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Article

Predicting organic acid concentration
from UV/vis spectrometry
measurements – A comparison
of machine learning techniques

Christian Wolf1, Daniel Gaida2, André Stuhlsatz3,
Thomas Ludwig2, Seán McLoone1 and Michael Bongards2

Abstract

The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic

digestion processes. Thus, a reliable online-measurement system is absolutely necessary. A novel approach to obtaining these measurements indirectly

and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods, is presented in this paper. An UV/vis

spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge

at a spectrum from 200 to 750 nm. Advanced pattern recognition methods are then used to map the non-linear relationship between measured

absorption spectra to laboratory measurements of organic acid concentrations. Linear discriminant analysis, generalized discriminant analysis (GerDA),

support vector machines (SVM), relevance vector machines, random forest and neural networks are investigated for this purpose and their perfor-

mance compared. To validate the approach, online measurements have been taken at a full-scale 1.3-MW industrial biogas plant. Results show that

whereas some of the methods considered do not yield satisfactory results, accurate prediction of organic acid concentration ranges can be obtained

with both GerDA and SVM-based classifiers, with classification rates in excess of 87% achieved on test data.

Keywords

Anaerobic digestion, classification, feature extraction, GerDA, LDA, neural networks, online measurement, organic acids, random forest, RVM, SVM,

UV/vis spectroscopy

1. Introduction

The use of powerful computational intelligence and data
analysis methods in conjunction with new and existing

online-measurement and advanced control systems allows
the development of highly sophisticated and robust systems
for efficient process monitoring and optimization. There is a
vast range of applications, for example artificial neural net-

works for modelling and prediction purposes, fuzzy control to
include expert knowledge in plant operation, genetic algo-
rithms for the optimization of complex processes, and

machine learning methods to detect critical operation states
or to further process online-measured information in so-
called soft sensors (Ozkaya et al., 2007; Puñal et al., 2002;

Steyer et al., 2002; Strik et al., 2005). The application of
feature extraction and classification methods to predict
organic acid concentrations in anaerobic digestion processes
using UV/vis spectroscopic probes is an example of such a

hybrid system.
There are many industrial applications for organic acid

measurements. In addition to being one of the most impor-

tant parameters in anaerobic digestion processes, it is com-
monly used to monitor the quality of beer and wine and
inhibition in composting processes (Batista et al., 2010;

Cheung et al. 2010; Rodrigues et al., 2010). In particular,

monitoring and control of anaerobic digestion in biogas
plants has proven to be extremely difficult because of a lack
of robust and feasible online-measurement systems and

the high non-linearity of anaerobic digestion processes.
Nevertheless, it becomes more important than ever to offer
solutions for advanced process control of biogas plants,
because efficient plant operation is the major issue when it

comes to feasible long-term operation of such plants. The
monitoring of organic acid concentrations is one of the key
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parameters for process stability in biogas plants, as high
concentrations leads to acidification of the anaerobic biology
and consequently a collapse of biogas production. Its robust

measurement is required for long-term monitoring to recog-
nize critical process states in time. Furthermore, a detailed
process monitoring regime is an excellent basis for the devel-
opment and testing of innovative optimization and control

strategies for anaerobic digestion processes.
There are several online-measurement systems for organic

acid concentrations available on the market, such as online

capillary gas chromatography and online spectro-fluorimetric
systems, which are widely used by the chemical industry.
Nevertheless, these systems are too complex and sensitive

to disturbances to be used efficiently at agricultural biogas
plants (Diamantis et al., 2010; Palacio-Barco et al., 2010).
Calibration and maintenance of such systems require a high

degree of expert knowledge, which operators normally do not
have. Furthermore, because of their high purchase, mainte-
nance and repair costs, these systems are not feasible for most
agricultural biogas plants.

The availability of UV/vis spectroscopic probes offers a
new approach to measuring organic acid concentrations
indirectly and online. By employing powerful feature extrac-

tion and classification methods, organic acid concentrations
can be predicted from the absorption spectra measurements
taken from diluted fermentation sludge. As the use of UV/vis

spectroscopic probes is well established in the wastewater
sector for the online measurement of the chemical oxygen
demand (COD) in sewage systems and wastewater treatment
plants, these probes have proven to be extremely robust,

requiring less maintenance than the alternatives mentioned
above (Bongards et al., 2007).

Two factors support the use of pattern recognition meth-

ods for this type of application: 1) organic acid concentra-
tions can be divided into different concentration ranges/
classes, which correspond to different process conditions; 2)

a high precision measurement of organic acid concentrations
is not necessary, as the determination of concentration ranges
is sufficient for plant operation. Furthermore, the chosen con-

centration ranges/classes can be easily applied to the develop-
ment of fuzzy control systems.

