

Implementing the Verified Software Initiative
Benchmarks using Perfect Developer

Yan Xu, Rosemary Monahan

Department of Computer Science National University of Ireland, Maynooth Maynooth, Ireland; {YAN.XU.2009, Rose-
mary.Monahan}@nuim.ie

ABSTRACT

This paper describes research on the Perfect
Developer tool and its associated programming
language, Perfect. We focus on verification
benchmarks that have been presented as part of
the Verified Software Initiative (VSI), proposing
their specification, implementation and verifica-
tion in the Perfect language and the Perfect
Developer tools. To the best of our knowledge
this is the first attempt to meet these bench-
marks using the Perfect Developer tools. Our
aim is to implement the benchmarks and ana-
lyze how well the Perfect language can be used
to express these benchmarks. In this paper we
present the first benchmark, its specification
and its verification in the Perfect Developer tool
suite.

Keywords: Verification Benchmarks; Specification;
Perfect Developer; Verified Software Initiative

1. Introduction

A suite of verification benchmarks for software verifi-
cation tools and techniques, presented at VSTTE 2008
[1] provides an initial catalogue of benchmark chal-
lenges for the Verified Software Initiative. A partial
solution, using the RESOLVE [2] specification lan-
guage, was also presented for the first benchmark in
this benchmark suite. The benchmark suite also aims to
provide for the evaluation of the state-of-the-art and to
provide a medium that allows researchers to illustrate
and explain how proposed tools and techniques deal
with known pitfalls and well-understood issues, as well
as how they can be used to discover and attack new
ones. In this paper, we contribute to this evaluation by
determining how to express solutions to these bench-
marks in the Perfect language [3] and evaluating how
its associated verification tools handle their verification.
We present our solutions to one of the seven bench-
marks problems that we attempted: integer’s addition
and multiplication. We also present the solution’s ad-
vantages and drawbacks in Perfect and illustrate the
power of the Perfect Developer verification tools.

2. Background

In this chapter, we introduce the Perfect language and
the Perfect developer tool.

2.1. Introduction of Perfect Language

Perfect is a specification language following the Design
by Contract [4] methodology and similar to the B speci-
fication language [5]. Specification languages are used
to describe the system at a much higher level than other
programming languages during the systems analysis and
systems design. Perfect is also an implementation lan-
guage although implementations are usually translated to
more familiar programming languages such as C++ or
Java. In addition, Perfect is an Object-Oriented [4] lan-
guage which supports the specification of programs fol-
lowing the Verified Design by Contract [6] paradigm,
where contracts specify the input-output relationship of
features of a class, and are verified by static analysis and
automated theorem proving to assure that they will not
fail at runtime.

We develop and verify programs in the Perfect lan-
guage by using Perfect Developer. This tool supports the
specification, verification and automatic translation of
Perfect code to code that is written in either C++, Ada,
Java and C#. A full description of the Perfect language is
available in the Perfect Developer Reference Manual [7].
A short summary of some of the features of the language
follow below.

Type, Expression: In Perfect, identifiers are case sen-
sitive and made up of letters, digits or underscores. The
first character of the identifier cannot be a digit. There is
no limit length for an identifier, so users can use any
length identifier. There are 208 reserved words in Perfect
language, such as change, name, which cannot be used
as an identifier. Perfect Language has many predefined
basic data types: anything, bool, byte, char, int, real,
void, rank, nat, string.

Collection: There are three generic collection classes:
set of X, bag of X and seq of X. The parameter X stands
for whatever class you wish to have a collection of, like
set of int or set of Person (the user defined class). An
object of class set of X is an unordered collection of ob-

171

2010 China-Ireland International Conference on Information and Communications Technologies

978-1-935068-30-3 © 2010 SciRes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297014501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

jects of class X and it does not allow duplicates. Class
bag of X is similar with class set of X, but it permits du-
plicates. In addition, an object of class seq of X is like an
ordered bag of X.

