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Abstract — The body contains a bewildering array of regulatory systems which maintain
homeostasis. There is considerable difficulty in isolating a single control loop for analysis,
due to the interactions with other systems/loops. One important such regulatory loop is
the baroreflex, and baroreflex sensitivity is a characteristic open-loop parameter which
can help us to assess the health of the baroreflex. A diverse range of methods have been
proposed to determine baroreflex sensitivity from experimental data. Unfortunately,
there appears to be little consistency of result among the different methods and some
explanation can be found in the nature of the problem: In most cases, an attempt is being
made to determine open-loop measures from a system operating in closed-loop, subject
to poor excitation. In this paper we propose a strict procedure, based on a rigourous
mathematical framework, from which reliable estimates of baroreflex sensitivity can be
obtained. A comparison with other methods for baroreflex sensitivity estimation, using
the EuroBaVar data set, is performed.
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I Introduction

The arterial baroreflex is a negative feedback con-
trol system, which detects changes in blood pres-
sure and attempts to minimise blood pressure fluc-
tuations, via the heart (stroke volume and heart
rate) and the peripheral resistance. The barore-
flex operates in conjunction with a variety of other
blood pressure regulation mechanisms, such as the
hormonal system and local mechanisms, operating
on a variety of timescales. Fig. 1 shows a dia-
gram of the operation of the baroreflex. For the
purposes of this study, all blood pressure regula-
tory mechanisms apart from the baroreflex will be
represented by the disturbance term, ns, in Fig.1.

Baroreflex sensitivity (BRS) is broadly defined
as the sensitivity of a change in R-R interval (de-
noted RR) to a change in arterial pressure (usually
systolic arterial pressure (SAP)). BRS has consid-
erable potential as a diagnostic tool, as baroreflex
impairment has been associated with a number
of conditions such as hypertension, myocardial in-
farction and heart failure [1, 2].

A large number of different methods for estimat-
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Fig. 1: Closed loop control of blood pressure via the
baroreflex

ing BRS have been developed, however a ‘gold-
standard’ technique has not been identified, and as
a consequence a difficulty arises in defining what
BRS values can be considered normal. Due to the
lack of a ‘gold standard’ technique, it can be prob-
lematic to evaluate the quality of the existing BRS
estimation methods, which have been summarised
in section II.

This study develops a rigourous, system iden-
tification (SID) approach to estimating baroreflex
sensitivity, using the EuroBaVar data set [1]. The
data set comprises spontaneous recordings of RR



interval and blood pressure measurements for 21
subjects in both standing and supine positions. Of
the 21 subjects, one subject was a diabetic patient
with evident cardiac autonomic neuropathy, and
one subject was a patient who recently underwent
heart transplantation. Both of these exceptional
patients were considered to have effective barore-
flex failure and should provide a good test for any
BRS estimation technique.

II Approaches to BRS determination

Mathematical approaches to BRS estimation from
experimental data fall broadly into (a) time do-
main and (b) frequency domain methods. In both
cases, a variety of experimental protocols are used,
including both situations where external excitation
(bolus injection of vasoactive substances, Valsalva
manoeuvre, etc) was imposed and situations with-
out any external stimulus. All methods use closed-
loop data and assume a linear relationship between
SAP and RR.

a) Time-domain methods

In some time domain methods, referred to as
sequence methods, RR and (usually) SAP are
recorded and are pre-processed into ‘sequences’ of
concurrently increasing (or decreasing) transitions
in SAP and RR [3, 4, 5]. Generally, linear re-
gression is applied to contiguous sequences and a
BRS estimate is obtained by averaging the slopes
of all valid sequences. Insufficient correlation be-
tween the input and output points in a sequence,
low number of points in a sequence, or insufficient
number of sequences can all be a major problem,
especially in patients with cardiac disease [6].

A number of studies use an external stimulus
to provide some excitation of the baroreflex loop,
such as injection of vasoactive drugs, neck suction
[7] or Valsalva manoeuvre [6]. A simple linear re-
gression (using all of the data, without selection
into sequences) is then used to estimate BRS. A
major issue with such stimulations is that other
blood pressure control systems are also perturbed
and so it is difficult to isolate the effect of the
barorelex

Some researchers utilise more complex linear
time series models other than a simple regression
gain [8, 9, 10].

A nonlinear Volterra-Wiener model has also
been used [11], however it is questionable [9]
whether the added complexity of a non-linearity
is justifiable, considering that subjects in the ex-
perimental data are at rest. Under such condi-
tions, small signal variation requirements for local
linearisation are usually met.