In this paper we consider the well-known linear discrimi-
nant analysis (LDA) and the generalized discriminant

analysis (GerDA), which is a novel and powerful extension
of the classical LDA algorithm (Stuhlsatz et al., 2010a), to
extract features automatically from the raw UV/vis spectro-

gram measurements. In addition to these feature extractors,
we use linear classifiers to classify the extracted features into
different concentration ranges. For comparison, we also

investigate the use of random forest (RF), neural networks
(multilayer perceptron, MLP), support vector machines
(SVM) and relevance vector machines (RVM), which have
proven to be very efficient methods for multi-class classifica-

tion (Balabin et al., 2011; Guo et al. 2011; Wang et al., 2010;
Yogameena et al., 2010). RF is used for feature selection and
classification, whereas MLPs are used for the classification of

reduced feature spaces created by applying partial least
squares regression (PLS), forward selection regression
(FSR) and GerDA to the raw measurements. Finally,

SVMs and RVMs are investigated for direct classification of

the spectrogram as well as for classification of the GerDA and
RF features.

The remainder of the paper is organized as follows.

Section 2 first formulates the classification task and the data
set, and gives a brief introduction to the practical background
and application. Section 3 provides a short introduction to
the feature extraction and classification methods investigated,

namely LDA, GerDA, RF, MLP, SVM and RVM for clas-
sification. Section 4 presents the classification results and
provides a comparison of the performance of the different

methods. A final evaluation of the pattern recognition
methods considered, as well as a discussion of future work
to improve the complete system, are provided in Section 5.

2. Case study and test methodology

2.1 Description of the data set

The spectrometric measurement device provides a character-
istic absorption curve, called a fingerprint, over p 2 N wave-

lengths. The values are given in Au=m½ � and stored as
a column vector, where the ith one is denoted by xi 2 X,
with the feature space X � Rp. In total, we have N 2 N

such fingerprints, i.e. i ¼ 1, . . . , N. Associated with each
such vector xi is the ith organic acid sample with unit g=l½ �,
denoted by ca,i 2 R. To formulate the mapping from xi to ca,i
as a classification problem, the measurements ca,i are clus-
tered into C ¼ 5 classes, which account for the whole range
of given ca values. The class # 2 � to which the ith organic
acid measurement belongs is given by #i 2 �, where

� ¼ 1,2,3,4,5f g are the class labels as defined in Table 1.
These classes correspond to low, low-normal, normal,
normal-high and high concentrations of organic acid, respec-

tively. A total of N ¼ 4437 samples were obtained from the
biogas plant and these were used to generate training and
validation data sets with NT ¼ 3326 and NV ¼ 1109 samples

respectively. The distribution of the samples across classes is
illustrated in Table 1.

From an initial investigation of the data set for the full
spectrum spanning 200–750 nm using LDA, it was determined

that better results could be obtained by omitting the longer
wavelengths; hence, as a final pre-processing step, wave-
lengths above 640 nm were removed leaving a p ¼ 176 dimen-

sional feature vector xi for analysis. This cut-off point was
determined by optimizing the LDA classification results with
respect to p. This is simply a reflection of the fact that better

generalization can be obtained if irrelevant feature vectors are

Table 1 Definition of the class labels and the number of samples in each

class # for the complete (N#), training (NT ,#) and validation dataset, NV,#

Class # 2 �

Organic acid

concentration ca g=l½ � N# NT ,# NV,#

1 (low) 1.1,. . ., 1.4 228 171 57

2 (low-normal) 1.5,. . ., 1.8 1528 1146 382

3 (normal) 1.9,. . ., 2.2 1880 1410 470

4 (normal-high) 2.3,. . ., 2.6 731 549 182

5 (high) 2.7,. . ., 3.0 70 52 18
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discarded. The absorption beyond 300 nm is very low, which
leads to the conclusion that absorption characteristics at
higher wavelengths do not have a high impact on the concen-

tration of organic acids. Nevertheless, the inclusion of wave-
lengths above 300 nm is justified to take account of substrate
colouring and the changing matrix of mains water in the mea-
surement. Therefore, the appropriate cut-off point needs to be

determined.

2.2 Practical application

The measurement of organic acid concentrations in biogas
plants is essential for monitoring anaerobic digestion pro-

cesses and to assure stable and efficient plant operation.
The online measurement of this key parameter is important
to detect and solve problems in plant operation quickly. High

organic acid concentrations decrease the pH level in the
bioreactor and cause high stress to methane-producing
bacteria, which are no longer able to process the available
substrate. Such a change in environmental conditions may

easily lead to a complete collapse of the anaerobic digestion
process as shown in Figure 1.