Class: The class in Perfect is used to mean a set of al-
lowed values which is neither a proper subset of any
other Perfect class nor a union of types [7]. It is the basic
element for doing the object-oriented development, and
it has certain structure, class constructor, variables, in-
variants and kinds of method. But there is no destructor
in Perfect Language. In Perfect, classes are usually di-
vided into several sections: abstract section, internal sec-
tion, confined section and interface section [8]. The ab-
stract section and interface section are the common used
sections. An example of a Person class is shown below.

class Person ^=
abstract
 var personname: string,
 age: int,
 gender: gendertype,
 interface
 build { !personname: string, !age: int, !gender:

gendertype};
end;
The above code defines a new class Person. The

symbol ^= is pronounced “is defined as” and means the
class Person is defined as the notations which are after it
and before the word end;. The class Person has three
attributes: personname, age and gender. They are de-
clared as three variables after var. The colon here is pro-
nounced “of type”. It is followed by a type expression
and it declares the entity before it to be of that type. For
example, gender is of type gendertype which is a user
defined type. A constructor starts with the keyword build
and the exclamation mark! means that a change of value
occurs in the entity (variable, parameter or self) that pre-
cedes it (or occasionally follows it) [8]. Giving the pa-
rameter the same name as the corresponding attributes
(preceded by a !), the attributes of the class Person are
automatically initialized.

Function and Schema: In Perfect, there are five
kinds of methods: operator, selector, constructor, func-
tion and schema [9]. A constructor defines how to build
an object of the class. A function takes one or more pa-
rameters and yields a result; it has no side-effect. A
schema changes the state of the runtime object.

 Precondition and Postcondition: We can define
the precondition for the constructor, function and
schema as restriction, using one or more
(comma-separated) Boolean expressions after the key
word pre. These preconditions must be satisfied when-
ever the method is called. We also can define the post-
condition for the constructor and schemas to express the
state of the objects created via the constructors, or to

define the changes made by a schema, and (in after ex-
pressions) to express the value that some expression
would have if we made some changes to it [8]. The
postcondition defines two things: a frame, which is a set
of variables (or parts of variables) that may be changed
and a condition that must be satisfied.. The basic form of
the postcondition is “change frame satisfy condition”.
When we want to change a single variable by making its
value equal to some expression, we abbreviate the form
change var satisfy var' = expr to the form var! = expr.
In Perfect, the postcondtion specifies precisely which
variables have changed and the conditions satisfied by
the final values of those variables.

More examples of above features are explained and
used in the benchmark implementation in the section 3.

2.2. Introduction of Perfect Developer
Perfect Developer, developed by Escher Technologies

Limited, is a software development tool for developing
formal specifications and refining them to code [10]. It
supports the formal development of object-oriented pro-
grams by refinement including formal verification of
code. It is a powerful software tool. Not only can it gen-
erate ready-to-compile code in C++ or Java from the
specifications and refinements expressed in the Perfect
Language, but it can also generate the verification condi-
tions needed to verify that the implementation satisfies
its specification and prove them.

Perfect Developer is designed for the verification
safety-critical applications in industry, and provides a
useful tool for teaching formal methods and doing re-
search in universities. Perfect Developer uses a powerful
automatic inference engine and theorem prover to reason
about the requirements, specifications, and code. So us-
ers can import UML models to generate specifications
and finally generate the code in Java or C++. Perfect
Developer runs standard PCs under both Windows and
Linux operating system. A Project Manager interface in
Windows is as shown in Fig.1.

Figure 1. Project Manager
Through this interface, users can create projects, files,

172

2010 China-Ireland International Conference on Information and Communications Technologies

978-1-935068-30-3 © 2010 SciRes.

import UML models, build or verify files and users can
see the output in the results window.

When using Perfect Developer to do projects, users
write code in the Perfect language and then verify this
code using the Perfect Developer verifier. This tool in-
cludes a compiler for compiling the verified Perfect
Language code and automatically translating to code in
Java, C++, Ada and C#.

Perfect Developer does not have its own source code
editor or C++ compiler or Java compiler, so users need
to use the source code editor and the Java JDK or C++
compiler which they installed in their PCs.

