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Abstract

In this paper the discretisation of switched and non-switched linear positive systems us-
ing Padé approximations is considered. Padé approximations to the matrix exponential
are sometimes used by control engineers for discretising continuous time systems and
for control system design. We observe that this method of approximation is not suited
for the discretisation of positive dynamic systems, for two key reasons. First, certain
types of Lyapunov stability are not, in general, preserved. Secondly, and more seriously,
positivity need not be preserved, even when stability is. Finally we present an alterna-
tive approximation to the matrix exponential which preserves positivity, and linear and
quadratic stability.
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1. Introduction

Switched and non-switched linear positive systems have been the subject of much recent
attention in the control engineering and mathematics literature [1], [2], [3], [4], [5], [6],
[7], [8]. An important problem in the study of such systems concerns how to obtain
discrete time approximations to a given continuous time system. This problem arises
in many circumstances; for example, when one simulates a given system; when one ap-
proximates a continuous time system for the purpose of control system design [1]; in
certain optimisation problems [9]; and in model order reduction problems [10]. While
a complete understanding of this problem exists for LTI systems [11], and while some
results exist for switched linear systems [12], [13], the analogous problems for positive
systems are more challenging since discretisation methods must preserve not only the
stability properties of the original continuous time system, but also physical properties,
such as state positivity. To the best of our knowledge, this is a relatively new problem
in the literature, with only a few recent works on this topic [14].
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Our objective in this paper is twofold. First, to study one speci�c discretisation method,
namely, diagonal Padé approximations to the matrix exponential, and second to develop
new approximations that are suitable for positive systems. Such a study is well moti-
vated, as diagonal Padé approximations are a method used by control engineers. We deal
with two fundamental questions. First, under what conditions are certain types of stabil-
ity of the original positive switched system inherited by the discrete time approximation?
Second, we also ask if and when positivity itself is inherited by the discrete-time system.
We establish the following results. Under the assumption of positivity preservation �rst
order diagonal Padé approximations preserve linear and quadratic co-positive Lyapunov
functions for all choices of sampling time that preserve positivity. Thus, in a sense, linear
and quadratic stability is a robust property of the �rst order Padé approximation. In
other words, even if the approximation is bad, say, due to a poor choice of sampling time,
linear co-positive stability is never lost. However in contrast, we also show that higher
order Padé approximations do not, in general, preserve positivity. Counter-intuitively,
this is true even for an arbitrarily small choice of sampling time h. In other words, there
are examples of continuous-time positive systems for which a particular diagonal Padé
approximation fails to preserve positivity for all small choices of h. We give one such
example. Finally, we give su�cient conditions under which the Padé approximation is
positivity preserving, and identify a new approximation method which is guaranteed to
preserve both stability and positivity.

The contributions of our results are immediate. While discretisation of switched systems
arises in many application domains, the question as to what properties are preserved un-
der such discretisations appears to be a new problem and, despite its importance, has not
yet received the attention it deserves. Roughly speaking, our results show that certain
types of Lyapunov functions are not always preserved under Padé discretisations of LTI
systems. Neither is positivity. These observations are important in many application
domains; for example, the Tustin or bilinear transform is an example of a diagonal Padé
approximation, while Matlab's expm function employs Padé approximations in comput-
ing the matrix exponential.

This paper is organised as follows: in Section 2 the notation and preliminary de�nitions
are introduced. In Section 3, the preservation of both quadratic and linear co-positive
Lyapunov functions in the discretisation process is considered. In Section 4 we consider
the issue of when a diagonal Padé approximation maps a Metzler matrix to a nonnegative
matrix. In Section 5 we propose an alternative approximation to the exponential matrix,
which is able to avoid the situation arising in some of our examples. Section 6 concludes
the paper.

2. Mathematical preliminaries

2.1. Notation

Capital letters denote matrices, small letters denote vectors. For matrices or vectors, (′)
indicates transpose and (∗) the complex conjugate transpose. For matrices X or vectors
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x, the notation X or x > 0 (≥ 0) indicates that X, or x, has all positive (nonnegative)
entries and it will be called a positive (non-negative) matrix or vector. The notation
X ≻ 0 (X ≺ 0) or X ≽ 0 (X ≼ 0) indicates that the symmetric matrix X is positive
(negative) de�nite or positive (negative) semi-de�nite. The sets of real and natural num-
bers are denoted by R and N, respectively, while R+ denotes the set of nonnegative real
numbers. A square matrix Ac is said to be Hurwitz stable if all its eigenvalues lie in the
open left-half of the complex plane. A square matrix Ad is said to be Schur stable if all
its eigenvalues lie inside the unit disc. A matrix A is said to be Metzler (or essentially
nonnegative) if all its o�-diagonal elements are nonnegative. A matrix B is an M-Matrix
if B = −A, where A is both Metzler and Hurwitz; if an M-matrix is invertible, then
its inverse is nonnegative [15]. The matrix I will be the identity matrix of appropriate
dimensions.