The state-of-the-art way to measure and monitor organic

acid concentration on agricultural biogas plants unfortunately
is still to perform laboratory analysis of the fermentation sludge
and substrate feed on a regular basis. This thorough analysis

allows efficient process operating conditions to be determined
and indicates whether a process is stable or in danger. However,
performing the analysis and interpreting the results requires
detailed knowledge about the fermentation process, and

access to such expertise is generally only cost effective for the
largest biogas production facilities. Furthermore, laboratory
analyses are difficult, expensive and time-consuming, which

makes effective process monitoring and control impractical.
Based on the current situation in the field of online-

measurement systems for biogas plants, the need for new

developments in sensor technology and engineering solutions
in this area is huge. Existing technologies for online measure-
ments of organic acid concentrations in biogas plants, such as

gas-phase chromatographs or automatic titrators, are only
available to a small group of biogas plant operating compa-
nies, as they are expensive and high-maintenance products.

The new approach discussed in this paper is to use UV/vis

spectroscopy, which uses ultraviolet light (200–750nm) to
determine the concentration of a certain substance in a liquid
sample. The main problem for the application on biogas plants

is the high concentration of organic acids in the substrate and
also the relatively high concentration of solids. Thus, an
automated sample preparation and dilution system has been

developed, which addresses these issues and which is installed
on an industrial biogas plant near Gummersbach, Germany.
This industrial biogas plant with an electrical power output of

1.3MW uses biological municipal waste for fermentation. In
particular, high amounts of leftovers, which rapidly increase
organic acid production, may compromise plant operation and
stability. Because of these operating conditions, the plant

operator has a high interest in testing and validating new
promising measurement systems.

Laboratory tests conducted with the S::CAN spectro::lyser

show that organic acid concentrations can be detected by
analysing the absorption over several wavelengths as shown
in Figure 2 (Schmidt and Rehorek, 2008). Different organic

acids (acetic acids, propionic acid, lactic acid) were measured
in different concentrations to determine the effect on the
measured absorption intensity. It is obvious that with higher
concentrations the maximum absorption shifts towards longer

wavelengths and that for all three acids the absorption maxi-
mum is at 230 nm, which makes it very difficult to distinguish
between different organic acids. This indicates that organic

acid concentrations cannot be measured separately but as a
composite parameter, which makes UV/vis spectroscopy well
suited for organic acid measurement on biogas plants.
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Figure 1 Collapse of biogas production because of rising organic acid concentration at an industrial biogas plant.
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A very popular method often used to deduce chemi-
cal parameters from UV/vis measurements is PLS

(Langergraber et al., 2003). However, an initial investigation
of PLS for this problem yielded very poor results with error
rates of about 50%. This led us to consider advanced pattern
recognition methods in preference to more traditional linear

regression tools.

2.2.1 Online-measurement apparatus. Because of the fact
that total solids (TS) concentration in the digester is up to
20%, a direct measurement of the absorption of the substrate

at different wavelengths is not feasible, as the 1-mm gap width
of the UV/vis probe (S::CAN spectro::lyser) is easily soiled.
For this reason, it is necessary to build up a special dilution

system for the fermentation sludge. In this case, water from
fermentation sludge dewatering is used for online
measurements, as organic acids are mainly present in the
liquid phase of the sludge.

Laboratory tests have shown that the optimal ratio between
water and sample is 1:80 to obtain a clear spectrum. To reach
this dilution degree for an accurate measurement with the

S::CAN spectro::lyser probe, the dilution unit is filled with 4 l
of water every 30min (batch process). A flexible-tube pump is
used to administer a defined amount of the fermentation press

water (50ml). Figure 3 shows the layout of the measurement
and dilution system.

3. Machine learning techniques

3.1 Linear discriminant analysis (LDA)

LDA searches for a linear transformation A 2 Rm�p,
m � p, such that the transformed data
Y ¼ A� X, Y :¼ y1, . . . yNT

� �
2 Rm�NT , can be linearly sepa-

rated better than the original feature vectors

X :¼ x1, . . . xNT

� �
. The linear transformation A is determined

by solving an optimization problem that corresponds to

maximizing the well-known Fisher discriminant criterion:

trace S�1T � SB

� �
ð1Þ

where ST and SB are the total scatter-matrix and between-
class scatter-matrix, respectively as defined in Duda et al.
(2001).

The LDA and a subsequent linear classifier are both imple-
mented in MATLAB� (Moore, 2009). An LDA transforma-
tion into a feature space of m ¼ C� 1 ¼ 4 dimensions yields

the best subsequent linear classification results.