A Z-coefficient statistical method has also been
proposed [12], but the method needs long recording
periods to reliably estimate the required probabil-

ity functions.
Baselli et al [13] use a closed-loop model to repre-

sent the relationship between RR, SAP and respi-
ration (RESP ), while in another approach which
respects the closed-loop nature of the baroreflex,
bivariate autoregressive modelling has been em-
ployed to calculate the transfer functions between
the signals on the feed-forward and feed-back side
of the loop simultaneously [14]. A number of re-
searchers [15, 16, 17] take this approach to evaluate
model components in the time domain and subse-
quently calculate the frequency response of these
components.

b) Frequency-domain methods

Two main frequency bands considered for barore-
flex operation are the low-frequency (LF) band
of 0.04-0.15Hz, associated with sympathetic and
parasympathetic activity and the high-frequency
(HF) band of 0.15-0.4Hz, associated with vagal
parasympathetic activity related mainly to respi-
ration [18].

A transfer function (TF) method for BRS esti-
mation [19] involves the calculation of the magni-
tude of the TF between SAP and RR in the LF
and HF bands, using spectral techniques. Usually
only sections of the TF with high coherence values
between input and output are taken into account
for the BRS estimation. The frequency-dependent
gain quantity, α(f), defined in Eqn. (1), has also
been used [20] as an estimate of BRS:

α(f) =

√
GR(f)

GS(f)
(1)

where GR(f) and GS(f) are the spectral densities
of RR and SAP respectively.

III SID Framework for BRS estimation

In attempting to estimate BRS, the characteristics
of the system and the experimental protocols need
to be examined, with respect to the identification
problem.

• In the EuroBaVar data set [1], used in this
study, spontaneous data is collected with no
external excitation, which leads to SAP and
RR having relatively small variations around
their equilibrium values. Hence, a choice of a
linear mathematical model would be reason-
able.

• There may be relatively poor excitation of the
baroreflex due to the lack of external stimu-
lus. This may affect the identifiability of the
system.

• The data available is on a ‘per beat’ basis i.e.
a measurement of SAP and RR is provided



after each RR-interval, so the data is on a
non-uniform time base. This has important
implications for any frequency-domain calcu-
lations.

• Data was recorded with the baroreflex intact,
implying that data is collected under closed-
loop conditions. In addition, none of the ex-
ternal inputs shown in Fig. 1(ns and nr) can
be measured and there is no SAP setpoint, or
desired value.

Ljung [21] identifies a framework within which
a SID problem can be placed from a mathematical
perspective, given the conditions, under which the
data were recorded, and the nature of the data
itself.

a) Families of mathematical models

Though more complex models are available [21],
the most general mathematical model that we will
employ is an ARMAX model (autoregressive mov-
ing average with extogenous input) given by Eq.
(2):

y(k) =
B1(q)

A(q)
u1(k − nd1) + . . .

+
Bm(q)

A(q)
um(k − ndm) +

C(q)

A(q)
e(k)

(2)

where Bi(q), A(q) and C(q) are polynomials of or-
der nbi, na and nc respectively in the delay op-
erator q, and ndi (where τndi = ndi ∆T ) is the
number of pure steps delay between each of the
inputs and the output. The system is, in general,
a multi-input, single-output (MISO) system.

b) Persistence of excitation

Here, we identify the conditions on the input sig-
nal, u(k), which allow the parameters of a mathe-
matical model to be uniquely determined. In gen-
eral, if the spectrum, Φu(ω), of u(k) is different
from zero at at least n points, a model of order n
can be uniquely identified. A convenient mathe-
matical formulation, involving the covariance ma-
trix, R̄, of u(k) can be made, via:

R̄ =

 Ru(0) Ru(1) . . . Ru(n − 1)
Ru(1) Ru(0) . . . Ru(n − 2)

.

.

.
.
.
.

. . .
.
.
.

Ru(n − 1) Ru(n − 2) . . . Ru(0)

 (3)

where:

Ru(τ) = E[u(k)u(k − τ)] (4)

is defined as the covariance of u(k), τ is an integer,
while E[ ] is the expectation (averaging) operator.
If R̄ is non-singular, then u(k) is persistently ex-
citing of order n and a model of order n can be
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Fig. 2: Closed-loop system

uniquely identified. If R̄ is singular, the number of
non-zero singular values (i.e. the rank of R̄) deter-
mines the order of the model that can be identified.

c) Identification in closed-loop

An overview of the SID framework is presented in
reference to the regulatory loop of Fig.2, where
r is a reference (setpoint) input, y is the system
output, d is an unmeasurable disturbance and ξ is
measurement noise.

