectively.  

 

Primer Identity Sequence (5’-3’) 

ogliG-1  CACGGTTGTTGCTGTAGGTGT 

ogliG-2  CTTCGTCCTTCCATACGCACG 

ogliG-3  CTCTCGAGTACAAGATCGGAG 

ogliG-4  AAACTAGTAAAGCTGCAGGAG 

ogliG-5  AGGCGAAGATGCCATTGC 

ogliG-6  CTCTCCACGCTGCAATAC 

ogliG-7  GACCCTCCGATCTTGTAG 

ogliG-8  TTCTCGCCATGGCCAAAC 

ogliG-9 AACAGGTTGGTGCTTTTCGTGG  

ogliG-10 ATTGCACCGTAATGTTGCTGCG 

optrA-1 GAGGACCTGGACAAGTAC 

optrA-2 CATCGTGACCAGTGGTAC 

ogliM-1 GTCCAGTTCGAGCAAGCCA 

ogliM-2 AACAGGTATGCAATCCTAGAC 

ogliK-1 TGGGGGAATCTGGTACTTTG 

ogliK-2 ATTTAGACGCTGGCTGCTGT 
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2.2.3.2 Constructs for Complementation Transformations 

To restore A. fumigatus gliG back into the genome of A. fumigatus "gliG, 

a construct containing a new selectable marker gene and the full gliG sequence 

with the respective 5’and 3’ flanking regions was generated. The primers used 

for the complemented construct are listed in Table 2.4. The gliG coding 

sequence was PCR amplified from wild-type genomic DNA with ogliG-5 and 

ogliG-6. The PCR products were cloned into the TOPO vector. The orientation 

of the inserted DNA was verified, by performing a diagnostic restriction digest 

(Section 2.2.2.5) with PstI. For the selection marker, the phleomycin resistance 

plasmid, Bphleo was used where the phleomycin resistance gene was excised 

using XbaI and KpnI. This was then cloned into the topogliG plasmid via KpnI 

and SpeI sites. A diagnostic restriction digest (Section 2.2.2.5) was performed 

using SmaI to confirm the correct orientation of ble. This vector, topogliGphleo, 

was then linearised using a restriction enzyme that had a unique site in the 

sequence. In this case, HpaI was chosen. The linearised plasmid was then 

transformed into protoplast of A. fumigatus "gliG
AF293

.  

2.2.3.3 A. fumigatus Protoplast Preparation 

A. fumigatus conidia were harvested from 5 day old plates grown on 

AMM agar (Section 2.2.1.1). An aliquot of the spore suspension was diluted 

(1/10 dilution) and counted on a haemocytometer. A 500 ml conical flask 

containing AMM medium (200 ml) (Section 2.2.1.1) was inoculated with A. 

fumigatus conidia. The culture was incubated overnight at 37 
o
C, whilst shaking 

at 200 rpm. The mycelia were harvested by filtering through sterile miracloth 

and washed with sterile distilled water. Excess water was removed by gentle 
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blotting. Mycelia (1.5 g) was weighed out in duplicate, and each was added to 

15 ml Lysis buffer (Section 2.1.11.4.1) containing lytic enzymes (Section 

2.1.11.4.2), and then incubated with the tubes laying down flat at 30 
o
C while 

shaking at 100 rpm. After 5 min incubation the tubes were removed from the 

incubator, using a P1000 the mycelial solution was pipetted to break up clumps 

of mycelia. After 5 min, a 200 µl pipette tip was placed on top of a fresh 1000 µl 

tip and the mycelial solution was pipetted to further break up the mycelia. The 

mycelia solution was placed back in the incubator and incubated until the total 

time of mycelial lysis was 3 hr. The samples were placed on ice for 5 min to 

inhibit the lytic enzymes therefore terminating the lysis. The mycelial solution 

was centrifuged at 132 x g for 18 min with the brake off. The supernatant was 

filtered through sterile filter paper and brought up to 40 ml with 0.7 M KCl 

(Section 2.1.11.1). The solution was centrifuged at 1769 x g for 12 min with the 

brake off. The supernatant was poured off and discarded. The pellet was 

resuspended in 10 ml 0.7 M KCl (Section 2.1.11.1). The solution was 

centrifuged at 1769 x g for 12 min with the brake off. The supernatant was 

poured off and discarded. The tubes were then left upside down on sterile tissue 

for 1 min. The pellet was resuspended in 70 µl of Buffer L6 (Section 2.1.11.5) 

by gentle pipetting and swirling the resuspended pellet. The samples were 

centrifuged at 58 x g for 1 min with the brake off to gather the entire protoplast 

suspension in the bottom of the tube. Duplicate protoplast solutions were pooled 

at this point. Finally, the protoplasts were viewed on a haemocytometer to 

ensure adequate yield and viability was assessed prior to the transformation. 

The protoplasts were stored on ice for up to 1 hr before use in transformation 

experiments. 
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2.2.3.4 A. fumigatus Protoplast Transformation 

For each transformation event approximately 5 µg of"5’ and 3’ constructs 

were mixed together in a 50 ml sterile tube and the final volume was brought up 

to 50 µl with Buffer L6 (Section 2.1.11.5). A. fumigatus protoplasts (150 µl), of 

at least 1 x 10
7 

/ ml were added to the constructs. Buffer L7 (50 µl) (Section 

2.1.11.6) was added to the protoplast / DNA mixture. This was mixed by gentle 

swirling (not pipetting) and placed on ice for 20 min. Once on ice it was 

important that the protoplast / DNA solution was not moved. Buffer L7 (1 ml) 

(Section 2.1.11.6) was added to the mixture and left at room temperature for 5 

min, to allow for recovery of protoplasts. Buffer L6 (5 ml) (Section 2.1.11.5) 

was added, and the mixture was left on ice until required for plating. This 

incubation time on ice did not exceed 30 min. Simultaneously, control plates 

were set up where Buffer L6 (185 µl) was added to A. fumigatus protoplasts (15 

µl). The tube was swirled gently before the addition of Buffer L7 (50 µl).  

2.2.3.5 Plating of Transformation Protoplasts 

Regeneration agar (1.8% (w/v), 25 ml) (Section 2.1.1.7.1) containing PT 

(0.1 µg/ml) or phleomycin (40 µg/ml) (Section 2.1.6) was poured into 90 mm 

petri dishes on the transformation day. These plates were stored at room 

temperature until required for use. For each transformation, six plates 

containing the selective reagent were prepared and two plates without this 

reagent were prepared. The two plates without the selective reagent were used 

for the protoplast viability check. For the negative control, protoplasts (1.25 ml) 

were added to a sterile tube, which was brought to 6 ml with the 0.7 % (w/v) 

regeneration agar (Section 2.1.1.7.2). This was then poured onto one of the 

transformation plates that contained the selective agent. For the protoplast 
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viability control plate dilutions of the protoplasts were plated for a viable 

titration. To do this two protoplast dilutions were prepared in fresh 50 ml tubes. 

One of these contained 1.25 ml of the A. fumigatus protoplast suspension and 

the other contained 1.25 µl of the A. fumigatus protoplast suspension. 

Independently, the protoplast dilutions were brought to 6 ml with the 0.7 % 

(w/v) regeneration agar (Section 2.1.1.7.2). These were then separately poured 

onto transformation plates that contained no selective agent. Finally, 

transformed A. fumigatus protoplasts were topped up to 30 ml with the 0.7 % 

(w/v) regeneration agar (Section 2.1.1.7.2). This was mixed by inversion once 

and then 5 ml was poured onto each of the five transformation plates that 

contained the selective agent. All the plates were left upright at room 

temperature overnight (as long as the room temperature did not drop below 20 

°C).  

2.2.3.6 Overlaying of Transformation Plates 

0.7 % (w/v) regeneration agar (50 ml) (Section 2.1.1.7.2) containing 

pyrithiamine (0.1 µg/ml) or phleomycin (40 µg/ml) (Section 2.1.6) was mixed 

and 6 ml was poured over the 5 transformation plates, and the negative control 

plate. For the positive control plates, 6 ml of 0.7 % (w/v) regeneration agar 

(Section 2.1.1.7.2) without pyrithiamine or phleomycin was added to each of the 

plates. Once the agar had set, all the plates were incubated upside down in a 37 

o
C static incubator for approximately 5 – 7 days or until colonies were observed 

through the top of the overlay layer. The appearance of colonies on the 

protoplast viability plates after 2 – 3 days confirmed viable protoplasts had been 

generated.  
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2.2.3.7 Isolation of A. fumigatus Transformants After Transformation 

Potential transformants exhibited the ability to grow on the transformation 

plates, which contained the selective agent. Approximately 20 – 40 colonies 

were usually identified per transformation event. Spores from the transformants 

were picked aseptically from the transformation plates and point inoculated onto 

fresh selective plates (Section 2.1.1.7.1) which contained the selective agent 

(Section 2.1.6). No more than 10 colonies were point inoculated onto a single 

fresh plate at a time. The plates were then incubated at 37 °C in a static 

incubator until colonies were observed. The individual potential transformant 

colonies were aseptically excised from the plates by plugging with the base of a 

blue pipette tip. The plug was transferred to an Eppendorf tube containing PBST 

(750 µl) (Section 2.1.4). The tubes were then vortexed vigorously to release the 

conidia from the agar and into the solution. The conidial suspensions were 

stored at 4 
o
C until required. Putative transformant conidial suspensions (500 µl) 

were inoculated into Sabouraud Dextrose Broth (100 ml) (2.1.1.1) in a 500 ml 

conical flask. The cultures were incubated overnight at 37 
o
C, whilst shaking at 

200 rpm. The cultures were then harvested and DNA extraction (Section 

2.2.2.1) was performed for Southern blot analysis (Section 2.2.5). 

 

2.2.3.8 Single Spore Isolation of Transformant Colonies 

Following a first round of Southern blot analysis, transformants which 

showed the correct signal on the Southern blot were selected for single spore 

isolation. This was to ensure that a transformant contained a homogenous single 

nucleus and that it was not a heterokaryon. Potential transformants were diluted 
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by serial dilutions ranging from 10
-2

 to 10
-6

 in filter sterilised PBST (Section 

2.1.4). One-hundred µl of the dilutions were spread onto AMM plates (Section 

2.1.1.6) containing pyrithiamine (0.1 µg/ml) or phleomycin (40 µg/ml) (Section 

2.1.6) and incubated at 37 
o
C in a static incubator until conidiation of colonies 

were observed. The individual colonies were numbered and isolated in PBST 

(Section 2.1.4) as described in Section 2.2.3.7 and were then subjected to a 

second round of Southern blot analysis (Section 2.2.5).  

2.2.4 Synthesis of DIG-labelled Probes 

The probes used in the Southern and Northern analysis (Table 2.5) were 

generated by PCR (Section 2.2.2.3) with the incorporation of DIG-labelled 

dNTP’s. PCR products were resolved on a 1 % agarose gel and excised as 

previously described (Section 2.2.2.4). DNA was denatured by heating at 95 °C 

for 10 min on a heating block. The DNA was centrifuged for 1 min under a 

quick spin before it was placed on ice. The DNA (400 ng) was added to 

membrane pre-hybridisation buffer (10 ml) (Section 2.1.12.7.2) which had been 

pre-heated to 65 °C for at least 30 min. The probe was stored at – 20 °C  and 

always heated at 65 °C for at least 30 min before use in Southern or Northern 

blot analysis.  
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Table 2.5. Primers used to generate the DIG-labelled probes used for Southern 

and Northern analysis. For primer sequences please refer to Table 2.4.  

Probe Name Primers Used Probe Size Probe Use 

5’ Probe ogliG-4 and ogliG-5 1200 bp Southern 

3’ Probe ogliG-3 and ogliG-6 1002 bp  Southern 

gliG cds Probe ogliG-7 and ogliG-8 794 bp Southern/Northern 

ptrA  Probe optrA-1 and optrA-2 559 bp Southern 

gliM Probe ogliM-1 and ogliM-2 1452 bp Northern 

gliK Probe ogliK-1 and ogliK-2 1331 bp Northern 
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2.2.5 Southern Blot Analysis 

2.2.5.1 Southern Blot Analysis – DNA Transfer 

Southern blot analysis was performed to determine whether the gene of 

interest has been deleted of replaced. Genomic DNA was isolated from the 

potential transformants (Section 2.2.2.1) and a restriction digest was performed 

using a suitable enzyme (Section 2.2.2.5). The choice of enzyme depended on 

the sequence of the A. fumigatus wild-type and transformed strain. The enzyme 

of choice would cut upstream to the 5’ or 3’ flanking region and once within the 

gene of interest for the wild-type loci and it would also cut once within the 

replacement gene for the mutant loci. This digestion would generate one signal 

on the blot of different sizes in the wild-type and mutant strain. The digested 

DNA was resolved on 0.7 % (w/v) agarose gels (Section 2.2.2.4.1). After the 

digested DNA had resolved sufficiently. The gel was placed on a UV cross-

linking machine (Strategene, La Jolla, CA) and pulsed at 800 µJ to nick the 

DNA which aids transfer to the nylon membrane. Following the DNA nicking 

the Southern tower was set up (Figure 2.2). A Biorad electrophoresis tank was 

used for this procedure where the two reservoirs on each side of the tank were 

filled with Southern transfer buffer (Section 2.1.12.1). Two large sheets of 

Whatman filter paper were draped from reservoir to reservoir across the tank 

and left until they were soaked in the transfer buffer. On top of these, the DNA 

gel was placed with the loaded side face down. A piece of nylon membrane (H
+
 

Bond Nylon Membrane, GE Electric) cut to the exact size of the gel was placed 

on top of the gel. Once contact was made with the gel, the membrane was not 

moved. Three pieces of filter paper cut to gel size were placed on top, followed 

by three stacks of pocket-sized tissue. A glass plate was placed on top of the 
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stack and a duran bottle containing approximately 400 ml of water was used to 

balance the tower. The Southern blot was left overnight at room temperature (as 

long as room temperature was consistent and did not drop below 20 °C).   

 

 

 

 

Figure 2.2. Schematic illustration of a Southern / Northern transfer tower.  
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2.2.5.2 Disassembly of the Southern Tower 

The Southern Blot tower (Section 2.2.5.1) was taken apart and the 

membrane and gel were removed together and placed on a clean glass plate. The 

position of the wells was marked onto the corresponding place on the 

membrane, and the gel was peeled away from the membrane. The membrane 

was then washed in SSC buffer (2 X, 40 ml) (Section 2.1.12.4), and rocked 

gently for 10 min. The membrane was removed and placed on clean tissue paper 

to remove excess buffer. The membrane was then placed in a UV crosslinker 

(Strategene, La Jolla, CA) and crosslinked at 1200 µJ for 20 – 50 sec in order to 

fix the DNA onto the membrane. 

2.2.5.3 Pre-hybridisation of the Nylon Membrane  

After UV crosslinking the membrane was placed in a Hybaid tube (which 

had been heated to 42 °C) with the DNA side facing inwards. Pre-hybridisation 

buffer (20 ml) (Section 2.1.12.7.2), which had been heated to 65 °C was poured 

into the tube. The tubes were incubated at 42 °C in a Hybaid oven whilst 

rotating for 4 – 5 hr to block the membrane.  

2.2.5.4 Addition of DIG-labelled Probe to Southern Blots 

After pre-hybridisation of Southern blots (Section 2.2.5.3), the pre-

hybridisation buffer was removed. The DIG-labelled probe which had been 

heated to 65 °C was then poured into the tube. The tubes were then incubated 

overnight at 42 °C whilst rotating in a Hybaid oven to allow the probe to 

hybridise to regions of homology on the membrane. After probing the probe 

was removed from the tube and stored at – 20 °C.  
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2.2.5.5 DIG detection  

The membrane was removed from the Hybaid tube and washed with 0.1 

% (w/v) SDS / 1 X SSC solution (Section 2.1.12.6) for 5 min. The Buffer was 

discarded and replaced again and the wash was repeated for another 5 min. The 

blot was placed in a clean Hybaid tube (which had been heated to 65 °C) and 

half filled with 0.1 % (w/v) SDS / 1 X SSC solution (Section 2.1.12.6). The 

membrane was rotated in the Hybaid oven for 15 min at 65 
o
C. The solution was 

discarded and replaced and the membrane was rotated for 15 min at 65 
o
C. 

Between each wash step the tubes were allowed to drip dry on clean tissue 

paper. The solution was poured off from the tube and DIG Wash Buffer (10 ml) 

(Section 2.1.12.7.6) was poured in with the membrane. The membrane was 

rotated for 5 min in the Hybaid oven at 25 
o
C. The buffer was poured off from 

the tube and the blots were blocked with Antibody Blocking buffer (Section 

2.1.12.7.4) whilst rotating for 30 min at 25 
o
C. The Buffer was poured off from 

the tube and the Anti-Digoxigenin-Fab AP conjugate (10 ml) (Section 

2.1.12.7.7) was added. The membrane was rotated for 30 min at 25 
o
C. The 

solution was poured off from the tube and DIG wash buffer (10 ml) (Section 

2.1.12.7.6) was added to the tube. The membrane was rotated for 15 min at 25 

o
C. The wash step was repeated. The buffer was poured off from the tube and 

DIG Buffer 3 (10 ml) (Section 2.1.12.7.5) was added and the membrane was 

rotated at 25 
o
C for 5 min. The buffer was poured off from the tube and CSPD 

Substrate (5 ml) (Section 2.1.12.7.8) was added. The membrane was rotated at 

25 
o
C for 5 min. The CSPD Substrate was collected from the tube covered in 

tinfoil and kept at 4 °C to be reused within one week. The membrane was 

removed from the Hybaid tube and placed on a clean tissue briefly. The 
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membrane was carefully wrapped in a single layer of cling film and incubated at 

37 
o
 C for 15 min. This incubation step was performed to enhance the signal on 

the Southern blot.  

2.2.5.6 Developing the Southern Blot membrane 

The cling film wrapped membrane was taped into a photo developer case 

and an in the dark an X-ray film was placed over the membrane. Exposure time 

usually ranged between 1 – 3 hr initially and an overnight exposure was usually 

performed also. After this, the X-ray film was removed from the case in 

complete darkness and placed into developer solution (Section 2.1.12.8.1) for a 

couple of seconds or until signals began to appear. The film was rinsed with 

water and then placed into Fixer Solution (Section 2.1.12.8.2). The film was 

then thoroughly rinsed with water and left to dry. 

2.2.6 RNA Analysis 

2.2.6.1 RNA Isolation 

A. fumigatus liquid cultures which were incubated at the required 

temperature and time were filtered through autoclaved miracloth and the 

mycelia collected. Mycelia were then flash frozen in liquid Nitrogen and ground 

to a fine powder in a mortar by pestle. The RNA was isolated using the RNeasy  

plant mini kit supplied by Qiagen, according to the manufacturer’s instructions. 

All buffers and columns were supplied with the kit, details of which are outlined 

in the kit handbook. "-mercaptoethanol (10 µl) was added to Buffer RLC (1 ml) 

before RNA extraction. For each sample, mycelia (100 mg) was placed in sterile 

microcentrifuge tubes. The procedure was then carried out as per 

manufacturer’s guidelines. RNase-free water (50 µl) was added to the columns 
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and the RNA was eluted by centrifuging the column at 10,000 x g for 1 min. To 

increase RNA concentration, the eluent was passed through the RNeasy spin 

column for a second time and centrifuged at 10,000 x g for 1 min. The RNA 

samples were stored at – 20 
o
C up to 6 months and at – 70 

o
C long term. 

2.2.6.2 RNA Gel Electrophoresis 

2.2.6.2.1 RNA Gel Preparation 

Low melt agarose gels (1.2 % (w/v)) were prepared by adding agarose 

(1.2 g) to double-autoclaved water (80 ml). The agarose was melted in a 

microwave and allowed to cool. 10 X Formaldehyde Agarose (FA) gel buffer 

(10 ml) (Section 2.1.12.10) was added to the agarose in a fume hood and the 

final volume was adjusted to 100 ml with double-autoclaved water. The gel was 

poured into a casting tray and allowed to set.  

2.2.6.2.2 RNA Gel Running Buffer 

Ten X FA buffer (100 ml) (Section 2.1.12.10) was mixed with 

Formaldehyde (37 % (v/v)) (20 ml) in a fume hood and adjusted to 1 L with 

double-autoclaved water. This solution was used in a hood at all times. The 

RNA gel (Section 2.2.6.2.1) was allowed to equilibrate in the running buffer for 

30 min prior to use.  

2.2.6.2.3 RNA Gel 

A master mix (Section 2.1.12.12) was prepared depending on the number 

of RNA samples. RNA (5 – 20 µg) was added to a 1 X master mix. The samples 

were incubated at 60 
o
C for 15 min, followed by a quick spin in the microfuge 

and allowed to chill on ice. Samples were loaded onto the gel and 
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electrophoresed at 120 V for ~1 hr in a rig in the fume hood. The RNA gels 

were then visualised on the DigiDoc RT system (Alpha Innotech). 

2.2.6.3 Northern Blotting 

2.2.6.3.1 Northern Blotting – Nucleic Acid Transfer 

The RNA samples were separated on a 1.2 % (w/v) low melt agarose gels 

(Section 2.2.6.2). Once the gels had run to completion, they were washed in 10 

X SSC (Section 2.1.12.3) for 20 min. This wash step was repeated. The 

Northern tower (Figure 2.2) was assembled by filling the reservoir tanks on 

either side of the transfer tray with 500 ml Northern Transfer Buffer (Section 

2.1.12.3). Two sheets of Whatman filter paper were cut to fit across the transfer 

tray and into the reservoir on each side and with the exact width of the gels. The 

gels were then placed on top of the filter paper loaded side face down, with the 

wells of the gels closest to the reservoirs. The Amersham N+ Hybond 

membrane (GE Healthcare, Buckingham shire, U.K) was then cut to the exact 

size of the individual gels and placed directly on top of the gel, ensuring that no 

air bubbles were trapped between the gel and the membrane. Three pieces of 

Whatman filter paper the exact size of the gel were placed on top. Three packets 

of pocket tissues were stacked on top of the membrane. A glass plate covered all 

the stacks placed on the tray and a 500 g weight, usually in the form of a 

partially filled duran bottle, was placed on top of the stacks. Towers were left 

for the RNA to transfer from the gel to the membrane overnight at room 

temperature (as long as it did not drop below 20 °C). Generally only a 

maximum of 2 gels were placed in the same tower to ensure complete transfer 
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of RNA from the gels to the membranes. To ensure complete transfer room 

temperature must be kept constant.  

2.2.6.3.2 Disassembly of Northern Blots Following Nucleic Acid Transfer 

The Northern Blot tower (Section 2.2.6.3.1) was taken apart and the 

membrane and gel were removed together and placed on clean tissue paper, gel 

facing upwards. The position of the wells was carefully marked with a pencil 

onto the corresponding place on the membrane, and the gel was peeled away 

from the membrane. The membrane was washed in SSC buffer (2X, 40 ml) 

(Section 2.1.12.4) for 2 X 5 min with gentle rocking. The membrane was 

removed and placed on clean tissue paper. The membrane was placed in a UV 

crosslinker (Strategene, La Jolla, CA) and crosslinked at 12,000 µjoules for 20 – 

50 sec (autocrosslink). The membrane was then viewed on a UV box where the 

rRNA subunits (26S, 18S and 5s) were carefully marked at the edge of the blot. 

The membrane was placed in a Hybaid tube with the nucleic acid side facing 

inwards and pre-heated pre-hybridisation buffer (15 ml) (Section 2.1.12.7.2) 

was added. The membrane was rotated in a Hybaid oven at 42 
o
C for 

approximately 4 – 5 hr.  

2.2.7 Digioxigenin (DIG) – Detection of RNA on Northern Blot 

2.2.7.1 Generation of DIG-labelled Probes 

DIG-labelled probes were generated as perviously described in Section 

2.2.4 and Table 2.5. Probes were handled in the same way as all other probes 

previously described.  
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2.2.7.2 Pre-Hybridisation oy Nylon Membrane Following UV Crosslinking 

Pre-hybridisation was performed exactly as described previously for 

Southern Blot Analysis (Section 2.2.5.3)  

2.2.7.3 Addition of DIG-labelled Probe to Northern Blots 

This was performed exactly as described previously for Southern blot 

Analysis (Section 2.2.5.4). 

2.2.7.4 DIG Detection 

This was performed exactly as described previously for Southern Blot 

analysis (Section 2.2.5.5). 

2.2.7.5 Developing the Northern Blot Membrane 

This was performed exactly as described previously for Southern Blot 

analysis (Section 2.2.5.6).  

2.2.8 Dialysis of recombinant protein. 

Purified recombinant gliG (4 ml; 9 mg/ml) was acquired in 4M urea 

(Carberry, 2008). An aliquot (5 ml; 250 µg/ml) was pipetted into dialysis tubing 

which was tied at one end. The recombinant GliG was dialysed into 50 mM  

sodium carbonate buffer pH 9.4 twice for 3 hr (Section 2.1.14). Following 

dialysis, GliG was removed from the dialysis tubing, aliquoted and stored at – 

20 °C until required for analysis. 
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2.2.9 Recombinant Protein GST Activity Assays 

2.2.9.1 1-Chloro-2, 4-dinitrobenzene (CDNB) Assay 

PPB, GSH and CDNB (Section 2.1.15) were added to a 1.5 ml Eppendorf 

and 900 #l  incubated at 30 ºC for exactly 10 min. Tube contents were 

transferred to a UV suitable cuvette. For either the blank or protein sample, 100 

#l of dialysate buffer or 100 # l of dialysed protein sample were added to the 

cuvette, mixed by inversion and blanked immediately at A340nm (Table 2.6). The 

change in absorbance at A340nm was then recorded every 15 sec for 3 min. For 

each the blank and sample the reaction was repeated 3 times. The extinction co-

efficient of CDNB at A340nm is 9.6 x 10
3
 M

-1
.cm

-1
 and activity was measured as 

Units/mg protein. 

 

Table 2.6. Components of the CDNB Activity assay. 

Buffer Test (µ l) Blank (µ l) 

100 mM PPB 790 790 

25 mM GSH 100 100 

50 mM CDNB 10  10 

Dialysate __ 100 

GliG 100 __ 
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2.2.9.2 1, 2- Epoxy- (3- (4- nitrophenoxy) propane  

PPB, GSH and EPNP (900 # l) (Section 2.1.15) were added to a 1.5 ml 

Eppendorf and incubated at 30 ºC for exactly 10 min. Tube contents were 

transferred to a UV suitable cuvette For either the blank or protein sample 100 

#l of dialysate buffer or 100 # l of dialysed protein sample were added to the 

cuvette, mixed by inversion and immediately blanked at A360nm (Table 2.7). The 

change in absorbance at A360nm was then recorded every 15 sec for 3 min. For 

each the blank and sample the reaction was repeated 3 times. The extinction co-

efficient of EPNP at A360nm is 0.5 mM
-1

.cm
-1

 and activity was measured as 

Units/mg protein. 

 

Table 2.7. Components of the EPNP Activity assay. 

Buffer Test (µ l) Blank (µ l) 

100 mM PPB 790 790 

25 mM GSH 100 100 

0.5 mM EPNP 10  10 

Dialysate __  100 

GliG 100 __ 
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2.2.10 A. fumigatus Plate Assays 

A. fumigatus wild-type and mutant strains were grown on AMM agar for 5 

days at 37 °C after which conidia were harvested (Section 2.2.1.1). Conidia was 

serially diluted to 10 
-2

 and 10 
-4

 in PBS. Aliquots (5 µl) of each dilution was 

spotted onto agar plates containing various additives (Section 2.2.1.1 and Table 

2.1). Plates were incubated at 37 °C and growth was monitored at specific time 

intervals by measuring the diameter of radial growth (cm) of each colony. Two-

way ANOVA analysis was performed to determine the statistical significance 

between strains on the various additives.  

2.2.11 Small Scale Organic Extraction of A. fumigatus Culture 

Supernatants  

A. fumigatus culture supernatants (20 ml) were added to chloroform (20 

ml) in 50 ml Falcon tubes which were sealed with parafilm. The mixtures were 

then placed on a rotating wheel overnight. The mixtures were removed and 

centrifuged for 10 min at 650 x g. The top aqueous layers were removed and 

discarded and the bottom organic layers were stored at -20 
o
C until required. 

2.2.12 Large Scale Organic Extraction of A. fumigatus Culture 

Supernatants  

A. fumigatus cultures (1 L) were grown in AMM (Section 2.1.1.5.2) in a 

conical flask (5 L) for 48 hr. Mycelia was harvested, and the culture supernatant 

was collected in a clean sterile duran. To the supernatant, an equal volume of 

chloroform (CHCl3) was added in a 2 L separating funnel. The mixture was 

shaken vigorously, with intermittent gas release, for 5 min. The funnel was 

clamped securely to a retort stand and allowed to separate. Once two defined 



 110 

phases resolved the lower chlorform layer was dispensed into a clean 1 L duran 

and stored at 4 °C until required for rota-evaporation. The procedure was 

repeated a second time on the same batch of supernatant for a double extraction. 

(Experimental note: If subsequent NMR analysis was to be performed on a 

metabolite of interest, no plastic was used throughout this entire procedure i.e., 

from culturing, to organic extraction to purification). 

2.2.13 Rotary evaporation of Organic Extraction Samples 

Organic extracts (Section 2.2.11 or 2.2.12) were placed in an evaporation 

bulb and the bulb was evaporated under vacuum whilst sitting in a water bath 

set to 37 
o
C (Heidolph Laborata 4001 efficient, Vacuubrand CVC 2000 II). The 

chloroform evaporated leaving the dried organic extract in the bulb. The extracts 

were resuspended in HPLC grade methanol in sequential washes (200 – 500 µl) 

until all the dried material was fully resuspended. The resuspended extract was 

then transferred to clean glass vial and stored at – 20 
o
C. 

2.2.14 Comparative Metabolite Profile Analysis by Reverse Phase – High 

Performance Liquid Chromatography (RP – HPLC)  

2.2.14.1 RP – HPLC Analysis 

Organic extracts from supernatants (Section 2.2.11 or 2.2.12) were 

analysed by RP – HPLC with UV detection (Agilent 1200 system), using a C18 

RP – HPLC column (Agilent Zorbax Eclipse XDB-C18; 5 mm particle size; 4.6 

x 15 mm) at a flow rate of 1 ml/min. A mobile phase of water (Section 

2.1.13.1.1) and acetonitrile (Section 2.1.13.1.2) with TFA, was used under 

various gradient conditions (Table 2.8, Table 2.9 and Table 2.10). Injection 

volume was either 20 or 100 µl.  



 111 

Table 2.8. RP – HPLC Gradient 1. 

 Time (min) % B % B / min 

1 0 5  

2 5 5 95 % " B / 20 min 

3 25 100 4.75 % " B / min 

4 28 100  

5 30 5  

 

Table 2.9. RP – HPLC Gradient 2.  

 Time (min) % B % B / min 

1 0 5  

2 5 5  

3 16 60 5 % " B / min 

4 19 100 13 % " B / min 

5 21 5  

 

Table 2.10. RP – HPLC Gradient 3.  

 Time (min) % B % B / min 

1 0 5  

2 5 5 95 % " B / 24 min 

3 29 100 4 % " B / min 

4 32 100  

5 34 5  

6 44 5  
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2.2.15 Reduction and Alkylation of Pure Gliotoxin  

2.2.15.1 Sodium Borohydride (NaBH4) Mediated Reduction of Gliotoxin 

and Subsequent Alkylation Under Organic Conditions 

Gliotoxin (100 µl; 100 µg/ml methanol; 30.6 nmol gliotoxin) (Section 

2.1.16.2) was reduced following the addition of NaBH4 (2.5 µl; 50 mM; 120 

nmol) (Section 2.1.16.6), followed by gentle mixing by vortexing and 

incubation for 60 min at room temperature. A negative control sample where no 

NaBH4 was added was also prepared. Alkylation of reduced gliotoxin was 

performed using the alkylation agent iodoacetamidofluorescein (5’-IAF). 5’-

IAF (20 µl 10 mg/ml; 400 nmol) (Section 2.1.16.12) was added to the reduced 

or unreduced gliotoxin preparations, followed by vortexing of the resultant 

mixtures briefly. Samples were wrapped in tinfoil and incubated for 40 min in 

the dark at room temperature prior to HPLC analysis using gradient 1 (Table 

2.8) and subsequent and MALDI-ToF analysis (Section 2.2.16.1).  

2.2.15.2 Dithiothreitol (DTT) Mediated Reduction of Gliotoxin and 

Subsequent Alkylation Under Organic Conditions 

Gliotoxin (100 µl; 100 µg/ml methanol; 30.6 nmol gliotoxin) (Section 

2.1.16.2) was reduced following the addition of DTT (6 µl; 10 mM) (Section 

2.1.16.9), followed by gentle mixing by vortexing and incubation for 60 min at 

room temperature. A negative control sample where no DTT was added was 

also prepared. Alkylation of reduced gliotoxin was performed using the 

alkylation agent iodoacetamidofluorescein (5’-IAF). 5’-IAF (20 µl 10 mg/ml; 

400 nmol) was added to the reduced or unreduced gliotoxin preparations, 

followed by vortexing of the resultant mixtures briefly. Samples were wrapped 
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in tinfoil and incubated for 40 min in the dark at room temperature prior to 

HPLC analysis using gradient 1 (Table 2.8). 

