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Abstract—It is well known that the bilinear transform,
or first order diagonal Padé approximation to the ma-
trix exponential, preserves quadratic Lyapunov functions
between continuous-time and corresponding discrete-time
linear time invariant (LTI) systems, regardless of the
sampling time. It is also well known that this mapping
preserves common quadratic Lyapunov functions between
continuous-time and discrete-time switched systems. In this
note we show that while diagonal Padé approximations do
not in general preserve other types of Lyapunov functions
(or even stability), it is true that diagonal Padé approxima-
tions of the matrix exponential, of any order and sampling
time, preserve quadratic stability. A consequence of this
result is that the quadratic stability of switched systems is
robust with respect to certain discretization methods.

I. INTRODUCTION

The diagonal Padé approximations to the exponential
function are known to map the open left half of the
complex plane to the open interior of the unit disk [1].
Considering the diagonal Padé approximations to the
matrix exponential function, this gives rise to a corre-
spondence between continuous-time stable LTI (linear
time invariant) systems and their discrete-time stable
counterparts, a fact that is often exploited in the systems
and control community [2]. Perhaps the best known map
of this kind is the first order diagonal Padé approximant
(also known as the bilinear or Tustin map [1]). The
bilinear map is known not only to preserve stability, but
also preserve quadratic Lyapunov functions. That is, a
positive definite matrix P satisfying A∗cP+PAc < 0 will
also satisfy A∗dPAd−P< 0 where Ad is the mapping of Ac
under the bilinear transform [2] with some sampling time
h [3]. This makes it extremely useful when transforming
a continuous-time switching system:

ẋ = Ac(t)x, Ac(t) ∈Ac (1)

into an approximate discrete-time counterpart,

x(k+1) = Ad(k)x(k), Ad(k) ∈Ad (2)
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because, the existence of a common positive definite
matrix P satisfying A∗cP+PAc < 0 for all Ac ∈Ac implies
that the same P satisfies A∗dPAd−P < 0 for all Ad ∈Ad .
Thus quadratic stability of the continuous-time switching
system implies quadratic stability of the discrete-time
counterpart. This property is useful in obtaining results
in discrete-time from their continuous-time counterparts
[2], and in providing a robust method to obtain a stable
discrete-time switching system from a continuous-time
one. With this latter application in mind, and motivated
by the work initiated in [2], our objective in this note
is to determine whether this property is preserved by
higher order Padé approximants. As we shall see, for
any order of approximation, and for any sampling time
h, such approximations preserve quadratic stability.

II. MATHEMATICAL PRELIMINARIES

The following definitions and results are useful in
developing the main theorem which is given in Section
III.

Notation : A square matrix Ac is said to be Hurwitz
stable if all of its eigenvalues lie in open left-half of the
complex plane. A square matrix Ad is said to be Schur
stable if all its eigenvalues lie in the open interior of
the unit disc. The notation M∗ is used to denote the
complex conjugate transpose of a general matrix M; M
is hermitian if M∗ = M. A hermitian matrix P is said
to be positive (negative) definite if x∗Px > 0 (x∗Px < 0)
for all non-zero x and we denote this by P > 0 (P < 0).
In all of the following definitions, P = P∗ > 0.

A matrix P is a Lyapunov matrix for a Hurwitz stable
matrix Ac if A∗cP+PAc < 0. In this case, V (x) = x∗Px
is a quadratic Lyapunov function (QLF) for the
continuous-time LTI system ẋ(t) = Acx(t)

A matrix P is a Stein matrix for a Schur stable matrix
Ad if A∗dPAd − P < 0. In this case, V (x) = x∗Px is a
quadratic Lyapunov function for the discrete-time LTI
system x(k+1) = Adx(k).

Given a finite set of Hurwitz stable matrices Ac a
matrix P is a common Lyapunov matrix (CLM) for
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Ac if A∗cP + PAc < 0 for all Ac in Ac. In this case,
we say that the continuous-time switching system (1)
is quadratically stable (QS) with Lyapunov function
V (x) = x∗Px and V is a common quadratic Lyapunov
function (CQLF) for Ac.

Given a finite set of Schur stable matrices Ad a
matrix P is a common Stein matrix (CSM) for Ad if
A∗dPAd−P < 0 for all Ad in Ad . In this case, we say that
the discrete-time switching system (2) is quadratically
stable (QS) with Lyapunov function V (x) = x∗Px and
V is a common quadratic Lyapunov function (CQLF)
for Ad .

Whenever a continuous-time or discrete-time system is
quadratically stable then, it is globally exponentially
stable about the origin. This fact is sometimes very
useful in demonstrating stability of switching systems.
The converse result is not true, that is, global exponential
stability does not imply quadratic stability for a switch-
ing system.