3.2 Generalized discriminant analysis (GerDA)

LDA is a popular pre-processing and visualization tool used
in different pattern recognition applications. Unfortunately,
LDA and subsequent linear classification procedures produce

high error rates on many real world datasets, because a linear
mapping cannot transform arbitrarily distributed features
into independently Gaussian distributed ones. A natural

generalization of the classical LDA is still to rely on having
intrinsic features h ¼ f ðxÞ with the same statistical properties
as assumed for LDA features. Unlike LDA a function space F

of non-linear transformations f ¼ Rp ! Rm is used. The idea
is that a sufficiently large space F potentially contains a non-
linear feature extractor f� 2 F that can increase the discrim-
inant criterion (1) compared with what can be achieved with

the optimum linear extractor A.
GerDA defines a large space F using the topology of a

deep neural network (DNN), and consequently the non-

linear feature extractor f� 2 F is given by the DNN, which
is trained with measurements of the data space such that the
objective function (1) is maximized. Unfortunately, training a

DNN with standard methods, like back-propagation, is
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Figure 2 Laboratory measurements of different acids and concentrations using an S::CAN UV/vis probe.
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known to be challenging because of many local optima in the
objective function considered. Therefore, randomly initializ-
ing the network parameters and restarting until thrown near

to a good solution is ineffective for optimizing DNNs.
To train a large DNN efficiently with respect to (1),

Stuhlsatz et al. (2010a, 2010b) have developed a stochastic

pre-optimization based on greedily layer-wise trained
restricted Boltzmann machines (RBM) (Hinton et al., 2006).
In order to appropriately initialize a full GerDA-DNN, a
stack of trained RBMs is used (Figure 4). Each RBM is

trained with the inputs clamped to the output states of its
predecessor RBM via minimizing the difference of two
Kullback–Leibler distances, d,

CDn �ð Þ :¼ d P0 P1;,k
� �

� d Pn P1;,kð Þ ð2Þ

with respect to the network parameters ,.

The RBM’s states are assumed to be Boltzmann distrib-
uted according to the distributions P 0, P n and P1.
Minimizing (2) can be performed using a very efficient train-

ing method for RBMs called contrastive divergence (CD)
(Hinton, 2002). In (Stuhlsatz et al., 2010a), the CD heuristic
is adapted for learning input–output associations by an

output RBM (Figure 5). Training of all RBMs in a stack is
unsupervised, with the exception of the output RBM, which
requires supervised training through minimization of the
mean squared error (MSE) between specific target codes

#i 2 � :¼ t1, . . . , tCf g, tj :¼ tj,1, . . . tj,C
� �T

2 RC, and the
RBM’s predictions voutðxiÞ 2 R

C. Minimizing the MSE with
respect to the coding

tj,k :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NT=Nk

p
if j ¼ k

0 otherwise
j, k ¼ 1, . . . , C

�
ð3Þ

(a) (b)

(c) (d)

(e) (f)

Figure 3 (a) UV/vis-probe with 1 mm gap width; (b) complete layout of the measurement system; (c) online-measurement in progress; (d) control

cabinet for the measurement system; (e) flexible-tube pump for exact dosing of the fermentation sludge; (f) collection container for the press water of

the fermentation sludge.
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where Nk is the number of examples of class k, can be shown

to asymptotically maximize the discriminant criterion (1) at
the hidden units h 2 Rm (Osman and Fahmy, 1994). A layer-
wise training, with all weights W and biases b up to the last
hidden layer h, i.e. the output layer of the output RBM is

discarded, is used to initialize a GerDA-DNN. Nevertheless,
pre-optimization is suboptimal in maximizing (1), thus a sub-
sequent fine-tuning of the GerDA-DNN is performed using a

modified back-propagation of the gradients of (1) with
respect to the network parameters. In Stuhlsatz et al.
(2010a, 2010b), it is shown that stochastic pre-optimization

and subsequent fine-tuning yields very good discriminative

features and training time is substantially reduced compared
with random initialization of large GerDA-DNNs.

For the extraction of intrinsic features from the raw

measurements, we used GerDA with a p–250–50–25–m
topology, i.e. a five-layer DNN consisting of one input
layer with p units, three hidden layers with 250, 50 and
25 units respectively, and one output layer with m units

resulting in more than 265 million free parameters. To
avoid the effect of over-fitting of the training data, we ter-
minated the fine-tuning after the pre-training stage using an

early-stopping criterion dependent on the training error.
The topology of GerDA as well as the early-stopping cri-
terion was evaluated on the training data via fivefold cross-

validation. Additionally, the best intrinsic dimensionality
m 	 C� 1 was cross-validated too. The GerDA-framework
is implemented in MATLAB�.

The results presented in Section 4.2 were obtained by using
a DNN with the topology p–250–50–25–m, with p¼ 176 and
m¼ 4. A topology with m¼ 5 was also examined, but classi-
fication performance obtained was slightly inferior.

3.3 Random forest (RF)

RF is an efficient algorithm for solving complex classification
and regression problems, introduced by Breiman (2001). The
RF-algorithm used here is the R-based random forest pack-

age for classification and regression presented by Liaw and
Wiener in 2002. R is a free software environment for statisti-
cal computing and graphics R (R Development Core Team,
2010).

The algorithm is an ensemble of unpruned decision trees.
Hence, the classification consists of an ensemble of classifi-
cation trees, where each tree is trained on a bootstrapped

sample of the original training data set (also called in-Bag),
and at each new branch the candidate set of variables is a
random subset of all variables. For the investigation in this

paper, the number of input variables was set to 30 and the
number of trees in the forest set to 800.