2.2.15.3 Tris(2-carboxyethyl)phosphine (TCEP) Mediated Reduction of 

Gliotoxin and Subsequent Alkylation Under Organic Conditions 

Gliotoxin (100 µl; 100 µg/ml methanol; 30.6 nmol gliotoxin) (Section 

2.1.16.2) was reduced following the addition of TCEP (2.5 µl; 50 mM) (Section 

2.1.16.9), followed by vortexing and incubation for 60 min at room temperature. 

A negative control sample where no TCEP was added was also prepared. 

Alkylation of reduced gliotoxin was performed using the alkylation agent 

iodoacetamidofluorescein (5’-IAF). 5’-IAF (20 µl 10 mg/ml; 400 nmol) was 

added to the reduced or unreduced gliotoxin preparations, followed by vortexing 

of the resultant mixtures briefly. Samples were wrapped in tinfoil and incubated 

for 40 min in the dark at room temperature prior to HPLC analysis using 

gradient 1 (Table 2.8). 

2.2.16 MALDI-ToF Analysis 

2.2.16.1 MALDI-ToF Detection of Labelled Gliotoxin  

Mass Spectrometry was carried out using an Ettan! MALDI-ToF mass 

spectrometer (Amersham Biosciences (Europe) GmbH, Freiburg, Germany). 

Samples (1 µl) for mass determination were mixed with #-cyano-4-

hydroxycinnaminic acid (4-HCCA) (Section 2.1.17.1) and deposited onto mass 

spectrometry slides and allowed to dry prior analysis. All samples were 

subjected to delayed extraction reflectron MALDI-ToF analysis with a nitrogen 

laser (337 nm) at 20 kV. Internal calibrants, Angiotensis III and ACTH 

fragment 18-39, were used to calibrate spectra.  
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2.2.17 Thin Layer Chromatography (TLC) 

TLC analysis used Merck silica gel 60-F254 TLC plates (aluminium 

backed). Solvent systems of dichloromethane : methanol were used as mobile 

phase (Section 2.1.18.1 or 2.1.18.2). Samples (1 µl) were applied using a 

capillary tube and allowed to dry fully before it was subjected to the mobile 

phase. The plates were viewed under a UV box (254 nm). Images were obtained 

using a Fluorescence Scanner (Typhoon Variable Mode Imager; GE Healthcare) 

at 488/520 nm excitation and emission respectively (Sensitivity setting: 600 V; 

50 µm pixel size).  

2.2.18 Preparative Thin Layer Chromatography (pTLC)  

Samples were spotted along a straight line approximately 2 cm from the 

bottom of the TLC plate, using a capillary, tube and allowed to dry (Silica gel, 

UV 254 nm, 20 x 20 cm, 50 µm, Analtech, Newark, Delaware). A second 

application of the sample was spotted directly on top of the first sample after it 

had dried. TLC was run in a mobile phase of dichloromethane: methanol (97:3 

0.5 % (v/v) acetic acid). The chromatography was stopped 1 cm from the top 

and the plates were allowed to dry completely. Once dry, the TLC plate was 

subjected to a second round of chromatography in the same mobile phase. This 

was performed to obtain better resolution of the band of interest. Plates were 

viewed under a UV box (254 nm) and bands of interest were etched out using a 

glass pasteur pipette. The band of interest was excised carefully and the excised 

silica was placed in a clean 50 ml glass conical. The excised silica was washed 

in acetone (20 ml), and passed through filter paper to remove the silica and keep 

the flow through, the silica was washed with a 1 ml aliquot of acetone. This was 

repeated 5 times. The acetone flow though was then rota-evaporated to complete 
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dryness (Section 2.2.13). (Note: If the extracted material was needed for NMR 

analysis no plastic apparatus was used during this process).  

2.2.19 Time Course Monitoring of NaBH4 mediated reduction of Gliotoxin  

Gliotoxin (100 µl; 100 µg/ml methanol; 30.6 nmol gliotoxin)  (Section 

2.1.16.2) was reduced following the addition of NaBH4 (2.5 µl; 50 mM; 120 

nmol) (Section 2.1.16.6), followed by vortexing. Samples were incubated at 

specific time intervals of 0, 15, 30, 60 and 120 min, respectively before they 

were subjected to HPLC analysis using gradient 2 (Section 2.2.14.1 and Table 

2.9). 

2.2.20 Reduction and Alkylation of Native Gliotoxin Produced by A. 

fumigatus  

2.2.20.1 Reduction and Alkylation of Native Gliotoxin produced by A. 

fumigatus – Method 1 

A. fumigatus liquid cultures (AF293; 48 hr; 37 °C) were filtered through 

autoclaved miracloth and the supernatant was kept. Organic extracts (Section 

2.2.11) of A. fumigatus supernatants were generated. The extracts (100 µl) were 

reduced with NaBH4 (2.5 µl) (Section 2.1.16.6), vortexed and allowed to 

incubate at room temperature for 60 min. The sample was then labelled with 5’-

IAF (20 µl 10 mg/ml; 400 nmol) (Section 2.1.16.11), wrapped in tinfoil, 

vortexed and allowed to incubate in the dark at room temperature for 40 min. 

This was followed by HPLC analysis under gradient 1 (Table 2.8).  
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2.2.20.2 Reduction and Alkylation of Native Gliotoxin produced by A. 

fumigatus – Method 2 

A. fumigatus liquid cultures (AF293; 48 hr; 37 °C) were filtered through 

autoclaved miracloth and the supernatant was retained. Organic extracts 

(Section 2.2.11) of A. fumigatus supernatants were generated. The extracts (100 

µl) were reduced with NaBH4 (2.5 µl) (Section 2.1.16.6), vortexed and allowed 

to incubate at room temperature for 60 min. The sample was labelled with 5’-

IAF (20 µl 10 mg/ml; 400 nmol) (Section 2.1.16.11), wrapped in tinfoil, 

vortexed and allowed to incubate in the dark at room temperature for 40 min. 

This was followed by HPLC analysis under gradient 3 (Table 2.10).  

2.2.20.3 Reduction and Alkylation of Native Gliotoxin Produced by A. 

fumigatus – Method 3 

A. fumigatus liquid cultures (AF293; 48 hr; 37 °C) were filtered through 

autoclaved miracloth and the supernatant was kept. Organic extracts (Section 

2.2.11) of A. fumigatus supernatants were generated. The extracts (100 µl) were 

reduced with NaBH4 (2.5 µl) (Section 2.1.16.6), vortexed and allowed to 

incubate at room temperature for 60 min. The sample was labelled with 5’-IAF 

(20 µl 3 mg/ml; 120 nmol) (Section 2.1.16.12), wrapped in tinfoil, vortexed and 

allowed to incubate in the dark at room temperature for 40 min. This was 

followed by HPLC analysis under gradient 3 (Table 2.10). 

  



 117 

2.2.21 Reduction and Alkylation of Gliotoxin Spiked Supernatant Without 

Prior Organic Extraction 

2.2.21.1 Reduction (50 mM NaBH4) and Alkylation of Culture 

Supernatants Spiked With Gliotoxin Without Prior Organic 

Extraction 

A. fumigatus liquid cultures (AF293; 48 hr; 37 °C) were filtered through 

autoclaved miracloth and the supernatant was kept. The pH of the supernatant 

was adjusted from pH 3.29 to pH 7.5 with 1M sodium phosphate (Section 

2.1.16.5). The pH adjusted supernatant (50 µl) was spiked with gliotoxin to a 

final concentration of gliotoxin of 327 µg/ml and DMSO (50 µl) was added. The 

gliotoxin spiked supernatant sample was reduced with NaBH4 (50 mM) (3.3 µl) 

(Section 2.1.16.6), vortexed and incubated at room temperature for 60 min. The 

sample was labelled with 5’-IAF (20 µl 10 mg/ml; 400 nmol) (Section 

2.1.16.11), wrapped in tinfoil, vortexed and allowed to incubate in the dark at 

room temperature for 40 min followed by HPLC analysis under gradient 3 

(Table 2.10).  

2.2.21.2 Reduction (500 mM NaBH4) and Alkylation of Culture 

Supernatants Spiked With Gliotoxin Without Prior Organic 

Extraction 

A. fumigatus liquid cultures (AF293; 48 hr; 37 °C) were filtered through 

autoclaved miracloth and the supernatant was kept. The pH of the supernatant 

was adjusted from pH 3.29 to pH 7.5 with 1M sodium phosphate (Section 

2.1.16.5). The pH adjusted supernatant (50 µl) was spiked with gliotoxin to a 

final concentration of gliotoxin 327 µg/ml and DMSO (50 µl) was added. The 
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spiked supernatant sample was reduced with NaBH4 (500 mM) (3.3 µl) (Section 

2.1.16.7, vortexed and incubated at room temperature for 60 min. The sample 

was labelled with 5’-IAF (20 µl 10 mg/ml; 400 nmol) (Section 2.1.16.11), 

wrapped in tinfoil, vortexed and allowed to incubate in the dark at room 

temperature for 40 min followed by HPLC analysis under gradient 3 (Table 

2.10).  

2.2.22 Reduction With 500 mM NaBH4 and Alkylation of Native Gliotoxin 

Produced by A. fumigatus Without Prior Organic Extraction 

A. fumigatus liquid cultures (AF293; 48 hr; 37 °C) were filtered through 

autoclaved miracloth and the supernatant was kept. The pH of the supernatant 

was adjusted from pH 3.29 to pH 7.5 with 1M sodium phosphate (Section 

2.1.16.5). Supernatant (100 µl) was reduced with NaBH4 (500 mM) (2.5 µl) 

(Section 2.1.16.7), vortexed and incubated at room temperature for 60 min. The 

sample was then labelled with 5’-IAF (20 µl 3 mg/ml; 120 nmol) (Section 

2.1.16.12), wrapped in tinfoil, vortexed and allowed to incubate in the dark at 

room temperature for 40 min followed by HPLC analysis under gradient 3 

(Table 2.10).  

2.2.23 NMR 

Structural elucidation of a gliotoxin-related metabolite was undertaken 

using NMR analysis. Ultra pure and concentrated samples (6 – 10 mg) were 

generated by multiple large-scale organic extractions (Section 2.2.12) and pTLC 

(Section 2.2.18). All 
1
H, 

13
C, DEPT, COSY, HSQC and HMBC nuclear 

magnetic resonance spectra were recorded in CD3CN or CDCl3, on either a 

Bruker Avance spectrometer (25 °C) operating at 300 MHz for the 
1
H nucleus 
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and 75 MHz for the 
13

C nucleus or a Bruker Avance III spectrometer operating 

at 500 MHz for the 
1
H nucleus and 125 MHz for the 

13
C nucleus. Chemical 

shifts ($) are reported in ppm and referenced from the standard 

tetramethylsilane (TMS). All NMR was performed in collaboration with the 

Chemistry Department, NUI Maynooth or at Teagasc Ashtown Food Research 

Centre, Dublin.  

2.2.23.1 LC ToF Analysis 

LC-ToF analysis of organic extracts of A. fumigatus supernatant was 

performed on an Agilent HPLC 1200 series and injected (injection volume: 1 

µl) using electrospray ionisation inputted into a time of flight chamber 

(Agilent). The LC separation was done on a XDB C18 column (4.6 x 150 mm) 

using a water/acetonitrile (both containing 0.1 % (v/v) formic acid) gradient at a 

flow rate of 0.5 mL/min. The gradient was started at 50 % (v/v) acetonitrile, 

which was increased to 100 % acetonitrile in 10 min; 100 % acetonitrile was 

maintained for 5 min before the gradient was returned to starting conditions. 

Spectra were collected at 0.99 spectra per second. All LC-ToF was performed in 

collaboration with the Chemistry Department, NUI Maynooth. 

2.2.24 Feeding Experiments 

2.2.24.1 Feeding Experiment Using Cultures 

A. fumigatus AF293 was cultured in AMM media (10 ml) (Section 

2.1.1.5.2) at 37 
o
C, for 24 hr. At 24 hr the gliotoxin related metabolite was 

added to the cultures, and a 1 ml aliquot of the supernatant was removed. 

Cultures were incubated for a further 15, 60 and 180 min and an aliquot (1 ml) 

of the supernatant was removed at each time point. A control sample was 
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treated the same except nothing was spiked into the culture. The 1 ml aliquots of 

supernatant from each time point were subjected to organic extraction (Section 

2.2.11) at a 1:1 ratio of chloroform. The organic extracts were dried overnight in 

a fume hood until all chloroform had evaporated. The dried extract was 

resuspended in HPLC grade methanol (50 µl). Extracts (20 !l) were then 

analysed by HPLC (Section 2.2.14.1) to determine whether the gliotoxin related 

metabolite had been taken up by A. fumigatus.  

2.2.24.2 Feeding Experiment Using Protoplasts 

Protoplasts of A. fumigatus AF293 were generated (Section 2.2.3.3) and 

counted. An aliquot of the protoplast suspension (100 !l) was added to Buffer 

L6 (900 µl) (Section 2.1.11.5). The gliotoxin related metabolite was added to 

the samples. A control sample was also set up where HPLC grade methanol was 

added to the cultures. Immediately after this addition, a 100 µl aliquot of the 

suspension was removed from each sample. Cultures were incubated at 25 °C, 

100 rpm for a further 1, 3 and 24 hr and an aliquot (100 µl) of the supension was 

removed at each time point. The aliquots were centrifuged at 1769 x g for 12 

min to pellet the protoplasts. The supernatant was removed carefully and added 

to a fresh tube. The protoplast pellet was resuspended in buffer L6 (100 µl) 

(Section 2.1.11.5). Separately, the supernatant (100 µl) and the resuspended 

protoplast pellet (100 µl) were subjected to organic extraction with HPLC grade 

chloroform (500 µl). The samples were mixed for 1 hr followed by 

centrifugation at 10,000 x g (10 min). The upper aqueous layer was discarded 

and the lower organic layere was dried completely. The samples were 

resuspended in HPLC grade methanol (50 !l) and then analysed by HPLC 

(Section 2.2.14.1) using gradient 1 (Table 2.8).  
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2.2.24.3 Feeding Experiments using Cultures and 
13

C L-Phenylalanine   

A. fumigatus "gliG liquid cultures where incubated in AMM (100 ml) 

(Section 2.1.1.5.2) at 37 °C for 24 hr. After 24 hr, 
13

C L-phenylalanine
 
(10mg) 

(Section 2.1.19) was added to the cultures and they were incubated for a further 

24 hr. The cultures were harvested using miracloth and the supernatant was 

retained in a clean sterile Duran bottle. The supernatant was pooled and 

subjected to organic extraction (Section 2.2.12). The gliotoxin related 

metabolite was purified by pTLC (Section 2.2.18). Confirmation of the structure 

of the compound was performed using LC-ToF (Section 2.2.23.1) and NMR 

(Section 2.2.23) analysis.  

2.2.25 Galleria mellonella Virulence Testing 

Virulence testing using G. mellonella larvae was carried according to 

Reeves et al. (2004). Briefly, sixth instar larvae of G. mellonella  (Lepidoptera: 

Pyralidae, the Greater Wax Moth) (Mealworm Company, Sheffield, England) 

were stored in wood shavings in the dark at 15 °C. Larvae weighing between 

0.2 and 0.4 g were used for testing. Conidial suspensions of A. fumigatus  

strains were prepared in PBS (Section 2.2.1.1). G. mellonella larvae were 

divided into groups of ten and placed in 90 mm petri dishes that contained a 

single sheet of filter paper. All were weighed and size matched. The larvae (n = 

10) were inoculated through the last proleg on the left with a fungal load of 1 x 

10
7 

conidia per inoculum (20 µl). As a control, larvae were inoculated with 

sterile PBS (20 µl) (Section 2.1.3). The larvae were incubated in a static 

incubator at 30 
o
C in the dark. Mortality rates were recorded over 72 hr. No 

response to stimulation and the lack of movement indicated larval death. The 

degree of melanisation was recorded with photographic images.  
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2.2.26 Statistical Analysis 

All data was analysed using built-in GraphPad prism version 5.01 

functions, as specified. The level of significance was set at P < 0.05 (*), P < 

0.001 (**), and P < 0.0001 (***), unless otherwise stated. Post-hoc comparisons 

between groups were performed using the Bonferroni multiple comparisons test, 

unless otherwise stated. 

2.2.27 Software Graphing 

All graphs were compiled using Graphpad Prism version 5.01, unless 

otherwise stated. 



 

 

 

 

 

Chapter 3 

 

 

Deletion and complementation of a glutathione s-

transferase, gliG, from Aspergillus fumigatus 



 123 

3. Chapter 3 Deletion and complementation of glutathione s-transferase, 

gliG, from Aspergillus fumigatus. 

3.1 Introduction 

Functional genomics is an important tool for fungal biology, which 

provides information which helps characterise a gene of interest. It allows the 

study of the corresponding gene product and it identifies the role the gene 

product has in specific downstream biochemical processes (Meyer, 2008; Kuck 

and Hoff, 2010). Specifically, this method can be employed to uncover the 

complex biosynthesis of biologically active secondary metabolites, such as 

gliotoxin. As detailed in Chapter 1, gliotoxin is a member of ETP class of 

compounds. These compounds are characterised by a disulphide bridged 

diketopiperazine ring synthesised from two amino acids (Fox and Howlett, 

2008). As yet, the function of gliG, a putative GST within the gliotoxin gene 

cluster, is unknown. Advanced molecular techniques have confirmed the 

function of several genes in A. fumigatus: including some of the genes 

contained within the gliotoxin cluster, such as; gliP, gliZ, gliA  and gliT 

(Gardiner et al., 2005a; Balibar and Walsh, 2006; Bok et al., 2006; Cramer et 

al., 2006; Kupfahl et al., 2006; Sugui et al., 2007; Spikes et al., 2008; Scharf et 

al., 2010; Schrettl et al., 2010). A functional genomics approach for the study of 

gliG has been employed in the work described in this Chapter. This was 

facilitated by the generation of a gliG mutant strain with a view to studying the 

impact of gene deletion on gliotoxin biosynthesis and resistance, respectively.  
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Prior to the work described in this Chapter the A. fumigatus genome was 

predicted to contain 23 putative GST (Morel et al., 2009). One of these genes, 

A. fumigatus gliG (AFUA_6G09690), forms part of the gliotoxin biosynthetic 

cluster (Gardiner and Howlett, 2005). Phylogenetic analysis of various members 

of the ascomycete taxa identified 14 fungi with putative ETP clusters (Patron et 

al., 2007). From these, 11 contained paralogues of A. fumigatus gliG ((Patron et 

al., 2007)). Partial cluster duplication was apparent in three fungi, A. fumigatus, 

N. fischeri and A. terreus. Notably, both Gibberella zeae (anamorph; F. 

graminaerum) and Chaetomium globosum did not contain a GST within the 

ETP cluster (Patron et al., 2007).  

The presence of a GST within this secondary metabolite cluster warranted 

further investigation into the function of this gene. Speculation as to the 

function of the GST within ETP clusters has identified two potential functions 

for this gene, (i) a role in the self-protection mechanism for the fungus against 

the toxic effects of the metabolite or, (ii) a biosynthetic role (McGoldrick et al., 

2005). As mentioned in Chapter 1, GST are primarily detoxification enzymes. 

The A. nidulans SM sterigmatocystin cluster contains GST (Brown et al., 1996), 

however, this gene remains uncharacterised with respect to metabolite function 

and cellular GST activity is also associated with aflatoxin production in A. 

parasiticus (Allameh et al., 2002). Observed GST activity during toxin 

production and the presence of GST within SM clusters led to the speculation 

that these enzymes play a role in detoxification of the SM (McGoldrick et al., 

2005). However, it has been postulated that A. fumigatus gliG may encode an 

enzyme which can form or break carbon-sulphur bonds (Gardiner et al., 2005b; 
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Howlett, 2008) and therefore this GST may have a biosynthetic function in 

gliotoxin production.  

To determine the role of A. fumigatus gliG, a putative GST within the 

gliotoxin gene cluster, functional analysis was performed using a gliG mutant 

strain. Therefore, the overall objectives of the work presented in this Chapter 

were to (i) perform phylogenetic analysis of all GST within A. fumigatus, (ii) 

perform phylogenetic analysis of A. fumigatus gliG with other sequenced fungal 

genomes, (iii) create replacement constructs using the bipartite method for the 

targeted deletion of gliG, (iv) delete gliG in two A. fumigatus strains, AF293 

(Nierman et al., 2005) and "akuB (da Silva Ferreira et al., 2006) and (v) 

complement A. fumigatus "gliG by reintroducing gliG into the mutant genome. 

The generation A. fumigatus "gliG strain will allow for comparative phenotypic 

analysis in the identification of a role for gliG and this investigation will be 

detailed in Chapter 4.  
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3.2 Results 

3.2.1 Phylogenetic analysis of GST within the A. fumigatus genome 

To investigate the relationship of A. fumigatus gliG to the other GST 

within the A. fumigatus genome a phylogenetic tree was constructed (in 

collaboration with Dr David Fitzpatrick, NUI Maynooth) (Figure 3.1) A. 

fumigatus gliG grouped in a clade (gliG clade A) with 4 other genes. Three of 

these are putative GST with no confirmation of function (AFUA_4G01440, 

AFUA_4G14530, AFUA_7G05500). One member of the clade, A. fumigatus 

gstA  (AFUA_3G10830) has previously been confirmed as a GST (Burns et al., 

2005). This GST is a paralogue of A. nidulans gstA  (Fraser et al., 2002), 

however, A. nidulans does not contain a gliotoxin gene cluster (Nierman et al., 

2005).  
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Figure 3.1. Phylogenetic analysis of A. fumigatus gliG and the 25 other putative 

GST in A. fumigatus. A. fumigatus gliG (AFUA_6G09690) clusters with three 

putative GST in A. fumigatus (AFUA_4G01440, AFUA_4G14530, 

AFUA_7G05500) and one confirmed theta class GST, A. fumigatus gstA 

(AFUA_3G10830). Bootstrap values are marked out of 1000, the gliG 

containing clade (gliG clade A) has a bootstrap value of 770, confirming good 

alignment.  

gliG clade A 
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3.2.2 Phylogenetic Analysis of A. fumigatus gliG With Other Sequenced 

Fungi 

To further investigate the phylogenetic relationship of A. fumigatus gliG 

to other sequenced fungi (Dr David Fitzpatrick, NUI Maynooth), the A. 

fumigatus gliG clade A (Figure 3.1) was searched against a database of other 

sequenced fungi (104 sequenced fungi; Appendix I) (Figure 3.2 and Table 3.1). 

Homologs were retrived and aligned using the multiple sequence aligner Muscle 

v3.7 (Edgar, 2004) with the default settings. Optimum models of protein 

evolution were selected using Modelgenerator (Keane et al., 2004) and these 

were used to reconstruct maximum likelihood phylogenies in Phyml v3.0 

(Guindon and Gascuel, 2003). Bootstrap resampling was performed 100 times 

on each alignment and majority rule consensus (threshold of 70%) trees were 

reconstructed. 

A. fumigatus gliG did not cluster with the other GST from the A. 

fumigatus gliG clade A and instead it clustered with other ETP producing fungi 

(gliG clade B; Figure 3.2); A. fumigatus, N. fischeri, P. marneffei (Penicillium 

spp), A. clavatus, Trichoderma. reesei, Magnaporthe grisea, Trichoderma virens, 

A . terreus, A . flavus, A. oryzae, Fusarium verticillioides (Fusarium spp), 

Mycosphaerella graminicola, Microsporum gypseum, Trichophyton equinum, 

Trichophyton tonsurans and Trichophyton rubrum. The last five have not been 

identified in previous phylogenetic analyses to contain a putative ETP cluster 

(Table 3.1) (Patron et al., 2007). Additionally, A. oryzae does not contain a 

putative gliotoxin gene cluster (Nierman et al., 2005). However, the possibility 

of A. oryzae not producing another ETP cannot be ruled out (Seya et al., 1986; 
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Gardiner et al., 2005b). The other genes in the gliG clade A are highlighted in 

red with the corresponding CADRE identification numbers.  
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Figure 3.2. Phylogenetic tree of A. fumigatus gliG clade A against other 

sequenced fungi (104 in total). (A) A. fumigatus gliG (highlighted in blue and 

indicated by the blue arrow) clusters with GST from other fungi with putative 

ETP clusters (branch highlighted in red). The bootstrap values are marked out of 

100, with the gliG clade B scoring a value of 100. All the members of the gliG 

clade B are members of the Pezizomycotina. The four other genes from the gliG 

clade A are indicated in red with the corresponding CADRE identification 

numbers included. (B) Magnification of A. fumigatus gliG clade B.  

B 

gliG  
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Table 3.1. Putative gliG paralogues. Fungi containing gliG paralogues 

identified in 2007 and those identified now in 2011.  

gliG paralogues (Patron et al., 2007) gliG paralogues (2011) 

L. maculans  na 

S. diversum  na 

A. fumigatus  A . fumigatus  

N. fischeri  N. fischeri   

P. lilacinoechinulatum P. marneffei (Penicillium spp) 

A. clavatus A. clavatus  

T. reesei  T. reesei  

M. grisea  M. grisea  

T. virens  T. virens  

A . terreus  A . terreus  

A . flavus  A . flavus  

A. oryzae  A. oryzae  

G. zeae (anamorph; F. graminaerum)  F. verticillioides (Fusarium spp) 

C. globosum  na 

 M. graminicola  

 M. gypseum  

 T. equinum  

 T. tonsurans  

 T. rubrum  

(na: sequence not available) 
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3.2.3 Generation of replacement constructs for the transformation of gliG. 

In order to determine the function of gliG, a gene deletion strategy was 

employed (Figure 3.3). Protoplast transformations were performed using two 

background strains on independent occasions, A. fumigatus AF293 and !akuB. 

Each A. fumigatus strain was co-transformed with two DNA constructs, each 

containing an incomplete fragment of the pyrithiamine (ptrA ) resistance gene 

which was excised from the plasmid pSK275. These fragments were fused to 

1.2 kb (5’) and 1.0 kb (3’) of gliG flanking sequences. These constructs were 

generated by PCR and transformed into the A. fumigatus strains. Southern 

analysis was used to determine targeted deletion of gliG. The constructs created 

for the deletion of gliG were generated from the flanking regions of wild-type 

target DNA (Figure 3.3). First round PCR amplified the 5’ flanking region of 

gliG, PCR1 (1047 bp), and the 3’ flanking region, PCR2 (1270 bp). The primers 

introduced a restriction site into the PCR amplified flanking region, SpeI for 

PCR1 and XhoI for PCR2. This facilitated targeted digestion and ligation of the 

5’ and 3’ flanking regions to the ptrA cassette individually. The PCR products 

were gel-purified to remove any non-specific PCR products (Figure 3.4) 

The pSK275 plasmid was independently linearised with SpeI and XhoI 

(Figure 3.3). PCR1 was digested with SpeI and PCR2 was digested with XhoI. 

The SpeI digested pSK275 plasmid was ligated to PCR1 that had also been 

digested with SpeI. The XhoI digested pSK275 plasmid was ligated to the XhoI 

digested PCR2. These ligation products were used as template for the final 

round of PCR. PCR3 used a nested primer (ogliG-5) and a second primer 

(optrA-2), which amplified a partial section of the ptrA gene creating the 5’ 

construct (2528 bp). PCR4 used a second nested primer (ogliG-6) and the 
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second primer (optrA-1), which amplified a partial section of the ptrA gene 

creating the 3’ construct (2305 bp). The PCR products were gel-purified to 

remove any non-specific products (Figure 3.5) and concentrated prior to 

protoplast transformation.  
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Figure 3.3. Schematic representation of the gene deletion strategy employed for 

the generation of A. fumigatus !gliG mutant strains.  

PCR and Southern analysis to 
confirm single homologous 

integration 

 

4910 bp 

2077 bp 
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Figure 3.4. PCR products of the gel purified flanking regions of gliG. Lane M: 

Molecular weight marker (Roche VII) (Section 2.1.10.1.8.1), Lane 1: PCR 1 

(1047 bp) is the 5’ flanking region of gliG, Lane 2: PCR 2 (1270 bp) is the 3’ 

flanking region of gliG.  

 

 

M      1              M         2   

1270 bp 

1047 bp 
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Figure 3.5. PCR products of the gel purified PCR 3 and PCR 4 for the deletion 

of A. fumigatus gliG. Lane M: Molecular weight marker (Roche VII) (Section 

2.1.10.1.8.1), Lane 1: PCR 3 (2528 bp) which comprises the 5’ flanking region 

of gliG ligated to a partial section of ptrA , Lane 2: PCR 4 (2305 bp) which 

comprises the 3’ flanking region of gliG ligated to a partial section of ptrA .  

2528 bp 

2305 bp 

M      1        2   
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3.2.4 Generation of DIG-labelled probes by PCR for transformant 

identification. 

Two probes were prepared by PCR amplification for use in Southern blot 

analysis. The probes contained DIG-labelled nucleotides, which facilitated 

detection with Southern blot analysis, as described in Section 2.2.5. A 5’ probe 

was made using primers ogliG-4 and ogliG-5, which detected a region just 

upstream of gliG (data not shown). A 3’ probe was made using primers ogliG-3 

and ogliG-6, which detected a region just downstream of gliG (Figure 3.6).  
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Figure 3.6. Generation of a DIG- labelled 3’ probe by PCR. Lane M: Molecular 

weight marker (Roche VII) (Section 2.1.10.1.8.1), Lane 1: 3’ gliG probe PCR 

product (1201 bp).  

      M           1           

1201 bp 
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3.2.5 Protoplast transformation facilitated the deletion of gliG from 

Aspergillus fumigatus AF293 and !akuB  

The constructs from Section 3.2.1 were transformed into protoplasts of A. 

fumigatus AF293 and !akuB on independent occasions. Approximately 5 µg of 

each 5’ and 3’ construct was used per transformation event. The transformation 

procedure was carried out as described in Section 2.2.7. The resultant 

transformants were selected for on agar plates containing pyrithiamine (100 

µg/ml). The colonies that grew on the agar plates containing pyrithiamine were 

considered resistant and therefore predicted to have reconstituted ptrA  

incorporated into the genome.  

For the !akuB transformation event, 37 colonies were observed on 

pyrithiamine selection plates. Genomic DNA from nine colonies was digested 

with an EcoRV restriction enzyme (Figure 3.7). These were screened by 

Southern analysis using a 3’ probe (Figure 3.10). Comparison of the Southern 

blot against the DNA gel identified the band of interest based on the distance it 

appeared down the blot. The mutant band (!gliG; 3866 bp) appeared at 1.7 cm 

down the blot, this was confirmed with a ruler. Two colonies (colony 7 and 9) 

were selected for single spore isolation and it was believed that colony 9 

contained the wild-type signal, possibly due to the presence of a heterokaryon. 

Further single spore isolation could potentially eliminate this wild-type signal. 

Due to the presence of a non-specific band in EcoRV digested samples a 

different enzyme was used for the single spore isolated Southern blot. Single 

spore isolates of colonies 7 and 9 were digested with XbaI and a second round 

of Southern blot analysis using the 5’ probe was performed. Comparison of the 

Southern blot against the DNA gel identified the bands of interest based on the 
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distance they appeared down the gel. This identified a gliG mutant (lane 3) 

(!gliG; 1668 bp) and this strain was confirmed as !gliG!akuB 
 (Figure 3.10). 

This mutant band appeared 2.7 cm down the blot, which was confirmed using a 

ruler on the Southern blot. The isolate from lane 4 was eliminated based on the 

presence of an unknown additional band and isolates from lane 5 and 6 were 

eliminated as they contained the wild-type signal. Isolates from lane 1 and 2 

were discounted, as only one !gliG strain was necessary.  

For the AF293 transformation, 45 colonies were observed on pyrithiamine 

selection plates. Genomic DNA from twenty colonies was digested individually 

with XbaI restriction enzyme (Figure 3.9). The colonies were screened by 

Southern analysis using a 5’ probe (Figure 3.11). Three colonies (colonies 14, 

15 and 20) were selected for single spore isolation. Single spore isolates of 

colonies 14, 15 and 20 were digested with XbaI. A second round of Southern 

blot analysis with the same probe identified a gliG mutant (!gliG; 1668 bp) and 

this strain was confirmed as !gliG (Figure 3.11). In !gliG an 828 bp internal 

section of the gliG coding region was replaced with a 2.0 kb region containing 

ptrA  from the pSK275 vector. 
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Figure 3.7. Illustration showing the Southern blot analysis of A. fumigatus wild-type and !gliG using an EcoRV restriction enzyme and a 3’ 

probe (1002 bp). In the wild-type a fragment of 1475 bp was identified using a 3’ probe. In the !gliG a fragment of 3866 bp was identified using 

a 3’ probe. 

Wild-type  

!gliG  

3’ Probe 

3’ Probe 
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Figure 3.8. Identification of A. fumigatus !gliG
!akuB

. First round Southern 

analysis of !gliG transformants in A. fumigatus !akuB. Here, a 3’ DIG-labelled 

probe was used to detect the predicted presence of 3.8 and 1.4 kb fragments in 

EcoRV digested genomic DNA from !gliG or wild-type, respectively. Lanes 1-

9: potential transformants. Putative transformants in lane 7 (colony 7) and 9 

(colony 9) were selected for single spore isolation. Isolate in lane 7 contained a 

non-specific band and the isolates in lane 9 contained both wild-type and mutant 

signal as well as an non-specific band.  
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Figure 3.9. Illustration showing the Southern blot analysis of A. fumigatus wild-type and !gliG using an XbaI restriction enzyme and a 5’ probe 

(1200 bp). In the wild-type a fragment of 2124 bp was identified using a 5’ probe. In the !gliG a fragment of 1668 bp was identified using a 5’ 

probe.  