Our primary interest in this note is to determine the
invariance of quadratic Lyapunov functions under
diagonal Padé approximations to the matrix exponential.

Definitions and basic results : The following
definitions and Lemmas will be useful to derive
the main results.

Definition 1: (Diagonal Padé Approximations) [1] [4]:
The pth order diagonal Padé approximation to the ex-
ponential function es is the rational function Cp defined
by

Cp(s) =
Qp(s)

Qp(−s)
(3)

where

Qp(s) =
p

∑
k=0

cksk and ck =
(2p−k)!p!

(2p)!k!(p−k)!
(4)

Thus the pth order diagonal Padé approximation to eAch,
the matrix exponential with sampling time h, is given by

Cp(Ach) = Qp(Ach)Q−1
p (−Ach) (5)

where Qp(Ach) = ∑
p
k=0 ck(Ach)k.

Much is known about diagonal Padé maps in the
context of LTI systems. In particular, the fact that such
approximations map the open left half of the complex
plane to the interior of the unit disc is widely exploited
in systems and control. This implies the well known

fact that these maps preserve stability as stated formally
in the following lemma.

Lemma 1: [1] ( Preservation of stability) Let Ac be a
Hurwitz stable matrix and Ad =Cp(Ach) be the pth order
diagonal Padé approximation of eAch. Then Ad is Schur
stable.

A special diagonal Padé approximation is the first order
approximation. This is also sometimes referred to as
the bilinear or Tustin transform.

Definition 2: (Bilinear transform) [1] [4]: The first order
diagonal Padé approximation to the matrix exponential
with sampling time h is defined by:

C1(Ach) =
(

I +Ac
h
2

)(
I−Ac

h
2
)−1

. (6)

This approximation is known not only to preserve
stability, but also to preserve quadratic Lyapunov
functions [2], [3], [5]; namely if P is a Lyapunov matrix
for Ac, then it is also a Stein matrix for Ad =C1(Ac,h).
The converse is also true. Actually, we have the
following known result which is a special case of
Lemma 3 below

Lemma 2: [5] (Preservation of Lyapunov functions ) Let
Ac be a Hurwitz stable matrix and Ad = C1(Ach) be
the first order diagonal Padé approximation (bilinear
transform) of eAch for some h > 0. Then P is a Lyapunov
matrix for Ac if and only if P is a Stein matrix for Ad .

As we shall see the bilinear transform plays a key role
in studying general diagonal Padé approximations. In
particular, a complex version of this map that inherits
some of the above properties will be very useful in
what follows.

Lemma 3: [12] (The complex bilinear transform) Let
Ac be a Hurwitz stable matrix and for any complex
number λ with Re(λ )> 0, define the matrix

Ad = (λ I +Ac)(λ
∗I−Ac)

−1 . (7)

Then P is a Lyapunov matrix for Ac if and only if P is
a Stein matrix for Ad .

Proof : Consider any matrix P = P∗ > 0. When Ad is
given by (7), the Stein inequality A∗dPAd−P < 0 can be
expressed as

(λ ∗I−Ac)
−∗(λ I+Ac)

∗P(λ I+Ac)(λ
∗I−Ac)

−1−P < 0 .



Post-multiplication by λ ∗I−Ac and pre-multiplication by
(λ ∗I−Ac)

∗ results in the following equivalent inequality

(λ I+Ac)
∗P(λ I+Ac)− (λ ∗I−Ac)

∗P(λ ∗I−Ac)< 0 ,

which simplifies to

(λ +λ
∗)(PAc +A∗cP)< 0 .

Since λ + λ ∗ > 0 this last inequality is equivalent to
the Lyapunov inequality PAc + A∗cP < 0. Thus P is a
Lyapunov matrix for Ac if and only if it is a Stein matrix
for Ad . �

The final basic result that we shall need concerns
common quadratic Lyapunov functions for discrete-time
systems. A proof of this (well known) lemma is given
in the Appendix.

Lemma 4: [12] If P is a CSM for A1, · · · ,Am then P is
a Stein matrix for the matrix product ∏

m
i=1 Ai.

III. MAIN RESULTS

We now present the main result of the paper. A main
consequence of this result is that common quadratic
Lyapunov functions are preserved by all diagonal Padé
discretizations. Thus, quadratic stability is preserved
under all diagonal Padé discretizations of a quadratically
stable continuous-time switched system. This fact is
stated formally in Corollary 1.

Theorem 1: Suppose that Ac is a Hurwitz stable matrix
and Ad is any pth order diagonal Padé approximation to
eAch for any h > 0. If P is a Lyapunov matrix for Ac
then, P is a Stein matrix for Ad .