In general, a number of basic conditions need to
be met before identification of a system in closed
loop may be attempted:

• There needs to be a delay in either the forward
path G(s) or the feedback path F (s).

• The closed-loop system needs to be stable

• The model set proposed for identification
needs to contain the true system

Three broad classes of methods for identification
of dynamical systems in closed loop are available:
the direct, indirect and joint input-output meth-
ods. In the direct method, used here, a prediction
error method (PEM) (see Section d)) is applied
directly as if no feedback exists. The signals used
are the input u(t) and output y(t), while the ref-
erence signal r(t) is ignored, even if it is known.
The system is treated similarly to an open-loop
system. ARX (autoregressive with exogenous in-
put) and ARMAX models are well suited to this
method, but good knowledge of the noise dynamics
is necessary.

d) Model parameter determination

Given a suitable model structure, an algorithm
must be employed to determine the parameters of
the polynomials A(q), B(q) and C(q). Following
the requirements for identification in closed loop
the ARMAX model is formulated in prediction
form as:

ŷ(k|Θ) =
B(q)

C(q)
u(k) +

[
1− A(q)

C(q)

]
y(k) (5)

where the hat (̂ ) denotes an estimate and the de-
pendence on the parameterisation defined by na,



nb, nc and nd is made explicit, with:

Θ =
[
a1 . . . ana b0 . . . bnb c0 . . . cnc

]
(6)

We can now define the prediction error, ε(k), as:

ε(k,Θ) = y(k)− ŷ(k|Θ) (7)

A recursive optimisation algorithm is now em-
ployed to minimise the performance function:

J(Θ) =
1

N

N∑
k=1

ε(k,Θ)2 (8)

over N available input/output pairs. A variety
of iterative estimation algorithms may be used to
determine the optimal parameter set [22].

IV Results

a) Data preprocessing

The RR and SAP data are interpolated onto a
regular time axis, using a fixed sampling interval
of T = 2/3 secs., which is close to the average RR
interval. In addition, in order to focus the identifi-
cation process on the frequency bands of interest,
the data is filtered using a 7th order Butterworth
bandpass filter. The data is filtered both forwards
and backwards, in order to achieve zero phase dis-
tortion, giving an effective filter order of 14.

b) Model order and parameter determination

We will adopt an ARMAX model structure to
specify the relationship between SAP and RR in-
terval. The model is single input, single output,
with a coloured noise term specified by e(k) and
the C polynomial.

Following the specification in Section b), the
persistence of excitation is estimated up to a po-
tential order of 50 by evaluating the singular values
of a 50x50 covariance matrix. In general, the in-
dication is that models of order 10 and marginally
greater (up to 12) can be identified with the level
of excitation in the SAP signal. By way of exam-
ple, the singular values of the covariance matrix
for Subject 5 in a supine position are shown in
Fig.3. Clearly, the singular values up to order 15
are significantly above the base value.

Given the diversity of the subjects used in the
collection of the EuroBaVar data, we have chosen
to use the optimal model structure for each sub-
ject. In order to identify a model, which is not ex-
cessively complex, we choose a performance func-
tion which has a complexity-weighting term, viz.
Akaikie’s Information theoretic Criterion (AIC). In
general, model orders of 6 or lower were sufficient
to represent the individual data sets.
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Fig. 3: Persistence of excitation in SAP for Subject 5 in
the supine position
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Fig. 4: Plot of actual and modelled data for Subject 5 in
the supine position

As outlined in Section d), the ARMAX model
parameters were determined using a prediction er-
ror method.

Figure 4 shows a comparison between the model
output and the experimental data for Subject 5 in
the supine position.

c) Evaluation of baroreflex sensitivity

Given that we have a time domain model for
each subject, this can now be used to determine
the magnitude of the frequency response across
the frequency range from 0.04-0.4 Hz, containing
the LF and HF baroreflex bands. We determine
the magnitude response of the model from input
(u(k) = SAP (k)) to output (y(k) = RR(k)) in
Eq. (2) via Eq. (9):

|Gyu(f)| =
∣∣[B(q)/A(q)]q=e2πjfT

∣∣ (9)

where f is frequency in Hertz and T the sampling
period of the data of 2/3 secs.