Wild-type  

!gliG  

5’ Probe 

5’ Probe 

1668 bp 
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Figure 3.10. Identification of A. fumigatus !gliG
!akuB

. Second round Southern 

analysis of single spore isolates of !gliG transformants in A. fumigatus !akuB. 

Here, the 5’ DIG-labelled probe was used to detect the predicted presence of 1.6 

and 2.1 kb fragments in XbaI digested genomic DNA. Lane 1-3: Single spore 

isolates of potential mutant strain from colony 7, Lane 4-6: Single spore isolates 

of potential mutant strain from colony 9. The presence of an unknown band 

from the isolate in lane 4 was evident, this isolated was eliminated from 

selection. Isolates in lanes 5 and 6 contained the wild-type bands so both were 

eliminated. The isolate from lane 3 was confirmed as the !gliG strain, 

!gliG!akuB
. Isolates in lane 1 and 2 were not used as only one !gliG strain was 

necessary.  

2124 bp 

1668 bp 
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Figure 3.11. Identification of A. fumigatus !gliG
AF293

. (A and B) First round 

Southern analysis of ! gliG transformants in A. fumigatus AF293. Here, a 5’ 

DIG-labelled probe was used to detect the predicted presence of 1.6 and 2.1 kb 

fragments in XbaI digested genomic DNA from !gliG and wild-type, 

respectively. Lane 1-20: potential transformants. Putative transformants in lane 

14 (colony 14), lane 15 (colony 15) and 20 (colony 20) were selected for single 

spore isolation. (C) Second round Southern analysis of single spore isolates of 

the putative transformants in A. fumigatus AF293. Here, the 5’ DIG-labelled 

probe was used to detect the predicted presence of 1.6 and 2.1 kb fragments in 

XbaI digested genomic DNA from !gliG and wild-type, respectively. Lane 1 

and 2: Single spore isolates of potential mutant strain from colony 14, Lane 3 

and 4: Single spore isolates of potential mutant strain from colony 20, Lane 5-

1       2      3     4       5      6      7      8      9     10     wt  !gliG 

2124 bp 

1668 bp 

2124 bp 

1668 bp 
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  11    12    13   14   15     16    17    18    19    20 !gliG wt  
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10: Single spore isolates of potential mutant strain from colony 15. The isolate 

from lane 10 was confirmed as the !gliG strain, !gliG
AF293

.   
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3.2.6 Complementation of gliG into !gliG
AF293 

 

Once gliG had been successfully deleted from A. fumigatus AF293 and 

!akuB, it was necessary to reintroduce the gene into the genome of A. fumigatus 

!gliG::ptrA . This would ensure the phenotype observed could be solely 

attributed to the product of gliG. The complementation method for gliG 

reintroduction is described in Section 2.2.3.  

3.2.6.1 Generation of a Complementation Construct  

The full gliG coding sequence along with both 5’ and 3’ flanking regions 

were cloned into TOPO (Figure 3.12). A phleomycin resistance gene, ble, was 

digested from the BPhleo plasmid (Figure 3.12), and was then cloned into the 

topogliG vector producing a topogliGphleo vector (Figure 3.13). To confirm 

correct cloning of gliG and ble, a diagnostic digest was performed on potential 

plasmids (Figure 3.13). This confirmed two constructs were cloned correctly as 

the expected fragments of 2780 and 7519 bp were observed after digestion with 

SmaI. This vector was then used for gliG complementation. Before 

transformation the topogliGphleo vector was linearised with HpaI (Figure 3.14). 
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Figure 3.12. Plasmid maps of BPhleo and TopogliG. (A) BPhleo contains the 

ble gene that is indicated by the black arrow. Restriction sites, KpnI and XbaI, 

facilitated the removal of ble for cloning into TopogliG. (B) TopogliG contains 

the full gliG coding sequence and the respective 5’ and 3’ flanking regions. 

Restriction sites, KpnI and SpeI, are indicated; these sites were used to clone in 

the ble gene. 

BPhleo 
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TopogliG   

6822 bp 
gliG  

ble 
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Figure 3.13. Diagnostic digest of the complementation plasmid that contains  

topogliGPhleo with the full gliG coding sequence and 5’ and 3’ flanking 

regions. The selection marker ble, is also present on this plasmid. (A) Plasmid 

map showing ble, indicated by the black arrow, and gliG which indicated by the 

grey arrow. The diagnostic digest used the restriction site SmaI as indicated. (B) 

M    1      2      3      4     5      6     7      8      9    10    11    M 
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Diagnostic digest of potential topogliGphleo plasmid. Digestion using SmaI 

would yield two fragments, 2780 and 7519 bp. Lanes 1-10: Plasmid 

topogliGphleo. Lane 11: Undigested plasmid. Lane M: Molecular weight 

marker (Roche VII) (Section 2.1.10.1.8.1). Lane 7 and 10: contains fragments 

2780 and 7519 bp. These expected fragments confirm that both of these 

plasmids were accurately cloned and suitable for complementation.  
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Figure 3.14. Plasmid map of topogliGphleo (10322 bp) linearised with the 

restriction enzyme HpaI which is indicated. Once linearised this plasmid was 

suitable for use in complementation of A. fumigatus !gliG
AF293

 .  

TopogliGPhleo 

10322 bp 
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3.2.6.2 Southern blot Analysis of Transformants from A. fumigatus gliG
C
 

Complementation 

Screening of the potential complemented transformants involved several 

rounds of Southern blot analysis. Figure 3.15 summarises the Southern strategy 

employed to confirm gliG
C
 complementation. Genomic DNA from all potential 

transformants was digested with EcoRV and probed with the 3’ probe. Southern 

blot analysis (Section 2.2.5) identified two putative complemented 

transformants, termed 15 and 17 (Figure 3.16). Both contained the predicted 

fragment sizes of 3.5 kb and 1.5 kb when analysed by Southern blot. These 

potential complemented transformants were single-spore isolated and genomic 

DNA of these isolates was digested with EcoRI. These digested isolates were 

probed with a gliG coding sequence probe to check for the presence of gliG. 

Three transformants were identified as complemented strains and were termed 

15.1, 15.4 and 17.1 (Figure 3.17). A third round of Southern blotting was 

performed and genomic DNA from these three complemented strains were 

digested with PstI. These strains (15.1, 15.4 and 17.1) were probed with a ptrA 

coding sequence probe to ensure the ptrA gene was present. The detection of 

ptrA  confirmed the three strains as gliG complemented strains, gliG
C 

15.1, gliG
C 

15.4 and gliG
C 

17.1 (Figure 3.18). Complementation was performed on 

!gliG!akuB
, however no transformants were observed on selection plates. 
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Figure 3.15. Illustration showing the Southern blot strategy for gliG complementation. (A) An EcoRV restriction enzyme of gliG
C
 generated 

fragments of 3481 bp and 1475 bp which were identified using a 3’ probe (1002 bp). (B) An EcoRI restriction enzyme of gliG
C
 generated a 

fragment of 2447 bp which was identified using a gliG coding sequence-specific probe (794 bp). (C) A PstI restriction enzyme of gliG
C
 

generated a fragment of 3568 bp which was identified using a ptrA-specific probe (559 bp).  

.  
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C 

3’ Probe  3’ Probe  

gliG cds Probe  
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Figure 3.16. Southern blot analysis of potential gliG complemented strains in A. 

fumigatus !gliG::ptrA genome. Genomic DNA was digested with EcoRV and 

probed with the 3’ probe. Lanes 1-10: Potential transformants screened; Lane 

M: DIG-labelled molecular weight marker (Roche VII) (Section 2.1.10.1.8.1). 

In lanes 5 and 7, transformants termed 15 and 17 are identified as potential 

complemented strains. Lane 11: Wild-type DNA that contains the predicted 

fragment of 1.5 kb only. Lane 12: !gliG DNA that contains neither the 3.4 or 

1.5 kb fragments.   
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Figure 3.17. Southern blot analysis of single-spore isolates of potential gliG 

complemented strains in A. fumigatus !gliG::ptrA genome. Genomic DNA of 

single-spore isolates was digested with EcoRI and probed with a gliG coding 

sequence probe. Lane M: DIG-labelled molecular weight marker (Roche VII) 

(Section 2.1.10.1.8.1). Lanes 1-10: Potential transformants screened with the 

expected fragment (2447 bp) indicated. In lanes 1, 4 and 6, transformants 

termed 15.1, 15.4 and 17.1 respectively, are identified as potential 

complemented strains.  
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Figure 3.18. Southern blot analysis of potential gliG complemented strains in A. 

fumigatus !gliG::ptrA genome. Genomic DNA was digested with PstI and 

probed with a ptrA -specific probe. Lane M: DIG-labelled molecular weight 

marker (Roche VII) (Section 2.1.10.1.8.1). Lanes 1-12: Potential transformants 

screened with the expected fragment (3568 bp) indicated. In lanes 1, 5 and 7 

transformants termed 15.1, 15.4 and 17.1 respectively, are identified as 

complemented strains.  

3568 bp 

M     1     2     3    4      5     6     7    8     9     10    11  12 
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3.2.6.3 PCR Analysis of Genomic DNA Extracted AF293 wild-type, !gliG 

and gliG
C
 15.1, 15.4 and 17.1.  

To further confirm successful complementation of A. fumigatus 

!gliG
AF293

, PCR analysis (Section 2.2.2.3) was performed (Table 3.2). Briefly, 

genomic DNA was extracted from the three A. fumigatus gliG
C
 complemented 

strains. PCR analysis using primers ogliG-9 and ogliG-10 (Table 2.4) was 

performed to confirm the presence of the gliG coding sequence. The expected 

fragment size of 539 bp was observed (Figure 3.19), confirming gliG DNA was 

successfully integrated into the gliG
C
 strains. PCR analysis using ogliG-5 and 

optrA-2 (Table 2.4) was performed to confirm the presence of the ptrA  coding 

sequence. The expected fragment size of 2528 bp was observed (Figure 3.19), 

confirming ptrA  DNA was successfully integrated into the gliG
C
 strains. 

Detection of both gliG and ptrA  confirmed complementation of A. fumigatus 

gliG.  
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Table 3.2. Expected PCR fragments of A. fumigatus gliG
C 

15.1, 15.4 and 17.1, 

respectively.  

Gene gliG
C
 15.1 gliG

C
 15.4 gliG

C
 17.1 

gliG  539 bp 539 bp 539 bp 

ptrA  2528 bp 2528 bp 2528 bp 

 

 A 

 

 

 

 

 B 

 

 

 

 

Figure 3.19. PCR of genomic DNA extracted from A. fumigatus gliG
C
 15.1, 

15.4 and 17.1, respectively. (A) Lane M1: Molecular weight marker 

DirectLoad™ Step Ladder, 50 bp (Sigma) (Section 2.1.10.1.8.2), Lane 1 – 3: 

PCR amplification of the gliG coding sequence using ogliG-9 and ogliG-10 

primers with genomic DNA from gliG
C
 15.1, 15.4 and 17.1, respectively. 

M1  1        2         3     

  

539 bp 

 

 M2    4          5          6       

         3       4 

2528 bp 
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Expected fragment size 539 bp. (B) Lane M2: Molecular weight marker (Roche 

VII) (Section 2.1.10.1.8.1), Lane 4 – 6 : PCR amplification of the ptrA gene 

using ogliG-5 and optrA-2 with genomic DNA from gliG
C
 15.1, 15.4 and 17.1, 

respectively. Expected fragment size 2528 bp.  
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3.3 Discussion 

Phylogenetic analysis of A. fumigatus gliG with 104 other fungal genomes 

identified that this GST clustered with other putative ETP producing fungi and 

not with other putative GST from A. fumigatus. The work presented in this 

Chapter describes the deletion of a putative glutathione s-transferase gene, gliG, 

which is a component of the gliotoxin gene cluster in A. fumigatus (Gardiner 

and Howlett, 2005). This gene was deleted in two separate strains, A. fumigatus 

AF293 and !akuB. Transformation constructs were generated using the 

bipartite method (Nielsen et al., 2006), where two constructs were produced 

containing partial regions of the PT resistance gene, ptrA . Southern analysis was 

used to screen nine colonies. An EcoRV digest generated the expected fragment 

size of 3.8 kb and confirmed the deletion of gliG in the NHEJ-deficient parent 

strain !akuB (da Silva Ferreira et al., 2006), resulting in A. fumigatus 

!gliG!akuB
. A second round of Southern analysis with XbaI digested DNA of 

single-spore isolates confirmed the expected fragment size of 1.6 kb in 

!gliG!akuB
. On an independent occasion, Southern analysis was used to screen 

twenty transformed colonies. An XbaI digest generated the expected fragment 

size of 1.6 kb and confirmed the deletion of gliG in the wild-type AF293 

(Nierman et al., 2005) parent strain, resulting in !gliG
AF293

. A complementation 

transformation construct containing gliG coding sequence and a new marker 

gene, ble, was generated. Southern analysis was used to screen ten 

transformants and an EcoRV digest generated the expected fragment sizes of 3.5 

and 1.5 kb in two gliG complemented strains, gliG
C
. Two further Southern blots 

on single-spore isolates using EcoRI and PstI identified expected fragments of 

2.4 and 3.6 kb, respectively. PCR analysis identified both gliG and ptrA in the 
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three complemented strains. This confirmed the complemented strains contained 

both ptrA and gliG.  

The advances in genetic manipulation tools for functional analysis of 

genes in A. fumigatus has increased the success rate of fungal transformation 

(Kuck and Hoff, 2010) and the bipartite method (Nielsen et al., 2006) for 

generation of DNA-transforming constructs was used for the deletion of gliG in 

A. fumigatus. The two deletion constructs each contained partial sections of the 

ptrA  gene, the 5’ construct contained 1.2 kb flanking region and the 3’ construct 

contained 1.0 kb flanking region. This method was favoured over other linear- 

and PCR-based constructs as only two rounds of PCR are necessary. Generation 

of constructs that use more PCR steps (double-joint method) has the potential to 

introduce mutations into the replacement cassette and this may have the 

undesired effect of disrupting neighbouring genes due to the high gene density 

in filamentous fungi (Yu et al., 2004). Reconstitution of the constructs in vivo 

restores the ptrA  gene. This event drives DNA recombination into HR due to 

the long flanking regions HR facilitates targeted gene replacement with the 

marker gene. Transformants are only obtained in the presence of a reconstituted 

ptrA  gene, so ectopic integration of either the 5’ or the 3’ construct would not 

confer the resistance to PT.  

The deletion of gliG in A. fumigatus was originally performed in !akuB 

using the protoplast-mediated transformation system. Transformation resulted in 

thirty-seven transformants on the selection plates. Southern analysis was 

performed on nine transformants to screen for the targeted deletion of gliG and 

one transformant was confirmed as !gliG!akuB
. The use of !akuB as a parent 
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strain for gene deletion increases the likelihood of targeted gene deletion in A. 

fumigatus (Krappmann et al., 2006) who reported a success rate of 80 % when 

the NHEJ-deficient strain was used to delete a calcineurin A gene (calA ) and a 

polyketide synthase pksP (alb1) gene. This compared to a success rate of 

between 3 – 5 % when the wild-type strain was used. The success rate of gliG 

deletion in !akuB was 11 %, which was lower than previously reported by da 

Silva Ferreira et al. (2006), however, only nine transformants were screened out 

of the thirty-seven generated in transformation, leaving 75 % unscreened. The 

low percentage of transformants screened means that the transformation 

efficiency reported here using !akuB could have been higher. Using A. 

fumigatus !akuB has one known drawback; the loss of Ku70 may have an effect 

on fungal growth and development, yet Krappman et al. (2006) reported no 

phenotype associated with growth, sporulation, pigmentation and nutritional 

requirement for the !akuA  strain. However, mild sensitivity to DNA damaging 

agents like methyl methanesulphonate (MMS) and UV light has been observed 

(Ninomiya et al., 2004; da Silva Ferreira et al., 2006; Nayak et al., 2006). These 

observed phenotypes would be expected in a strain deficient in a gene 

associated with DNA damage and so, ideally, the complementation of the Ku70 

deficiency in the mutant strain should be carried out before full phenotype 

analysis is performed (Nielsen et al., 2008). This strain has provided the 

background for successful disruption of gliT from the A. fumigatus gliotoxin 

cluster (Scharf et al., 2010). 

The deletion of gliG was also performed in the wild-type strain AF293. 

This strategy was identical to the strategy used in !akuB except the parent strain 

has no previous gene deletions in the genome. Transformation with bipartite 



 164 

constructs yielded forty-five transformants on selection plates and southern 

analysis of twenty transformants was used to screen for gliG mutants. One 

transformant with a single homologous integration was confirmed as A. 

fumigatus !gliG
AF293

 and this transformation efficiency of 5 % correlates to the 

success rate of 3 – 5 % for wild-type strains (da Silva Ferreira et al., 2006).  

Complementation of gliG into the A. fumigatus !gliG genome was only 

successful in !gliG
AF293

, here a linear construct containing the gliG coding 

sequence with corresponding flanking regions and a new marker gene, ble, was 

transformed into !gliG
AF293

. Twelve transformants selected on the basis of 

phleomycin resistance were screened by Southern analysis and two were 

identified as potential complemented strains. Single spore isolates of these 

putative complemented strains were screened by Southern analysis and PCR 

analysis identified both gliG and ptrA  in the three complemented strains. This 

confirmed both ptrA  and gliG genes were present and three strains were 

confirmed to have gliG restoration into the mutant strain (gliG
C
 15.1, 15.4 and 

17.1). Transformation in !gliG!akuB
 resulted in no observed transformants. As 

complementation usually occurs ectopically, the NHEJ-deficient strain lacks the 

DNA recombination mechanism to facilitate this integration (Carvalho et al., 

2010) which is a plausible explanation as to why gliG complementation was 

never observed in the NHEJ-deficient !gliG strain.  

In summary, the work described here confirms for the first time the 

successful deletion and complementation of gliG in A. fumigatus. This is the 

first reported deletion of a GST in A. fumigatus and this was performed in the 

NHEJ-deficient strain !akuB and in the wild-type strain, AF293. However, 
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restoration of gliG into !gliG was only successful in the AF293 background. 

Functional analysis relies on the generation of strains which (i) have targeted 

gene deletion and (ii) complementation of the gene of interest into the mutant 

strain. To investigate the significance of the phylogenetic clustering described in 

this Chapter, comparative phenotypic analysis to identify a role for gliG in A. 

fumigatus was initially performed using both !gliG strains but later performed 

solely on the strains in the AF293 background, and this work will be described 

in Chapter 4. 
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4. Chapter 4 Functional Characterisation of gliG – a Component of the 

Gliotoxin Biosynthetic gene Cluster in Aspergillus fumigatus 

4.1  Introduction 

A. fumigatus gliG has been identified as a glutathione transferase (GST; 

EC 2.5.1.18) and as a gene within the gliotoxin cluster (Gardiner and Howlett, 

2005; Carberry, 2008). GST are phase II detoxification enzymes that conjugate 

toxic xenobiotics facilitating their cellular elimination (Sheehan et al., 2001). 

Very little information is available regarding the role of GST in fungi (Morel et 

al., 2009) and in particular their role in A. fumigatus. The A. fumigatus genome 

contains 26 predicted GST (Chapter 3), only three of which have been 

characterised within A. fumigatus through the use of recombinant functional 

studies (Burns et al., 2005). The previous Chapter detailed the deletion of gliG 

from A. fumigatus, and so comparative phenotypic analysis between wild-type 

and !gliG should aid the identification of the specific role of gliG within the 

gliotoxin biosynthetic cluster (Gardiner and Howlett, 2005). Characterisation of 

the gliG null mutant will determine whether this enzyme plays a role in 

gliotoxin self-protection or biosynthesis. This characterisation will involve 

subjecting the mutant and corresponding wild-type strain to, (i) H2O2 to 

determine whether it plays a role in peroxide-induced oxidative stress, (ii) anti-

fungal agents voriconazole and AmpB to determine whether it is involved in the 

detoxification of these compounds, (iii) exposing mutant and wild-type strains 

to various concentrations of gliotoxin to determine whether it plays a role in 

gliotoxin self-protection (Schrettl et al., 2010) and finally, (iv) performing 

comparative HPLC analysis to determine whether the mutant strain produces 

gliotoxin or any potential intermediates associated with gliotoxin biosynthesis. 
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The presence of a GST within this gene cluster suggests a possible 

detoxification role, however, the possibility of A. fumigatus gliG performing a 

biosynthetic function cannot be eliminated and it has been suggested that gliG 

may be involved in sulphur incorporation into gliotoxin (Howlett, 2008) and the 

availability of A. fumigatus !gliG allows this issue to be addressed.  

As discussed in Chapter 1, GST are known to play a role in mediating 

drug detoxification (Hayes et al., 2005). In S. pombe, three GST mutants; !gst1, 

!gst2 and !gst3 all exhibited sensitivity to the anti-fungal agent fluconazole. 

Which shows a role for fungal GST in mediating anti-fungal drug resistance 

(Veal et al., 2002). This activity may also be evident against other members of 

the azole anti-fungal agents, such as voriconazole. Transcriptomic analysis of A. 

fumigatus AF293 treated with amphotericin B (AmpB) (MIC50 = 0.125 µg/ml) 

revealed a 3.2-fold increase in expression (microarray hybridisation) of a 

putative GST (CADRE identification; AFUA_3G07930) (Gautam et al., 2008). 

This increase in GST expression suggests a role for this A. fumigatus GST in 

AmpB detoxification. Surprisingly, expression analysis of A. fumigatus gliG 

upon exposure to AmpB (final concentration 0.32 µg/ml) detected elevated 

expression 1 hr post-induction however, after 2 and 4 hr gliG expression was 

absent (Figure 4.1) (Reeves; unpublished). This suggests that A. fumigatus gliG 

may not be directly involved in mediating an anti-fungal response against 

AmpB and that gliG may have another role in A. fumigatus.  
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Figure 4.1. Expression analysis of gliotoxin gene cluster (+ / – AmpB; 0.32 

µg/ml) by RT-PCR. AmpB up-regulated expression of both gliP and gliG after 1 

hr exposure. Inhibition of expression in both genes was observed after 2 and 4 

hr exposure. Calmodulin (calm) is a house-keeping gene (Dr Emer Reeves, 

unpublished). 
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As mentioned in Chapter 1, the characterisation of three GST (gstA , gstB 

and gstC) from A. fumigatus through recombinant functional analysis 

confirmed that all three exhibited GST activity (Burns et al., 2005) and a fourth 

A. fumigatus GST (A. fumigatus elfA ) was confirmed to have GST activity, 

after the native enzyme was purified from fungal lysate (Carberry et al., 2006). 

Expression analysis of A. fumigatus gstA  and gstC indicated an up-regulation in 

response to oxidative stress caused by H2O2 and expression of all three GST 

(gstA , gstB and gstC) was induced by CDNB (Burns et al., 2005). Orthologues 

of A. fumigatus gstB and gstC in the yeast S. pombe (gst1 and gst2, 

respectively) (Veal et al., 2002) revealed that both were induced in the presence 

of H2O2. However only gstC was induced by H2O2 in A. fumigatus (Burns et al., 

2005). Phylogenetic analysis of A. fumigatus gstB/gstC with S. pombe gst1/gst2 

revealed greater divergence of the A. fumigatus gstB/gstC from the S. pombe 

orthologues (Burns et al., 2005). This indicates diverging roles for GST within 

fungi as the A. fumigatus and S. pombe homologues (gstB and gst1, 

respectively) show differential induction patterns in response to oxidative stress. 

The location of A. fumigatus gliG within the gliotoxin gene cluster suggests a 

possible metabolic role for this GST (Burns et al., 2005). 

The genes responsible for gliotoxin production are co-regulated within a 

cluster in the A. fumigatus genome (Gardiner and Howlett, 2005). Expression 

analysis of the gliP mutant (ARC2) demonstrated that the transcription of genes 

in the gliotoxin cluster was dramatically reduced (Cramer et al., 2006) which 

was directly related to the absence of gliP. Upon exposure to exogenous 

gliotoxin (24 hr; 20 µg/ml) up-regulation of eleven genes from the cluster was 

observed in ARC2, with the exception of gliP which had been deleted and gliH 
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which had not been assigned to the gliotoxin cluster at that time (Cramer et al., 

2006; Schrettl et al., 2010). In particular, the expression of gliG increased three-

fold (3.18 ± 0.62) upon exposure to exogenous gliotoxin (20 µg/ml) (Cramer et 

al., 2006). Expression of gliG was also induced in A. fumigatus ATCC46646 

and !gliT
46645

 upon exposure to exogenous gliotoxin (5 µg/ml) (Schrettl et al., 

2010) which confirmed that gliotoxin positively regulates the expression of A. 

fumigatus gliG.  

Among the pathogenic Aspergilli, A. fumigatus is the most prolific 

producer of gliotoxin (Lewis et al., 2005b). Culturing conditions for gliotoxin 

production show it is optimally secreted on a minimal medium where carbon 

and nitrogen sources are limiting (Frisvad et al., 2009). Only low gliotoxin 

levels have been detected on complete media such as Czapeks yeast autolysate 

(CYA) and yeast extract sucrose (YES) (Frisvad et al., 2009). HPLC is the 

method of choice for fungal secondary metabolite profiling (Frisvad, 1987) and 

this method is well-established for the identification of novel metabolites 

produced by the Aspergilli (Chiang et al., 2008), and was used by others for the 

detection of gliotoxin in A. fumigatus culture supernatants (Bok et al., 2006; 

Cramer et al., 2006; Kupfahl et al., 2006; Sugui et al., 2007; Kupfahl et al., 

2008; Spikes et al., 2008; Scharf et al., 2010; Schrettl et al., 2010).  

To date, no secreted gliotoxin biosynthetic intermediate has been 

identified in A. fumigatus with much of the emphasis focusing on whether the 

gli (gliP; gliZ) mutant strains exhibit attenuated virulence (Bok et al., 2006; 

Kupfahl et al., 2006; Spikes et al., 2008). Comparative HPLC profiles of A. 

fumigatus wild-type (B-5233) and A. fumigatus gliP
C
 (reconstituted gliP strain) 

identified two unknown metabolites along with gliotoxin (Sugui et al., 2007) 
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and the disappearance of these two metabolites in A. fumigatus !gliP led to 

speculation that they may be gliotoxin biosynthetic intermediates (Sugui et al., 

2007). However, the identity of these metabolites remains unknown. More 

recently, A. fumigatus gliT has been identified as a gliotoxin oxido-reductase 

(Scharf et al., 2010; Schrettl et al., 2010). Comparative HPLC analysis of A. 

fumigatus wild-type (CEA!akuB) and !gliT
CEA!akuB

 identified no additional 

metabolites in the mutant (Scharf et al., 2010). However, comparative HPLC of 

A. fumigatus !gliT
ATCC26933 

identified a metabolite (RT = 11.7 min) that was 

absent in A. fumigatus ATCC26933 (wild-type). HRMS (LC-ToF) of the 

purified metabolite (RT = 11.7 min) confirmed a mass of 279.0796 m/z and 

predicted a molecular formula of C13H15N2O3S (Schrettl et al., 2010). These 

authors speculate that the metabolite could be a monothiol form of gliotoxin 

secreted by A. fumigatus !gliT
ATCC26933

. However, the precise nature of the 

metabolite and other possible gliotoxin biosynthetic intermediates can only be 

confirmed through structural elucidation.  

The overall objectives of the work presented in this Chapter were (i) to 

perform expression analyses of A. fumigatus gliG in wild-type, !gliG and gliG
C
 

(15.1, 15.4 and 17.1), (ii) to observe any phenotype associated with A. 

fumigatus !gliG in comparison to the corresponding wild-type under various 

conditions of oxidative stress, anti-fungal drug exposure or gliotoxin resistance 

through a series of phenotypic assays where wild-type and !gliG strains were 

subjected to these various stresses, (iii) to perform comparative metabolite 

profile analysis of wild-type, !gliG and complemented strains to identify 

possible gliotoxin intermediates and (iv) test the difference in virulence of the 
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wild-type and !gliG strains using G. mellonella  larvae. Together data should 

aid the elucidation of the role of gliG in A. fumigatus.  

4.2 Results 

4.2.1 Expression Analysis of gliG. 

The deletion of A. fumigatus gliG from !akuB and AF293 and subsequent 

complementation of !gliG
AF293

 was confirmed by Southern analysis, as shown 

in Chapter 3. Northern analysis was employed to confirm that the deletion of 

gliG resulted in the abolition of gliG expression in both A. fumigatus !gliG 

strains and the restoration of gliG expression was evident in gliG
C
. Expression 

analysis is detailed in the following sections.  

4.2.1.1 Northern Analysis of gliG expression in A. fumigatus !akuB and 

!gliG following exposure to exogenous gliotoxin.  

Northern analysis was performed on A. fumigatus !akuB wild-type and 

A. fumigatus !gliG!akuB
. Both wild-type and mutant strains were cultured in 

AMM and incubated at 37 °C for 21 hr, followed by the addition of gliotoxin 

(final concentration 5 µg/ml) for 3 hr. Gliotoxin was added to the cultures as it 

has been previously demonstrated to induce the expression of genes within the 

gliotoxin cluster (Cramer et al., 2006). Total RNA was extracted (20 µg) and 

subjected to gel electrophoresis (Section 2.2.4.2) and Northern blotting (Section 

2.2.4.3) where a DIG-labelled gliG coding sequence specific probe was used to 

detect the gliG transcript. Expression of gliG was evident in A. fumigatus 

!akuB (Figure 4.2), where a single band was detected on the Northern blot after 

probing with a DIG-labelled gliG coding sequence probe (black arrow). Only 

one band was present on the blot between the 18 S and 5 S rRNA subunits, 



 173 

confirming it as the gliG transcript. Absence gliG expression was evident in A. 

fumigatus !gliG!akuB
 (Figure 4.2). As a positive control for the Northern 

blotting technique, total RNA from A. fumigatus ATCC46645 under identical 

culturing conditions was analysed where gliG expression was confirmed (Figure 

4.2) (Schrettl et al., 2010).  
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Figure 4.2. Northern analysis of gliG expression. (A) RNA gel, (B) exposure 

after 5 hr and, (C) exposure after 16 hr using chemiluminescent detection. Lane 

1: RNA isolated from A. fumigatus !akuB grown in AMM for 21 hr and shifted 

to gliotoxin for 3 hr, Lane 2: RNA isolated from A. fumigatus !gliG
akuB

 grown 

in AMM for 21 hr and shifted to gliotoxin for 3 hr, Lane 3: RNA isolated from 

A. fumigatus ATCC46645 wild-type grown in AMM for 21 hr and shifted to 

gliotoxin for 3 hr. Expression of gliG was confirmed in A. fumigatus !akuB 

evident after a 16 hr exposure (Lane 1), no gliG expression was observed in A. 

fumigatus !gliG (Lane 2). Expression of gliG was confirmed in A. fumigatus 

ATCC46645 (Lane 3). 
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4.2.1.2 Northern Analysis of gliG expression in A. fumigatus AF293, 

!gliG
AF293

 and gliG
C
 15.1, 15.4 and 17.1.  

Expression analysis of gliG in the A. fumigatus AF293 strain was 

performed by Northern blotting. All strains were cultured in AMM and 

incubated at 37 °C for 48 hr (n = 2; biological duplicate). Total RNA was 

extracted (5 µg) (Section 2.2.4.1) and subjected to gel electrophoresis and 

blotting (Section 2.2.4.2 and 2.2.4.3). Expression of gliG was evident in A. 

fumigatus AF293 (Figure 4.2, Lane 9 and 10) where a single band was detected 

on the Northern blot after probing with a DIG-labelled gliG coding sequence 

probe (black arrow). Only one band was present on the blot between the 18 S 

and 5 S rRNA subunits, confirming it as the gliG transcript. Absence of gliG 

expression in A. fumigatus !gliG
AF293

 was confirmed (Figure 4.3, Lane 7 and 8). 

Expression of gliG was restored in the three A. fumigatus gliG
C
 complemented 

strains, where a single band was detected on the Northern blot after probing 

with a gliG coding sequence this was comparable to wild-type expression of 

gliG (Figure 4.3, Lane 1-6).  
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Figure 4.3. Northern analysis of the expression of gliG in A. fumigatus gliG
C
 

15.1, gliG
C
 15.4, gliG

C
 17.1, !gliG

AF293
, AF293 (wild-type). Total RNA (n = 2; 

biological duplicate) was extracted from AMM cultures at a 48 hr time point 

and probed using a specific gliG coding sequence probe (Table 2.4). Lanes 1 

and 2: RNA isolated from gliG
C
 15.1, Lanes 3 and 4: RNA isolated from gliG

C
 

15.4, Lanes 5 and 6: RNA isolated from gliG
C
 17.1, Lanes 7 and 8: RNA 

isolated from !gliG, Lanes 9 and 10: RNA isolated from AF293 wild-type. 

Expression of gliG was confirmed in A. fumigatus AF293 (Lanes 9 and 10), no 

gliG expression was observed in A. fumigatus !gliG
AF293

 (Lanes 7 and 8). 

Expression of gliG was confirmed in A. fumigatus gliG
C
 15.1 (Lanes 1 and 2). 

Expression of gliG was confirmed in A. fumigatus gliG
C
 15.4 (Lanes 3 and 4). 

Expression of gliG was confirmed in A. fumigatus gliG
C
 17.1 (Lanes 5 and 6).  
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4.2.1.3  Northern Analysis of the neighbouring gliG genes gliM and gliK.  