Proof: Consider any matrix P which is a Lyapunov
matrix for Ac. Recall that Ad = Qp(Ach)Q−1

p (−Ach).
Since the coefficients of the polynomial Qp are real,

Qp(sh) = khp
m

∏
j=1

(α j + s)
n

∏
i=1

(λi + s)(λ ∗i + s)

for some k 6= 0, where m+ 2n = p, the real numbers
−hα1, · · · ,−hαm are the real roots of Qp and the com-
plex numbers −hλi,−hλ ∗i , i = 1, · · · ,n are the non-real
roots of Qp. Since all the roots of Qp have negative
real parts ( [1] [4]) we must have α j > 0 for all j
and Re(λi) > 0 for all i. It now follows that Ad can be
expressed as

Ad =

(
m

∏
j=1

(
α jI +Ac

))( n

∏
i=1

(λiI+Ac)(λ
∗
i I+Ac)

)
(

n

∏
i=1

(λiI−Ac)(λ
∗
i I−Ac)

)−1( m

∏
j=1

(
α jI−Ac

))−1

which, due to commutativity of the factors, can be
expressed as

Ad =

(
m

∏
j=1

(α jI +Ac)(α
∗
j I−Ac)

−1

)(
n

∏
i=1

(λiI+Ac)(λ
∗
i I−Ac)

−1

)
(

n

∏
i=1

(λ ∗i I+Ac)(λiI−Ac)
−1

)
.

Hence Ad is a product of bilinear terms of the form
(λ I +Ac)(λ

∗I−Ac)
−1 where Re(λ ) > 0. Since P is a

Lyapunov matrix for Ac, it follows from Lemma 3 that
P is a Stein matrix for each of the bilinear terms. Thus
Ad is a product of a bunch of matrices each of which
have P as a Stein matrix. It now follows from Lemma
4 that P is a Stein matrix for Ad . �

The following corollary is easily deduced from the main
theorem. This is probably the most useful result in the
paper.

Corollary 1: Suppose that P = P∗ > 0 is a CLM for a
finite set of matrices Ac. Then P is CSM for any finite
set of matrices Ad , where each Ad in Ad is a diagonal
Padé approximation of eAch of any order for some Ac in
Ac and h > 0.

Proof : If P is a CLM for Ac then, P is an Lyapunov
matrix for every Ac in Ac. It now follows from Theorem
1, that P is a Stein matrix for every Ad in Ad . Hence P
is a CSM for Ad . �

The last corollary shows that the Padé approximation of
eAh preserves quadratic stability. Thus, the discrete time
system is quadratically stable if the continuous one is.
However, the theorem does not imply the converse. In
fact the converse is not true as the following example
illustrates.

Example 1: Consider the Hurwitz matrices:

Ac1 =

[
1.56 −100
0.1 −4.44

]
, Ac2 =

[
−1 0
0 −0.1

]
.

Since the matrix product Ac1Ac2 has negative real eigen-
values it follows that there is no CLM [8]. Now consider
the matrices Ad1,Ad2 obtained under the 2nd order diag-
onal Padé approximation of e2Aci with the discrete time
step h = 2:

Ad1 =

[
−0.039 0.4205
−0.0004 −0.0138

]
,

Ad2 =

[
0.1429 0

0 0.8187

]
.

These matrices have a CSM which is

Pd =

[
2.3294 −0.0138
−0.0138 2.7492

]
.



Comment: Example 1, together with Corollary 1, il-
lustrate the following facts. Let Ac be a finite set of
Hurwitz matrices and Ad a corresponding finite set of
Schur stable matrices obtained under a diagonal Padé
approximation. If P is a CLM for Ac then P is a CSM
for Ad . However, as the above example demonstrates, the
existence of a CSM for Ad does not imply the existence
of a CLM for Ac. In order to achieve a converse result,
additional conditions have to be imposed and this issue
has been discussed in [12].

IV. IMPLICATIONS OF MAIN RESULT

The starting point for our work was the recently
published paper [2]. One of the main results of that
paper was the fact that the bilinear transform preserves
quadratic stability when applied to continuous-time
switched systems. We have shown that this property
also holds for general diagonal Padé approximations
(although the converse statement is not true). This is
an important observation due to the fact that while
the bilinear transform is stability preserving, it is not
always a good approximation to the matrix exponential.
Our result says that “more accurate” approximations are
also stability preserving.

Two potential applications of this result are immediate.
First, stable discrete-time systems may be obtained
from their continuous-time counterparts in a manner
akin to that described in [2]. Secondly, our results
may provide a method to discretize quadratically stable
linear switched systems; see [7] for a recent paper on
this topic. That is, given a quadratically stable switched
linear system, a discrete-time counterpart obtained using
diagonal Padé approximations to the matrix exponential,
will also be quadratically stable.