2.2. De�nitions

Generally speaking, we are interested in the evolution of the system

ẋ(t) = Ac(t)x(t), Ac(t) ∈ {Ac1, ..., Acm}, x(0) = x0; (1)

where Ac(t) ∈ Rn×n is a matrix valued function, x(t) ∈ Rn×1, m ≥ 1, and where the
Aci are Hurwitz stable Metzler matrices. Such a system is said to be a continuous-time
positive system. Positive systems [1], [16] have the special property that any nonnegative
input and nonnegative initial state generate a nonnegative state trajectory and output for
all times. We are interested in obtaining from this system, a discrete-time representation
of the dynamics (slightly abusing notation):

x(k + 1) = A(k)x(k), A(k) ∈ {Ad1, ..., Adm}, x(0) = x0. (2)

Positivity in discrete time is ensured if each Adi is a nonnegative matrix. One standard
method to obtain Adi from Aci is via the Padé approximation to the exponential function
eAcih, where h is the sampling time. Notice that, since (1) is a system switching according
to an arbitrarily switching signal σ(t) ∈ {1, 2, . . . ,m}, it is not true, even in the ideal
case Adi = eAcih, that xc(kh) = x(k). This property is of course recovered when tk = kh,
where tk is the generic switching instant of σ(t).

De�nition 1 [17] The [L/M ] order Padé approximation to the exponential function esis
the rational function CLM de�ned by

CLM (s) = QL(s)Q
−1
M (−s)

where

QL(s) =
∑L

k=0 lks
k, QM (s) =

∑M
k=0mks

k, (3)

lk = L!(L+M−k)!
(L+M)!k!(L−k)! , mk = M !(L+M−k)!

(L+M)!k!(M−k)! . (4)
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Thus, the p − th diagonal Padé approximation to eAch, the matrix exponential with
sampling time h, is given by taking L = M = p; namely,

Cp(Ach) = Qp(Ach)Q
−1
p (−Ach), (5)

where Qp(Ach) =
∑p

k=0 ck(Ach)
k and ck = p!(2p−k)!

(2p)!k!(p−k)! .

Much is known about the Padé maps in the context of LTI systems. In particular, it is
known that diagonal Padé approximations are A-stable [18]; namely, they map the open
left-half of the complex plane to the interior of the unit disc, preserving in this way the
stability from the continuous-time to the discrete-time system. In this paper we shall,
in part, be interested in preservation of Lyapunov functions of a certain type and we
remind here the reader of two important classes of Lyapunov functions that are useful in
studying positive systems.

Given a continuous time dynamic system Σc : ẋ = Acx, x ∈ Rn×1, Ac ∈ Rn×n, we say
that the function V (x) = x′Px is a quadratic Lyapunov function for Σc if the matrix
A′

cP + PAc is negative de�nite for some positive de�nite matrix P ∈ Rn×n; namely if
V̇ (x) < 0 for all t ≥ 0 along all trajectories of the system.

When the system Σc is a positive system, then other types of Lyapunov functions are of
interest. In this context, the function V (x) = x′Px, P ∈ Rn×n positive de�nite, is said
to be a co-positive quadratic Lyapunov function for Σc if x′(A′

cP + PAc)x < 0 for all
x in the nonnegative orthant such that x ̸= 0; namely if V̇ (x) < 0 for all t ≥ 0 for all
trajectories starting in the non-negative orthant.

In the speci�c case of positive systems we may also speak of linear Lyapunov functions.
Speci�cally, if we can �nd a strictly positive vector w such that w′Ac < 0, then the
function V (x) = w′x is said to be a copositive linear Lyapunov function for the system
Σc. As before this implies that V̇ (x) < 0 for all t ≥ 0 for all trajectories starting in the
non-negative orthant.