Once it was confirmed that gliG was deleted successfully and that this 

coincided with the loss of gliG expression, it was important to ensure that the 

neighbouring genes to gliG within the cluster were not disrupted. Northern 

analysis was performed on RNA (5 µg) extracted from AF293 wild-type, !gliG
 

and the three complemented strains (Section 2.2.4). The Northern blots were 

probed separately using DIG-labelled probes, specific for the gliM and gliK 

coding sequences. A single band was evident on the Northern blot, located just 

below the 18 S rRNA subinit, this confirmed gliM expression. Expression of 

gliM was evident in all five strains (Figure 4.4; Lanes 1-5). A single band was 

evident on the Northern blot located below the 18 S rRNA sbunit, this 

confirmed gliK expression. Expression of gliK was also evident in all five 

strains (Figure 4.4; Lanes 6-10). This confirmed the expression of the 

neighbouring gliG genes in A. fumigatus AF293, A. fumigatus !gliG
AF293

 and in 

the three A. fumigatus gliG
C
 strains. Noticably, both gliM and gliK appear to 

exhibit a higher degree of expression in the A. fumigatus !gliG, gliG
C
 15.4 and 

gliG
C
 17.1 strains. A plausible explanation for this will be discussed in Section 

4.3.  
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Figure 4.4. Northern blot analysis of gliM and gliK expression in A. fumigatus 

AF293 wild-type, !gliG and gliG
C
 15.1, gliG

C
 15.4 and gliG

C
 17.1. Total RNA 

was extracted at a 48 hr. The 26 S and 18 S rRNA subunits are indicated by the 

asterix (A) gliM expression analysis (indicated by the arrow); Lane 1: RNA 

isolated from A. fumigatus AF293. Lane 2: RNA isolated from A. fumigatus 

!gliG
AF293

. Lane 3 – 5: RNA isolated from A. fumigatus gliG
C
 15.1, 15.4 and 

17.1, respectively. Expression of gliM in all strains (Lanes 1 – 5) was confirmed 

using a gliM-specific probe. Expression of gliM was evident in A. fumigatus 

!gliG
AF293

. (B) gliK expression analysis (indicated by the arrow); Lane 6: RNA 

isolated from A. fumigatus AF293. Lane 7: RNA isolated from A. fumigatus 

!gliG
AF293

. Lane 8 – 10: RNA isolated from A. fumigatus gliG
C
 15.1, 15.4 and 

17.1, respectively. Expression of gliK in all strains (Lanes 6 – 10) was 
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confirmed using a gliK-specific probe. Expression of gliK was evident in A. 

fumigatus !gliG
AF29.

.
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4.2.2 Recombinant Protein Activity Analysis of GliG  

Analysis performed by Dr Stephen Carberry prior to the work presented in 

this thesis confirmed that GliG was a GST, which was enabled by the 

generation of recombinant GliG. Briefly, gliG was PCR amplified from A. 

fumigatus ATCC26933 cDNA before cloning into the pProEX™ Htb 

expression vector. The expression vector was then transformed into competent 

E. coli DH5" cells and sequenced to ensure the insertion of gliG was correct 

and in frame (Carberry, 2008). Enzymatic activity assays confirmed GliG 

exhibited GST activity against substrates 1-chloro-2,4-dinitrobenzene (CDNB) 

(specific activity (SA) = 0.21 U/mg) and 3,4-dichloro-nitrobenzene (DCNB) 

(SA = 0.09 U/mg). GliG also exhibited low but reproducible glutathione 

reductase activity (SA = 0.01 U/mg) and no glutathione peroxidase activity was 

observed (Carberry, 2008). In the present work, enzymatic activity of GliG was 

performed against the GST substrates CDNB and 1,2-epoxy-3-(4-

nitrophenoxy)-propane (EPNP) and data obtained during the activity analyses 

are presented Section 4.2.2.1.  
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4.2.2.1 Recombinant GliG and A. fumigatus Protein Lysate GST Activity 

analysis against CDNB and EPNP 

The GST activity of rGliG and protein lysates (A. fumigatus !gliG and 

wild-type) was analysed against GST substrates CDNB and EPNP. The activity 

of rGliG against CDNB was calculated; SA = 0.2 ± 0.1 U/mg. Activity of rGliG 

against EPNP was also analysed and SA calculated; SA = 2.3 ± 0.122 U/mg 

(Table 4.1). The SA of rGliG using EPNP was 12-fold higher than CDNB 

meaning that rGliG had higher epoxide conjugating s-transferase activity. 

Enzymatic activity using total protein lysates generated from A. fumigatus 

!gliG mycelia exhibited 17 % less activity towards EPNP than those from A. 

fumigatus AF293 (wild-type) (SA = 0.12 ± 0.02 versus 0.145 ± 0.011 U/mg, 

respectively) (Table 4.1), indicating that GliG plays a role in the GST activity 

towards this substrate, however there are predicted to be 25 other GST in the A. 

fumigatus  genome which may also exhibit activity against EPNP.  

Table 4.1. Activity of rGliG and A. fumigatus protein lysates towards GST 

substrates CDNB and EPNP. The s-transferase activity of rGliG toward EPNP 

was 12-fold higher in comparison to CDNB. Lysates from A. fumigatus !gliG 

exhibited 17 % less EPNP-conjugating activity than lysates from A. fumigatus 

AF293 (wild-type).  

 CDNB EPNP 

rGliG 0.2 ± 0.1 U/mg 2.3 ± 0.122 U/mg 

A. fumigatus !gliG lysate ___ 0.12 ± 0.02 U/mg 

A. fumigatus  AF293 lysate ___ 0.145 ± 0.011 U/mg 
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4.2.3 Phenotypic Analysis of A. fumigatus !gliG  

To assess a possible role for GliG in protection against oxidative stress, 

anti-fungal drug detoxification or gliotoxin sensitivity, comparative phenotypic 

analysis of A. fumigatus !gliG and wild-type was performed under these 

conditions (described in Section 2.2.10 and Table 4.2) which would identify any 

altered phenotype observed in the mutant strain and help identify a role for gliG. 

To first assess whether the loss of gliG affected growth rate of A. fumigatus 

!gliG the strain was grown with the wild-type on AMM only (Figure 4.5) and 

no difference in growth rate between the two strains was observed. No 

significant difference in the growth rate of A. fumigatus !gliG was observed for 

the majority of conditions tested. 
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Table 4.2. Summary of phenotypic assays performed on A. fumigatus wild-type and !gliG. The observed difference between wild-type and 

mutant is noted. 

 

 

 

 

 

 

 

 

 

 

 

Compound Tested Concentration Phenotype Observation (Growth of !gliG in 

comparison to wild-type  

Hydrogen Peroxide 

(H2O2) 

(Figure 4.6) 

1 mM 

2  mM cdscdscds 

5 mM 

Oxidative Stress No difference 

Slight difference at 67 hr (ns)   

Neither strain grew 

Voriconazole 

(Figure 4.7) 

0.15 µg/ml 

0.25 µg /ml 

Anti-fungal sensitivity No difference 

No difference 

Amphotericin B 

(AmpB) 

(Figure 4.7) 

1 µg /ml 

2 µg/ml 

5 µg/ml 

Anti-fungal sensitivity Neither strain grew 

 for all concentrations  

tested 

Gliotoxin 

(Figure 4.8) 

10 µg/ml 

30 µg/ml 

50 µg/ml 

Gliotoxin sensitivity No difference 

ns: not significant  
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Figure 4.5. Growth rate of A. fumigatus !gliG and wild-type. A. fumigatus 

AF293 and !gliG were incubated on AMM agar only plates. Radial growth 

(mean ± standard deviation) is shown at 67 hr. No statistically significant 

difference in growth rate was observed between the two strains. The data were 

generated using two-way ANOVA analysis on three biological replicates (n = 

3).  

Incubation Period (hr) 

Wild-type  

!gliG  

!   
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4.2.3.1 Phenotypic Analysis of A. fumigatus !gliG in Response to H2O2 

Induced Oxidative Stress 

Plate assays were performed to determine the response of gliG to 

peroxide-induced oxidative stress by using the oxidising agent H2O2. Both wild-

type and !gliG were grown on AMM agar plates with a range of H2O2 

concentrations (1, 2 and 5 mM) (Section 2.2.10 and Table 4.2). Radial growth 

was observed at 24 hr time points (Figure 4.6). The data were analysed, as 

previously mentioned, on three biological replicates (n = 3). A. fumigatus !gliG 

exhibited a decrease in growth when exposed to 2 mM H2O2 after 67 hr (P < 

0.01; ±0.09). No significant difference in growth was observed between the two 

strains for the remaining time intervals and no statistically significant difference 

was observed in the presence of 1 mM H2O2. No growth was observed for the 5 

mM H2O2 concentration for either strain, indicating that this concentration was 

inhibitory.  
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Figure 4.6. Effect of peroxide-induced oxidative stress on A. fumigatus !gliG 

and wild-type when exposed to H2O2. (A) Growth of A. fumigatus !gliG and 

AF293 upon exposure to 1 mM H2O2. The growth of both strains was 

comparable in response to oxidative stress. (B) Growth of A. fumigatus !gliG 

and AF293 upon exposure to 2 mM H2O2. A. fumigatus !gliG exhibited a 

decrease in growth when exposed to 2 mM H2O2 after 67 hr (P < 0.01). All the 

data was analysed using two-way ANOVA analysis on three biological 

replicates (n = 3). Data display mean ± SD of three independent experiments. 
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4.2.3.2 Phenotypic Analysis of A. fumigatus !gliG in response to Anti-

fungal Agents 

4.2.3.2.1 Phenotypic Analysis of A. fumigatus !gliG in response to 

Voriconazole  

A. fumigatus AF293 wild-type and !gliG were exposed to voriconazole 

(0.15 and 0.25 µg/ml). Radial growth was observed at 24 hr time periods 

(Figure 4.7). The data was analysed with two-way ANOVA on three biological 

replicates (n = 3). The growth rate between the two strains at 16 hr showed that 

A. fumigatus !gliG appeared to germinate slower, however after 26 hr this 

difference was gone. The growth rate at each time point thereafter was 

comparable with no statistically significant difference observed.  

 

4.2.3.2.2 Phenotypic Analysis of A. fumigatus !gliG in response to 

Amphotericin B 

A. fumigatus AF293 wild-type and !gliG were exposed to AmpB (1, 2 

and 5 µg /ml). Radial growth was observed at 24 hr time periods, however, no 

growth was observed for either A. fumigatus AF293 or !gliG (data not shown). 

This confirmed that the concentrations of AmpB used were inhibitory and that a 

lower concentration titration needs to be performed.  
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Figure 4.7. Susceptibility of A. fumigatus !gliG to the anti-fungal agent 

voriconazole. (A) Growth of A. fumigatus !gliG and AF293 upon exposure to 

0.15 µg/ml voriconazole. The growth of both strains were comparable in 

response to this concentration of the anti-fungal agent. (B) Growth of A. 

fumigatus !gliG and AF293 upon exposure to 0.25 µg/ml voriconazole. The 

growth rates of both strains was comparable in response to this concentration of 

the anti-fungal agent. All data were generated using two-way ANOVA analysis 

on three biological replicates (n = 3). 
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4.2.3.3 Phenotypic Analysis of A. fumigatus !gliG in response to Gliotoxin 

To investigate whether gliG played a role in self-protection against 

gliotoxin, both strains were exposed to a range of gliotoxin concentrations (10, 

30 and 50 µg/ml). As a positive control, A. fumigatus !gliT was used for 

comparison as this strain is sensitive to gliotoxin at 10 µg/ml and the use of this 

assay was sufficient in the identification of a role for gliT in self-protection 

against exogenous gliotoxin (Schrettl et al., 2010). Radial growth for all strains 

was monitored at 24 hr intervals (Figure 4.8). The data were analysed with two-

way ANOVA on two biological replicates (n = 2). Similar growth was observed 

for A. fumigatus AF293 and !gliG when exposed to three gliotoxin 

concentrations. This confirmed that gliG did not play a primary role in self-

protection against gliotoxin and contrasted to the reduced growth rate of A. 

fumigatus !gliT, in comparison to the ATCC46645 wild-type, observed upon 

exposure to three gliotoxin concentrations (P < 0.001). Images of all strains 

growing in the presence of gliotoxin is shown in Figure 4.9.  
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Figure 4.8. Sensitivity of A. fumigatus !gliG to gliotoxin. (A) Growth of A. 

fumigatus !gliG, AF293 and !gliT
46645

 upon exposure to gliotoxin (10 µg/ml). 

The growth of A. fumigatus !gliG and AF293 were comparable. A. fumigatus 

!gliT exhibited reduced growth in comparison to A. fumigatus !gliG and 

AF293 (P < 0.001). (B) Growth of A. fumigatus !gliG, AF293 and !gliT upon 

exposure to gliotoxin (30 µg/ml). The growth of A. fumigatus !gliG and AF293 

were comparable. The growth of A. fumigatus !gliT was completely inhibited at 

this concentration (P < 0.001). (C) Growth rate of A. fumigatus !gliG, AF293 

and !gliT upon exposure to gliotoxin (50 µg/ml). The growth rates of A. 

fumigatus !gliG and AF293 were comparable. The growth of A. fumigatus 

!gliT was completely inhibited at this concentration (P < 0.001). All the data 

were generated using two-way ANOVA analysis on two biological replicates (n 

= 2).  
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Figure 4.9. Sensitivity of A. fumigatus AF293, !gliG and !gliT to gliotoxin (0, 

10, 30 and 50 µg/ml). Conidia of AF293, !gliG and !gliT (5 x10
3 

conidia per 

spot) were point inoculated onto AMM plates containing the relevant gliotoxin 

concentration and incubated at 37 °C for 72 hr. Images were taken at 72 hr.  
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4.2.4 Comparative metabolite profiling of A. fumigatus !gliG and wild-type  

Phenotypic analysis of A. fumigatus !gliG in response to oxidative stress 

and anti-fungal susceptibility revealed comparable growth between both mutant 

and wild-type. Also phenotypic analysis of both strains in response to gliotoxin 

revealed that A. fumigatus !gliG was not sensitive to exogenous gliotoxin. This 

confirmed that gliG did not play a role in self-protection against gliotoxin and 

indicated an alternative role for gliG and led to the analysis of A. fumigatus 

!gliG and wild-type metabolite extracts by RP-HPLC analysis.  

 

4.2.4.1 Analysis of A. fumigatus !gliG!akuB
 and !akuB metabolite profiles 

by RP-HPLC 

Culture supernatants of A. fumigatus wild-type (!akuB) and !gliG were 

collected after growth in AMM (24, 48, 72 hr; 37 °C). The supernatants were 

then subjected to organic extraction prior to RP-HPLC analysis (Section 2.2.10). 

In advance of the comparison of metabolic profiles from A. fumigatus wild-type 

(!akuB) and !gliG, pure gliotoxin was analysed by RP-HPLC (Section 2.2.10). 

Gliotoxin (2 µg) eluted with a retention time (RT) = 14.4 min (peak area 1320) 

(Figure 4.10). Comparison of the metabolite profiles from A. fumigatus !akuB 

and !gliG at 48 hr revealed that A. fumigatus !gliG did not produce gliotoxin. 

However, an alternative metabolite, initially termed M12.3, was evident with RT 

= 12.3 min instead of gliotoxin (Figure 4.11). Gliotoxin was evident in the RP-

HPLC profile at 48 hr of A. fumigatus !akuB (RT = 14.4 min) (Figure 4.11). 

The absence of gliotoxin in A. fumigatus !gliG coincided with the appearance 

of a new metabolite. This strongly indicated that gliG played a role in 
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biosynthesis of gliotoxin, since gliotoxin was completely absent in A. fumigatus 

!gliG and the appearance of an alternative metabolite represented a possible 

biosynthetic intermediate from the gliotoxin biosynthetic pathway.  
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Figure 4.10. RP-HPLC analysis of gliotoxin standard (Sigma-Aldrich). 

Gliotoxin (2 µg) elutes at a RT = 14.430 min with a peak area of 1320. 

Absorbance detection was performed at 254 nm.  
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Figure 4.11. Comparative RP-HPLC analysis of A. fumigatus !akuB (wild-

type) and !gliG!akuB
 metabolite profiles. Organic extracts of culture 

supernatants (24, 48, 72 hr; 37°C) were subjected to HPLC analysis at 254 nm. 

(A) A. fumigatus !akuB wild-type strain at 24 hr showed a small amount of 

secreted gliotoxin (RT = 14.486 min). (B) A. fumigatus !gliG!akuB
 at 24 hr did 

not secrete gliotoxin as evidenced by the lack of the metabolite at RT = 14.486 

min. (C) A. fumigatus !akuB wild-type strain at 48 hr secreted gliotoxin 

(Retention time 14.447 min). (D) A. fumigatus !gliG!akuB
 at 48 hr did not 

secrete gliotoxin (*), but instead an alternative metabolite, M12.3, was detected 

(RT = 12.375 min). (E) A. fumigatus !akuB wild-type strain at 72 hr secreted 

gliotoxin (RT = 14.475 min). (F) A. fumigatus !gliG!akuB
 at 72 hr did not secrete 

gliotoxin. The asterix indicates gliotoxin absence.  
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4.2.4.2 Analysis of A. fumigatus AF293 and !gliG
AF293

 metabolite extracts 

by RP-HPLC 

Culture supernatants of A. fumigatus wild-type (AF293) and !gliG were 

collected after growth in AMM (48 hr; 37 °C). The supernatants were then 

subjected to organic extraction prior to RP-HPLC analysis (Section 2.2.10). 

Comparison of the metabolite extracts from A. fumigatus AF293 and !gliG at 

48 hr revealed that A. fumigatus !gliG
AF293

 did not produce gliotoxin, as had 

been observed for A. fumigatus !gliG!akuB
 (Section 4.2.4.1) The alternative 

metabolite, M12.3, was evident with RT = 12.4 min, instead of gliotoxin. 

Gliotoxin was present in the RP-HPLC profile of A. fumigatus AF293 at 48 hr 

(RT = 14.8 min) (AF293 gliotoxin production = 784.9 ± 869.88 µg/ml; large 

error bars are accounted for by the difference in gliotoxin production from each 

culture) (Figure 4.12). (Gliotoxin production was determined by comparing 

peak area to that of the gliotoxin standard Figure 4.10). This confirmed that the 

deletion of gliG in both !akuB and AF293 abolished gliotoxin production as 

gliotoxin was completely absent in both A. fumigatus !gliG metabolite extracts. 

Also the appearance of the new metabolite M12.3 in both A. fumigatus !gliG 

extracts identified this metabolite as a putative gliotoxin biosynthetic 

intermediate.  
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Figure 4.12. Comparative RP-HPLC analysis of A. fumigatus AF293 (wild-

type) and !gliG
AF293

 metabolite profiles. Organic extracts of culture 

supernatants (48 hr; 37°C) were subjected to HPLC analysis at 254 nm. (A) A. 

fumigatus AF293 (wild-type) HPLC profile showed secreted gliotoxin (RT = 

14.820 min) indicated by the solid black arrow. (B) A. fumigatus !gliG
AF293

 

HPLC analysis did not detect gliotoxin (*), but instead an alternative metabolite, 

M12.3, was evident (RT = 12.469 min) indicated by the dashed black arrow. 

Asterix indicates gliotoxin absence.  
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4.2.3.1 Analysis of A. fumigatus gliG
C
 metabolite profiles by RP-HPLC 

Culture supernatants of A. fumigatus gliG
C
 15.1, 15.4 and 17.1 were 

collected after growth in AMM (48 hr; 37 °C). The supernatants were subjected 

to organic exraction prior to HPLC analysis (Section 2.2.10). Comparison of the 

three metabolite profiles of A. fumigatus gliG
C
 revealed gliotoxin production 

was restored in the three complemented strains (Figure 4.13) (RT = 14.8 min). 

Gliotoxin production was calculated in each of the strains; A. fumigatus gliG
C
 

15.1 = 3158 ± 63.57 µg/ml, A. fumigatus gliG
C
 15.4 = 2244 ± 1622 µg/ml and 

A. fumigatus gliG
C
 17.1 = 2583 ± 1014.7 µg/ml (large error bars accounted for 

by the difference in gliotoxin production from each culture). This value was 

determined by comparison to the gliotoxin standard (Figure 4.10). The 

production of gliotoxin  coincided with the disappearance of M12.3, which 

confirmed A. fumigatus gliG is intimately involved in gliotoxin production. 

M12.3 represents either a gliotoxin biosynthetic intermediate, or shunt 

metabolite, which occurs due to gliG absence. Clearly, M12.3 is secreted, or 

released from A. fumigatus !gliG.  
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Figure 4.13. Comparative RP-HPLC analysis of A. fumigatus gliG
C
 15.1, 15.4 

and 17.1 metabolite extracts. Organic extracts of culture supernatants (48 hr; 

37°C) were subjected to HPLC analysis at 254 nm. (A) A. fumigatus gliG
C
 15.1 

HPLC profile showed secreted gliotoxin (RT = 14.824 min) indicated by the 

solid black arrow. (B) A. fumigatus gliG
C
 15.4 HPLC profile showed secreted 

gliotoxin (RT = 14.815 min) indicated by the solid black arrow. (C) A. 

fumigatus gliG
C
 15.4 HPLC profile showed secreted gliotoxin (RT = 14.811 

min) indicated by the solid black arrow. 
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4.2.5 Virulence testing of AF293 Wild-type, !gliG and gliG
C
  

To assess the role of gliG in the virulence of A. fumigatus the different 

strains were tested in G. mellonella larvae (Kavanagh and Reeves, 2004) 

(Section 2.2.25). G. mellonella (n = 10) were infected with a known lethal dose 

of conidia (1 x 10
7 

conidia/larvae) (Renwick et al., 2006)
 
for each of the 

following strains; A. fumigatus AF293, !gliG
AF293 

and the three gliG
C
 strains. 

Larvae were also injected with sterile PBS as a control (n = 10). Infected G. 

mellonella were incubated at 30 °C for up to 96 hr with survival rates observed 

at 24 hr time points (24, 48, 72 and 96 hr) (Section 2.2.25). Kaplan-Meier 

survival curves were generated using log-rank (Mantel-Cox) analysis for 

infection with A. fumigatus AF293 and A. fumigatus !gliG. This analysis was 

performed with a biological triplicate and with technical repeats (Figure 4.14) 

and although increased larval survival was observed following A. fumigatus 

AF293 infection compared to A. fumigatus !gliG infection, the difference was 

not statistically significant. Images of the infected G. mellonella larvae at 48 hr 

showed that larvae infected with A. fumigatus !gliG exhibited a higher degree 

of melanisation than those infected with AF293 wild-type or either of the 

complemented gliG
C
 strains (Figure 4.14). 
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Figure 4.14. Survival analysis of G. mellonella larvae infected with conidia of 

A. fumigatus !gliG, AF293 and gliG
C
 15.1, 15.4 and 17.1. (A) The survival 

percentage of G. mellonella infected with A. fumigatus !gliG
AF293

 and AF293 (n 

= 10). Upon observation more larvae infected with A. fumigatus AF293 

survived at each time point in comparison to larvae infected with A. fumigatus 
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4 5 6 
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!gliG
AF293

 however, this observation was not statistically significant (Log-rank 

Mantle-Cox). (B) Images of larvae infection at 48 hr. A higher degree of 

melanisation was observed in A. fumigatus !gliG
AF293

 infected larvae when 

compared to AF293 and the three gliG
C
 infected larvae.  
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4.3 Discussion 

The deletion of gliG independently from the genome of two A. fumigatus 

strains provided an opportunity to functionally investigate a role for gliG. GliG 

was confirmed as a GST with activity against CDNB and EPNP. Expression 

analysis confirmed gliG was expressed in both wild-type strains (!akuB and 

AF293), and the absence of gliG expression was confirmed in both mutant 

strains (A. fumigatus !gliG!akuB
 and !gliG

AF293
). Restoration of gliG expression 

was observed in three gliG
C
 strains (15.1, 15.4 and 17.1). A role for gliG in 

oxidative stress and anti-fungal detoxification was eliminated and gliG is not 

involved in self-protection against exogenous gliotoxin, moreover A. fumigatus 

!gliG did not produce gliotoxin. Absence of gliotoxin production in !gliG 

coincided with the accumulation of an alternative metabolite, M12.3 and 

restoration of gliotoxin production was observed in the three A. fumigatus gliG
C
 

strains. No statistically significant difference was observed between G. 

mellonella infected with conidia from A. fumigatus AF293 (wild-type) and 

those infected with !gliG
AF293

. An alternative role for this GST became 

apparent, as neither phenotypic analysis identified a role for gliG in oxidative 

stress or anti-fungal detoxification. Absence of gliotoxin production in A. 

fumigatus !gliG coincided with the production of an alternative metabolite 

M12.3 and this metabolite may represent a on – or off – pathway gliotoxin 

biosynthetic intermediate.  

The data presented in this Chapter correlate with previously reported data 

where exogenous gliotoxin regulates the expression of genes within the 

gliotoxin gene cluster (Cramer et al., 2006). Expression of A. fumigatus gliG 

was evident in !akuB (wild-type) upon exposure to gliotoxin (5 µg/ml), no 
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expression of A. fumigatus gliG was evident in !gliG!akuB 
upon exposure to 

gliotoxin (5 µg/ml), as expected. In contrast to gliotoxin-induced expression of 

A. fumigatus gliG in !akuB, expression of A. fumigatus gliG was detectable in 

AF293 (wild-type) without the addition of exogenous gliotoxin. Deletion of 

gliG resulted in the absence of expression in !gliG
AF293

 and expression was 

restored in the three gliG
C 

strains which contained the full gliG coding 

sequence. With respect to A. fumigatus gliT, Schrettl et al. (2010) identified the 

presence of two mutations (C23R and E160G) in the open reading frame of 

gliH, a flanking gene of gliT. Semi-quantitative RT-PCR confirmed that the two 

flanking genes, gliH and gliF, were both expressed in !gliT
26933

. Relatedly, 

expression of the two flanking genes, gliM and gliK, to gliG was confirmed in 

A. fumigatus !gliG
AF293

 by Northern analysis. This confirmed that the deletion 

of gliG did not affect the overall expression of flanking genes, however an 

increase in expression of gliM and gliK was observed in A. fumigatus 

!gliG
AF293

. Functional analysis performed on A. fumigatus gliK showed that it 

may be involved in the secretion of gliotoxin (Gallagher, 2010). The absence of 

A. fumigatus gliG directly affected the expression of both the putative gliM O-

methyltransferase and gliK. An up-regulation of expression in both genes was 

observed in A. fumigatus !gliG
AF293

 which was notable in comparison to the 

AF293 wild-type expression. The reason for this increase in gene expression 

will become apparent after full structural elucidation of M12.3 which implicates 

both genes in the production and secretion of M12.3 from A. fumigatus !gliG, 

this will be discussed in Chapter 5.  

Work performed prior to the commencement of the work described here 

confirmed through analysis of recombinant A. fumigatus GliG that it was a GST 
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(Carberry, 2008). Carberry (2008) showed rGliG exhibited GST activity against 

common GST substrates CDNB (SA: 0.21 U/mg) and DCNB (SA: 0.09 U/mg). 

This biochemical analysis confirmed the putative GST function. rGliG also 

exhibited low, but reproducible glutathione reductase activity (SA: 0.01 U/mg) 

(Carberry, 2008). Work presented here showed the activity of rGliG against an 

epoxide-containing substrate EPNP (SA: 2.3 ± 0.122 U/mg) which was 12-fold 

higher when compared to the activity against CDNB substrate (SA: 0.2 ± 0.1 

U/mg). This indicates that A. fumigatus gliG exhibits differential GST activity 

to other characterised GST in A. fumigatus (Burns et al., 2005). Enzyme studies 

of native GliG are important to fully assess the in vivo activity of the enzyme. 

GST enzymatic activity analysis was performed on protein lysates produced 

from A. fumigatus AF293 (wild-type) and !gliG
AF293

 using EPNP as a substrate. 

A. fumigatus !gliG
AF293

 protein lysates exhibited 17 % less GST activity when 

compared to the activity of the wild-type protein lysates. The reduced activity 

can be accounted for by the absence of native GliG from protein lysates. 

However, as A. fumigatus AF293 contains 26 putative GST, the activity 

observed in the !gliG
AF293

 can be attributed to some, or all, of the other 

predicted GST in the A. fumigatus genome (Appendix I) which were potentially 

present in both wild-type and mutant protein lysates.  

Comparative phenotypic analysis of A. fumigatus !gliG and AF293 wild-

type was performed against a range of compounds that were known to induce 

cellular stresses (H2O2 induced oxidative stress, anti-fungal susceptibility and 

gliotoxin sensitivity). Other GST from A. fumigatus (gstA and gstC), A. nidulans 

(gstA and gstB), S. pombe (gst1 and gst2) and S. cerevisiae (ure2), are known to 

be induced by H2O2 (Fraser et al., 2002; Veal et al., 2002; Rai et al., 2003; 
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Burns et al., 2005; Sato et al., 2009). The S. cerevisiae Gtt1p GST was shown 

not to be involved in protection against oxidative damage of membranes (Choi 

et al., 1998). No altered phenotype was observed in A. fumigatus !gliG upon 

exposure to 1 mM H2O2 and no altered phenotype was observed upon exposure 

to 2 mM H2O2 up to 48 hr. However, A. fumigatus !gliG
AF293

 exhibited a 

reduced growth rate at 67 hr (P < 0.01) upon exposure to 2 mM H2O2. Previous 

expression analysis showed that A. fumigatus gstA and gstB were induced up to 

three hr post-induction with H2O2 (5 mM) (Burns et al., 2005). This infers that 

an altered phenotype would be expected at earlier time points and would not be 

expected after 67 hr exposure. A. fumigatus AF293 and !gliG
AF293

 did not grow 

when exposed to 5 mM H2O2 indicating that this concentration was inhibitory to 

both strains.   

Veal et al. (2004) showed that three S. pombe GST (gst1, gst2 and gst3) 

were involved in anti-fungal detoxification as three separate deletions of each of 

these genes resulted in increased sensitivity to the anti-fungal drug fluconazole. 

Expression of A. fumigatus gliG was observed upon exposure to AmpB (0.32 

µg/ml) 1 hr post-induction, however no expression was observed 2 and 4 hr post 

induction (Figure 4.1) Reeves; unpublished). The role of A. fumigatus gliG in 

mediating an anti-fungal response towards voriconazole was eliminated as no 

altered phenotype was observed upon exposure to concentrations 0.15 and 0.25 

µg/ml. No growth of either A. fumigatus !gliG and wild-type was observed in 

the presence of AmpB, however the concentrations tested (1, 2 and 5 µg/ml) 

were more than likely inhibitory for growth. To eliminate gliG in mediating 

anti-fungal detoxification a more extensive range of anti-fungals need to be 
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tested, however the data presented in this chapter confirm it does not play a role 

in the detoxification of voriconazole.  

A. fumigatus gliG is not involved in protection against oxidative stress, or 

anti-fungal drug detoxification. However, the results presented here confirm a 

role for gliG in gliotoxin biosynthesis. Schrettl et al. (2010) and Scharf et al. 

(2010) have both shown that A. fumigatus gliT is directly responsible for 

oxidising and reducing gliotoxin, a process which is a key component in the 

self-protection against, and the biosynthesis, of gliotoxin. A. fumigatus !gliT 

exhibited sensitivity to exogenous gliotoxin (10 µg/ml) and restoration of gliT 

abrogated this sensitivity (Schrettl et al., 2010). Exposure of A. fumigatus 

!gliG
AF293

 to gliotoxin (10, 30 and 50 µg/ml) revealed no comparable difference 

between the mutant and wild-type strains. In this study, A. fumigatus !gliT was 

used as a positive control for gliotoxin sensitivity with the expected sensitivity 

of this strain observed at 10 µg/ml. The difference in A. fumigatus !gliT 

sensitivity to gliotoxin in comparison to the respective wild-type (ATCC 46645) 

was statistically significant (P < 0.001). This compared to the lack of sensitivity 

exhibited by A. fumigatus !gliG upon exposure to the same gliotoxin 

concentration (10 µg/ml) and confirms that A. fumigatus gliG does not play a 

role in self-protection against the toxic effects of gliotoxin.  

Neither A. fumigatus !gliG strains (!gliG
AF293

 and !gliG!akuB
) produced 

gliotoxin and instead produced an alternative metabolite, M12.3. 

Complementation of the gliG coding sequence restored gliotoxin production in 

the three gliG
C
 strains. This confirms that the absence of gliotoxin and the 

production of M12.3 is due to the deletion of gliG and is the first report of the 
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identification of an on- or off-pathway gliotoxin biosynthetic intermediate. 

Moreover, the accumulation of this metabolite in the supernatant of !gliG 

cultures is the first identification of a biosynthetic intermediate of gliotoxin 

detectable in culture supernatants. This compound has undergone full structural 

elucidation, and this will be detailed in the Chapter 5.  

Earlier studies on the gliotoxin cluster involved the generation of 

gliotoxin-deficient gli mutant strains (gliP and gliZ) and focused on whether 

these mutant strains exhibited attenuated virulence (Bok et al., 2006; Cramer et 

al., 2006; Kupfahl et al., 2006; Sugui et al., 2007; Spikes et al., 2008). As A. 

fumigatus !gliG does not produce gliotoxin it was necessary to determine 

whether the absence of gliotoxin in this strain altered the virulence in the G. 

mellonella model. The pathogenicity of A. fumigatus tested in G. mellonella is 

equivalent to that seen in the mouse infection model (Slater et al., 2010). 