In the context of the previous comment, it is important
to realise that the stability preserving property of Padé
approximations is very important. It was recently shown
that non-quadratic Lyapunov functions may not be
preserved under the bilinear transform. This fact was
first demonstrated in [2], where it was proven that
unlike quadratic Lyapunov functions (QLFs), ∞-norm
and 1-norm type Lyapunov functions are not necessarily
preserved under the bilinear mapping. In fact the
situation may be worse as the following example
illustrates.

Example 2: Consider a continuous-time switching sys-

tem described by (1) with Ac = {Ac1,Ac2,Ac3} where

Ac1 =

 −19.00 0 0
0 −9 0
0 0 −0.10

 ,
Ac2 =

 −19 0 0
−10 −9 0
−18.75 0 −0.10

 ,
Ac3 =

 −19.00 0 18.75
0 −9 8.75
0 0 −0.10

 .
Using the ideas in [10] it can be shown that the
continuous-time switching system is globally exponen-
tially stable. It follows from the results of Dayawansa
and Martin [11] that this switching system has a Lya-
punov function (though this is not necessarily quadratic).
Now consider a discrete-time approximation to the above
system. We assume that switching is restricted to only
occur at multiples of the sampling time h = 0.25. Us-
ing the first order Pad’e approximation, we obtain a
discrete-time switching system described by (2) with
Ad = {Ad1,Ad2,Ad3} where

Adi = (I− 1
8

Aci)
−1(I +

1
8

Aci), i = 1,2,3 ,

that is,

Ad1 ≈

 −0.40 0 0
0 −0.06 0
0 0 0.98

 ,
Ad2 ≈

 −0.40 0 0
−0.35 −0.06 0
−1.37 0 0.98

 ,
Ad3 ≈

 −0.40 0 1.37
0 −0.06 1.01
0 0 0.98

 .
We now claim that the discrete-time switching system is
unstable. To see this we simply consider the incremental
switching sequence Ad3→Ad2→Ad1; then the dynamics
of the system evolve according to the product

Ad = Ad1Ad2Ad3.

Since the eigenvalues of Ad are approximately
{−0.002,−0.060,−1.035}, then with one eigenvalue
outside the unit disc, this switching sequence, repeated
periodically results in an unstable system.

Comment : It is important to put the above example
in context. The bilinear transform of Aci used is a first
order Padé approximation of eAiht , where h = 0.25 is the



sampling time. The point of our example is to illustrate
that, when a QLF does not exist for a switched linear
continuous time system, it is possible that stability may
be lost via the Padé approximation. Our sampling time h
is chosen to illustrate this point. Clearly, by selecting a
faster sampling time one obtains a better approximation
to the continuous-time system and stability may be
preserved.

Our example is consistent with the results reported in a
recent paper [2], where it is noted that while quadratic
Lyapunov functions are preserved under the bilinear
transform, other non-quadratic Lyapunov functions are
not. Unfortunately, the example demonstrates that mat-
ters are much worse than reported in this paper; namely,
that not only are non-quadratic functions not preserved
under this mapping, but also stability need not be.

V. CONCLUSIONS

In this paper we have shown that diagonal Padé
approximations to the matrix exponential preserves
quadratic Lyapunov functions between continuous-time
and discrete-time switched systems. We have also
shown that the converse is not true. Namely, it does
not follow that the original continuous-time system is
quadratically stable even if the discrete-time system
has a quadratic Lyapunov function. Furthermore, it is
easily seen that such approximations do not (in general)
preserve stability when used to discretize switched
systems that are stable (but not quadratically stable).

Our results suggest a number of interesting research di-
rections. An immediate question concerns discretization
methods that preserve other types of stability. Since gen-
eral Padé approximations can be thought of as products
of complex bilinear transforms, an immediate question in
this direction concerns the equivalent map for other types
of Lyapunov functions. Namely, given a continuous-
time system with some Lyapunov functions, what are
the mappings from continuous-time to discrete-time that
preserve the Lyapunov functions. A natural extension of
this question concerns whether discretization methods
can be developed for exponentially stable switched and
nonlinear systems but which do not have a quadratic
Lyapunov function. An important question also concerns
systems in which stability criteria and replaced with op-
timality criteria. In other words, how does one discretise
a system and preserve certain types of optimality criteria.
Finally, a important question concerns the analysis of the
stability of feedback systems with both discrete-time and
continuous-time subsystems. Such systems arise when
a discrete-time control is used to regulate a switched

system. These and other topics will be the subject of
future publications.
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