Given a discrete time system Σd : x(k + 1) = Adx(k), x(k) ∈ Rn×1, Ad ∈ Rn×n,
the de�nition of Lyapunov functions follow in the normal way. Namely, the function
V (x) = x′Px, P ∈ Rn×n positive de�nite, is said to be a co-positive quadratic Lyapunov
function for Σd if x′(A′

dPAd − P )x < 0 for all x in the nonnegative orthant such that
x ̸= 0. Similarly, if we can �nd a strictly positive vector w such that w′Ad < w, then the
function V (x) = w′x is said to be a copositive linear Lyapunov function for the system Σd.

The concept of a common copositive (linear/quadratic) Lyapunov function follows for
�nite sets of positive systems Σc1, ....,Σcm (or {Σd1, ....,Σdm}). Such functions are useful
in proving the exponential stability of various types of positive dynamic systems.
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3. Lyapunov Stability

3.1. Preservation of co-positive Lyapunov functions

As noted above, an important property of Padé maps is that they map the open left half
of the complex plane to the interior of the unit circle. Recently, it was shown in [13] that
quadratic Lyapunov functions are preserved for sets of matrices that arise in the study of
systems of the form of Equation (1). We now ask whether co-positive Lyapunov functions
are preserved when discretising an LTI positive system using Padé like approximations.
In the remainder of this section our attention focuses on co-positive Lyapunov functions;
in particular, on linear and quadratic co-positive Lyapunov functions. Since trajectories
of positive systems are constrained to lie in the positive orthant, the stability of such
a system is completely captured by Lyapunov functions whose derivative is decreasing
for all such positive trajectories. Such functions are referred to as co-positive Lyapunov
functions, and it is known that one can always associate a linear, or a quadratic co-
positive Lyapunov function, with any given stable linear time-invariant positive system
[1]. With this background in mind we observe the following elementary result.

Lemma 1 Let Ac be a Metzler and Hurwitz stable matrix and let α be a positive real
number. Fix any sampling time h > 0, and de�ne Ad(h) = (α(h)I +Ac) (α(h)I −Ac)

−1

such that Ad(h) is a nonnegative matrix, where α(h) = α
h . Then the following statements

are true.

1. If v(x) = x′Px, with P = P ′ ≻ 0, is a co-positive quadratic Lyapunov function for
Ac, that is

x′(A′
cP + PAc)x < 0, ∀ x ≥ 0, x ̸= 0; (6)

then v(x) is a co-positive quadratic Lyapunov function for Ad(h); that is

x′(A′
d(h)PAd(h)− P )x < 0, ∀ x ≥ 0, x ̸= 0. (7)

2. If v(x) = w′x, w > 0 is a linear co-positive Lyapunov function for Ac; that is
w′Ac < 0, then v(x) is a linear co-positive Lyapunov function for Ad(h); namely,
w′Ad(h) < w′.

Proof.

1. We begin by noting that (α(h)I −Ac) is an invertible M-matrix, so its inverse is
nonnegative. Let x > 0. From (6) we �nd that (7) can be written as

x′(A′
d(h)PAd(h)− P )x = x′((α(h)I −Ac)

′)−1[(α(h)I +Ac)
′P (α(h)I +Ac)

− (α(h)I −Ac)
′P (α(h)I −Ac)](α(h)I −Ac)

−1x =

= x′((α(h)I −Ac)
′)−1[2α(h)(A′

cP + PAc)](α(h)I −Ac)
−1x < 0,

the inequality following from the fact that (α(h)I −Ac)
−1 x > 0.

5



2. Following the same rationale of the previous point we can write:

w′Ad(h)− w′ =
[
w′ (α(h)I +Ac)− w′ (α(h)I −Ac)

]
(α(h)I −Ac)

−1 =

= 2w′Ac (α(h)I −Ac)
−1 < 0.

Lemma 1 is an elementary consequence of the properties of M-matrices. While we have
not yet said anything about positivity preservation, these properties do have a particular
meaning in the context of stability preservation. In this context Lemma 1 is a very useful
result, as it says that the �rst order diagonal Padé approximation is a robust approxi-
mation to the original system. That is, for every h > 0 that preserves positivity, linear
and quadratic stability is preserved. This result seems like good news since it says that
the most basic Padé approximation to the matrix exponential, preserves stability, and
consequently one might hope, as is the case for general matrices, that better approxima-
tions (i.e. higher orders of diagonal Padé approximations) will also preserve co-positive
linear and quadratic stability. Unfortunately, rather surprisingly, this is not true, as the
following example demonstrates.