3. Solution of Benchmark 1

This section presents the first of the benchmark prob-
lems and its solution. This section also gives the result of
the verification of this benchmark. In addition, we pro-
vide an analysis of the solution for the benchmark.

3.1. Problem Requirements

Using Perfect Language, implement and verify an opera-
tion that adds two numbers by repeated incrementing.
Then implement and verify an operation that multiplies
two numbers by repeated call the adding operation
which is implemented before.

3.2. Solution

In this benchmark, there are two parts of the requirement.
One is addition specification; the other is the multiplica-
tion based on the definition of addition in the first speci-
fication.

First we need to implement the addition. The re-
quirement said implementing the adding by repeated
incrementing. The basic idea is to pass the two numbers
x, y as input to the add function and loop to get the result.
The initial value of the result is the number x. In each
loop, we add 1 to the previous result. After y times loop,
the return result will be the addition of x and y. Now the
problem is how to realize the loop process in Perfect
language. According to the introduction reference of
Perfect language, there are two ways to do the loop. One
is to use the loop statement; another is to call the recur-
sive function. Here we choose using the loop statement
to implement our solution. The add function code is as
follows:

function add(x,y:int):int
 ^=x+y
 via
 var addresult:int!=x,

 addy:int!=([y>=0]: y,[]: -y);
 loop

 var j: nat!=0;
 change addresult
 keep addresult'= ([y>=0]: x+j',[]: x-j')
 until j'=addy
 decrease addy-j';
addresult!= ([y>=0]:addresult+1, []: addresult-1),
 j!=j+1;
 end;
 value addresult
end;

In the code above, we define a function named add,

which has two input parameters x and y. The type of x
and y both are integer. The add function was defined to
return an integer value which equals to the result of x+y
by using the token ^=.

To implement the addition by repeated incrementing,
we must refine the add function. The refinement codes
are between the word via and the last end.

First, we define two integer type valuables addresult
and addy, which are initialized to the value of x and the
absolute value of y.

Then we define the loop process, which is between the
word loop and the first end. In the Perfect language,
there is a certain structure for the loop statement. At the
beginning, we use var to define the temp valuable in the
loop. Here we define a valuable named j and initialize it
to 0. Next, we use the word change to show which
valuable could be changed during the loop, and we let
the addresult be changeable. The temp valuable j doesn’t
need to declare to be changeable, because it is an inner
valuable of the loop. Then we declare the invariant
statement which should be maintained during the whole
loop. The invariant statement is following the word keep.
Here the invariant code means that new value of addre-
sult should equal to the result of x+j (if y>=0) or the
result of x-j (if y<0). Next we set the condition for when
the loop should be stopped, by using the word until.
When the value of j equals to the value of addy, the pro-
gram will run out of the loop. The expression decrease
addy-j’ is a loop variant and the PD will attempt to prove
that it is never negative unless the loop is about to ter-
minate.

After that, we give the loop body which has two
statements here. One is “addresult != ([y>=0]: addre-
sult+1, []: addresult-1)”, which means the new value of
addresult will equal to the result of its old value plus one
when the y>=0 or equal to the result of its old value mi-
nus one; the other is set the value of j increase one. At
the end of the refinement, we set the return value to be
addresult by following the word value. Now the addition
function is completed.

In the code above, there are many condition state-
ments for checking whether the value of y is less than 0

173

2010 China-Ireland International Conference on Information and Communications Technologies

978-1-935068-30-3 © 2010 SciRes.

or not. We use these statements to solve the problem that
the input number y may be less than 0. In our algorithm
for repeated incrementing, we want the loop to run y
times. But if the value of y is less than 0, there will be a
problem. So we improve the algorithm to let the loop run
|y| times. |y| means the absolute value of integer y. The
return value of this function will be the addition of the
two input numbers x and y, no matter y is less than 0 or
not.