One third of the training data set is not present in the in-

Bag. This left over data is known as out-of-bag (oob) data
and is used to obtain a running unbiased estimate of the
classification error, as trees are added to the forest as well
as to obtain estimates of variable importance. The average

misclassification over all trees is known as the oob-error
estimate. In this case, the algorithm estimates the importance
of all variables by looking at how much the oob-error

increases for one variable, while all other variables are not
considered. This important information can be used to
minimize the number of variables in the dataset in order to

minimize computation time and costs. The output of the
classifier is determined by a majority vote of the trees.

3.4 Neural networks (MLP)

The MLP is a feedforward artificial neural network, which
consists of multiple layers of neurons that are fully connected

from one layer to the next. Being an advancement of the
standard linear perceptron, MLPs can distinguish data that
is not linearly separable, which makes them perfectly suited

for learning highly complex and non-linear mappings

bh2
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RBM2

RBM1
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Figure 4 A simple stack of two restricted Boltzmann machines.
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Figure 5 An input–output associative restricted Boltzmann machine.
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(Cybenko, 1989). Furthermore, MLPs have several desirable
properties like universal function approximation capabilities,
good generalization properties and the availability of robust

efficient training algorithms (Haykin, 1999). For the classifi-
cation problem at hand, a single hidden-layer MLP is used to
map the non-linear relationship between the intrinsic GerDA
features h�i :¼ f�ðxiÞ and the corresponding class labels

#i,i ¼ 1, . . . , NT. Applying PLS and FSR on the original
data set, two further feature sets are generated, which are
also mapped to the class labels by a second and third MLP.

This feature extraction significantly accelerates MLP design
optimization. MLP training is performed using a BFGS train-
ing algorithm with stopped minimization used to prevent

over-fitting (McLoone et al., 1998). The optimum number
of neurons in the hidden layer and the optimum number of
input features were determined for each model by cross-

validation on the test data set. For PLS, the optimal MLP
design was p¼ 30, nh ¼ 40 and for FSR p¼ 25, nh ¼ 60. Here
p is the number of input features and nh is the number of
neurons in the hidden layer.

3.5 Support vector machines (SVM)

SVM offer a computationally efficient method for multi-class
classification problems by finding hyperplanes, which sepa-
rate data sets into classes in a high dimensional feature

space. For the classification problem under consideration, a
C-support vector classification is used with soft margin
optimization and a radial basis function kernel (RBF
kernel) (Cortes and Vapnik, 1995) using the SVM implemen-

tation LIBSVM (Chang and Lin, 2001).
For classification of the spectral data set, a Gaussian RBF

kernel is used, because of several advantages. The RBF kernel

is perfectly suited for a non-linear relation between class
labels and attributes, and the linear kernel is a special case
of the RBF kernel, as proved by Keerthi and Lin (2003).

Furthermore, the number of parameters that have to be
optimized is limited to two parameters c and �, which
makes model selection easier and faster, when compared

with polynomial kernels. c is a trade-off parameter between
margin and error, and � is a standard parameter of the
Gaussian RBF kernel. A grid search is performed to deter-
mine the best parameters c and � for the RBF kernel function

according to the training data using the misclassification rate
(MCR) defined in Equation (4). Training is performed with a
fivefold cross-validation procedure (one against one), and

different pairs of c and � values are tested. Finally, the one
that yields the best cross-validation accuracy is picked. As
suggested by Hsu et al. (2003), in a first pass, exponentially

growing sequences of c and � are evaluated to identify inter-
esting regions for a detailed grid search.

3.6 Relevance vector machine (RVM)

The RVM is a Bayesian formulation of the classification
problem with priors selected to encourage sparse representa-

tions. They are structurally similar to SVMs and have been
shown to provide comparable performance while offering a
number of additional benefits. RVM predictions are probabil-

istic, facilitating the estimation of the uncertainty in

predictions, and typically the number of relevance vectors
can be reduced significantly compared with SVMs, leading
to more robust and computationally more efficient predic-

tions. The RVM was introduced by Tipping (2000, 2001) as
part of a general sparse Bayesian learning framework in
which sparsity is achieved by assigning parameterized priors
to the model weights that encourage sparsity. As a result,

predictions for new data are made by estimating the marginal
likelihood over the parameters of the priors (referred to as
hyperparameters). For the classification at hand, the RVM is

used with a Gaussian RBF kernel so that it is directly com-
parable with the SVM implementation employed. The tool-
box used for RVM classification is Version 2 of the sparse

Bayesian modelling toolbox developed by Tipping (2009).
Because of the fact that RVM training for data sets of high
dimensionality has proven to be very slow, RVMs are applied

on the intrinsic 4D-GerDA features and the reduced 30D-RF
features (Silva and Ribeiro, 2010) only. As the toolbox only
supports two-class RVMs, a separate RVM is trained and
optimized for each class using a one-versus-all methodology

and the overall prediction is determined by selecting the RVM
with the highest class probability. The width parameter of the
RBF kernels, �, used with each RVM is determined by cross-

validation on the test data set. The optimization is performed
using particle swarm optimization (Clerc, 2006) for � in the
range 1� 10�5 to 1� 10�1.