Example 1 Let

N =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0


,

and let A = −2I +N. Now consider the vector w′ =
[
1 1

2
1
4

1
8 . . . 1

29

]
, and note

that w′A = −2e1. (Here, for each j = 1, . . . , 10, ej denotes the j − th standard unit
basis vector in R10.) Now consider the second order diagonal Padé approximation (with
h = 1) given by C2(A) = (I + 1

2A+ 1
12A

2)(I − 1
2A+ 1

12A
2)−1. It can be shown then that

C2(A) =
∑9

k=0 αkN
k, where

α0 =
1

7
, α1 =

6

72
, α2 =

51

2 · 73
, α3 =

213

22 · 74
, α4 =

708

23 · 75
, α5 =

2049

24 · · · 76
,

α6 =
5289

25 · 77
, α7 =

12102

26 · · · 78
, α8 =

23487

27 · 79
, α9 =

32721

28 · 710
.
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In particular we �nd that C2(A) is a nonnegative matrix. Next, note that

w′C2(A)e10 =

9∑
j=0

α9−j

2j
=

1

29

(
1

7
+

9∑
k=1

2kαk

)
.

Using the formulas above, it now follows that w′C2(A)e10 =
1
29

282497599
282475249 > 1

29
= w(10).

Finally, observe that for all su�ciently small ϵ > 0, the vector

w′
ϵ = w′ + ϵ

[
1 . . . 1

]
has the properties that: (i) w′

ϵA is a negative vector, and (ii) w′
ϵC2(A)e10 > wϵ(10). Thus

we �nd that for each su�ciently small ϵ > 0, the function x 7→ w′
ϵx yields an example of

a linear co-positive Lyapunov function for A that fails to be a linear co-positive Lyapunov
function for the (nonnegative) second order diagonal Padé approximation C2(A).

Fix an ϵ > 0 so that i) and ii) above hold. Set ρ = w′
ϵwϵ; we now construct a second

matrix G given by G = −ρI +wϵw
′
ϵ. The matrix G is marginally stable (has eigenvalues

in the closed left half of the complex plane), and it is straightforward to show that the
only (marginal) co-positive linear Lyapunov functions for G correspond to positive scalar
multiples of wϵ; namely w′

ϵG ≤ 0 with wϵ > 0.

Recall, our objective here is to show that C2(A) and C2(G) fail to have a common co-
positive linear Lyapunov function. It can be shown that

C2(G) =
1

1 + ρ
2 + ρ2

12

×
[
(1− ρ

2
+

ρ2

12
)I + wϵw

′
ϵ

]
.

This in turn yields the fact that the only marginal co-positive linear Lyapunov functions
for C2(G) correspond to positive scalar multiples of wϵ. However, as noted above, no pos-
itive scalar multiple of wϵ can serve as a co-positive linear Lyapunov function for C2(A).
Thus, for the matrices A and G, the discrete time approximations for the exponentials
corresponding to p = 2, h = 1 fail to have a common co-positive linear Lyapunov function.

Comment 1: Example 1 illustrates something very interesting and potentially danger-
ous. As one increases the order of approximation to the matrix exponential, one can in
fact lose preservation of a given Lyapunov function of the original system, even when
positivity is preserved.

Comment 2: Example 1 illustrates another interesting fact. We know from [13] that
diagonal Padé approximations preserve quadratic Lyapunov functions. We also know
that, given a stable Metzler matrix Ac, diagonal quadratic Lyapunov functions for this
matrix (D = D′ ≻ 0 : A′

cD +DAc ≺ 0, D diagonal) may be constructed from the linear
co-positive Lyapunov functions associated with Ac and A′

c. The above example shows
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that any suchD will be preserved, but the co-positive linear Lyapunov functions may not.

Clearly, the implication of Example 1 is that some Padé approximations may result in
the loss of certain co-positive Lyapunov functions. In such situations, the retort of the
engineer is that the sampling rate h should be decreased to improve the approximation
and to make the approximation more likely to inherit desired properties. Such an ap-
proach is reasonable since if we make the approximation order high enough, and h small
enough, then we generate an improved approximation to the matrix exponential, and in
some circumstances we can deduce something about preservation of Lyapunov functions.
We summarise some evident results in this direction with the next lemma.