Now we have the adding function and we need to de-
sign solutions to implement the multiplication by using
the adding function built by us. The main idea is using
the loop to call the add function repeatedly. We define a
multiply function which accepts two input numbers x
and y, and refine this function to calculate the product of
these two input numbers by repeatedly calling the add
function. The product of x and y equals the value of re-
peatedly adding x for |y| times (if y>=0) or its inverse
number (if y<0). In the end, this function will return the
value of the product. The function code is as follows:

function multi(x,y:int):int
 ^=x*y
 via
 var produ:int!=0, muly:int!= ([y>=0]:

y,[]: -y);
 loop
 var j:nat!=0;
 change produ
 keep produ'=x*j'
 until j'=muly
 decrease muly-j';
 produ!=add(produ,x),
 j!=j+1
 end;
 if
 [y>=0]: value produ;
 []: value -produ
 fi
 end;

In the multi function above, we input two integers x

and y into the function as the parameters and set the type
of return value to be integer. The return value of the
function is defined to be the product of x and y. Then we
do the refinement of the multiplication by repeatedly
calling the adding function between the word via and the
last end.

Firstly, we define two valuables produ and muly, and
initial their value to be 0 and |y|. The loop structure is
similar to the one in the add function. We define a temp
value j, initializee it to be 0, and only let the variable
produ be changeable during the loop. The invariant,
which we should maintain in each step of the loop, states

\

that the new produ must equal to the product of x and the
new value of j. The loop exits when the value of j equals
to the muly. We use the sentence “decrease muly-j'” to
make sure the loop will not be infinite. Here the loop
body also has two sentences. One is
“produ!=add(produ,x)”, which sets the new value of
produ by calling add function to add the old value of
produ and x; another is same to the one in the add func-
tion which is just increasing the j by one. Therefore, the
program sets the valuable produ to be the result of the
old value of produ plus x in each loop iteration and exits
the loop after running |y| times. In the end, we set the
return value depending on whether the y is less than 0 or
not. So the return value of the multi function will be the
product of the input number x and y and the refinement
is completed.

Now we provide the main parts of the solution for the
benchmark 1. We build the code in the Perfect Devel-
oper and generate the Java code to test running result.

3.3. Verification

So far we've focused on how to structure a class and how
to write method specifications. In the Perfect language,
we also need to focus on how to use preconditions to
specify what needs to hold when a method is called and
how to use the verification facility of Perfect Developer
to make sure that the specification doesn't involve
something untoward such as dividing by zero or index-
ing off the end of a sequence [8]. We use Perfect Devel-
oper 3.12 to verify our Perfect language program and
give the result of it here. The screenshot of the verifying
the “add” function and “multi” function is as follows:

Fig.2 Verification Result of Benchmark 1

From the tool feedback, we can see that all the verifi-

cation conditions are confirmed which are showed by
green color. This means that all the conditions of the
“add” function and “multi” function can be proved.
Feedback is provided from the tool on all verification
condition proofs. A sample is: “…\Benchmark1.pd
(18,14): Information! Confirmed: Variant non-negative”.

3.4. Summary

In conclusion, the implementation of the solution satis-
fies the requirements of the Benchmark 1. In the imple-
mentation, the add function solves the problem that one

174

2010 China-Ireland International Conference on Information and Communications Technologies

978-1-935068-30-3 © 2010 SciRes.

number adds a negative number, and the multi function
also solves the problem of multiplying a negative num-
ber. In addition, the add function and multi function are
both proved successfully in the verification. The Java
code generated by the Perfect Developer from the Per-
fect code has been tested and is without error. We also
find that the implementation of the solution has some
drawbacks. The add function runs for a long time due to
the loop process for adding, however, the benchmark
requires that the implementation of adding must be the
repeated increment. The multi function also has the same
problem due to the requirement that the implementation
of multiplying must be the repeated calling the add func-
tion. Further analysis follows in section 4.

4. Analysis

In this section, we analyze the result of the implementa-
tion and give some suggestions to improve it.

Generic: The implementation of this benchmark is
not generic. The add function and the multi function of
the implementation can only deal with integer values. It
will be more useful if the function is generic to more
types. The Perfect Language supports the generic class.
For example, we can define a generic Queue class as
follows:

class Queue of X ^=
abstract
 var queue: seq of X, size:int;
 interface
 function head:X
 …
 schema !Enqueue(y:X)
 …
 end;

This Queue class accepts type parameterization. We

can use it to build the Queue of the built-in type or self
defined type. In further research, we will continue to
make the implementations of other benchmarks generic.