Survival analyses performed using the G. mellonella insect model showed no 

statistically significant differences upon infection with wild-type in comparison 

to !gliG which shows that gliG plays a minimal role in the virulence of A. 

fumigatus infected insect larvae. However, upon observation of infected larvae 

(Figure 4.14) slightly higher melanisation in A. fumigatus !gliG-infected G. 

mellonella was observed. Melanisation is the key defence of G. mellonella 

whereby the deposition of melanin on the microbe occurs within the 

haemolymph (Kavanagh and Reeves, 2004) and is utilised against a range of 

pathogens during infection. The observation of a tendancy towards a higher 

degree of melanisation caused by infection with the mutant strain indicates that 

the mutant strain may produce a slightly more toxic compound than gliotoxin. 

As this higher degree of melanisation indicates a faster immune response to 
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infection with A. fumigatus !gliG conidia, this observation may be directly 

related to the presence of M12.3 instead of gliotoxin and that perhaps this 

metabolite may elicit a protective immune response.  

In summary, gliG expression in A. fumigatus was observed in both !akuB 

and AF293 wild-type strains (with and without gliotoxin induction, 

respectively). A. fumigatus gliG was not expressed in !gliG!akuB
 and !gliG

AF293
, 

as expected. Expression of gliG was restored in the three gliG
C
 complemented 

strains. GliG has been confirmed as a GST (Carberry, 2008) and shows a 12-

fold increase in activity against EPNP, when compared to CDNB. As mentioned 

in Chapter 1, substrate specificity is an important criterion for GST 

classification. So the confirmation of higher SA towards EPNP compared to 

CDNB may support an alternative metabolic role, which is hypothesised to be 

biosynthesis of gliotoxin for this GST. GliG does not play a role in H2O2 

induced oxidative stress and anti-fungal drug detoxification of voriconazole and 

no role in self-protection against exogenous gliotoxin has been detectable for 

gliG. The metabolic profile of A. fumigatus !gliG supernatant showed gliotoxin 

was absent and instead an alternative metabolite, M12.3 was produced. This 

confirms that the GST-conjugating activity of GliG has a biosynthetic role in 

gliotoxin production in A. fumigatus and represents a new role for GST which 

will assist in future classification of this enzyme. The nature of M12.3 will help 

identify the role of GliG in gliotoxin biosynthesis and confirm the specific role 

of gliG, a GST, within the gliotoxin cluster.  



 

 

 

 

 

Chapter 5 

 

 

Structural elucidation of M12.3 produced by A. 

fumigatus !gliG  



 216 

5. Chapter 5 Characterisation of M12.3  

5.1 Introduction 

The deletion of A. fumigatus gliG resulted in a strain that did not produce 

gliotoxin (Chapter 4). Comparative phenotypic analysis revealed that A. 

fumigatus !gliG exhibited no sensitivity to the oxidizing agent H2O2 or to the 

antifungal compounds AmpB or voriconazole. The mutant strain showed no 

sensitivity to exogenous gliotoxin (10 – 50 µg/ml), confirming that GliG does 

not play a role in self-protection against gliotoxin (Schrettl et al., 2010). 

Comparative RP-HPLC analysis of A. fumigatus AF293 wild-type and !gliG 

culture extracts revealed the absence of gliotoxin production in the A. fumigatus 

!gliG strains. Instead, an alternative metabolite, M12.3 was identified by RP-

HPLC analysis in the culture extracts of A. fumigatus !gliG. Restoration of 

gliotoxin production coincided with complementation of A. fumigatus gliG into 

the !gliG mutant. Structural elucidation of M12.3 will determine whether the 

metabolite contains a disulphide bridge or thiol groups and will inform whether 

it is an on-pathway intermediate or an off-pathway shunt product of gliotoxin, 

produced in the absence of gliG. Ultimately, this will confirm the role A. 

fumigatus gliG plays in gliotoxin biosynthesis. (Bose et al., 1968a; Bose et al., 

1968b) 

Structural characterisation of metabolites, like gliotoxin, is usually 

performed using techniques such as HPLC, high-resolution mass spectrometry 

(HRMS), NMR and elemental analysis (Johnson et al., 1943; Beecham et al., 

1966; Kaouadji et al., 1990; Nielsen and Smedsgaard, 2003; Forseth and 

Schroeder, 2010). As discussed in Chapter 4, HPLC analysis confirms presence 
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or absence of metabolites based on comparative profile analysis (Frisvad, 1987). 

HRMS confirms the mass and chemical formula of the compound and NMR 

determines the structure by analysing bond coupling interactions between 

carbons and protons (Nielsen and Smedsgaard, 2003; Frisvad et al., 2009; 

Bothwell and Griffin, 2010). Elemental analysis (CHNS) determines the 

composition of the metabolite (i.e., the carbon, hydrogen, oxygen, nitrogen and 

sulphur content). The accumulation of data using these techniques reveals the 

structure of the metabolite of interest.  

Confirmation of gliotoxin production is performed by HPLC analysis 

and/or LC-MS analysis. LC-MS detection of gliotoxin involves identification of 

the gliotoxin parent ion, which has an m/z value of 327 (Bok et al., 2006; 

Kupfahl et al., 2006; Spikes et al., 2008; Scharf et al., 2010; Schrettl et al., 

2010), followed by the identification of fragment ions of gliotoxin, which have 

m/z values of 263, 245 and 227, respectively (Bok et al., 2006; Kupfahl et al., 

2006; Schrettl et al., 2010). The fragment ions of gliotoxin correspond to 

dethiogliotoxin, dethiogliotoxin with a neutral loss of water and dethiogliotoxin 

plus the neutral loss of two waters, respectively (Spikes et al., 2008). The 

presence of a molecular ion with a mass of 327 m/z is confirmation that 

gliotoxin is present. This is the standard LC-MS method for gliotoxin 

identification (Bok et al., 2006; Scharf et al., 2010; Schrettl et al., 2010).  

NMR spectroscopy is a technique used to structurally characterise 

compounds and was first carried out using 
1
H nuclei (spin state of 1/2) and later 

studied for 
13

C (spin state of 1/2) (Bruice, 2001). It has become a prominent 

technique for the structural determination of organic compounds, in particular, it 

has been applied to the characterisation of natural products such as secondary 
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metabolites produced by bacteria and fungi (Abel et al., 1999; Nielsen and 

Smedsgaard, 2003; Sumarah et al., 2008). NMR analysis has been used for the 

structural elucidation of gliotoxin and other ETP/DKP metabolites (Kaouadji et 

al., 1990; Guo et al., 2009; Wang et al., 2010). These analytical methods 

employed several different NMR experiments including; 
1
H, 

13
C, DEPT-135 

(distortionless enhancement by polarisation transfer), COSY (correlated 

spectroscopy), HMBC (heteronuclear multiple-bond correlation) and HMQC 

(heteronuclear multiple-quantum correlation) and the accumulation of data from 

all these NMR experiments confirms the structure of the compound of interest. 

1
H NMR spectra are generated from chemically equivalent protons which 

are in the same environment (Bruice, 2001). To identify the compound of 

interest a reference compound (e.g., Tetramethylsilane (TMS)) is mixed with 

the unknown compound. The signals for the compound of interest are compared 

to their distance from the TMS signals, this difference is termed the chemical 

shift (") and is measured within the range 0 – 10 ppm (Clayden et al., 2001). 
13

C 

NMR follows the same principle as 
1
H NMR, whereby the number of 

13
C 

signals in the spectrum informs as to how many different kinds of carbons are 

present in the compound. 
13

C NMR relies on the identification of the 
13

C isotope 

which has a natural abundance of 1.108 % and more advanced instrumentation 

allows for analysis of multiple scans of the 
13

C-containing compound which can 

be accumulated together to determine the different 
13

C signals. The main 

advantage of 
13

C NMR is that the chemical shift range is over approximately 

220 ppm and carbon atoms with no directly bonded H can be observed 

(McMurry, 2004). Relative positions of the signals depend on the same factors 

that determine 
1
H NMR signals. Carbon atoms in electron-dense environments 
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produce low frequency signals and those close to electron-withdrawing groups 

produce high frequency signals (Bruice, 2001).  

Two-dimensional (2-D) NMR is used to help determine the structure of 

more complex biomolecules (Clayden et al., 2001) which tend to have more 

complicated structures that can cause signal overlap and this makes structure 

determination more difficult. 
1
H and 

13
C spectra, discussed previously, have one 

frequency axis and one intensity axis, whereas 2-D NMR spectra have two 

frequency axes and one intensity axis. One of the most common 2-D spectra 

involves 
1
H – 

1
H shift correlations which identifies protons that are coupled to 

each other, this COrrelated SpectroscopY is more commonly known as COSY 

(
1
H – 

1
H COSY). The COSY spectrum presents a 2-D contour map, with each 

dimension representing proton chemical shifts and the contours indicating signal 

intensity (Forseth and Schroeder, 2010). The diagonal axis which runs from 

bottom left to top right shows peaks which are easily identifiable in the 1-D 

spectrum. Peaks off the diagonal axis are known as cross peaks. The cross peaks 

indicate pairs of protons that are coupled, information is obtained from cross 

peaks below the diagonal. The cross peaks above the diagonal give the same 

information as those below (Bruice, 2001). Heteronuclear single quantum 

coherence (HSQC) is used to follow 
1
H nuclei which are attached to 

13
C nuclei 

and the contour plots show the cross peaks and indicates the particular carbon 

and hydrogen bonding (Clayden et al., 2001). Heteronuclear multiple bond 

coherence (HMBC) is similar to HSQC and detects multiple-bond coupling over 

two or three bonds and can detect coupling over 4 bonds in conjugated systems 

(Bruice, 2001). 
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Another 
13

C NMR technique is distortionless enhancement by polarization 

transfer (DEPT) which can distinguish between methine (CH), methylene (CH2) 

and methyl (CH3) groups (Clayden et al., 2001) and carbons which are not 

attached to hydrogens disappear upon DEPT analysis (Bruice, 2001). There are 

three DEPT spectra which can be generated, DEPT-45, DEPT-90 and DEPT-

135 (Figure 5.1). The result of this analysis is a carbon spectrum that shows the 

multiplicities (CH, CH2 and CH3). Generally, there tends to be little confusion 

between the chemical shifts of CH and CH3 protons so DEPT-135 analysis is 

sufficient to discriminate between each type of carbon atom. Signals for 

methine and methyl groups are above the line and signals for methylene groups 

are below the line (Figure 5.1) (Bruice, 2001). 
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Figure 5.1. Schematic representation of distortionless enhancement by 

polarisation transfer (DEPT) analysis. This NMR method distinguishes between 

methine (CH), methylene (CH2), and methyl (CH3) signals Adapted from 

Bruice. (2001). 
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Early investigation into the structure of gliotoxin employed 
1
H and 

13
C 

NMR (Figure 5.2). (Kaouadji et al., 1990) and confirmed the correct structure of 

gliotoxin and revised a previously reported structure (Cole and Cox, 1981). The 

1
H NMR spectrum identified proton signals (Table 5.1) in the diene at 4.82, 

5.79, 5.95 and 5.99 ppm which correlated with protons located at position 6, 9, 

8 and 7 respectively. Signals at 2.96, 3.76, 4.82 ppm revealed the location of the 

protons at position 10 and 5 in the five-membered ring. The protons in the  DKP 

ring were detected by signal at 3.21 ppm, which confirmed the CH3 group at 

position 2. Signals at 4.26 and 4.43 ppm illustrated the protons located at 

position 3 and the signal at 3.55 ppm confirmed the protons of the OH at 

position 3a (Kaouadji et al., 1990). 
13

C NMR (Table 5.1) revealed the carbons in 

the diene by signals in the spectrum at 73.1, 130.1, 123.3 and 120.2 ppm which 

corresponded to carbons 6 – 9 respectively. Carbons in the five-membered ring 

were illustrated by the detection of signals at 69.7, 130.8 and 36.6 ppm which 

correlated to carbons 5a, 9a and 10, respectively (Kaouadji et al., 1990). 

Carbons in the DKP ring with the disulphide bridge were identified by signals at 

166.0, 75.6, 60.7 and 165.1 ppm which corresponded to carbons at position 1, 3, 

3a and 4, respectively (Kaouadji et al., 1990).  
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Figure 5.2. Gliotoxin with the 
1
H annotation (Kaouadji et al., 1990).  
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Table 5.1. 
1
H and 

13
C NMR data of gliotoxin in CDCl3 (adapted from (Kaouadji 

et al., 1990).  

1
H  Gliotoxin "  ppm 

Me-2 3.21 

H-3aA 4.43 

H-3aB 4.26 

3a-OH 3.55 

H-5a 4.82 

H-6 4.82 

6-OH 5.81 

H-7 5.99 

H-8 5.95 

H-9 5.79 

H-10A 3.76 

H-10B 2.96 

 

 

 

13
C  Gliotoxin "  ppm 

C-1 166.0 

C-3 75.6 

C-3a 60.7 

C-4 165.3 

C5a 69.7 

C-6 73.1 

C-7 130.1 

C-8 123.3 

C-9 120.2 

C-9a 130.8 

C-10 36.6 

C-10a Under CDCl3 peak  

2-Me 27.5 
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The identification of bioactive metabolites from various fungal species 

has been improved with more sophisticated NMR techniques, such as more 

powerful instrumentation for 
1
H and 

13
C NMR and the use of 2-D 

1
H – 

1
H 

COSY and HMBC (Nielsen and Smedsgaard, 2003; Forseth and Schroeder, 

2010; Wang et al., 2010) which help with the more complex structural 

identification (Zhang et al., 2007). Isaka et al. (2005) employed the use of 

HRMS and NMR for the structural analysis of DKP dimers (vertihemiptellide A 

and B) (Figure 5.3) which were isolated from the insect pathogenic fungus, 

Verticillium hemipterigenum. HRMS determined the molecular formula of the 

two DKPs. Vertihemiptellide A had a molecular formula of C26H28N4O6S4 and 

vertihemiptellide B had a molecular formula of C25H26N4O6S4. 
1
H, 

13
C, and 

HMBC spectral data completed the structural analysis (Table 5.2), however, the 

13
C NMR for vertihemiptellide A identified only 11 signals in the spectrum 

indicating a symmetric homo-dimer structure. The NMR data confirmed that 

one half of the molecule had two amides (two carbonyls, "C 165.0 and 163.6; 

NH, "H 7.81; NCH3, "C 29.8, "H 2.84), a benzyl group, a hydroxymethyl group, 

and two quaternary carbons ("C 78.2 and 70.5). (Isaka et al., 2005). NMR 

analysis of vertihemiptellide B indicated that the structure was non-symmetrical 

and that it lacked the N(4#)-methyl group that vertihemiptellide B contained 

(Isaka et al., 2005). The 
1
H NMR spectrum for vertihemiptellide B assigned the 

protons to the various groups within the compound (Table 5.2).  
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Figure 5.3. Structure of vertihemiptellide A (1) and B (2) isolated from the 

insect pathogenic fungus V. hemipterigenum (Isaka et al., 2005). 
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Table 5.2. NMR data for vertihemiptellide B in DMSO (Isaka et al., 2005) 
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1
H NMR of vertihemiptellide B (Table 5.2) dissolved in DMSO 

confirmed the location of the protons within the compound. The signal at 2.86 

ppm is due to the proton of the (N)-CH3 group at position 4 and that at 4.84 ppm 

is due to the proton from the OH group at position 7. The protons at position 8 

generated two signals which on the spectrum are located at 3.29 and 3.66 ppm, 

while those from the aromatic ring, position 10 – 14, appear between 7.18 and 

7.21 ppm on the spectrum (Isaka et al., 2005). 
13

C NMR of vertihemiptellide B 

dissolved in DMSO confirmed the position of the carbons within the compound 

(Table 5.2). On the 
13

C spectrum the signal at 30.2 ppm is generated by the 

carbon of the (N)-CH3 group at position 4 (Table 5.2). The signal at 40.0, 69.3, 

78.7, 134.3 and 164.6 ppm is due to the carbons at position 8, 7, 3, 9 and 2, 

respectively (Table 5.2). The carbons on the aromatic ring are identified at 

130.0, 128.4 and 127.5 ppm which corresponds to the carbons at 10 and 14, 11 

and 13 and 12, respectively (Table 5.2) (Isaka et al., 2005). Two-dimensional 

NMR (HMBC) helped with the assignment of protons and carbons (Table 5.2) 

and the accumulated data confirmed the structure of vertihemiptellide B (Isaka 

et al., 2005).  
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Two-dimensional NMR analysis (
1
H – 

1
H COSY and HMBC) was used in the 

identification of thirteen thiodiketopiperazines (TDKP) (epicoccin I;Figure 5.4, 

ent-epicoccin G, epicoccin J – T) produced by the endophytic fungus 

Epicoccum nigrum (Wang et al., 2010). TDKP compounds are similar to the 

ETP class with the exception that TDKP are known to contain both a single 

sulphur and/or a disulphide bridge across the piperazine ring, whereas ETP 

compounds always contain a di- to polysulphide bridge across the piperazine 

ring (Wang et al., 2010). Therefore, gliotoxin can be classified as both a TDKP 

and an ETP. 2-D analysis, 
1
H – 

1
H COSY, of epicoccin I identified the presence 

of two isolated proton spin systems (Wang et al., 2010). The presence of 
1
H – 

1
H COSY cross peaks (Figure 5.5; red boxes) from H-5 ("H 5.93), H-6 ("H 

5.88), H-7 ("H 5.59), H-8 ("H 4.55) through to H-9 ("H 4.74) and subsequent 

HMBC correlations (Figure 5.6; red circles) from both H-5 ("H 5.93) and H-9 

("H 4.74) to C-4 ("C 133.6) confirmed the presence of a six-membered ring in 

epicoccin I (C4 – C9) (Wang et al., 2010). The second six-membered ring was 

also confirmed using the 
1
H – 

1
H COSY and HMBC correlations (Wang et al., 

2010). The accumulated NMR data confirmed the structure of all thirteen 

epicoccins isolated from E. nigrum (Wang et al., 2010) 
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Figure 5.4. Structure of epicoccin I isolated from E. nigrum (Wang et al., 

2010).  



 231 

  

 

 

Figure 5.5. 
1
H – 

1
H COSY spectrum of epicoccin I isolated from E. nigrum 

(Wang et al., 2010). The 
1
H – 

1
H correlations for H5 through to H-9 are 

indicated by the red boxes.  
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Figure 5.6. HMBC Spectrum of epicoccin I isolated from E. nigrum (Wang et 

al., 2010). The H-5 and H-9 correlations to C-4 are both indicated by the red 

circles.  
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The overall objectives of the work presented in this Chapter were (i) 

employ HRMS to confirm the absence of gliotoxin in A. fumigatus !gliG 

culture extracts, (ii) perform chemical analysis on A. fumigatus !gliG culture 

extracts to determine whether M12.3 contained a disulphide bridge/thiols, (iii) 

develop and implement a purification strategy to isolate and purify M12.3 from 

A. fumigatus !gliG cultures, (iv) use high-resolution MS (HRMS) on pure 

M12.3 to determine the mass and chemical formula of the metabolite, (v) 

perform 
1
H, 

13
C, 

1
H – 

1
H COSY, DEPT-135, HMBC and HMQC NMR analysis 

on the purified M12.3 and determine the structure of the metabolite, (vi) 

perform CHNS elemental analysis on the purified M12.3 to confirm absence of 

sulphur atoms, (vii) perform feeding experiments with A. fumigatus !gliG 

cultures using 
13

C-phenylalanine as a substrate, (viii) confirm the incorporation 

of 
13

C-phenylalanine into M12.3 by HRMS and 
13

C and DEPT-135 NMR 

analysis, (ix) perform feeding experiments with A. fumigatus AF293 wild-type 

cultures using M12.3 as a substrate to determine whether the fungus takes up 

the metabolite which will confirm whether M12.3 is an on-pathway 

intermediate or an off-pathway shunt product.  
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5.2 Results 

5.2.1 HRMS (LC-ToF) analysis confirms the absence of gliotoxin in !gliG 

and the presence of gliotoxin in AF293 wild-type and gliG
C
.  

The deletion of gliG from A. fumigatus resulted in a strain that did not 

produce gliotoxin, as shown by RP-HPLC in Chapter 4. Instead, A. fumigatus 

!gliG produced an alternative metabolite, M12.3. Confirmation using HRMS of 

the absence of gliotoxin in the mutant strain was necessary. LC-ToF MS 

analysis further confirmed the absence of gliotoxin in A. fumigatus !gliG
AF293

. 

Gliotoxin was confirmed to be present in A. fumigatus AF293 wild-type and in 

A. fumigatus gliG
C
 15.1. All LC-ToF analysis was performed at the Department 

of Chemistry, NUI Maynooth. 

5.2.1.1 Extracted ion chromatogram (EIC) following LC-ToF MS analysis  

Absence of gliotoxin production in A. fumigatus !gliG
AF293

 was 

confirmed by LC-ToF MS. Briefly, organic extracts of A. fumigatus wild-type, 

!gliG
AF293

 and one complemented strain, gliG
C
 15.1 were subjected to LC-ToF 

MS anaysis (Section 2.2.23.1). Data acquisition was performed on the different 

extracts by searching for gliotoxin based on the chemical formula 

(C13H14N2O4S2). Extracted ion chromatograms (EICs) from A. fumigatus !gliG 

did not contain gliotoxin (Figure 5.7). EIC identified a metabolite at RT = 10.5 

min in the gliotoxin standard, AF293 wild-type and gliG
C 

15.1 (Figure 5.7). 

This 10.5 min metabolite was identified as gliotoxin, with subsequent mass 

determination described in Section 5.2.1.2. The overall profile of the A. 

fumigatus !gliG extract differed significantly to the other EIC from the 

gliotoxin standard, wild-type and complemented strain. 
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Figure 5.7. LC-ToF MS analysis of A. fumigatus AF293 wild-type, AF293 

gliG
C
 15.1 and !gliG organic extracts. (A) LC-ToF EIC of gliotoxin standard 

identified gliotoxin at a RT = 10.5 min. (B) LC-ToF EIC of A. fumigatus wild-

type identified gliotoxin at a RT = 10.5 min. (C) LC-ToF EIC of A. fumigatus 

gliG
C
 15.1 identified gliotoxin at a RT = 10.5 min. (D) LC-ToF EIC of A. 

fumigatus !gliG revealed a significantly different profile to the others and 

gliotoxin was absent.  
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$ !gliG
AF293 
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C
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5.2.1.2 MS spectra of the metabolite at RT = 10.5 min 

Extracted ion chromatograms (EIC) of gliotoxin standard, A. fumigatus 

AF293 wild-type and gliG
C
 15.1 confirmed gliotoxin presence by the 

identification of a metabolite at RT = 10.5 min, which was identified after a 

chemical formula search (Figure 5.8). This 10.5 min metabolite contained a 

molecular species with a mass of 327 m/z. Identification of gliotoxin using LC-

MS analysis requires the confirmation of the gliotoxin parent ion, 327 m/z (Bok 

et al., 2006; Kupfahl et al., 2006; Spikes et al., 2008; Scharf et al., 2010; 

Schrettl et al., 2010). High resolution LC-ToF MS analysis of the metabolite 

confirmed the presence of a molecular ion with a mass of 327 m/z (M+H)
+
 in 

the gliotoxin standard and in the extracts from A. fumigatus wild-type and gliG
C
 

15.1.  
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Figure 5.8. LC-ToF MS analysis of gliotoxin standard, A. fumigatus wild-type 

and gliG
C
 15.1. EIC identified gliotoxin at RT = 10.5 min in each of the three 

extracts, the mass spectra confirmed the presence of a molecular ion with a mass 

of 327.05 m/z (M+H)
+
. This molecular species is gliotoxin.  
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5.2.2  Structural Elucidation of metabolite M12.3 produced in the absence 

of A. fumigatus gliG. 

Once it was established with RP-HPLC and HRMS that A. fumigatus 

!gliG did not produce gliotoxin and instead produced an alternative metabolite, 

M12.3, it was critical to determine the nature of this metabolite. Full structural 

elucidation helped confirm the role of A. fumigatus gliG in gliotoxin 

biosynthesis.  

 

5.2.2.1 Reduction and alkylation of A. fumigatus culture extracts.  

To determine whether M12.3 contained a disulphide bridge or thiol 

groups a novel chemical assay was developed. This assay employed reduction 

of the disulphide bridge in gliotoxin followed by subsequent alkylation of thiols 

with an alkylation agent, 5’-iodoacetamidofluorescein (5’-IAF). Before the 

reduction and alkylation assay could be used for A. fumigatus organic extracts, 

validation was performed on pure gliotoxin (Sigma-Aldrich).  

 

5.2.2.1.1 Reduction and alkylation of pure gliotoxin  

Gliotoxin was subjected to sequential reduction and alkylation as 

described in Section 2.2.15.1, to produce labelled gliotoxin or di-

acetamidofluorescein-gliotoxin (GT-(AF)2). GT-(AF)2 was confirmed as di-

acetamidofluorescein-gliotoxin by MALDI-ToF MS, this will be discussed in 

more detail in Chapter 6. Briefly, sodium borohydride (NaBH4) reduces 

gliotoxin to the dithiol form, which is then labelled with the alkylation agent 5’-

IAF. GT-(AF)2 was then detected following RP-HPLC separation using the 
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gradient described in Table 2.10. RP-HPLC separation and absorbance detection 

at 254 nm identified GT-(AF)2 at RT =16.502 min (Figure 5.9). GT-(AF)2 was 

only detected with the addition of NaBH4. Unreacted 5’-IAF was also detected 

at RT =15.973 min. In the absence of NaBH4, GT-(AF)2 is absent and unreacted 

gliotoxin is detectable at RT =15.098 min (Figure 5.9).  
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Figure 5.9. RP-HPLC analysis of pure gliotoxin (Sigma-Aldrich) with and 

without NaBH4-mediated reduction prior to 5’ IAF labelling. (A) Gliotoxin + 

NaBH4 + 5’-IAF: Absorbance detection at 254 nm detected GT-(AF)2 with a 

A 

B 

GT-(AF)2  

5’ IAF 

5’ IAF 

GT 

% 
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retention time of 16.503 min. (B) Gliotoxin – NaBH4 + 5’-IAF: No labelling of 

gliotoxin is possible (indicated by the asterix) in the absence of NaBH4. 

Absorbance detection at 254 nm detected free gliotoxin with a retention time of 

15.089 min. 
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5.2.2.1.2 Reduction and alkylation of organic extracts from A. fumigatus 

cultures 

Reduction and alkylation of culture extracts from A. fumigatus AF293 

wild-type, !gliG and the three gliG
C
 complemented strains (15.1, 15.4 and 17.1) 

was performed (Section 2.2.20.3). Absorbance detection at 254 nm confirmed 

the absence of GT-(AF)2 in extracts from A. fumigatus !gliG (Figure 5.10). 

Metabolite M12.3 was detected at RT = 12.457 min. This chemical assay 

confirms that M12.3 does not contain a disulphide bridge or thiol group. 

Unreacted 5’-IAF was also evident at RT = 15.754 min. Absorbance detection at 

254 nm showed that GT-(AF)2 was present following RP-HPLC separation in 

culture extracts from A. fumigatus AF293 wild-type and in the three gliG
C
 

strains (15.1, 15.4 and 17.1). Absorbance detection at 254 nm identified GT-

(AF)2 at RT =16.34 min in each of the extracts (Figure 5.10).  
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Figure 5.10. RP-HPLC analysis of organic extracts from A. fumigatus AF293 

wt, !gliG and gliG
C
 15.1, 15.4 and 17.1 with NaBH4-mediated reduction prior 

to 5’ IAF labelling. (A) A. fumigatus wild-type + NaBH4 + 5’-IAF: Absorbance 

detection at 254 nm detected GT-(AF)2 with a retention time of 16.345 min. (B) 

A. fumigatus !gliG + NaBH4 + 5’-IAF: No GT-(AF)2 was detected (indicated 

by the asterix). Absorbance detection at 254 nm detected M12.3 at a RT = 

12.457 min. (C) A. fumigatus gliG
C
 15.1 + NaBH4 + 5’-IAF: Absorbance 

detection at 254 nm detected GT-(AF)2 with a retention time of 16.347 min. (D) 

E 

D 
GT-(AF)2  

GT-(AF)2  
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A. fumigatus gliG
C
 15.4 + NaBH4 + 5’-IAF: Absorbance detection at 254 nm 

detected GT-(AF)2 with a retention time of 16.340 min. (E) A. fumigatus gliG
C
 

17.1 + NaBH4 + 5’-IAF: Absorbance detection at 254 nm detected GT-(AF)2 

with a retention time of 16.346 min. 
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5.2.2.2 Purification strategy for M12.3 isolation 

Chemical analysis of A. fumigatus !gliG confirmed that M12.3 did not 

contain a disulphide bridge or thiol group. To determine the structure of M12.3, 

full structural elucidation was necessary. This required a significant amount of 

purified M12.3 (" 10 mg) (Personal communication Dr Dermot Brougham, 

Dublin City University). A purification strategy was developed to generate a 

large amount of pure material (Figure 5.11). This purification strategy employed 

the extraction and purification of M12.3 from culture extracts. Briefly, this 

involved scaling-up A. fumigatus !gliG cultures from 500 ml to 5 L (Section 

2.2.12). Fungal mycelia was harvested and the culture supernatant was collected 

in a clean duran and supernatants were organically extracted in an equal volume 

of chloroform. The chloroform extracts were dried using rotary evaporation 

(Section 2.2.13) and all the residual material was resuspended in methanol. An 

aliquot of the crude A. fumigatus !gliG extract was subjected to RP-HPLC 

analysis (Figure 5.12) and the crude methanol extract was then subjected to 

pTLC (Section 2.2.18). Once the pTLC plates were run in the solvent system, 

the M12.3 band was excised carefully and washed in acetone to solubilise 

M12.3. This acetone wash was dried using rotary evaporation. This entire 

procedure was performed repeatedly until a sufficient quantity of pure M12.3 

was obtained. To assess the purity of M12.3, an aliquot of the sample was 

subjected to HPLC analysis (Figure 5.12). The HPLC profile of purified M12.3 

confirmed that the sample was pure and therefore suitable for structural 

analysis. A total of 6.5 mg of M12.3 was generated and this was deemed a 

sufficient amount of material for subsequent analysis (Personal communication 
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Dr Ishwar Singh, Department of Chemistry, NUI Maynooth) and this was then 

used for (i) LC-ToF, (ii) NMR and (iii) Elemental analysis.  
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Figure 5.11 

!gliG 

(500 ml) 

!gliG (5 lt) 
Organic Extraction 

Rotary Evaporation 

Scale Up 

 

Figure 5.13. Purification strategy developed to isolate the required amount of M12.3 for structural elucidation. A. fumigatus !gliG cultures were scaled 

up to 5 L. The supernatant was organically extracted in CHCl3 twice. Organic extracts were dried and the crude sample subjected to pTLC. M12.3 was 

excised from the silica and washed in acetone to solubilise the compound. The acetone wash was dried under rotary evaporation. Once the compound 

was dried completely the purity was confirmed by HPLC.  

Rotary Evaporation 



 251 

 

 

 

 

 

Figure 5.12. RP-HPLC profiles of A. fumigatus !gliG crude extracts and 

purified M12.3. (A) Crude extracts before pTLC purification. (B) Purified 

M12.3, which was used for structural characterisation. In total, 6.5 mg of 

purified material was obtained.  

M12.3 

A 

B 
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5.2.2.3 Structural Elucidation strategy 

After extraction and purification of M12.3, 6.5 mg of pure material was 

obtained. This material was then used to confirm the structure of the metabolite. 

Several techniques were used to ascertain the structure (Figure 5.13), (i) HRMS, 

(LC-ToF), (ii) NMR and (iii) CHNS elemental analysis. These three techniques 

determined the mass and chemical formula of the compound. 
1
H and 

13
C NMR 

spectroscopy was used to identify the different proton and carbon groups 

present in the compound. The percentage of C, H, N and S within the compound 

was determined using CHNS elemental analysis.  
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Figure 5.13. Structural Elucidation workflow. The combination of LC-MS, 

NMR and elemental analysis provided information to confirm the structure.  

Strategy Employed for the Structural Elucidation of M12.3  
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5.2.2.4 LC-ToF HRMS analysis of purified M12.3 

Mass determination of purified M12.3 was performed using LC-ToF 

analysis. The LC absorbance spectra (254 nm) identified a single molecular 

species at a RT = 9.1 min. HRMS analysis of the metabolite confirmed the 

presence of a molecular ion with a mass of 263.1027 m/z ((M+H)
+
) (Figure 

5.14). A predicted molecular formula of C13H14N2O4 was determined using 

Agilent Technologies Masshunter workstation software. The molecular formula 

lacked sulphur atoms. The presence of a sodium adduct was also evident, which 

had a mass of 285.0846 m/z ((M+Na)
+
). The absolute mass of M12.3 was 

determined to be 262.1026 u. The difference in mass between gliotoxin and 

M12.3 was 64 Da and it was recognised that this corresponded to the mass of 

two sulphur atoms.  
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Figure 5.14. LC-ToF HRMS analysis of purified M12.3 confirming the mass of 

the compound. (A) LC-ToF UV absorbance (254 nm) profile of M12.3 

(Injection volume: 10 µL) identified a single compound at RT 9.1 min. (B) Mass 

spectrum of M12.3  identified a single molecular species with a mass of 

263.1027 m/z ((M+H)
+
). The sodium adduct was also present which had a mass 

of 285.0846 m/z ((M+Na)
+
).  