4. Results and analysis

4.1 Performance measures

To validate and compare the classification performances of
different methods, the mean misclassification rate (MCR) in

per cent can be used,

MCR :¼ 100 � 1�
1

NV
�
XNV

i¼1

1ðxiÞ

 !
,

1ðxiÞ :¼
1 if fclassifierðxiÞ ¼ #i

0 otherwise

� ð4Þ

where fclassifier : X! � is the mapping function. Since in our
experiments the number of samples per class is not uniformly

distributed, the large classes, such as classes 2 and 3, may
dominate the mean MCR too optimistically.

Because our goal is to identify each class with equal

certainty, performance measure (4) is not a good choice.
Given the confusion matrix K :¼ kj,l

� �
2 RC�C, withPC

l¼1 kj,l ¼ 100, j ¼ 1, . . . , C, for each classifier, an alterna-

tive measure of performance, called the normalized MCR
(NMCR), which gives equal weighting to each class, is
given by:

NMCR :¼ 100�
1

C
�
XC
j¼1

kj, j ð5Þ

We decided to use the latter measure for validation, because it
is an unweighted measure of performance independent of the

number of samples N#.
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4.2 Comparison of classification results

In order to compare the machine learning methods intro-
duced in this paper, confusion matrices and MCR and
NMCR performance measures were computed for the test
data set. These are presented in Tables 2 and 4, respectively.

The NMCR results show that some machine learning
methods substantially outperform others for this classifica-
tion problem. Significantly, some of the methods that under-

perform are competitive in terms of their MCR, suggesting
that the highly unbalanced data set may be a contributing
factor. It is clear that GerDA and RF are both capable of

achieving very high accuracy for all classes despite the heavily
unbalanced data set. In particular, the combination of the
GerDA features and RF classification is very effective and

yields one of the best classification results with an NMCR
of 12.1%. In contrast, the MLP, SVM and RVM classifiers
have serious problems classifying class 5 correctly because of
the small number of samples in this class, whereas their

recognition of the remaining classes is even better than
obtained with GerDA and RF. The MLP results on both
the weighted and unweighted PLS features were comparable

but slightly inferior to the MLP results on the FSR features,
hence only the MLP-FSR results are included as representa-
tive of both feature sets in Tables 2, 3 and 4.

It can be concluded that distinguishing between classes 4
and 5 seems to be very challenging and is made even more
difficult because of the uneven distribution of training exam-
ples. One approach to correct for the unbalanced data set is to

apply a weighting to class 5 during the training process. In the
case of the SVM implementation, LIBSVM, this weighting
can be introduced directly as a parameter in the optimization

process. For the MLP and RVM, the weighting can be
achieved by replicating the samples in class 5 and adding
them to the dataset. Using this approach, the SVM, MLP

and RVM classifiers were retrained with a 10-fold weighting

Table 2 Confusion matrices for different feature extraction and

classification methods applied to the UV/vis spectrum data set

Given

Predicted

[%] 1 2 3 4 5

(a) LDA

1 68.4 14.0 8.8 8.8 0.0

2 7.1 64.9 20.2 6.0 1.8

3 1.9 17.0 71.1 8.7 1.3

4 1.6 17.0 30.8 42.3 8.2

5 0.0 5.6 5.6 5.6 83.3

(b) GerDA

1 98.3 0.0 0.0 0.0 1.8

2 3.1 91.6 4.2 0.8 0.3

3 0.0 4.5 88.7 4.0 2.8

4 1.1 3.3 12.1 68.7 14.8

5 0.0 0.0 11.1 0.0 88.9

(c) RF

1 82.1 10.7 3.6 3.6 0.0

2 3.4 87.4 6.0 2.4 0.8

3 0.0 7.0 82.1 8.9 1.9

4 1.1 4.4 12.6 75.8 6.0

5 0.0 5.6 0.0 5.6 88.9

(d) RF (GerDA features)

1 91.1 7.1 0.0 0.0 1.8

2 2.4 91.9 4.5 1.0 0.3

3 0.0 4.5 89.1 4.0 2.3

4 1.1 3.8 8.8 73.1 13.2

5 0.0 0.0 5.6 0.0 94.4

(e) MLP (FSR features)