Lemma 2 Let Ac be a Metzler and Hurwitz matrix, and suppose that λ̂ is a complex

number with positive real part. For each h > 0, let λ(h) = λ̂
h , and consider the following

matrices:

Θ1 = (λ(h)I +Ac) (λ
∗(h)I +Ac) ; (8)

Θ2 = (λ(h)I −Ac) (λ
∗(h)I −Ac) ;

Ad(h) = (λ(h)I +Ac) (λ
∗(h)I +Ac) (λ

∗(h)I −Ac)
−1 (λ(h)I −Ac)

−1 = Θ1Θ
−1
2 .

Suppose that there is an h0 > 0 such that for all 0 < h ≤ h0,Θ2 is an M-matrix, and
such that Ad(h) is a nonnegative matrix. Then, the following statements are true.

1. If v(x) = x′Px, with P = P ′ ≻ 0, is a co-positive quadratic Lyapunov function for
Ac, i.e.,

x′(A′
cP + PAc)x < 0, ∀ x ≥ 0, x ̸= 0 (9)

then there is an h1 > 0 such that for all 0 < h ≤ h1, v(x) is a quadratic Lyapunov
function for Ad(h), i.e.,

x′(A′
d(h)PAd(h)− P )x < 0, ∀ x ≥ 0, x ̸= 0. (10)

2. If v(x) = w′x, w > 0, is a linear co-positive Lyapunov function for Ac, that is
w′Ac < 0 then for 0 < h ≤ h0, v(x) is a linear co-positive Lyapunov function for
Ad(h); namely, w′Ad(h) < w′.

Proof.

1. Note that (where the dependency on h is understood, i.e. Ad = Ad(h))

Ad =
(
λ(h)λ∗(h)I +

(
λ(h) + λ∗(h)

)
Ac +A2

c

)(
λ(h)λ∗(h)I −

(
λ(h) + λ∗(h)

)
Ac +A2

c

)−1
,

=Θ1Θ
−1
2 ,
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We wish to prove that there is an h1 > 0 such that for all 0 < h ≤ h1, x
′(A′

cP +
PAc)x < 0 implies x′(A′

dPAd − P )x < 0 ∀ x > 0. This follows from the fact that

x′(A′
dPAd − P )x =x′Θ′−1

2 [Θ′
1PΘ1 −Θ′

2PΘ2]Θ
−1
2 x

=x′Θ′−1
2 [4|λ(h)|2Re(λ(h))(A′

cP + PAc)+

+ 4Re(λ(h))A′
c(A

′
cP + PAc)Ac]Θ

−1
2 x

≤4Re(λ(h))∥Θ−1
2 x∥2

(
|λ̂|2

h2
γ1 + γ2

) (11)

where

γ1 =sup
y>0

y′(A′
cP + PAc)y

y′y
, γ2 =sup

y>0

y′A′
c(A

′
cP + PAc)Acy

y′y

Since γ1 < 0 by assumption, it is readily seen that x′(A′
dPAd − P )x < 0 for each

x > 0, provided that h ∈ (0, h1] where

h21 =min

{∣∣∣∣∣ λ̂2γ1
γ2

∣∣∣∣∣ , h20
}
.

(Note that here we have used the hypotheses that the real part of λ(h) is positive,
and that Θ2 is an M-matrix.)

2. Following the same rationale of the previous point we can write:

w′Ad − w′ = [w′ (λ(h)I +Ac) (λ
∗(h)I +Ac)− w′ (λ(h)I −Ac) (λ

∗(h)I −Ac)]

× (λ(h)I −Ac)
−1 (λ∗(h)I −Ac)

−1 =

=4Re(λ(h))w′Ac (λ(h)I −Ac)
−1 (λ∗(h)I −Ac)

−1 < 0 ,

for all h ∈ (0, h0] since in this interval Θ2 is an M-matrix.

Comment 3: The hypotheses of Lemma 2 include the condition that Θ2 is an M-matrix
for all su�ciently small h > 0. It is natural to wonder when that condition holds, and
we discuss that point in Theorem 3 below, as well as in the comment that follows it.