B 

 

A 
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5.2.2.5 NMR Analysis of M12.3 

Several NMR experiments were carried out on the purified M12.3 

compound and conclusively confirmed the structure as 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione (Figure 5.15). NMR analysis was 

performed in collaboration with the Department of Chemistry, NUI Maynooth 

and Teagasc Ashtown Food Research Centre, Dublin. 
1
H NMR, 

13
C NMR, 

DEPT 135, COSY, HSQC and HMBC spectra were recorded in CDCN3 and 

CDCl3. The operating frequency for the 
1
H nucleus was 300 MHz and for the 

13
C nucleus 75 MHz (Bruker Avance AV300). Additional spectra were recorded 

at an operating frequency of 500 MHz for the 
1
H nucleus and 125 MHz for the 

13
C nucleus on a more powerful instrument (Bruker Avance III 500 MHz, 

Teagasc Ashtown Food Research Centre, Dublin). Chemical shifts are reported 

in ppm relative to the reference, TMS.  

The spectra revealed that the compound contained two amide carbonyl 

groups ("c 157.3 (CONH), 161.1 (CONOCH3)), a benzyl group ("c 46.5 

(CH2Ph)), a hydroxyl group at position 6 ("c 83.5 (NHCOC(OH)Bn), "H 4.93 

(NHCOC(OH)Bn)), a methoxy group ("c 62.2 (OCH3), "H 3.64 (OCH3)), and a 

1,1-disubstituted alkene ("c 100.1 (C=CH2), 134.2 (C=CH2), "H 5.00, 5.33 

(C=CH2)) (Table 5.3).  
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Figure 5.15. The absolute structure of M12.3 confirmed as 6-benzyl-6-hydroxy-

1-methoxy-3-methylenepiperazine-2,5-dione. 
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Table 5.3. Table compiling all NMR and corresponding chemical shifts 

associated with the groups of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione. 

Chemical Group Chemical Shift Group 

Amide carbonyl "c 157.3 CONH 

Amide carbonyl "c 161.1 CONOCH3 

Benzyl "c 46.5 CH2Ph 

Hydroxyl (position 6) "c 83.5 NHCOC(OH)Bn 

 "H 4.93 NHCOC(OH)Bn 

Methoxy "c 62.2 OCH3 

 "H 3.64 OCH3 

1, 1-disubstituted alkene "c 100.1 C=CH2 

 "c 134.2 C=CH2 

 "H 5.00 C=CH2 

 "H 5.33 C=CH2 
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5.2.2.5.1 
1
H NMR of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione  

1
H NMR of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-

dione (CD3CN, 300 MHz) (Figure 5.16). The signals between 2.97 – 3.02 and 

3.39 – 3.44 ppm were generated by the CH2 at position 8. The signal at 3.63 

ppm is due to the (N)-OCH3 group at position 1. The signal at 4.93 ppm was 

caused by the–OH at position 6. The signals at 5.00 and 5.33 ppm are generated 

by the CH2 at position 7. The signals between 7.17 and 7.29 ppm are due to the 

H atoms at positions 10, 11, 12, 13 and 14 of the aromatic ring. The signal at 

7.23 ppm is due to the –NH at position 4.  
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Figure 5.16. 
1
H NMR of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (CD3CN, 300 MHz). Protons at position 1, 4, 6, 

7, 8, 10, 11, 12, 13 and 14 were all identified in this spectrum. In this spectrum 

the CONH proton signal (7.23 ppm) overlaps with the signals from the protons 

of the aromatic ring (10 – 14).  
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5.2.2.5.2 DEPT 135 of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione  

DEPT 135 analysis (CD3CN, 75 MHz) determined how many CH, CH2 

and CH3 groups were present (Figure 5.17). The CH and CH3 groups are above 

the line and the CH2 groups are below the line. The signal at 46.5 ppm is due to 

the 
13

C atom of the CH2 at position 8. The signal at 62.2 ppm is generated from 

the 
13

C atoms of the CH3 of (N)-OCH3 at position 1. The signal at 100.1 ppm is 

generated from the 
13

C atom of the CH2 at position 7. The signals at 128.2, 

129.1 and 131.4 ppm are generated from the 
13

C atoms of the CH groups at 

positions 10 and 14, 11 and 13 and 12, respectively.  
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Figure 5.17. DEPT 135 NMR spectrum of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (CD3CN, 75 MHz). The CH and CH3 groups are 

above the line and the CH2 groups are below the line. In total three CH, two 

CH2 and one CH3 groups are present in the compound. 

CH CH3  

CH2 
CH2 
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5.2.2.5.3 
13

C NMR of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione  

The 
13

C NMR identified signals for the different carbon atoms present in 

the compound when it was dissolved in deuterated acetonitrile (Figure 5.18) and 

deuterated chloroform (Figure 5.19). The signal at 46.5 ppm is due to the 
13

C 

atom of the CH2 at position 8, this signal was also evident in the DEPT-135 

spectrum (Figure 5.17). The signal at 62.2 ppm is generated from the 
13

C atom 

of the CH3  from (N)-OCH3 at position 1, this signal was also evident in the 

DEPT-135 spectrum (Figure 5.17). The signal at 83.5 ppm is generated from the 

13
C atom at position 6. The signal at 100.1 ppm is due to the 

13
C atom of the 

CH2 at position 7, this signal was also evident in the DEPT-135 spectrum 

(Figure 5.17). The signal at 128.2 ppm is generated from the 
13

C atom at 

position 12 of the aromatic ring, this signal was also evident in the DEPT-135 

spectrum (Figure 5.17). The signal at 129.1 ppm is generated from the 
13

C atom 

at position 11 and 13 of the aromatic ring, this signal was also evident in the 

DEPT-135 spectrum (Figure 5.17). The signal at 131.4 ppm is due to the 
13

C 

atom at position 10 and 14 of the aromatic ring, this signal was also evident in 

the DEPT-135 spectrum (Figure 5.17). The signal at 134.2 ppm is due to the 
13

C 

atom at position 3. The signal at 134.5 ppm is generated from the 
13

C atom at 

position 9. The signal at 157.3 ppm is generated from the 
13

C atom at position 5. 

The signal at 161.1 ppm is generated from the 
13

C atom at position 2. 
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Figure 5.18. 
13

C NMR of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (CD3CN, 75 MHz). This spectrum identified all 

the 
13

C present in the compound. The signal from CD3CN appeared at 118.3 

ppm. Some of the signals were evident on the DEPT-135 spectrum (Figure 

5.19).  
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Figure 5.19. 
13

C NMR of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (CDCl3, 75 MHz). 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione was dissolved in deuterated 

chloroform instead of deuterated acetonitrile. The signal from CDCl3 appeared 

at 77 ppm. The 
13

C signals on this spectrum are the same as those from the 

previous 
13

C NMR spectrum (CD3CN, 75 MHz). Only slight shifts in signal 

position was evident due to the different solvents, this was expected.  

 

 

CDCl3  
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5.2.2.5.4 COSY NMR analysis of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione  

COSY analysis was performed on the metabolite dissolved in CDCl3 to 

confirm that the methoxy group was located at position 1 and that the NH group 

was located at position 4. This was a necessary analysis as the possibility of an 

alternative structure to M12.3 needed to be either confirmed or eliminated. 

Observation of coupling between the 
1
H atom of the CONH signal (7.50 ppm) 

at position 4 and the 
1
H atoms from the CH2 group (5.00 and 5.33 ppm) at 

position 7 confirmed that the NH group was located at position 4 (Figure 5.20; 

red box). This long range coupling over four bonds, indicated that the NH group 

was located at position 4, adjacent to the disubstituted alkene. Location of the 

NH at position 1 would require a longer five bond coupling to the CH2 protons 

at position 7 in order to explain the cosy data. Such a five bond coupling is 

unlikely.  
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Figure 5.20. COSY NMR spectrum of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (CDCl3, 300 MHz). Coupling (indicated by the 

red box) between the 
1
H atom of the CONH signal (7.50 ppm) at position 4 and 

the 
1
H atoms from the CH2 group (5.00 and 5.33 ppm) at position 7 confirmed 

that the NH group was located at position 4.  
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5.2.2.5.5 HMBC and HSQC NMR analysis of 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione 

HMBC and HSQC of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (Figure 5.21, Figure 5.22 and Figure 5.23, 

respectively). Observation of coupling between the 
1
H atom of the CONH 

signal (CDCl3; 7.50 ppm and CDCN3; 7.23 ppm) at position 4 and the 
13

C atoms 

from the CH2 group (134.2 ppm) at position 3 and the 
13

C atoms from the CO 

group (161.1 ppm) at position 5 confirmed that the NH group was located at 

position 4 (Figure 5.21, Figure 5.22 and Figure 5.23; red circles). The 

alternative structure with the methoxy group at position 4 would be expected to 

show couplings between the CONH signal and the 
13

C at position  2 and the 
13

C 

at position 6. This was not observed. 
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Figure 5.21. HMBC of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-

2,5-dione (CDCl3, 75 MHz). Observation of coupling (red circles) between the 

1
H atom of the CONH signal (7.50 ppm) at position 4 and the 

13
C atoms from 

the CH2 group at position 3 and the 
13

C atoms from the CO group at position 5 

confirmed that the NH group was located at position 4.  
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Figure 5.22. HMBC of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-

2,5-dione (CDCN3, 75 MHz). Observation of coupling (red circle) between the 

1
H atom of the CONH signal (7.23 ppm in CDCN3) at position 4 and the 

13
C 

atom from the CH2 group at position 3 confirmed that the NH group was located 

at position 4. 
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Figure 5.23. HSQC of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-

2,5-dione (CD3CN, 75 MHz). Observation of coupling (red circle) between the 

1
H atom of the CONH signal (7.23 ppm in CDCN3) at position 4 and the 

13
C 

atom from the CH2 group (134.2 ppm) at position 3 confirmed that the NH 

group was located at position 4. 
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5.2.2.6  Summary of the overall NMR data 

A full summary of all 
1
H, 

13
C and 2-D HMBC NMR is described in Table 

5.4.  

Table 5.4. NMR data generated for 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione analyses.  

Position 
1
H (mult, J in Hz) 

13
C (mult) HMBC (H to 

C) 

1(N)-OCH3 3.63 (s) 62.2 (q)  

2  157.2 (s)  

3  134.2 (s)  

4-NH 7.23
a
    

4-NH
d
 7.50

d
  C-5, 3

d
 

5  161.1 (s)  

6  83.5 (s)  

6-OH 4.93 (s)  C-6, 8 

7 5.00 (s), 5.33 (s) 100.1 (t) C-2, 3 

8 2.97-3.02 (d, 13.3) 

3.39-3.44 (d, 13.3) 

46.5 (t) C-5, 6, 9, 10, 14 

9  134.5 (s)  

10, 14 7.17-7.29 (m)
b
 131.4 (d)

c
  

11, 13 7.17-7.29 (m)
b
 129.1 (d)

c
  

12 7.17-7.29 (m)
b
 128.2 (d)  

a
 Overlapping the signals of the phenyl group.  

b
 Overlapping the NH signal.  

c
 Assignments of carbons are interchangeable. 

d
 In CDCl3 
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5.2.2.7 Ferric Chloride Test  

The location of the OH group was confirmed at position 6 (C6, C-OH) 

and not at position 1 (N1, N-OH). This was achieved by the use of a ferric 

chloride assay (Shin et al., 1975). The lack of deep violet colour change 

indicated that the metabolite did not contain an N-OH group and that the OH 

must be elsewhere. We predict that the OH is on C6. According to Shin et al. 

(1975), if the OH group was on the N atom then a deep violet colour was 

expected, due to iron atom complexing because of the presence of the N-OH. 

This did not occur and allowed us to conclude C6 – OH presence.  

 

5.2.2.8 Elemental (CHNS) analysis 

Elemental (CHNS) analysis (Dr Ann Connolly, UCD by commercial 

arrangement) was carried out on purified 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione to further confirm the absence of sulphur. The 

pure sample was combusted on oxygen (1600 °C) and the combustion products 

were analysed. CHN content was confirmed as C = 55.97 %, H = 4.47 % and N 

= 9.06%. No sulphur content was present.  



 274 

5.2.3 Determining whether 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione was an on-pathway intermediate or 

an off-pathway shunt 

Once the full structure of M12.3 was elucidated, it was necessary to 

determine if the metabolite was an on-pathway intermediate or an off-pathway 

shunt product. This involved two strategies, (i) production of 6-benzyl-6-

hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione with a 
13

C label 

incorporated into the structure that could be used to trace any potential uptake of 

the metabolite (Figure 5.24) and (ii) feeding the labelled 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione (with and without the 
13

C label) to A. 

fumigatus wild-type cultures to monitor potential uptake of the metabolite by 

the fungus and any subsequent enzymatic modification of it by other enzymes 

produced by the gliotoxin cluster (Figure 5.25). This process may afford the 

next on-pathway biosynthetic intermediate in gliotoxin biosynthesis. 
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Figure 5.24 

 

Figure 5.26. Production of 
13

C 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione by A. fumigatus !gliG. Schematic illustration of 

the design of the feeding experiments used for the production of 
13

C labelled 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione 

(
13

C-M12.3). A. fumigatus !gliG cultures were incubated for 24 hr at 37 °C before 
13

C-L phenylalanine was spiked into the cultures. Spiked 

cultures were incubated for a further 24 hr. Organic extracts were purified (Section 2.2.13) and confirmation of 
13

C incorporation was done via 

LC-MS and NMR analysis.   
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Figure 5.25 

 

Figure 5.27. Monitoring the uptake of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione by A. fumigatus wild-type. Schematic 

illustration of the uptake by A. fumigatus wild-type cultures. Pure compound was spiked into the cultures, incubated and removed at various time 

points (0, 15, 60 and 180 min). Extracts were monitored by HPLC for the disappearance of M12.3 and the appearance of new metabolites.  

Wild-type 
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5.2.3.1 Feeding experiments confirm L-phenylalanine is a precursor of 6-

benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione 

L-phenylalanine was confirmed as a precursor of 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione after it was successfully incorporated 

into the metabolite by feeding experiments with a 
13

C labelled phenylalanine 

(
13

C-L-phenylalanine) (Section 2.2.24.3). Briefly, A. fumigatus !gliG cultures 

were incubated for 24 hr at 37 °C. 
13

C-L-phenylalanine was spiked into the 

cultures and they were incubated for a further 24 hr before the 
13

C labelled 6-

benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione was extracted 

and purified. Confirmation that 
13

C-L-phenylalanine had successfully 

incorporated into the structure was performed with LC-MS and NMR analysis. 

 

5.2.3.1.1 LC-Tof Mass Spectrometric Analysis of 
13

C-M12.3 

LC-ToF analysis confirmed the incorporation of 
13

C-L-phenylalanine into 

6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. Mass 

determination of purified 
13

C-M12.3 confirmed the metabolite had a mass of 

m/z 264.105 ((M+H)
+
)

 
(Figure 5.26). The presence of a molecular species with 

m/z 263.1025 was also present in the spectra. This is 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione which has been produced with L-

phenylalanine as an amino acid precursor instead of 
13

C-L-phenylalanine. The 

ratio of 
13

C labelled versus unlabelled 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione was calculated to be 54:46.  
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Figure 5.26. LC-ToF HRMS analysis of 
13

C-L-phenylalanine incorporated into 

6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. The mass 

spectrum shows a molecular ion with a mass of 264.106 (M+H)
+
 and 263.102 

(M+H)
+
, which corresponds to 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione with 
13

C-L-phenylalanine incorporated, and 

without. 
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5.2.3.1.2 NMR Analysis of 
13

C-L-phenylalanine incorporated 6-benzyl-6-

hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione  

13
C and DEPT-135 NMR analysis confirmed the successful integration of 

the 
13

C-L-phenylalanine into 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione. The 
13

C NMR spectrum revealed an intense 

signal at 46.5 ppm (Figure 5.27). This was due to the CH2 group at position 8. 

The increase in intensity of this signal in comparison to 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione without 
13

C incorporated is 

accounted for by the 
13

C incorporated.  

DEPT-135 analysis also identified this signal at 46.5 ppm (Figure 5.28). 

Again, this was due to the CH2 group at position 8. Both NMR spectra confirm 

that L-phenylalanine is a precursor of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione.  
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Figure 5.27. 
13

C NMR of 
13

C labelled 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (CD3CN, 125 MHz). The intense signal at 46.5 

ppm is due to the 
13

C atom of the CH2 group at position 8. This 
13

C originated 

from 
13

C-L-phenylalanine that was spiked into !gliG cultures. This NMR 

spectrum confirms that L-phenylalanine is a precursor of 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione.  

 

CD3CN                   CD3CN 
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Figure 5.28. DEPT 135 NMR of 
13

C labelled 6-benzyl-6-hydroxy-1-methoxy-

3-methylenepiperazine-2,5-dione (CD3CN, 125 MHz). The signal at 46.5 ppm is 

due to the 
13

C atom of the CH2 group at position 8. This 
13

C originated from 

13
C-L-phenylalanine that was spiked into !gliG cultures. This NMR spectrum 

also confirms that L-phenylalanine is a precursor of 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione. 

CH2  
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5.2.3.2 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione is 

an off pathway shunt product  

It was confirmed that 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione was an off-pathway shunt intermediate and not 

an on-pathway intermediate through feeding experiments. Purified metabolite 

was spiked into A. fumigatus wild-type cultures/protoplasts and the uptake of 

the compound was monitored by HPLC analysis.  

 

5.2.3.2.1 Monitoring the uptake of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione by A. fumigatus ATCC 46645 

mycelia. 

Pure 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione 

was not taken up by A. fumigatus ATCC46645 wild-type cultures (Figure 5.29). 

On independent occasions and with two different amounts, purified 6-benzyl-6-

hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione (15/150 µg) (Section 

5.2.2.2) was spiked into cultures of a low-gliotoxin producing strain, A. 

fumigatus ATCC46645 (Section 2.2.24.1). Culture supernatant was removed 

before spiking and at 0, 15, 60 and 180 min after spiking with the metabolite. 

Organic extracts of each time point were subjected to HPLC analysis. Peak area 

of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione was 

monitored at the various time points to asses the uptake of the metabolite by the 

fungus. No reduction in the peak area for the two different amounts over the 

time period was observed (Figure 5.29).  
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5.2.3.2.2 Monitoring the uptake of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione by A. fumigatus AF293 mycelia. 

Purified 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione 

(150 µg) (Section 5.2.2.2) was spiked into A. fumigatus AF293 cultures (Section 

2.2.24.1). Culture supernatant was removed before spiking and at 0, 15, 60 and 

180 min after spiking with the metabolite. Organic extracts of each time point 

were subjected to HPLC analysis. Peak area of 6-benzyl-6-hydroxy-1-methoxy-

3-methylenepiperazine-2,5-dione was monitored at the various time points to 

asses the uptake of the metabolite by the fungus. No decrease in the peak area 

over the time period was observed (Figure 5.29). 

 

5.2.3.2.3 Monitoring the uptake of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione by A. fumigatus AF293 

protoplasts. 

Purified 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione 

(150 µg) (Section 5.2.2.2) was spiked into the wild-type protoplast suspension 

(Section 2.2.24.2). An aliquot of the suspension was removed before and at 1, 3 

and 24 hr after spiking with the metabolite. Organic extracts from the protoplast 

pellet and the supernatant (Section 2.2.24.2) were subjected to HPLC analysis. 

Peak area of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione 

was monitored at the various time points to assess the uptake of the metabolite 

by the fungus. No decrease in the peak area over the time period was observed 

(Figure 5.29). 
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Figure 5.29. Incubation of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione with A. fumigatus ATCC 46645 and AF293 

wild-type cultures and an A. fumigatus AF293 protoplast suspension. (A) No 

decrease in the peak area of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione (50 µg) was observed in the supernatant of A. 

fumigatus ATCC 46645 cultures. Therefore, no uptake of the metabolite by the 

fungus was observed. (B) No decrease in the peak area of 6-benzyl-6-hydroxy-

1-methoxy-3-methylenepiperazine-2,5-dione (150 µg) in the supernatant of A. 

fumigatus ATCC 46645 cultures. Therefore, no uptake of the metabolite by the 

A       B 

C         D 
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fungus was observed. (C) No decrease in the peak area of 6-benzyl-6-hydroxy-

1-methoxy-3-methylenepiperazine-2,5-dione (150 µg) in the supernatant of A. 

fumigatus AF293 cultures. No decrease in the peak area of the metabolite by the 

fungus was observed. (D) No decrease in the peak area of 6-benzyl-6-hydroxy-

1-methoxy-3-methylenepiperazine-2,5-dione (150 µg) incubated with of A. 

fumigatus AF293 protoplasts. Therefore, no uptake of the metabolite by the 

fungus was observed. 



 286 

5.3 Discussion 

Previous studies on gliotoxin biosynthesis has not identified any 

biosynthetic intermediates or shunt metabolites (Suhadolnik and Chenoweth, 

1958; Winstead and Suhadolnik, 1960; Bose et al., 1968a; Bose et al., 1968b; 

Bulock and Ryles, 1970; Johns and Kirby, 1971; Bu'Lock and Leigh, 1975; 

Kirby et al., 1978; Bok et al., 2006; Cramer et al., 2006; Kupfahl et al., 2006; 

Sugui et al., 2007; Spikes et al., 2008; Schrettl et al., 2010). The metabolite 

M12.3 was herein detected in A. fumigatus !gliG and the mass of the 

metabolite confirmed to be 263 m/z. Reduction and alkylation confirmed that 

M12.3 lacked a disulphide bridge and/or thiols. CHNS elemental analysis also 

confirmed the absence of sulphur atoms. NMR confirmed the structure of 

M12.3 to be 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. 

Feeding experiments confirmed incorporation of L-phenylalanine into the 

metabolite, which has been previously confirmed for gliotoxin (Suhadolnik and 

Chenoweth, 1958). NMR analysis of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione revealed that the metabolite contained two 

amide carbonyl groups, a hydroxyl group, a methoxy group and an exocyclic 

alkene. In comparison to the structure of gliotoxin it did not contain the 

disulphide bridge, the hydroxyl group on the aromatic ring, the methyl group 

attached to the N on the piperazine ring, the CH2OH group on the piperazine 

ring and the five-member ring which connects the aromatic ring and the 

piperazine ring is closed in gliotoxin whereas it is an open ring conformation in 

6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. Feeding 

experiments using 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-
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dione did not detect any uptake of this metabolite by AF293 mycelia of 

protoplasts.  

The use of HRMS has been employed for the confirmation that different 

gli mutant strains (!gliP, !gliZ and !gliT) do not produce gliotoxin (Bok et al., 

2006; Kupfahl et al., 2006; Sugui et al., 2007; Spikes et al., 2008; Scharf et al., 

2010; Schrettl et al., 2010). The gliotoxin parent ion, 327 m/z, was absent in 

each of these gli mutant strains. Restoration of gliotoxin production was evident 

in the complemented gli strains. This confirmed that gliP, gliZ and gliT each 

played roles in gliotoxin biosynthesis, regulation of expression and self-

protection, respectively. Absence of gliotoxin production in A. fumigatus !gliG 

and the confirmation of gliotoxin production in both A. fumigatus wild-type and 

complemented strains was confirmed in Chapter 4 by RP-HPLC analysis. This 

was also confirmed by HRMS in this Chapter. LC-ToF analysis of A. fumigatus 

!gliG culture extracts confirmed the absence of the gliotoxin parent ion (327 

m/z) and therefore confirmed that this strain did not produce gliotoxin. 

Gliotoxin was detected in extracts of A. fumigatus AF293 wild-type and gliG
C
 

15.1 by the presence of a molecular ion with a mass of 327 m/z and this 

confirmed that both wild-type and complemented strains produced gliotoxin.  

Once it was confirmed that A. fumigatus !gliG did not produce gliotoxin 

and instead produced M12.3 (6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione will continued to be referred to as M12.3) it was 

necessary to determine whether this metabolite contained the disulphide bridge 

or thiols. A novel chemical assay was developed to confirm the 

presence/absence of a disulphide bridge or thiols. This chemical analysis 
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employed reduction and alkylation of the disulphide bridge of gliotoxin. 

Reduction of gliotoxin with NaBH4 has been previously described (Woodcock 

et al., 2001; Schrettl et al., 2010) and the two thiol groups of dethiogliotoxin 

were subsequently labelled with the alkylation agent 5’-IAF. This produced a 

stable GT-(AF)2 product which was detectable by RP-HPLC. Following 

reduction and alkylation of A. fumigatus AF293 wild-type culture extracts, GT-

(AF)2 was detected by HPLC which confirmed that gliotoxin was produced by 

the wild-type strain. Reduction and alkylation of extracts from the three A. 

fumigatus gliG
C
 strains (15.1, 15.4 and 17.1) followed by HPLC analysis also 

detected GT-(AF)2. This confirmed gliotoxin production was restored in the 

three complemented strains. However, reduction and alkylation of A. fumigatus 

!gliG extracts did not detect GT-(AF)2 and so demonstrated that the mutant 

strain did not produce gliotoxin and that M12.3 did not contain a disulphide 

bridge and/or thiol groups. This novel approach for the detection of a disulphide 

bridge was further evaluated for the detection of gliotoxin in A. fumigatus 

culture supernatants. This will be discussed in more detail in Chapter 6.  

Confirmation of structure using NMR requires a significant amount (! 10 

mg) of pure material (Personal communication Dr Ishwar Singh, Chemistry 

Department, NUI Maynooth and Dr Dermot Brougham, Dublin City 

University). A strategy was developed to scale up A. fumigatus !gliG cultures, 

subsequently extract and purify M12.3 from crude culture extracts and repeated 

several times (n = 5) until 6.5 mg of M12.3 was generated. The purified material 

was subjected to HRMS and NMR analysis. Structural characterisation of novel 

metabolites by NMR required the generation of several spectra; 
1
H, 

13
C, DEPT-

135, 
1
H – 

1
H COSY, HSQC and HMBC. The detection of three novel DKP 



 289 

(compound 1, 2 and 3) from A. fumigatus Fresenius employed HRMS, 
1
H, 

13
C, 

DEPT and HMQC analysis (Zhao et al., 2010). HRMS confirmed the chemical 

formulas of compound 1, 2 and 3 to be C13H16N2O4, C13H15N2O4 and 

C12H12N2O4, respectively. 
1
H NMR confirmed the protons present in the 

aromatic ring by signals on the NMR spectrum between 7.22 and 7.27 ppm for 

compounds 1 and 2 and between 7.35 and 7.48 ppm for compound 3 (Zhao et 

al., 2010). 
1
H NMR of the protons of the diene of the DKP, vertihemiptellide B 

isolated from V. hemipterigenum were identified on the NMR spectrum 

between 7.18 and 7.21 ppm (Figure 5.3 and Table 5.2) (Isaka et al., 2005). This 

was in contrast to the signals of the diene of gliotoxin (Figure 5.2 and Table 5.1) 

(Kaouadji et al., 1990). The 
1
H NMR of gliotoxin identified protons in the 

aromatic ring between 4.82 and 5.99 ppm (Kaouadji et al., 1990). This 

difference in signals is due to the presence of the OH group on the diene of 

gliotoxin and this subsequently changes the chemical environment of these 

protons, which is reflected in the 
1
H spectroscopy. The protons (position 10, 11, 

12, 13 and 14) in the aromatic ring of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione were identified in the 
1
H NMR spectrum by 

signals emitted between 7.17 and 7.29 ppm (Figure 5.15, Figure 5.16 and Table 

5.4). This spectroscopy correlated to previously reported NMR data for protons 

in the aromatic rings of isolated DKP metabolites (Isaka et al., 2005; Zhao et al., 

2010).  

Isaka et al. (2005) confirmed the NH group in the piperazine ring of 

vertihemiptellide B by the identification of a signal at 7.70 ppm in the 
1
H 

spectrum (Figure 5.3 and Table 5.2). The location of the NH group at position 4 

(piperazine ring) of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-
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dione (Figure 5.15) was confirmed after the metabolite was dissolved in CDCl3. 

This signal appeared at 7.50 ppm on the 
1
H – 

1
H COSY spectrum (Figure 5.20). 

The 
1
H NMR spectrum of M12.3 in CD3CN identified a signal at 7.23 ppm 

(Figure 5.16), however the protons from the aromatic ring (7.17 – 7.29 ppm) 

overlapped with the NH proton.  

The piperazine ring of gliotoxin is bridged with a disulphide bond 

(Kaouadji et al., 1990; Gardiner and Howlett, 2005). 6-benzyl-6-hydroxy-1-

methoxy-3-methylenepiperazine-2,5-dione (Figure 5.15) does not contain this 

disulphide bridge and instead contains a hydroxyl group at position 6 of the 

piperazine ring ("C 83.5, NHCOC(OH)Bn; "H 4.93, NHCOC(OH)Bn) and a 1, 

1-disubstituted alkene ("C 100.1, C=CH2; 134.2, C=CH2; "H 5.00, 5.33, C=CH2) 

at position 7 (Table 5.3). The location of the hydroxyl group at position 6 was 

also confirmed using a ferric chloride test (Shin et al., 1975). Gliotoxin does not 

contain this hydroxyl group and instead one of the sulphur atoms that form the 

disulphide bridge is attached at the equivalent position instead (Kaouadji et al., 

1990). King et al. (2003) and Buysens et al. (1996) observed almost identical "C 

values of 82.9 and 87.2 for C-6 carbons in DKP compounds that have similar 

structure to 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. 

The presence of the hydroxyl group at position 6 is crucial for GliG-mediated 

sulphur incorporation and this will be discussed in more detail in Chapter 7.  

 13
C and DEPT-135 NMR analysis confirmed the carbons in the aromatic 

ring ("C 128.17, 129.12 and 131.41 which corresponded to the CH at position 10 

and 14, 11 and 13 and 12, respectively). Three CH (10/14 and 11/13 have 

equivalent signals on the spectrum), two CH2 and one CH3 was confirmed 
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present in M12.3. Unlike M12.3, gliotoxin does not contain a methoxy (O-CH3) 

group (Johnson et al., 1943; Beecham et al., 1966; Kaouadji et al., 1990). Zhao 

et al. (2010) identified an O-CH3 group in the DKP compounds (1 and 2) of A. 

fumigatus Fresenius. This O-CH3 group was identified in the 
1
H NMR spectrum 

at 3.26 and 3.32 ppm of compound 1 and 2, respectively (Zhao et al., 2010). A 

methoxy group was identified at 3.63 ppm in the 
1
H NMR spectrum of 6-

benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione (Figure 5.15, 

Figure 5.16 and Table 5.4). The slight difference in "H is due to the bonding of 

the methoxy group of M12.3 to a nitrogen atom in the piperazine ring which is 

in comparison to the bonding of the methoxy group to a carbon of the 

piperazine ring of compound 1 and 2 isolated from A. fumigatus Fresenius 

(Zhao et al., 2010). Interestingly, expression analysis (Chapter 4) of the A. 

fumigatus gliG flanking gene, gliM, revealed higher expression in the A. 

fumigatus !gliG strain when compared to the A. fumigatus AF293 wild-type. In 

silico analysis predicted A. fumigatus gliM to be an O-methyl transferase which 

could be responsible for the addition of the O-CH3 group of M12.3. Similarly, 

A. fumigatus gliK expression was higher in A. fumigatus !gliG when compared 

to the AF293 wild-type expression and it is believed that gliK is involved in 

gliotoxin transport (Gallagher, 2010) and therefore may play a role in the 

extracellular transport of M12.3. The possibility of an alternative structure for 

M12.3 where the methoxy group could be located at position 4 and the NH 

located at position 1 was eliminated with COSY and HMBC analysis (Figure 

5.20, Figure 5.21 and Figure 5.23). Long range coupling over four bonds was 

observed between protons of CONH and C=CH2, the alternative structure would 

require long range coupling over five bonds. 
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Once the structure of 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione was established, the resemblance to gliotoxin 

was apparent (Figure 5.30 and Figure 5.31). The main differences between 

gliotoxin and M12.3 are listed in Table 5.5. The accumulation of M12.3 in A. 

fumigatus !gliG cultures and the structural elucidation confirmed that the 

metabolite was produced during gliotoxin biosynthesis in the absence of A. 

fumigatus gliG. Early investigations into gliotoxin biosynthesis determined that 

phenylalanine and serine were the amino acid precursors (Bu'Lock and Leigh, 

1975). This was made possible by various feeding experiments using 

radiolabelled isotopes (Winstead and Suhadolnik, 1960; Bose et al., 1968a; 

Bose et al., 1968b; Bulock and Ryles, 1970; Johns and Kirby, 1971) such as 

phenylalanine and serine. L-phenylalanine is an amino acid precursor of both 

gliotoxin (Bu'Lock and Leigh, 1975) and M12.3, the latter of which was 

confirmed in this Chapter by 
13

C-L-phenylalanine feeding experiments (Figure 

5.31). However, feeding experiments using 
13

C-M12.3 (Figure 5.26, Figure 5.27 

and Figure 5.30) revealed no uptake of the metabolite by A. fumigatus wild-type 

mycelia or protoplasts. However, this did not eliminate the possibility that 

M12.3 may undergo enzymatic modification by one of the gliotoxin 

biosynthetic enzymes and converted to the next intermediate produced during 

gliotoxin biosynthesis. In order to determine if this was possible, future in vitro 

analysis using heterologously expressed gliotoxin biosynthetic enzymes or 

isolated native enzymes from A. fumigatus protein lysates should be performed. 
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Figure 5.30. Structure of gliotoxin and M12.3. The differences in the two 

structures are highlighted in green (gliotoxin) and red (M12.3).   