1 86.0 12.3 1.7 0.0 0.0

2 5.0 90.6 4.4 0.0 0.0

3 0.0 7.4 89.8 2.8 0.0

4 0.0 0.0 39.6 58.8 1.6

5 0.0 0.0 11.1 66.7 22.2

(f) MLP (GerDA features)

1 86 12.3 0.0 1.7 0.0

2 2.6 91.4 5.7 0.3 0.0

3 0.0 3.8 92.1 4.1 0.0

4 0.0 3.3 19.8 76.9 0.0

5 0.0 0.0 16.7 83.3 0.0

(g) SVM (RF features)

1 94.6 3.6 0.0 1.8 0.0

2 3.1 90.6 6.0 0.3 0.0

3 0.0 8.7 88.8 1.5 1.0

4 3.3 4.9 13.3 76.9 1.6

5 0.0 5.6 16.7 38.8 38.9

(h) SVM

1 93 5.3 1.7 0.0 0.0

2 2.0 92.4 5 0.6 1.8

3 0.2 6.0 89.4 3.6 0.8

4 2.7 4.4 6.0 85.2 1.7

5 0.0 5.5 16.7 33.3 44.5

(i) RVM (RVM, GerDA features)

1 84.2 12.3 0.0 3.5 0

2 2.1 92.9 3.5 1 0.5

3 0.0 3.8 90.6 3.7 1.9

4 1.1 2.2 9.9 83.0 3.8

(continued)

Table 2 Continued

Given

Predicted

[%] 1 2 3 4 5

5 5.6 0.0 11.1 33.3 50.0

(j) RVM (RVM, RF features)

1 89.3 5.3 3.6 1.8 0

2 3.4 88.5 5.7 2.4 0

3 0.6 5.8 87.9 5.1 0.6

4 1.6 3.3 22.0 71.5 1.6

5 0.0 5.6 11.1 50.0 33.3

(a) LDA used as a feature extractor to get a 4D feature space followed by linear

classification; (b) GerDA used as feature extractor to get a 4D feature space fol-

lowed by linear classification; (c) RF used for feature selection and classification on a

30D feature space; (d) RF used for classification of the 4D GerDA features; (e) MLP

used for classification on the 30D FSR features; (f) MLP used for classification on the

4D GerDA features; (g) SVM used for classification on the 30D RF features; (h) SVM

used for direct classification on the raw dataset, (i) RVM used for classification on the

4D GerDA features and (j) RVM used for classification on the 30D RF features. LDA,

linear discriminant analysis; GerDA, generalized discriminant analysis; RF, random

forest; FSR, forward selection regression; MLP, multilayer perceptron; SVM, support

vector machine; RVM, relevance vector machine.
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applied to class 5. The resulting confusion matrices are given
in Table 3 and the corresponding MCR and NCMR values
are recorded in Table 4. As can be seen, the NMCR perfor-

mances of SVM, MLP and RVM classifiers have improved
significantly. The weighted SVM results yield the best overall
performance for the NMCR (12.0%). A comparison of the

weighted SVM and weighted RVM results on the 4D GerDA

data set shows that both methods provide very good and

comparable results, with only 0.8% difference in the MCR
and 0.2% in the NMCR. However, the number of support
vectors used is significantly lower for the RVM, which uses 60
support vectors instead of 398 for the SVM.

5. Discussion and conclusion

This paper demonstrates a new approach for online estima-
tion of organic acid concentrations using UV/vis spectro-
metric measurements, which offers new possibilities for

advanced plant operation and control. The close monitoring
of anaerobic digestion processes and the development of
control strategies for optimal organic acid concentrations

will substantially increase process efficiency and stability.
However, results show that this online measurement is far
from trivial, such that advanced pattern recognition methods
are needed to achieve good results. A comparison of the

different feature extraction, selection and classification
methods shows that the unbalanced data set available for
training is a major problem, when it comes to achieving low

NMCR results with some classifiers. However, application of
appropriate class weightings during the training process can
effectively counter the effect of the very small set of samples

available for class 5.
The optimum results were obtained using SVM and a

novel method named GerDA in combination with RF classi-
fication, both of which yielded an NMCR of 12%. This is

sufficiently accurate to be of value for the online measurement
of organic acids.

The relatively poor MLP results suggest that the complex-

ity of the classification space cannot be captured adequately
with a single hidden-layer network. Further tests with multi-
hidden-layer network designs may lead to better results and is

the subject of future work.