Reusable: The solution of benchmark 1 implemented
here can be reused to generate a new benchmark solution.
Building the solution to a new benchmark by using the
earlier benchmarks’ solution can show the capabilities of
the earlier benchmarks. The reusability is one of the
most significant features of these benchmarks. In the
further research, we will focus on how to generate the
benchmark from the earlier benchmarks solutions by
reusing earlier benchmark solutions..

Schema: A deliberate design decision in Perfect is
that expressions are side-effect free. This allows all ex-
pressions to be used in specification statements. The
effect of a function with side-effects can be achieved by
defining a schema with an out-parameter. The

out-parameter is used to pass back what would be the
"return value" if it were a function.

5. Conclusion

This paper proposes the solution of implementing and
verifying one VSI benchmark using the Perfect lan-
guage. After implement the benchmark, we also verify
the solution and analyze how well the Perfect lan-
guage can be done in this benchmark. Our solutions to
the other benchmarks are available in the M.Sc Dis-
sertation “Implementing the Verified Software Initia-
tive Benchmarks using Perfect Developer" [11]. Our
work may assist the Verified Software Initiative by
providing solutions to the proposed verification
benchmarks. We will continue to research on these
benchmarks, optimize the implementation of them
and use them to build a Perfect application program in
the future.

6. Acknowledgements

The authors appreciate the ideas from Bruce W. Wide,
Murali Sitaraman, Heaher K. Harton, Bruce Adcock,
Paolo Bucci, Derek Bronish, Wayne D. Heym, Jason
Kirschenbaum and David Frazier, the authors of the pa-
per “Incremental Benchmarks for Software Verification
Tools and Techniques” as well as the work of those at
Escher Technologies Ltd. who are responsible for the
production of Perfect Developer. Many thanks to David
Crocker, Escher Technologies, for his ongoing support
and helpful feedback. Thanks also to the reviewers for
their helpful comments.

References

[1] Bruce W. Weide, Murali Sitaraman, Heather K. Harton,

Bruce Adcock, Paolo Bucci, Derek Bronish, Wayne D.
Heym, Jason Kirschenbaum and David Frazier (2008).:
Incremental Benchmarks for Software Verification Tools
and Techniques. Technical Report RSRG-08-02

[2] Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M.,
Weide, B.W.: Specifying components in RESOLVE.
Software Engineering Notes 19(4) (1994) 29-39.

[3] Gareth Carter.: Introducing the Perfect Language. 2005.
[4] Bertrand Meyer, Object Oriented Software Construction ,

2nd Edition.
[5] J. R. Abrial, The B-book: assigning programs to

meanings 1996 Cambridge University Press.
[6] Escher Technologies. What is Verified Design-by-

Contract? http://www.eschertech.com/products/
verified_dbc.php (Aug 2010)

[7] Escher Technologies. The Perfect Developer Language
ReferenceManual Version 3.12.

[8] Escher Technologies. Perfect Developer: the Basic
Tutorials. http://www.eschertech.com/tutorial

175

2010 China-Ireland International Conference on Information and Communications Technologies

978-1-935068-30-3 © 2010 SciRes.

/tutorials.htm (Aug 2010)
[9] Gareth Carter, Rosemary Monahan, Joseph M. Morris

(2005).: Software Refinement with Perfect Developer.
ISBN:0-7695-2435-4

[10] David Crocker. Perfect Developer: A tool for
Object-Oriented Formal Specification and Refinement. In
FME 2003, Tools Exhibition Notes.

[11] Yan Xu, Implementing the Verified Software Initiative
Benchmarks using Perfect Developer, M.Sc
Dissertation, Dept. of Computer Science, NUIM
(January 2010).

176

2010 China-Ireland International Conference on Information and Communications Technologies

978-1-935068-30-3 © 2010 SciRes.