 

 

 

 

Table 5.5. Structural differences between gliotoxin and M12.3  

 Gliotoxin  M12.3 

1 Disulphide Bridge No disulphide bridge 

2 N-Methyl  NH 

3 Hydroxy methylene  1, 1-disubstituted alkene 

4 Closed 5-member ring N-Methoxy 

5 No hydroxyl Hydroxyl  

6 Diene and a hydroxyl group Aromatic ring 

 

 

     Gliotoxin            M12.3  

1 

2 

2 

3 3 
4 4 

5 

6 
6 



 294 

Gliotoxin  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 

+ 

M12.3 

L-phenylalanine   

L-serine 

Figure 5.33.  Schematic illustration of the amino acid precursors, L-phenylalanine and L-serine, of gliotoxin and M12.3. The incorporation of L-

phenylalanine into gliotoxin has been previously reported and the work in this thesis confirms the incorporation of L-phenylalanine into M12.3. 
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In summary, the absolute mass of M12.3 was confirmed to be 262 u. A 

novel reduction and alkylation assay for the detection of a disulphide bridge 

and/or thiols confirmed that M12.3 did not contain a disulphide bridge or thiol 

groups. NMR analysis confirmed the structure of M12.3 as 6-benzyl-6-hydroxy-

1-methoxy-3-methylenepiperazine-2,5-dione and the structure closely 

resembled gliotoxin with the exception of the disulphide bridge and several 

other important group differences. M12.3 contained two amide carbonyls, a 

benzyl, a hydroxyl, a methoxy and a 1, 1-disubstituted alkene group, the last 

three are not evident in gliotoxin. It did not contain a disulphide bridge, the N-

methyl group, the hydroxy methylene or the hydroxyl group on the benzene 

ring. Feeding experiments confirmed that L-phenylalanine was an amino acid 

precursor of M12.3, which has also previously been confirmed for gliotoxin 

(Bu'Lock and Leigh, 1975). No uptake of the metabolite by A. fumigatus wild-

type mycelia or protoplasts. These data have led to the current hypotheses for 

gliotoxin biosynthesis, both of which will be discussed in Chapter 7.  
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6. Chapter 6 Reduction and alkylation of Gliotoxin.  

6.1 Introduction 

As previously mentioned in Chapter 5, an assay was developed using 

reduction and alkylation in an effort to determine whether M12.3 produced by 

A. fumigatus !gliG contained either a disulphide bridge or thiol groups. 

Gliotoxin produced by A. fumigatus AF293 wild-type cultures was reduced and 

alkylated yielding a stable labelled gliotoxin product, GT-(AF)2, which was 

detected by RP-HPLC as described in Chapter 5. The use of reduction and 

alkylation confirmed that M12.3 did not contain a disulphide bridge or thiol 

groups. Validation of several parameters such as reagents and incubation times 

helped optimise reaction conditions. Initial validation was performed on pure 

gliotoxin to establish optimal conditions, which can subsequently be used to 

detect native gliotoxin produced by A. fumigatus. 

ETP toxins are produced by a range of phylogenetically diverse 

filamentous fungi and contribute to the infection of several animals and plants 

(Gardiner et al., 2005b; Fox and Howlett, 2008). The first reported and best 

characterised ETP is gliotoxin. As mentioned in Chapter 1, the role of this toxin 

in the virulence of A. fumigatus has been studied extensively (Kwon-Chung and 

Sugui, 2009). The disulphide bridge feature of gliotoxin plays an important role 

in the toxicity of this molecule and subsequently the virulence of A. fumigatus 

(Gardiner and Howlett, 2005; Gardiner et al., 2005b). The toxicity of ETP 

compounds is conferred through direct inactivation of essential protein thiols. 

The redox cycling between oxidised and reduced forms of gliotoxin also leads 

to oxidative stress and gliotoxin has been shown to be involved in the disruption 



 297 

of NADPH oxidase assembly (Waring et al., 1995; Yoshida et al., 2000; 

Tsunawaki et al., 2004; Kwon-Chung and Sugui, 2009). Phylogenetic analysis 

of ETP clusters within filamentous fungi identified 14 ascomycete taxa where 

these clusters are present (Patron et al., 2007). Phylogenetic analysis in Chapter 

3 identified putative ETP producing fungi, 5 of which had not been identified 

before. ETP secreting fungi include L. maculans, Sirodesmin diversum, N. 

fischeri, Penicillium lilacinoechinulatum, A . clavatus, Trichoderma reesei, 

Magnaporthe grisea, Trichoderma virens, A . terreus, A . flavus, A . oryzae, 

Gibberella zeae, Chaetomium globosum , F. verticilliodes, M. graminicola, M. 

gypseum, T. equinum, T. tonsurans, T. rubum and A. fumigatus. The detection 

of specific fungal metabolites particularly gliotoxin and other ETP compounds 

represents an emerging strategy for reliable diagnosis of fungal infections. 

Gliotoxin is normally detected by RP-HPLC using wavelengths of 220-

260 nm (Balibar and Walsh, 2006; Cramer et al., 2006; Kupfahl et al., 2006; 

Sugui et al., 2007; Spikes et al., 2008; Scharf et al., 2010; Schrettl et al., 2010). 

Immunological detection of gliotoxin by ELISA has been reported where the 

limit of detection (LOD) was 10 µg/ml (Fox et al., 2004). The presence of 

gliotoxin in sera and lungs of mice with experimentally induced IA was 

detected by LC-MS analysis (Lewis et al., 2005a). These authors also used LC-

MS analysis to show gliotoxin was detectable in cancer patients with probable 

or proven IA.  

The disulphide bridge of gliotoxin can be reduced to two thiol groups 

following reaction with reductant compounds such as dithiothreitol (DTT), 

tris(2-carboxyethyl)phosphine (TCEP) and sodium borohydride (NaBH4) 

(Woodcock et al., 2001; Balibar and Walsh, 2006; Scharf et al., 2010; Schrettl 
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et al., 2010). GSH-mediated reduction of gliotoxin is possible but results in the 

formation of mixed disulphides (Bernardo et al., 2001; Bernardo et al., 2003). 

Reductants may require removal once the reaction is complete (Hansen and 

Winther, 2009). The reduction of a disulphide bridge is mediated by a reactive 

nucleophile from the reductant (Figure 6.1).  

Dithiothreitol (DTT) is one of the most commonly used thiol reductants. 

DTT reduces disulphides and is then converted to a stable intramolecular cyclic 

disulphide (Figure 6.1). DTT offers the advantage of being a strong reducing 

agent in comparison to others (Cleland, 1964). The SH group of DTT will 

compete directly with protein thiols in the attachment of the thiol reactive 

reagents. There are also problems associated with cross-reactivity of thiol 

detection agents with DTT (Hansen et al., 2007). 

Phosphines are another class of reductant and in particular the 

trialkylphosphines such as TCEP. Reduction is mediated through a rate-limiting 

step where the reactive nucleophile from the phosphine group attacks the 

disulphide bond and forms a thiophosphonium salt. Hydrolysis rapidly releases 

the second thiol group and the phosphine oxide (Figure 6.2). Once the 

hydrolysis event has occurred the reaction is irreversible (Burns et al., 1991). 

Phosphines have the advantage of not reacting with certain thiol alkylation 

agents (e.g. benzofurazans) meaning that reduction and alkylation can take place 

simultaneously, reducing overall reaction time (Hansen and Winther, 2009). 

The use of TCEP has also been employed in the reduction of gliotoxin (Scharf 

et al., 2010) where the dithiol form was used as a substrate in a series of 

gliotoxin oxidase activity assays.  
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Figure 6.1. Schematic illustrations (A) the nucleophillic attack of the thiolate 

anion which causes the cleavage of the disulphide bridge (Hansen and Winther, 

2009). (B) DTT-mediated reduction of disulphides (Hansen and Winther, 2009). 

The nucleophilic thiolate anion in DTT attacks the target disulphide bridge and 

reduces it to the dithiol form. DTT then forms a stable intramolecular cyclic 

disulphide.  

A 

B 
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Figure 6.2. Trialkylphosphine mediated reduction of disulphides. (A) Structure 

of TCEP. (B) Mechanism of the reduction reaction (Hansen and Winther, 2009). 

A 
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The use of NaBH4 in gliotoxin reduction has been previously described 

(Woodcock et al., 2001). Woodcock et al. (2001) demonstrated that NaBH4-

mediated reduction of gliotoxin, followed by electrospray MS was used to 

confirm the interaction of NaBH4 reduced gliotoxin, or sporidesmin A, with 

metal ions such as Zn
2+,

 Cd
2+

 and Hg
2+

 (Woodcock et al., 2001). Elsewhere, 

NaBH4 has been used in the reduction of gliotoxin where the inhibitory effects 

of reduced gliotoxin was observed on the mutant strain A. fumigatus !gliT 

(Schrettl et al., 2010). This effect was subsequently alleviated by the addition of 

exogenous GSH. Also, NaBH4 has been used in the complete reduction and 

thiol quantification of carboxypeptidase Y in the picomolar range (9 – 90 pmol) 

(Hansen et al., 2007). 

Once efficient disulphide reduction has been achieved the detection of the 

thiol can be performed in different ways. This can be performed through the use 

of reagents with relevant spectrophotometric properties or by using alkylation 

reagents that contain fluorophores. The use of fluorescent compounds to label 

free thiols followed by the chromatographic separation offers an extremely 

sensitive method for the detection of thiols. The iodoacetamido derivatives of 

fluorescein contain a sulfhydral-reactive iodoacetyl group, at C5 or C6 

(Hermanson, 2008). Under slightly alkaline conditions this iodoacetyl group 

reacts with sulphydrals producing a stable thioether bond (Figure 6.3).  
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Figure 6.3. The use of 5’ Iodoacetamidofluorescein (5’ IAF) in the modification 

of thiol-containing compounds creates a thioether bond (Hermanson, 2008).  

R      SH + 
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The diagnosis of infections caused by, or associated with, ETP producing 

fungi remains poor (Mennink-Kersten et al., 2004b; Jegorov et al., 2006) and 

the detection of a fungal-specific peptide biomarker such as gliotoxin represents 

an emerging strategy for the reliable diagnosis of fungal infections. 

Development of an assay that may improve gliotoxin detection in culture 

supernatant may eventually lead to the development of a diagnostic tool for 

fungal infection.  

The overall objectives of this chapter are (i) to explore potential 

reductants to reduce gliotoxin, (ii) to label both thiol groups in reduced gliotoxin 

producing a stable GT-(AF)2 product, (iii) to detect the presence of the GT-

(AF)2 using HPLC, TLC and MALDI-ToF MS and, (iv) to use reduction and 

alkylation to detect native gliotoxin in the supernatant of A. fumigatus  cultures.  
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6.2 Results  

6.2.1 Reduction and alkylation of pure gliotoxin.  

Pure gliotoxin was successfully reduced using NaBH4, DTT or TCEP. 

Subsequent thiol modification in all cases was performed with the alkylation 

agent 5’-IAF producing stable GT-(AF)2. GT-(AF)2 was then detected by RP-

HPLC at 254 nm. Spectral properties of GT-(AF)2 were enhanced in 

comparison to unlabelled gliotoxin, this will be discussed in Sections 6.2.1.1, 

6.2.1.2, 6.2.1.3. NaBH4 did not require removal prior to alkylation and this 

offered an advantage as it did not add to the methodology or the incubation time 

of the assay.  

 

6.2.1.1 NaBH4-mediated reduction of gliotoxin and subsequent alkylation 

Gliotoxin was subjected to sequential reduction and alkylation as 

described in (Section 2.2.15.1). Briefly, sodium borohydride (NaBH4) reduces 

gliotoxin to the dithiol form, which is then labelled with the alkylation agent 5’ 

IAF. This di-acetamidofluorescein-gliotoxin (GT-(AF)2) was then detected 

following RP-HPLC separation. The removal of the reducing agent is not 

required prior to alkylation. RP-HPLC separation and absorbance detection at 

254 nm identified GT-(AF)2  at RT =15.243 min (Figure 6.4). GT-(AF)2 was 

only detected following reduction of gliotoxin and subsequent alkylation with 5’ 

IAF. Unreacted 5’-IAF was also detected at RT =15.056 min. Fluorescence 

detection showed the presence of GT-(AF)2 at RT = 15.270 min (Figure 6.4). In 

the absence of NaBH4, GT-(AF)2 is absent and oxidised gliotoxin is detectable 

at RT =14.418 min. This was also confirmed with fluorescence detection (Figure 
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6.4). A negative control, where gliotoxin was absent, demonstrated no GT-

(AF)2. The amount of gliotoxin (2 µg) used in both reduced and non-reduced 

samples was identical, however the absorbance of GT-(AF)2 (peak area = 8772 

± 606; n = 3) was enhanced relative to unlabelled gliotoxin (peak area = 1287 ± 

122; n = 3) (Figure 6.5 and Table 6.1). This difference represents a 6.8-fold 

higher absorbance at 254 nm for GT-(AF)2 than equivalent amounts of 

unlabelled gliotoxin.  
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Figure 6.4. RP-HPLC analysis of pure gliotoxin (Sigma-Aldrich) with and 

without NaBH4-mediated reduction prior to 5’ IAF labelling. (A) Gliotoxin + 

NaBH4 + 5’-IAF: Absorbance detection at 254 nm detected GT-(AF)2 with a 

retention time of 15.243 min. (B) Gliotoxin + NaBH4 + 5’-IAF: GT-(AF)2 was 

detectable by fluorescence detection (excitation/emission; 492/518 nm) with a 

retention time of 15.270 min. (C) Gliotoxin – NaBH4 + 5’-IAF: No labelling of 

gliotoxin is possible (indicated by the asterix) in the absence of NaBH4. 

Absorbance detection at 254 nm detected free gliotoxin with a retention time of 
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14.418 min. (D) Gliotoxin – NaBH4 + 5’-IAF: No labelling of gliotoxin is 

possible therefore, GT-(AF)2 was absent with fluorescence detection 

(excitation/emission; 492/518 nm). (E) Methanol + NaBH4 + 5’-IAF: No GT-

(AF)2 present.  
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6.2.1.2 DTT-mediated reduction of gliotoxin and subsequent alkylation 

To identify the optimal reductant to be used in this assay DTT was 

substituted in place of NaBH4. Gliotoxin was subjected to sequential reduction 

and alkylation as described in Section 2.2.15.2 Briefly, DTT reduces gliotoxin 

to the dithiol form, which is then labelled with the alkylation agent 5’ IAF. GT-

(AF)2 can then be detected following RP-HPLC separation. Absorbance at 254 

nm detected GT-(AF)2, which was only present in the reduced and alkylated 

sample at RT =15.246 min. Unreacted 5’ IAF is also visible in the chromatogram 

at RT =15.059 min. Fluorescence detection shows the presence of GT-(AF)2 at 

RT = 15.250 min. In the absence of DTT-mediated reduction GT-(AF)2 is not 

detected and instead intact oxidised gliotoxin is evident at RT =14.418 min. The 

amount of gliotoxin (2 µg) used in both reduced and non-reduced samples was 

identical, however the absorbance of the labelled gliotoxin (peak area = 3580) 

was enhanced relative to the unlabelled form (peak area = 1287) (Figure 6.6 and 

Table 6.1).  
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Figure 6.5. RP-HPLC analysis of pure gliotoxin (Sigma-Aldrich) with and 

without DTT-mediated reduction prior to 5’-IAF labelling. (A) Gliotoxin + DTT 

+ 5’-IAF: Absorbance at 254 nm detected GT-(AF)2 with a retention time of 

15.246 min and a peak area equal to 3580. (B) Gliotoxin + DTT + 5’-IAF: 

Fluorescence detection (excitation/emission; 492/518 nm) detected GT-(AF)2 

with a retention time of 15.250 min. (C) Gliotoxin – DTT + 5’-IAF: No 

labelling of gliotoxin possible (indicated by the asterix) in the absence of DTT. 

Absorbance detection at 254 nm detected free gliotoxin with a retention time of 

14.418 min. (D) Methanol + DTT + 5’-IAF: No GT-(AF)2 present.  
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6.2.1.3 TCEP-mediated reduction of gliotoxin and subsequent alkylation 

A final choice of reductant, TCEP, was used to reduce pure gliotoxin. 

Gliotoxin was subjected to sequential reduction and alkylation as described in 

Section 2.2.15.3. Briefly, TCEP reduces gliotoxin to the dithiol form, which is 

then labelled with the alkylation agent 5’-IAF. GT-(AF)2 can then be detected 

following RP-HPLC separation. Absorbance detection at 254 nm detected GT-

(AF)2, which was only present in the reduced and alkylated sample at RT 

=15.466 min. Unreacted 5’-IAF is also detected at RT =15.197 min. 

Fluorescence detection shows the presence of GT-(AF)2 at RT = 15.470 min. In 

the absence of TCEP-mediated reduction GT-(AF)2 is not present. Intact 

oxidised gliotoxin is evident at RT =14.366 min. The amount of gliotoxin (2 µg) 

used in both reduced and non-reduced samples was identical, however the 

absorbance of the GT-(AF)2 (peak area = 11260) was enhanced relative to the 

unlabelled form (peak area = 1160) (Figure 6.7 and Table 6.1).  
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Figure 6.6. RP-HPLC analysis of gliotoxin (Sigma-Aldrich) with and without 

TCEP-mediated reduction prior to 5’-IAF labelling. (A) Gliotoxin + TCEP + 5’-

IAF: Absorbance detection at 254 nm detected GT-(AF)2 with a retention time 

of 15.466 min. (B) Gliotoxin + TCEP + 5’-IAF: Fluorescence detection 

(excitation/emission; 492/518 nm) detected GT-(AF)2 with a retention time of 

15.470 min. (C) Gliotoxin – TCEP + 5’-IAF: No labelling of gliotoxin is 

possible (indicated by the asterix). Absorbance detection at 254 nm detected 

free gliotoxin with a retention time of 14.418 min. (D) Methanol + TCEP + 5’-

IAF. No GT-(AF)2 present.  
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Table 6.1. Summary of amount, peak areas and retention times of GT-(AF)2 and 

unlabelled gliotoxin generated by the use of different reductants (NaBH4, DTT 

and TCEP).  

Reductant NaBH4  DTT TCEP 

Amount Gliotoxin (µg)   2  2  2  

Gliotoxin unreduced Peak Area (mAU) 1287 1287 1160 

GT-(AF)2 Peak Area (mAU) 8772 3580 11260 

Retention time (min) 15.243 15.246 15.466 
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6.2.2 NaBH4 reduction of gliotoxin occurs after 15 min 

To determine the optimal time required to reduce gliotoxin a time course 

study monitoring the rate of gliotoxin reduction using NaBH4 was performed 

over 120 min (Section 2.2.19). RP-HPLC analysis of reduced gliotoxin at 

specific time intervals (T = 0, 15, 30, 60 and 120 min) was carried out. NaBH4-

mediated reduction of gliotoxin was complete within a maximum of 15 min 

(mean ± SD = 1.5 ± 0.23 µg; n = 3). Reduced gliotoxin was evident at T = 0 min 

(RT= 13.155 min) and at each time interval up to and including T = 120 min 

(RT= 13.198 min) (mean ± SD = 1.5 ± 0.11 µg; n = 3) (Figure 6.7). 

Furthermore, NaBH4-reduced gliotoxin does not exhibit any evidence of re-

oxidation for up to 2 hr post-reduction (Figure 6.7).  
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Figure 6.7. RP-HPLC analysis of NaBH4-reduced gliotoxin. (A) The reduction 

of gliotoxin occurs immediately (T = 0 min), and reduced gliotoxin is detected 

at RT = 13.155 min. (B) Reduced gliotoxin (RT =13.198 min) is still evident 120 

min after the addition of NaBH4. Absorbance detection at 254 nm. 
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6.2.3 Labelled gliotoxin is detectable by MALDI-ToF MS 

The detection of gliotoxin by MALDI-ToF MS is confounded by the 

small molecular size of the metabolite and by ionisation-induced fragmentation 

(Peterson, 2007). MALDI-ToF analysis of GT-(AF)2 showed the appearance of 

a species with an m/z of 1103.472. This corresponded precisely to the mass of 

the GT-(AF)2 ie., (326.9 + (2 x 388.35)) (Figure 6.8 and Table 6.2). GT-(AF)2 is 

a stable molecular species detectable by MALDI-ToF MS. No product was 

detectable by MALDI-ToF MS either without prior reduction or in the absence 

of 5’-IAF (Figure 6.8).  
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Table 6.2 Calculation of the molecular mass of GT-(AF)2. The mass of 1103.6 

Da shows that both thiol groups have been labelled with 5’ IAF to produce GT-

(AF)2 which is detectable with absorbance detection at 254 nm.  

Molecular Species Molecular mass 

Gliotoxin 326.9 

Reduced gliotoxin   328.9 

Iodoacetamidofluorescein 515.25   (Atomic mass iodine: 126.90) 

Iodoacetamidofluorescein – Iodine 388.35 

Gliotoxin 2-IAF (GT-(AF)2) 326.9* + (2x(388.35)) = 1103.6 

* gliotoxin loses two H atoms upon labelling with acetamidofluorescein groups. 
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Figure 6.8. MALDI-ToF mass spectrum of GT-(AF)2 prepared by NaBH4-

mediated reduction and alkylation of gliotoxin. (A) A molecular species of m/z 

1103.472 is detectable which corresponds precisely to the molecular mass of the 

diacetamidofluorescein form of gliotoxin, GT-(AF)2. (B) GT-(AF)2 was not 

present either (i) in the absence of prior reduction (NaBH4) or, (ii) the absence 

of 5’-IAF.  
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6.2.4 GT-(AF)2 is detectable by TLC 

GT-(AF)2 can be detected by TLC in 30 min using a 

dichloromethane:methanol solvent system described in Section 2.2.17. (A) GT-

(AF)2 (Gliotoxin: 300 ng (1 nmol)) was evident in lane 1. Free 5’-IAF was 

evident in lane 2. No GT-(AF)2 was detectable without prior NaBH4-mediated 

reduction in lane 3. (B) GT-(AF)2 (Gliotoxin: 150 ng (0.5 nmol)) was evident in 

lane 1. Free 5’-IAF was evident in lane 2. No GT-(AF)2 was detectable without 

prior NaBH4-mediated reduction in lane 3 (Figure 6.9). 
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Figure 6.9. Thin Layer Chromatography analysis of labelled and unlabelled 

gliotoxin. Solvent system was dichloromethane:methanol (90:10), containing 

1% (v/v) acetic acid. (A) Lane 1: Gliotoxin (300 ng) + NaBH4 + 5’-IAF: GT-

(AF)2 was detected. Lane 2: 5’-IAF only. Lane 3: Gliotoxin – NaBH4 + 5’-IAF: 

No GT-(AF)2 was detected. (B) Lane 1: Gliotoxin (150 ng) + NaBH4 + 5’-IAF: 

GT-(AF)2 was detected. Lane 2: 5’-IAF only. Lane 3: Gliotoxin – NaBH4 + 5’-

IAF: No GT-(AF)2 was detected. 
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6.2.5 Limit of detection for Reduction and Alkylation of Gliotoxin  

A calibration curve for the detection of GT-(AF)2 was generated by 

performing a reduction and alkylation titration on a range of gliotoxin amounts 

(0 – 2000 pmol) with subsequent separation by RP-HPLC (Table 2.8 and 

Section 2.2.14.1). The corresponding peak areas (mean ± SD; 93 ± 2.828) were 

plotted with respect to the labelled gliotoxin amount. The limit of detection for 

free gliotoxin is 125 pmol which corresponds to 50 ng (Figure 6.10).  
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Figure 6.10. Limit of detection of GT-(AF)2. A range of gliotoxin amounts 

were subjected to sequential reduction and alkylation. The limit of detection is 

125 pmol which equates to 50 ng gliotoxin (peak area mean ± SD; 93 ± 2.828; 

error bars represent the standard deviation).  
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6.2.6 Reduction and alkylation of native gliotoxin produced by A. fumigatus 

using three different methods 

Reduction and alkylation of native gliotoxin produced by A. fumigatus 

was performed using different amounts of 5’-IAF and different RP-HPLC 

methods (Table 2.8 and Table 2.10). A summary of these differences is 

described in (Table 6.3). Changes in gradient (% ! B/min) facilitated better 

resolution of GT-(AF)2 from free 5’-IAF. Method 1 (Section 2.2.20.1) 

employed the gradient described in Table 2.8 (4.75 % ! B/min), which resulted 

in poor resolution of GT-(AF)2 from free 5’ IAF. Method 2 (Section 2.2.20.2) 

used the gradient described in Table 2.10 (4 % ! B/min). A modest 

improvement in resolution of GT-(AF)2 from free 5’IAF. However, excessive 

free 5’IAF impaired the resolution. To improve this, method 3 (Section 

2.2.20.3) reduced the amount of 5’ IAF from 400 nmol to 120 nmol. This 

combined with the gradient described in Table 2.10 (4 % ! B/min) resulted in 

optimal baseline resolution of GT-(AF)2 from free 5’-IAF.  
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Table 6.3. Methods developed for optimal reduction and alkylation of native gliotoxin produced by A. fumigatus with prior organic extraction. 

Method 3 is the fully optimised method developed for this purpose.  

 Volume of Organic Extracts (µl)  IAF Amount (nmol) HPLC Gradient 

Method 1 100 400 Gradient 1 (Table 2.8) 

4.75 % ! B/min 

Method 2 100 400 Gradient 3 (Table 2.10) 

4 % ! B/min 

Method 3 100 120 Gradient 3 (Table 2.10) 

4 % ! B/min 

         % ! B/min refers to the change in % of acetonitrile over 1 min.   
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6.2.6.1 Reduction and alkylation of native gliotoxin produced by A. 

fumigatus: Method 1. 

Detection of native gliotoxin produced by A. fumigatus was achieved 

using the previously established method for the detection of gliotoxin. Organic 

extracts from A. fumigatus cultures (Section 2.2.11) were obtained and 

subjected to sequential reduction and alkylation (Section 2.2.20.1). RP-HPLC 

separation (Table 2.8) with absorbance detection at 254 nm identified native 

GT-(AF)2 at RT = 15.218 min (Figure 6.11). However, resolution of GT-(AF)2 

was poor, due to the similar retention time of 5’ IAF.  

 

6.2.6.2 Reduction and alkylation of native gliotoxin produced by A.    

fumigatus: Method 2. 

Improved separation of GT-(AF)2 from 5’-IAF was achieved using a 

different HPLC gradient (Table 2.10). Organic extracts from A. fumigatus 

cultures (Section 2.2.11) were obtained and subjected to sequential reduction 

and alkylation (Section 2.2.20.2). RP-HPLC separation (Table 2.10) with 

absorbance detection at 254 nm identified native GT-(AF)2 at RT = 16.745 min 

(Figure 6.12). Resolution of GT-(AF)2 from free 5’IAF improved using this 

method. However, further optimisation was required.  
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Figure 6.11. Method 1 separation of GT-(AF)2. RP-HPLC chromatogram of 

reduced and alkylated organic extracts of A. fumigatus AF293 culture 

supernatant. Absorbance detection at 254 nm identified GT-(AF)2 at RT = 

15.218 min.  
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Figure 6.12. Method 2 separation of GT-(AF)2. RP-HPLC chromatogram of 

reduced and alkylated organic extracts of A. fumigatus AF293 culture 

supernatant. Absorbance detection at 254 nm identified GT-(AF)2 at RT = 

16.745 min. 
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6.2.6.3 Reduction and alkylation of native gliotoxin produced by A.  

fumigatus: Method 3. 

Improved separation of GT-(AF)2 from 5’-IAF was achieved using less 

5’-IAF and HPLC gradient 3 (Table 2.10). This method achieved baseline 

resolution between GT-(AF)2 and free 5’-IAF. Organic extracts from A. 

fumigatus cultures (Section 2.2.11) were obtained and subjected to sequential 

reduction and alkylation (Section 2.2.20.3). Absorbance detection at 254 nm 

identified native GT-(AF)2 at RT = 16.345 min (Figure 6.13). A reduced amount 

of 5’ IAF (120 nmol) decreased the peak area of free 5’ IAF which had 

previously affected the resolution of GT-(AF)2 from 5’-IAF. Table 6.4 

summarises Method 3.  

 

 Table 6.4. Optimised method 3 used for the reduction and alkylation of native 

gliotoxin produced by A. fumigatus with prior organic extraction. 

 Volume of Organic 

Extracts (µl)  

IAF Amount (nmol) HPLC Gradient 

Method 3 100 120 Gradient030  3           

(Table 2.10) 

4 % ! B/min 
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Figure 6.13. Method 3 separation of GT-(AF)2. RP-HPLC chromatogram of 

reduced and alkylated organic extracts of A. fumigatus AF293 culture 

supernatant. Absorbance detection at 254 nm identified GT-(AF)2 at RT = 

16.345 min. Baseline resolution between 5’IAF (RT = 15.766 min) and GT-

(AF)2 was achieved.  
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6.2.7 Detection of gliotoxin spiked into A. fumigatus culture supernatants 

without prior organic extraction.  

Reduction and alkylation of gliotoxin spiked into A. fumigatus culture 

supernatants, without prior organic extraction, was achieved (Section 2.2.21). 

pH adjusted supernatants were spiked with gliotoxin to a final concentration of 

327 µg/ml. The spiked supernatant was then reduced (NaBH4 ; 50 mM or 500 

mM) and subsequently alkylated.  

 

6.2.7.1 Detection of GT-(AF)2 from culture supernatant (without organic 

extraction) which had been spiked with gliotoxin  

Reduction (NaBH4; 50 mM) and alkylation of pH adjusted supernatants 

which had been spiked with a known amount of gliotoxin without organic 

extraction identified GT-(AF)2 (Section 2.2.21.1). Briefly, A. fumigatus culture 

supernatants were pH adjusted to pH 7.5 followed by the addition of gliotoxin. 

DMSO was added to the reaction mixture to maintain the solubility of unreacted 

5’ IAF. Reduction (NaBH4; 50 mM) of the gliotoxin spiked supernatant and 

alkylation was performed. The pH adjusted culture supernatants were not 

organically extracted. Absorbance detection at 254 nm identified GT-(AF)2 at 

RT = 15.520 min (Figure 6.14).  

 

 



 334 

6.2.7.2 Detection of GT-(AF)2 from culture supernatant (without organic 

extraction) which had been spiked with gliotoxin  

Reduction (NaBH4; 500 mM) and alkylation of pH adjusted supernatants 

which had been spiked with a known amount of gliotoxin without organic 

extraction identified GT-(AF)2 (Section 2.2.21.2). Briefly, A. fumigatus culture 

supernatants were pH adjusted to pH 7.5 followed by the addition of gliotoxin. 

DMSO was added to the reaction mixture to maintain the solubility of unreacted 

5’ IAF. Reduction (NaBH4; 500 mM) of the gliotoxin spiked supernatant and 

alkylation was performed. Absorbance detection at 254 nm identified GT-(AF)2 

at RT = 15.519 min (Figure 6.14). The use of NaBH4 at a concentration of 500 

mM suppressed the absorbance of free 5’ IAF. 
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Figure 6.14. RP-HPLC analysis of reduced and alkylated A. fumigatus pH 

adjusted supernatant spiked with gliotoxin without organic extraction. (A) A. 

fumigatus AF293 supernatant pH 7.5, spiked to a final gliotoxin concentration 
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(327 µg/ml), following NaBH4 (50 mM) reduction and subsequent labelling 

with 5’-IAF. Absorbance detection at 254 nm identified GT-(AF)2 with a RT = 

15.520 min. (B) A. fumigatus AF293 supernatant pH 7.5, spiked with a final 

gliotoxin concentration (327 µg/ml), following NaBH4 (500 mM) reduction and 

subsequent labelling with 5’-IAF. Absorbance detection at 254 nm identified 

GT-(AF)2 with a RT = 15.519 min. The use of NaBH4 at a concentration of 500 

mM suppressed the absorbance of free 5’ IAF. 
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6.2.8  Detection of GT-(AF)2 (without organic extraction) following 

reduction (500 mM NaBH4) and alkylation of A. fumigatus culture 

supernatant.  

Reduction (NaBH4; 500 mM) and alkylation of pH adjusted supernatants 

without the need for organic extraction identified GT-(AF)2 (Section 2.2.22). A. 

fumigatus culture supernatants were pH adjusted to pH 7.5. Reduction (NaBH4; 

500 mM) followed by alkylation with 5’-IAF was performed. Culture 

supernatants were not organically extracted. GT-(AF)2 was identified at RT = 

16.793 min (Figure 6.15). The use of NaBH4 at a concentration of 500 mM 

suppressed the absorbance of free 5’ IAF. GT-(AF)2 was absent when NaBH4 

was not added (Figure 6.15). A summary of the optimised conditions for 

detection of gliotoxin in supernatant is presented in Table 6.5. 
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Table 6.5. Method developed for optimal reduction and alkylation of native gliotoxin in A. fumigatus culture supernatant without prior organic 

extraction.  