Table 3 Confusion matrices for different feature extraction

and classification methods with weighting introduced to class 5

during training to compensate for the uneven distribution

of samples in the training data

Given
Predicted

[%] 1 2 3 4 5

(a) W-MLP (FSR features)

1 64.9 31.6 1.8 1.7 0.0

2 4.7 89.8 5.2 0.3 0.0

3 0.2 11.0 84.3 3.4 1.1

4 0.0 1.7 51.1 41.2 6.0

5 0.0 0.0 0.0 33.3 66.7

(b) W-MLP (GerDA features)

1 87.7 10.5 0 1.8 0.0

2 1.8 91.6 6.3 0.3 0.0

3 0.0 3.4 90.9 4.7 1.0

4 0.0 2.7 22 65.9 9.4

5 0.0 0.0 0.0 22.2 77.8

(c) W-SVM (weighted SVM, RF features)

1 94.6 3.6 0.0 0.0 1.8

2 3.4 89.8 6 0.5 0.3

3 0.0 8.1 86.0 4 1.9

4 2.7 4.4 9.9 72.5 10.4

5 0.0 0.0 0.0 5.6 94.4

(d) W-SVM (weighted SVM)

1 94.7 3.5 1.8 0.0 0.0

2 2.4 91.4 5.2 1 0.0

3 0.0 6.2 89.1 3.2 1.5

4 2.2 3.3 9.9 75.8 8.8

5 0.0 5.5 0.0 5.6 88.9

(e) W-SVM (weighted SVM, GerDA features)

1 86.0 10.5 0.0 1.8 1.7

2 2.3 92.9 3.7 0.8 0.3

3 0.0 4.5 90.6 3.0 1.9

4 1.6 2.7 11.6 72.0 12.1

5 0.0 0.0 0.0 5.6 94.4

(f) W-RVM (weighted RVM, GerDA features)

1 82.5 12.3 0.0 3.5 1.7

2 2.9 92.7 3.1 1 0.3

3 0.6 4.3 89.6 3.6 1.9

4 1.6 2.7 9.9 75.8 9.9

5 5.6 0.0 0.0 0.0 94.4

(a) MLP classification of the 30D FSR features using a weighted training set; (b) MLP

classification of the 4D GerDA features using a weighted training set; (c) SVM

classification on the 30D RF features using a weighted SVM optimization; (d) SVM

classification from the raw dataset using a weighted SVM optimization; (e) SVM

classification on the 4D GerDA features using a weighted training set; and (f)

RVM classification on the 4D GerDA features using a weighted training set. W-

MLP, weighted multilayer perceptron; FSR, forward selection regression; GerDA,

generalized discriminant analysis; RF, random forest; SVM, support vector machine;

RVM, relevance vector machine.

Table 4 Overall results with normalized misclassification rate (NMCR)

and misclassification rate (MCR)

Feature extractor Classifier NMCR [%] MCR [%]

LDA Linear 34.0 35.7

GerDA Linear 12.8 13.1

RF RF 16.7 17.0

GerDA RF 12.1 12.4

none SVM 19.1 10.8

RF SVM 19.1 10.8

RF RVM 25.9 15.4

GerDA RVM 19.8 10.8

FSR MLP 30.5 16.3

GerDA MLP 30.7 12.4

None W-SVM 12.0 12.0

RF W-SVM 12.5 14.3

GerDA W-SVM 12.8 11.8

GerDA W-RVM 13.0 11.0

GerDA W-MLP 17.2 13.3

FSR W-MLP 30.6 22.1

LDA, linear discriminant analysis; GerDA, generalized discriminant analysis; RF,

random forest; FSR, forward selection regression; SVM, support vector machine;

RVM, relevance vector machine; MLP, multilayer perceptron.
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Of the methods considered, the combination of RF and
GerDA yields the best error rate for the unweighted data set
(12.1%) and furthermore has many desirable properties. The

GerDA-framework is self-contained and easy to use with
learning performed in a partly unsupervised and partly super-
vised manner. It can be used as a pre-processing dimension
reduction step for different classification methods.

Furthermore, the extracted features are very low-dimensional
and particularly suitable for simple linear classification
(Stuhlsatz, 2010a) and data visualization. Consequently,

classification can be performed very quickly and the method
is naturally applicable to multi-class problems. Regarding the
weighted data set, SVM achieves the best overall results with

an NMCR of 12% without requiring any feature selection or
extraction methods. The comparison of the weighted SVM
and weighted RVM on the GerDA features reveals that

both methods perform equally well on the test data set, but
that RVMs are more robust and provide more efficient
predictive performance because of the significantly lower
number of support vectors. This makes RVM well suited

for applications where fast classification is the highest prior-
ity. As the measurement of organic acids in anaerobic diges-
tion processes is not time-critical, classification time is not an

issue for this application.
As already noted, the non-uniform distribution of class

sizes biases the training of the pattern recognition methods

in favour of the larger class sizes. To detect this effect, it is
important to use an unbiased performance measure such as
the NMCR for validation and also for the determination and
optimization of classifier hyperparameters.

To address the problems posed by having a biased dataset,
in future work, sampling with replacement methods will be
considered for the generation of balanced datasets for train-

ing. Future work will also look at introducing additional
meta-classes, which are constructed by the unification of dif-
ferent classes. Since the organic acid concentration is a con-

tinuous quantity, this may facilitate more effective time series
analysis.
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