Fig.5 shows the magnitude of the frequency re-
sponse for Subject 5 in the supine position. As
shown in Fig.5, the baroreflex sensitivity can be
calculated at the low (BRSLF ) and high (BRSHF )
frequency ranges by evaluating a weighted average
over each range. A non-uniform Gaussian weight-
ing function is used to determine a weighted aver-
age for the following reasons:
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Fig. 5: Baroreflex gain for Subject 5 in the supine position
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Fig. 6: BRS values for all subjects in the standing position

• The value of the baroreflex gain at the centre
of the frequency range is more important than
that at the fringes,

• The relatively large variation of baroreflex
gain, particularly over the low frequency range
(e.g. see Fig.5) renders a standard average un-
representative of the central values, and

• Applying significant weight to the baroreflex
gain at the boundary between LF and HF can
result in considerable contamination between
the BRSLF and BRSHF values.

Figs. 6 and 7 show the results for the BRS
calculation across all EuroBaVar subjects, for the
standing and supine positions respectively. In gen-
eral, we note that the BRS is higher in the case
of the supine position compared to standing and
that BRSLF > BRSHF for standing (12 Vs 9),
while BRSHF > BRSLF for supine (18 Vs 3). We
can also see that subjects with impaired baroreflex
(Subjects 13 and 18) are clearly identified.

Generally, a ROC (receiver operating character-
istic) curve can be employed to determine what
the optimum cut-off point is for detection of BRS
failure. In the present study, however, there is no
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Fig. 7: BRS values for all subjects in the supine position

overlap between healthy and failed baroreflex val-
ues in each individual sets of results shown in Fig-
ures 6 and 7.

V Discussion and Conclusions

In order to assess the quality of a BRS estimate,
Laude et al [1] have investigated a number of differ-
ent properties of the various BRS estimation tech-
niques used with the EuroBaVar data set.

Some of the popular estimations techniques, re-
ported in [1], are unable to provide estimates for
at least one subject, due to various thresholds not
being met (minimum coherence, minimum corre-
lation or minimum change in BP or RR inter-
val). In general, the thresholds imposed have been
designed to improve the reliability of the results;
however, these conditions can lead to a restriction
in the use of certain methods in practice. The
procedure described in this paper does not apply
specific thresholds but yields a low baroreflex gain
estimate where the data set does not show a well
defined relationship between SAP and RR.

BRS estimation techniques should also be able
to distinguish well between data in the stand-
ing and supine positions, since BRS tends to be
higher in the supine case. Our estimation tech-
nique was able to distinguish well between the two
positions, however, it should be noted that the
high-frequency BRS estimates showed a much bet-
ter distinction between the standing and supine
positions than the low-frequency estimates.

The most important feature of a BRS estima-
tion technique is its ability to identify subjects
with impaired baroreflex. Many of the BRS esti-
mation techniques used with the EuroBaVar data
set were unable to identify the two subjects with
impaired baroreflex, since they were not able to
provide an estimate due to threshold restrictions.
The BRS estimation technique developed in this
paper is well able to distinguish the two patients
with baroreflex failure, as the BRS estimates are



very low, especially in the standing position, com-
pared to the other subjects. All the hypertensive
subjects, numbered 3, 5 and 11 in Figs. 6 and 7,
also show consistently lower BRS values than the
healthy population. In general, the BRSHF index
appears to have better selectivity, while BRS esti-
mates for the standing position also appear to be
able to discriminate better between healthy and
impaired baroreflex, than the supine position esti-
mates.

Our BRSLF estimates are well correlated with a
number of other estimates reported in [1], namely
the transfer function and the α-index methods, as
well as the Z-coefficient statistical method and the
time-domain ‘XAR’ model developed by Porta et
al [8]. The high correlation between the frequency-
domain methods employed in [1] and our results is
expected since, in effect, both our method and the
frequency-domain approaches calculate a dynamic
relationship or transfer function between the input
and output signals (SAP and RR respectively).

In conclusion, the accurate and consistent de-
termination of baroreflex sensitivity is a difficult
task, due to the requirement to measure open-loop
characteristics within a closed-loop structure rely-
ing exclusively on spontaneous measurements. Not
only does the closed-loop provide a challenge for
the identification method employed, but the feed-
back system also tries to reduce variability of the
controlled variable (blood pressure), further reduc-
ing any natural excitation in the system. In order
to address these challenges, we have proposed a
rigourous procedure which can assess whether suf-
ficient excitation is available and provide reliable
estimates of open-loop properties.
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