 

 

 

 

 

 

pH Adjusted Supernatant 

(pH 7.5) (µl) 

500 mM NaBH4 (µl) 5’-IAF Amount (nmol) HPLC Gradient 

100 2.5 120 Gradient 3 (Table 2.10) 

4 % ! B/min 
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Figure 6.15. RP-HPLC analysis of reduced and alkylated A. fumigatus pH 

adjusted supernatant without organic extraction. (A) A. fumigatus AF293 

supernatant pH 7.5, following NaBH4 (500 mM) reduction and subsequent 
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labelling with 5’-IAF. Absorbance detection at 254 nm identified GT-(AF)2 with 

a RT = 16.793 min. (B) A. fumigatus AF293 supernatant pH 7.5, without NaBH4 

reduction and with subsequent labelling using 5’-IAF. Absorbance detection at 

254 nm identified no GT-(AF)2, but identified gliotoxin with a RT = 15.493 min.  
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6.3 Discussion 

A novel method for the detection of gliotoxin has been developed. Firstly, 

it has been demonstrated that NaBH4 is a superior choice of reductant, when 

compared to DTT and TCEP. NaBH4 does not require removal prior to 

alkylation of thiols using 5’ IAF. Secondly, GT-(AF)2 offers a higher molar 

absorption (6.8 – fold increase) in comparison to unlabelled gliotoxin. The 

detection of GT-(AF)2 is possible with RP-HPLC or TLC analysis and can also 

be detected by MALDI-ToF MS, where the GT-(AF)2 compound has been 

shown to exhibit a molecular mass of 1103.47. The detection of native A. 

fumigatus gliotoxin in organic extracts and in pH-adjusted culture supernatants 

is possible. An increase in the molar excess of NaBH4 during native gliotoxin 

reduction in culture supernatants appears to suppress free 5’ IAF interference 

during RP-HPLC analysis. Overall a more convenient method for gliotoxin 

detection has been developed which offers a higher sensitivity and specificity 

compared to current methods.  

 The diagnosis of infection by A. fumigatus has proven to be particularly 

difficult which in part is due to the trouble associated with culturing of A. 

fumigatus clinical samples (Tarrand et al., 2005). Diagnosis relies primarily on 

PCR-based and carbohydrate (galactomannan) detection methods (Mennink-

Kersten et al., 2004a; White et al., 2010). The detection of ETP produced by 

filamentous fungi offers the potential for application in a clinical setting and in 

particular, the early diagnosis of invasive fungal infection of A. fumigatus 

(Lewis et al., 2005a). Lewis et al. (2005) reported the detection of gliotoxin in 

the lungs (3.976 ng/g tissue) and sera (36.5 ng/ml) of mice with experimentally 

induced invasive aspergillosis (IA). Currently there are two methods of choice 
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for the detection of gliotoxin, RP-HPLC and LC-MS analysis; RP-HPLC 

measures the absorbance of the compound in the UV spectrum (Scharf et al., 

2010; Schrettl et al., 2010), while LC-MS analysis is a more sensitive approach 

to gliotoxin detection as it identifies the gliotoxin parent ion and associated 

daughter ions (Bok et al., 2006; Kupfahl et al., 2006; Spikes et al., 2008). 

Although these two methods of detection can conclusively detect gliotoxin, they 

both involve expensive equipment and sample preparation can be quite time-

consuming. The use of commercial assays such as the Microtox® test (Alba et 

al., 2009) for the detection of gliotoxin and related ETP offer detection limits of 

0.35 – 0.37 µg/ml (Nieminen et al., 2002; Alba et al., 2009) and 18 – 20 ng/well 

(Grovel et al., 2006). Although this detection limit is quite low the specificity of 

the Microtox® test to gliotoxin is not clear (Alba et al., 2009). The sequential 

reduction and alkylation of gliotoxin followed by TLC, RP-HPLC or MALDI-

ToF detection offers a new direction for the detection of gliotoxin and 

consequently related ETP. The molar absorption of GT-(AF)2 (2 µg gliotoxin; 

peak area = 8772) generated via NaBH4-mediated reduction is almost seven-

fold higher when compared to the unlabelled gliotoxin (2 µg gliotoxin; peak 

area = 1287). This is due to the increased molar extinction coefficient and 

enhanced spectral properties of GT-(AF)2 when compared to gliotoxin. NaBH4 

is the optimal reductant used in the generation of GT-(AF)2 as it requires no pH 

adjustment, unlike TCEP, and it does not require removal prior to alkylation. 

TCEP-generated GT-(AF)2 exhibits higher spectral properties (2 µg gliotoxin; 

11260) in comparison to NaBH4 generated  GT-(AF)2 (8772). This is most 

likely due to the buffering with TCEP, which reduces more gliotoxin. 

Therefore, TCEP reduction of gliotoxin produces more GT-(AF)2. Fluorescence 
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of the GT-(AF)2 compound is also observed, however the fluorescence of this 

compound appears to be significantly quenched, as the fluorescein quantum 

yield (QY) can be adversely affected by environments below pH 7.0 

(Hermanson, 2008). Exposure to light also significantly quenches fluorescence 

and this quenching effect can be as much as 50 % when the fluorescein 

derivative is conjugated to proteins (Hermanson, 2008). However, absorbance 

detection is the primary focus of this Chapter as enhanced spectral properties of 

GT-(AF)2 are observed at 254 nm. The enhancement of sensitivity for the 

detection of thiol-containing compounds has not been observed before (Hansen 

et al., 2009), and this assay may find use in other disulphide bridge containing 

compounds (e.g. sirodesmin, sporidesmin) (Gardiner et al., 2005b).  

The use of NaBH4 in the reduction of disulphides has been previously 

demonstrated (Hansen et al., 2007; Schrettl et al., 2010). Hansen et al. (2007) 

used NaBH4 reduction of protein disulphides and subsequent reaction with 4,4’-

dithiodipyridine, where the quantitation of a liberated 4-thiopyridone enabled 

pmol levels of detection of protein thiols. This approach required several 

experimental considerations; firstly the addition of hexanol to prevent foaming 

during reduction (a by-product of NaBH4). Secondly, incubation of the reaction 

at 50 °C for 30 min. Thirdly, the destruction of excess NaBH4 by acidification 

prior to the addition of 4,4’-dithiodipyridine. The use of NaBH4 confers instant 

reduction of gliotoxin (T = 0 min), which is maintained up to and including 120 

min post addition and no elevated temperature requirement was necessary as 

this reduction occurs at room temperature (20 °C). Interestingly, it was observed 

that the use of excess NaBH4 in the reduction and alkylation of native gliotoxin 

appears to minimise the interference of free 5’-IAF with GT-(AF)2, which can 
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otherwise hinder HPLC resolution. Reduction and alkylation is specific towards 

gliotoxin and other disulphide bridge compounds, which is in contrast to 4-

thiopyridone liberation as this method is an indirect measure of thiol 

quantitation and could result from the non-specific reduction of 4,4’-

dithiodipyridine (Hansen et al., 2007). 

In summary, the detection of GT-(AF)2 was possible by HPLC, TLC and 

MALDI-ToF MS. Optimal reduction of gliotoxin was achieved with NaBH4, 

followed by alkylation with 5’-IAF to yield GT-(AF)2. Stable GT-(AF)2 

exhibited enhanced spectral properties when compared to unlabelled gliotoxin 

(6.8 – fold higher). Fluorescence detection of GT-(AF)2 was also confirmed, 

however fluorescent quenching of the gliotoxin product was observed. Unlike 

free gliotoxin, GT-(AF)2 is detectable by MALDI-ToF MS. The detection of 

gliotoxin in culture supernatant without organic extraction was achieved (mean 

± SD 3.55 ± 0.07 mg/ 100 ml; n = 2) and GT-(AF)2 was also detectable by TLC 

(150 ng; 500 pmol). Further optimisation of this assay to reduce the limit of 

detection could afford application within a clinical environment. Ultimately, this 

could allow for the specific detection of A. fumigatus infection and allow for 

administration of the correct anti-fungal agents before the advancement of 

fungal infection.  
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7. Final Discussion 

The work presented in this thesis describes the characterisation of a GST, 

gliG, which forms part of the co-regulated gliotoxin gene cluster in the 

opportunistic human fungal pathogen A. fumigatus. The development of a novel 

diagnostic assay for the detection of a disulphide bridge or thiol groups was also 

described.  

IA is the most common form of invasive infection caused by A. fumigatus 

(Thompson and Patterson, 2008), and it accounts for 4 % of all hospital-based 

deaths in European hospitals (Brookman and Denning, 2000). The status of A. 

fumigatus infection has changed over the last few decades due to the rise in 

immunosuppressive therapies (Latge, 2001), which causes prolonged 

neutropenia in the treatment of cancer and leukemia individuals. IA is the most 

devastating A. fumigatus infection targeting this patient cohort (Dagenais and 

Keller, 2009), and it usually results in a mortality rate of 80 – 95 % (Brakhage 

and Langfelder, 2002; Rementeria et al., 2005). The use of aggressive anti-

fungal agents are not successful as a curative treatment with mortality usually 

occurring 7 – 14 days post-diagnosis (Denning, 1996). Diagnosis usually 

involves PCR-based and galactomannan detection methods (Mennink-Kersten 

et al., 2004a; White et al., 2010), which can be hampered by difficult in 

culturing of the fungus from clinical samples (Tarrand et al., 2005). As infection 

by A. fumigatus is multigenic and involves the cross talk between SM and the 

immune state of the host (Ben-Ami et al., 2010; Wezensky and Cramer, 2011), 

the detection of SM, and in particular gliotoxin, offer the potential for the early 

diagnosis of A. fumigatus infection. It has been demonstrated that the 

expression of the gliotoxin gene cluster occurs at the onset of invasive 
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aspergillosis (McDonagh et al., 2008), and it has been confirmed that gliotoxin 

can be detected in the lungs and sera of mice which had been experimentally 

induced to develop IA (Lewis et al., 2005), these authors also confirmed that it 

has been detected in the sera of patients with aspergillosis. One aspect of the 

work performed for this thesis described a novel diagnostic assay for the 

detection of disulphide bridges and thiols. Chapter 6 described the use of this 

assay for the detection of gliotoxin in A. fumigatus culture extracts and 

supernatants. This assay could be applied for the detection of gliotoxin which is 

produced during A. fumigatus infection (Lewis et al., 2005; McDonagh et al., 

2008), and therefore could assist with the correct and early diagnosis of ETP-

secreting fungi. Further optimisation of this assay on other ETP compounds 

(e.g., sirodesmin) may afford a simple and accurate method for fungal diagnosis 

and in particular for the early detection of IA. 

The detection of mycotoxins produced by A. fumigatus is an important 

tool for diagnosing fungal infection, however uncovering the complex 

biosynthesis behind the production of these SM warranted further investigation 

(Kamei and Watanabe, 2005). Comparative genomics and sequence analysis of 

the A. fumigatus genome identified the 13-member gene cluster responsible for 

gliotoxin production (Gardiner and Howlett, 2005; Schrettl et al., 2010). A. 

fumigatus gliG forms part of this co-regulated gene cluster (Gardiner and 

Howlett, 2005). In silico analysis predicted gliG to be a GST (Gardiner and 

Howlett, 2005) and work carried out prior to the commencement of this thesis 

confirmed that gliG exhibited GST activity (Carberry, 2008). Previously, 

speculation as to the role of A. fumigatus gliG identified a potential role in the 

self-protection or the biosynthesis of gliotoxin (Gardiner et al., 2004; 
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McGoldrick et al., 2005; Gardiner et al., 2005b). The work presented in this 

thesis confirms a biosynthetic role but not a self-protection role for A. fumigatus 

gliG. Support for this is based on several observations throughout this work.  

Firstly, phylogenetic analysis of the A. fumigatus gliG against 104 other 

sequenced fungal genomes confirmed that A. fumigatus gliG did not group with 

other GST from the A. fumigatus genome, instead, it grouped with other ETP 

producing fungi. This observation suggested that A. fumigatus gliG must exhibit 

differential GST activity within the co-regulated gliotoxin gene cluster.  

Secondly, targeted gene deletion allowed for the functional 

characterisation of A. fumigatus gliG, which lead to the following observations; 

A. fumigatus !gliG did not exhibit sensitivity to exogenous gliotoxin (10 – 50 

µg/ml), unlike the sensitivity of A. fumigatus !gliT in the presence of gliotoxin 

(10 µg/ml) which was confirmed as the gliotoxin reductase (Schrettl et al., 

2010). This eliminated the possibility that A. fumigatus gliG played a role in 

self-protection against gliotoxin. Comparative HPLC of culture extracts 

identified M12.3 and not gliotoxin in the A. fumigatus !gliG extract.  

Thirdly, structural elucidation identified a resemblance between M12.3 and 

gliotoxin, with the most significant difference being that M12.3 did not contain 

a disulphide bridge or thiol groups. Notably, M12.3 contained a hydroxyl group 

located at position 6 and a 1, 1-disubstituted alkene at position 7. The presence 

of this hydroxyl group has supported the hypothesis for gliG-mediated sulphur 

incorporation into gliotoxin, which subsequently lead to a new biosynthetic 

pathway for gliotoxin production Figure 7.1.  
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Figure 7.1. Proposed gliotoxin biosynthetic pathway. Following GliP-mediated 

conjugation of L-phenylalanine and L-serine, a set of hydroxylation and 

dehydration events produce an acyl imine intermediate (7). Thiolation occurs 

through GliG-mediated glutathionylation. This may be followed by GliJ 

peptidase activity and subsequent GliI thioesterase activity, leaving the 

sulphurised intermediate which undergoes GliT-mediated oxidation to produce 

gliotoxin (1). Compound 4, 6-benzyl-6-hydroxy-1-methoxy-3-

methylenepiperazine-2,5-dione is an off-pathway shunt product produced in the 

absence of gliG.  
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The hypothesis for gliG-mediated incorporation of sulphur using GSH as 

a substrate is as follows; M12.3 is not an on-pathway intermediate but it is an 

off-pathway shunt product, which accumulates in the absence of A. fumigatus 

gliG, however, without the identification and characterisation of this metabolite 

this hypothesis would not have been possible. Due to the structural similarity of 

M12.3 (4) to gliotoxin (1) and cyclo-L-Phe-L-Ser (2) it is likely that 4 is a shunt 

metabolite from the gliotoxin biosynthetic pathway. It is proposed that 2 

undergoes hydroxylation at C6 which is believed to be catalysed by the putative 

cytochrome P450 monoxygenase (GliC/GliF) to yield 5. The subsequent 

hydroxylation of 5 at N1 (GliC/GliF) followed by O-methylation (possibly 

catalysed by the putative O-methyltransferase; gliM) and finally the elimination 

of water from C3/C7 would give the shunt metabolite 4. The incorporation of 

the O-CH3 at N1 may occur off-pathway as a self-protection mechanism against 

the reactive on-pathway intermediates. The proposed GliC/GliF-catalysed 

hydroxylation of 5 at C3 would produce compound 6 in the biosynthetic 

pathway. This metabolite (5) can lose two water molecules to yield the 2, 5-

pyrazinedione (7). This intermediate contains the reactive acyl imine, which is 

key to gliG GSH-mediated sulphur incorporation. This acyl imine intermediate 

would undergo GliG-catalysed addition of two GSH molecules yielding 8. The 

putative dipeptidase, A. fumigatus GliJ is proposed to catalyse hydrolytic 

removal of the Glu residues in 8 to give 9. This GliJ-mediated deprotection of 

the cysteine amino groups allows the condensation with GliI-bound PLP. In this 

biosynthetic pathway it is proposed that GliI catalyses two pyridoxal-mediated 

", #-elimination reactions of 9 to afford 6-benzyl-3-hydroxymethylpiperazine-

2.5-dione-3, 6-thiol (10). Subsequent GliN-catalysed N4 methylation of 10 with 
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epoxidation of the aromatic ring (catalysed by GliC/GliF) and the epoxide 

opening of N1 would afford reduced gliotoxin (3). Reduced gliotoxin has been 

confirmed to undergo GliT-mediated oxidation to produce gliotoxin (1) (Scharf 

et al., 2010; Schrettl et al., 2010; Li and Walsh, 2011).  

A second hypothesis was also considered for the A. fumigatus gliG-

mediated sulphur incorporation to gliotoxin with GSH as a substrate. This 

second hypothesis considered the epoxide conjugating activity exhibited by 

GliG (Chapter 4) and the presence of the 1,1-disubstituted alkene at position 7 

as key factors in sulphur incorporation. It was proposed that the CH2OH of L-

serine undergoes dehydration during biosynthesis and that this exocyclic alkene 

was essential for thiolation of M12.3 by co-ordinated epoxidation and s-

transferase activity. As discussed in Chapter 4, A. fumigatus GliG has been 

shown to exhibit considerably higher epoxide conjugating GST activity when 

compared to the other GST substrates. Based on this observation, it was 

proposed that thiolation of M12.3 occurred at position 3. This was thought to 

occur through monoxygenase-mediated epoxidation (Perry and Smith, 2006; 

Lonsdale et al., 2010) of the C3-C7 alkene followed by GliG-mediated 

thiolation, using GSH as a substrate, and the simultaneous regeneration of the –

CH2OH moiety. This hypothesis was supported by two factors (i) the presence 

of two cytochrome P450 monoxygenase genes (gliC/gliF) within the gli cluster 

and, (ii) this monoxygenase functionality to yield reactive intermediates has 

been previously demonstrated (Guengerich, 2003; Lonsdale et al., 2010). It was 

also proposed that thiolation at position 6 occurred after thiol incorporation at 

position 3. Dehydration at C6-C8 would result in alkene formation, and 

subsequent GliG-mediated thiolation in the same manner as proposed to occur 
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at position 3. Following GliG-mediated thiol incorporation into M12.3 it was 

proposed that A. fumigatus GliI may provide the thioesterase activity required to 

cleave the C-S bond after GSH-mediated thiol incorporation. A. fumigatus gliI 

has a putative function as an aminocyclopropane-I carboxylic acid synthetase, in 

silico analysis identified a cystine lyase domain which is known to exhibit 

thioesterase activity (Fox and Howlett, 2008). It was postulated that A. 

fumigatus GliI could provide the activity required for the formation of 

dithiogliotoxin, prior to A. fumigatus GliT-mediated oxidation of gliotoxin 

(Scharf et al., 2010; Schrettl et al., 2010). The inactivation of aflatoxin B1 by 

mammalian systems exhibits a similar mechanism of epoxidation and GST-

mediated GSH conjugation (Raney et al., 1992; Guengerich, 2003).  

However, the presence of an acyl imine reactive intermediate was 

considered to be a more likely hypothesis. The presence of this acyl imine 

reactive intermediate (7) has received some attention in earlier gliotoxin 

biosynthetic studies (Sammes, 1975; Herscheid et al., 1979). Sammes (1975) 

postulated that sulphur incorporation may be mediated via an acyl imine 

intermediate, however these authors did not have an explanation as to how these 

reactive intermediates are formed in vivo. It was later proposed by Herscheid et 

al. (1979) that oxidation of the amide nitrogen, such as those in the piperazine 

ring, forms hydroxamic acids, which subsequently undergo dehydration to the 

reactive acyl imines. These authors successfully synthesised a sulphur-bridged 

dioxopiperazine using H2S/ZnCl2 as a source of sulphur. Interestingly, they 

identified stability issues with the reactive acyl imine intermediates which 

confirms that in the absence of A. fumigatus gliG the shunt metabolite M12.3 

accumulates and the N1 functionalisation with the O-Me group could be an off-
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pathway or a self-protection mechanism by the fungus against the highly 

reactive acyl imine intermediates generated during gliotoxin biosynthesis which 

may be deleterious to the cell. 

Investigation into gliotoxin biosynthesis began after it was isolated in 1936 

(Weindling and Emerson, 1936) and studies into the biosynthesis of gliotoxin 

confirmed phenylalanine and serine as the amino acid precursors (Suhadolnik 

and Chenoweth, 1958; Winstead and Suhadolnik, 1960; Bu'Lock and Leigh, 

1975).  The availability of the sequenced genome of A. fumigatus and the 

identification of the gliotoxin gene cluster (Gardiner and Howlett, 2005; 

Nierman et al., 2005) has allowed characterisation of the in vivo enzymes 

responsible for gliotoxin biosynthesis. A. fumigatus gliP and gliT have been 

confirmed as responsible for the first and last biosynthetic step in gliotoxin 

formation, respectively (Balibar and Walsh, 2006; Scharf et al., 2010; Schrettl 

et al., 2010). This thesis described a novel detection method used to detect 

gliotoxin in the culture supernatant of A. fumigatus and it has also described the 

functional genomics approach to confirm the function of a gene within the 

gliotoxin cluster. We propose that sulphur incorporation into gliotoxin is 

mediated by the A. fumigatus GST gliG via an acyl imine intermediate using 

GSH as a substrate. This function of a fungal GST is the first reported case that 

this class of enzyme is involved in biosynthesis and represents a new direction 

in GST biochemistry. The significance of these findings will have an impact on 

future work performed on other ETP biosynthesis (e.g., sirodesmin, 

sporidesmin) (Gardiner et al., 2005b) and may allow for the design of inhibitors 

of homologues of A. fumigatus gliG. These inhibitors may lessen the symptoms 
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and effects of gliotoxin in vivo and they may alleviate the symptoms of other 

fungal ETP toxins.  
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9. Appendix I 

Table 9.1 Putative GST in the A. fumigatus genome (AF293). A. fumigatus gliG is 

highlighted in bold (CADRE identification; AFUA_6G09690). 

Cadre Identifier 

AFUA_1G01370 

AFUA_1G07030 

AFUA_1G17010 

AFUA_1G17120 

AFUA_2G04240 

AFUA_2G00590 

AFUA_2G08370 

AFUA_2G02490 

AFUA_2G15770 

AFUA_2G17300 

AFUA_3G00730 

AFUA_3G07930 

AFUA_3G10830 

AFUA_4G01440 

AFUA_4G14100 

AFUA_4G11770 

AFUA_4G14530 

AFUA_6G00760 

AFUA_6G03390 

AFUA_6G04260 

AFUA_6G04570 

AFUA_6G09690 

AFUA_7G05500 

AFUA_7G06460 

AFUA_8G00580 

AFUA_8G02500 
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Fungal Species  URL Address where the genome is available from 

Agaricus bisporus var bisporus (H97) http://genome.jgi-psf.org/Agabi_varbisH97_2/Agabi_varbisH97_2.download.ftp.html 

Agaricus bisporus var. burnettii JB137-S8 http://genome.jgi-psf.org/Agabi_varbur_1/Agabi_varbur_1.download.ftp.html 

Allomyces macrogynus http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiDownloads.html 

Alternaria brassicicola ATCC 96836 http://genomeportal.jgi-psf.org/Altbr1/Altbr1.download.ftp.html 

ashbya_gossypii_ATCC_10895 http://www.ebi.ac.uk/integr8/FtpSearch.do?orgProteomeId=982&currentclicked=DOWNLOADS 

Aspergillus carbonarius http://genome.jgi-psf.org/Aspca3/Aspca3.download.ftp.html 

Aspergillus clavatus http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Aspergillus flavus http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Aspergillus fumigatus Af293 http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Aspergillus nidulans FGSCA4 http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Aspergillus niger CBS 513.88 http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Aspergillus oryzae RIB40 http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Aspergillus terreus NIH 2624 http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 
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Batrachochytrium dendrobatidis JEL423 http://genome.jgi-psf.org/Batde5/Batde5.download.ftp.html 

Blastomyces dermatitidis http://www.broadinstitute.org/annotation/genome/blastomyces_dermatitidis/MultiDownloads.html 

Botryotinia cinerea  http://www.broadinstitute.org/annotation/genome/botrytis_cinerea.2/MultiDownloads.html 

Candida albicans SC5314 http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Candida dubliniensis ftp://ftp.sanger.ac.uk/pub/pathogens/Candida/dubliniensis 

Candida glabrata CBS 138 http://www.genolevures.org/download.html#cagl 

Candida guilliermondii  http://www.broadinstitute.org/annotation/genome/candida_group/MultiDownloads.html 

Candida lusitaniae ATCC 42720 http://www.broadinstitute.org/annotation/genome/candida_group/MultiDownloads.html 

Candida parapsilosis CDC317 http://www.broadinstitute.org/annotation/genome/candida_group/MultiDownloads.html 

Candida tropicalis MYA3404 http://www.broadinstitute.org/annotation/genome/candida_group/MultiDownloads.html 

Chaetomium globosum CBS 148.51 http://www.broadinstitute.org/annotation/genome/chaetomium_globosum.2/MultiDownloads.html 

Coccidioides immitis RS http://www.broadinstitute.org/annotation/genome/coccidioides_group/MultiDownloads.html 

Coccidioides posadasii str. Silveira http://www.broadinstitute.org/annotation/genome/coccidioides_group/MultiDownloads.html 

Cochliobolus heterostrophus ftp://ftp.jgi-psf.org/pub/JGI_data/Cochliobolus_heterostrophus_C5/v1.0/ 

Coprinopsis cinerea (strain Okayama7 / 

130 / FGSC 9003) 

http://www.broadinstitute.org/annotation/genome/coprinus_cinereus/MultiDownloads.html 
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Cryphonectria parasitica http://genomeportal.jgi-psf.org/Crypa1/Crypa1.download.ftp.html 

Cryptococcus gattii R265 (neoformans 

Serotype B) 

http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans_b/MultiDownloads.ht

ml 

Cryptococcus neoformans var. grubii H99 http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiDownloads.html 

Debaryomyces hansenii CBS767 http://www.genolevures.org/download.html#deha 

Fusarium graminearum http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/MultiDownloads.html 

Fusarium oxysporum f. sp. lycopersici http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/MultiDownloads.html 

Fusarium verticillioides  http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/MultiDownloads.html 

Heterobasidion annosum ftp://ftp.jgi-psf.org/pub/JGI_data/Heterobasidion_annosum/ 

Histoplasma capsulatum (strain NAm1 / 

WU24)  

http://www.broadinstitute.org/annotation/genome/histoplasma_capsulatum/MultiDownloads.html 

Kluyveromyces lactis NRRL Y1140 http://www.genolevures.org/download.html#klla 

Kluyveromyces waltii NCYC 2644  http://fungalgenomes.org/data/PEP/ 

Laccaria bicolor (strain S238NH82) http://genome.jgi-psf.org/Lacbi1/Lacbi1.download.ftp.html 

Lachancea thermotolerans CBS 6340 ftp://ftp.ncbi.nih.gov/genomes/Fungi/Lachancea_thermotolerans_CBS_6340/ 

Lodderomyces elongisporus http://www.broadinstitute.org/annotation/genome/candida_group/MultiDownloads.html 
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Magnaporthe grisea 7015 http://www.broadinstitute.org/cgi-bin/annotation/magnaporthe/download_license.cgi 

Malassezia globosa (strain CBS 7966)  http://genome.jgi-psf.org/Malgl1/Malgl1.download.ftp.html 

Melampsora laricis-populina http://genome.jgi-psf.org/Mellp1/Mellp1.download.ftp.html 

Microsporum canis CBS 113480 http://www.broadinstitute.org/annotation/genome/microsporum_gypseum/MultiDownloads.html 

Microsporum gypseum CBS 118893 http://www.broadinstitute.org/annotation/genome/microsporum_gypseum/MultiDownloads.html 

Moniliophthora perniciosa ftp://ftp.ncbi.nih.gov/refseq/release/fungi/ 

Mucor circinelloides f. lusitanicus http://genome.jgi-psf.org/Mucci1/Mucci1.download.ftp.html 

Mycosphaerella fijiensis CIRAD86 http://genome.jgi-psf.org/Mycfi1/Mycfi1.download.ftp.html 

Mycosphaerella graminicola IPO323 ftp://ftp.jgi-psf.org/pub/JGI_data/Mycosphaerella_graminicola/v2.0/downloads/ 

Nectria haematococca mpVI ftp://ftp.jgi-psf.org/pub/JGI_data/Nectria_haematococca/annotation/v2.0/ 

Neosartorya fischeri (NRRL 181) http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiDownloads.html 

Neurospora crassa OR74A http://www.broadinstitute.org/annotation/genome/neurospora/MultiDownloads.html 

Neurospora discreta FGSC 8579 http://genomeportal.jgi-psf.org/Neudi1/Neudi1.download.ftp.html 

Neurospora tetrasperma FGSC 2508 http://genomeportal.jgi-psf.org/Neute1/Neute1.download.ftp.html 

Paracoccidioides brasiliensis Pb01 http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiDownloads.ht

ml 
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Penicillium_chrysogenum_Wisconsin_54

-1255 

 http://fungalgenomes.org/data/PEP/ 

Penicillium_marneffei_ATCC_18224  http://fungalgenomes.org/data/PEP/ 

Phaeosphaeria nodorum http://www.broadinstitute.org/annotation/genome/stagonospora_nodorum.2/MultiDownloads.html 

Phanerochaete chrysosporium RP78  http://genome.jgi-psf.org/Phchr1/Phchr1.download.ftp.html 

Phycomyces blakesleeanus  http://genome.jgi-psf.org/Phybl2/Phybl2.download.ftp.html 

Pichia pastoris ftp://ftp.ncbi.nih.gov/genomes/Fungi/Pichia_pastoris_GS115/ 

Pichia stipitis CBS 6054  http://genome.jgi-psf.org/Picst3/Picst3.download.ftp.html 

Pleurotus ostreatus http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.download.ftp.html 

Podospora anserina DSM 980 http://podospora.igmors.u-psud.fr/download.php 

Postia placenta (strain ATCC 44394 / 

Madison 698R) 

http://genome.jgi-psf.org/Pospl1/Pospl1.download.ftp.html 

Puccinia graminis f. sp. tritici http://www.broadinstitute.org/annotation/genome/puccinia_group/MultiDownloads.html 

Pyrenophora triticirepentis strain 

Pt1CBFP 

http://www.broadinstitute.org/annotation/genome/pyrenophora_tritici_repentis.3/MultiDownloads.h

tml 

Rhizopus oryzae RA 99880 http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/Info.html 

Saccharomyces bayanus MCYC 623 http://downloads.yeastgenome.org/sequence/fungal_genomes/S_bayanus/MIT/orf_protein/ 
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Saccharomyces castelli http://downloads.yeastgenome.org/sequence/fungal_genomes/S_castellii/WashU/orf_protein/ 

Saccharomyces cerevisiae S288c http://downloads.yeastgenome.org/sequence/ 

Saccharomyces kluyveri NRRL Y12651 http://www.genolevures.org/download.html#sakl 

Saccharomyces kudriavzevii IFO 1802 http://downloads.yeastgenome.org/sequence/fungal_genomes/S_kudriavzevii/WashU/orf_protein/ 

Saccharomyces mikatae IFO 1815 http://downloads.yeastgenome.org/sequence/fungal_genomes/S_mikatae/MIT/orf_protein/ 

Saccharomyces paradoxus NRRL Y17217 http://downloads.yeastgenome.org/sequence/fungal_genomes/S_paradoxus/MIT/orf_protein/ 

Schizophyllum commune H48 ftp://ftp.jgi-psf.org/pub/JGI_data/Schizophyllum_commune/v1.0/ 

schizosaccharomyces cryophilus oy26 http://www.broadinstitute.org/annotation/genome/schizosaccharomyces_group/MultiDownloads.ht

ml 

Schizosaccharomyces japonicus (strain 

yFS275 / FY16936) 

http://www.broadinstitute.org/annotation/genome/schizosaccharomyces_group/MultiDownloads.ht

ml 

Schizosaccharomyces octosporus yFS286 http://www.broadinstitute.org/annotation/genome/schizosaccharomyces_group/MultiDownloads.ht

ml 

Schizosaccharomyces pombe 972h ftp://ftp.ncbi.nih.gov/genomes/Fungi/Schizosaccharomyces_pombe/ 

Sclerotinia sclerotiorum (strain ATCC 

18683 / 1980 / Ss1) 

http://www.broadinstitute.org/annotation/genome/sclerotinia_sclerotiorum/MultiDownloads.html 

Serpula lacrymans S7.3 http://genome.jgi-psf.org/SerlaS7_3_2/SerlaS7_3_2.download.ftp.html 
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Spizellomyces punctatus http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiDownloads.html 

Sporobolomyces roseus IAM 13481 http://genome.jgi-psf.org/Sporo1/Sporo1.download.ftp.html 

Sporotrichum thermophile http://genomeportal.jgi-psf.org/Spoth1/Spoth1.download.ftp.html 

Talaromyces stipitatus ftp://ftp.ncbi.nih.gov/refseq/release/fungi/ 

Thielavia terrestris http://genome.jgi-psf.org/Thite1/Thite1.download.ftp.html 

Tremella mesenterica http://genome.jgi-psf.org/Treme1/Treme1.download.ftp.html 

Trichoderma atroviride IMI 202040 ftp://ftp.jgi-psf.org/pub/JGI_data/Trichoderma_atroviride/v1.0/ 

Trichoderma reesei QM6a http://genome.jgi-psf.org/Trire2/Trire2.download.ftp.html 

Trichoderma virens Gv298 ftp://ftp.jgi-psf.org/pub/JGI_data/Trichoderma_virens/v1.0/download_files/ 

trichophyton equinum CBS127.97 http://www.broadinstitute.org/annotation/genome/dermatophyte_comparative/MultiDownloads.html 

Trichophyton rubrum http://www.broadinstitute.org/annotation/genome/dermatophyte_comparative/MultiDownloads.html 

Trichophyton tonsurans http://www.broadinstitute.org/annotation/genome/dermatophyte_comparative/MultiDownloads.html 

Uncinocarpus reesii http://www.broadinstitute.org/annotation/genome/candida_group/MultiDownloads.html 

Ustilago maydis 521 http://www.broadinstitute.org/annotation/genome/ustilago_maydis.2/MultiDownloads.html 

Vanderwaltozyma_polyspora_DSM_7029

4 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=5

801 
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Verticillium alboatrum VaMs.102 http://www.broadinstitute.org/annotation/genome/verticillium_dahliae/MultiDownloads.html 

Verticillium dahliae VdLs.17 http://www.broadinstitute.org/annotation/genome/verticillium_dahliae/MultiDownloads.html 

Yarrowia lipolytica CLIB122 http://www.genolevures.org/download.html#yali 

Zygosaccharomyces rouxii  http://www.genolevures.org/download.html#zyro 
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