We can now state the following result, which formalises, in a certain sense, the intuition
that stability, for a switched linear system, is indeed preserved provided h is chosen to be
small enough (fast enough sampling), for diagonal Padé approximations. To state this
result, recall the continuous-time switched linear positive system

ẋc(t) = Ac(t)xc(t), xc(0) = x0, (12)

where xc(t) ∈ Rn
+, x0 ∈ Rn

+ is the initial condition, and Ac(t) belongs to the set
{Ac1, . . . , Acm}. We then have the following result.
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Theorem 1 Consider the system (12). Suppose that Aci is a Metzler and Hurwitz stable
matrix for each i = 1, . . . ,m and let Cp (Acih) be the p − th order diagonal Padé ap-
proximation of eAcih. Suppose that there is an h0 > 0 such that for all 0 < h ≤ h0, the
following conditions hold:

(i) for each real pole α of Cp(·), and each i = 1, . . . ,m, the matrix (αh I + Aci)(
α
h I −

Aci)
−1 is nonnegative;

(ii) for each complex pole λ of Cp(·), and each i = 1, . . . ,m, the matrix (λhI−Aci)(
λ∗

h I−
Aci) is an M-matrix;

(iii) for each complex pole λ of Cp(·), and each i = 1, . . . ,m, the matrix (λhI+Aci)(
λ∗

h I+

Aci)(
λ
hI −Aci)

−1(λ
∗

h I −Aci)
−1 is nonnegative.

Finally, suppose there exists a common linear co-positive Lyapunov function x 7→ w′x for
system (12). Then, there is an h1 with 0 < h1 ≤ h0 such that for all 0 < h ≤ h1, the
system

x(k + 1) = A(k)x(k), (13)

with A(k) ∈ {Cp(Ac1h), ..., Cp(Acmh)}, shares the same common linear co-positive Lya-
punov function.

Proof. Consider the function Cp(·), denote its real poles (if any) by α1, . . . , αl, and
denote its complex poles with positive imaginary part by λ1, . . . , λq; we note in passing
that l + 2q = p. Fix an index i between 1 and m.

It now follows that Cp(Acih) =
∏l

j=1(αj(h)I + Aci)(αj(h)I − Aci)
−1·

∏q
j=1(λj(h) +

Aci)(λ
∗
j (h)+Aci)(λj(h)−Aci)

−1(λ∗
j (h)−Aci)

−1, where, as in Lemmas 1 and 2, αj(h) =
αj

h

and λj(h) =
λj

h .

From the hypothesis, each of the matrices in items (i) and (iii) is nonnegative for all
0 < h ≤ h0. It is straightforward to show that there is an h1 with 0 < h1 ≤ h0 such
that for all 0 < h ≤ h1, each of the matrices in items (i) and (iii) is nonnegative, and in
addition, none of those matrices has a zero column. Suppose henceforth that 0 < h ≤ h1.

Applying Lemma 1, we �nd that for each j = 1, . . . , l, w′(αj(h)I+Aci)(αj(h)I−Aci)
−1 <

w′. Since (αj(h)I +Aci)(αj(h)I −Aci)
−1 is nonnegative and has no zero column for j =

1, . . . , l, we �nd that w′∏l
j=1(αj(h)I+Aci)(αj(h)I−Aci)

−1 = w′(α1(h)I+Aci)(α1(h)I−
Aci)

−1 ·
∏l

j=2(αj(h)I+Aci)(αj(h)I−Aci)
−1 < w′∏l

j=2(αj(h)I+Aci)(αj(h)I−Aci)
−1 <

. . . < w′.

Further, from our hypothesis, for each 0 < h ≤ h1, and each j = 1, . . . , q, (
λj

h I −
Aci)(

λ∗
j

h I − Aci) is an M-matrix. Applying Lemma 2, we now �nd that w′(λj(h) +
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Aci)(λ
∗
j (h)+Aci)(λj(h)−Aci)

−1(λ∗
j (h)−Aci)

−1 < w′. Further, since (λj(h)+Aci)(λ
∗
j (h)+

Aci)(λj(h) − Aci)
−1(λ∗

j (h) − Aci)
−1 is nonnegative and has no zero column for each

j = 1, . . . , q, we �nd by iterating as above that for each 0 < h ≤ h1, w
′∏q

j=1(λj(h) +

Aci)(λ
∗
j (h) +Aci)(λj(h)−Aci)

−1(λ∗
j (h)−Aci)

−1 < w′.

Consequently we have w′Cp(Acih) = w′∏l
j=1(αj(h)I+Aci)(αj(h)I−Aci)

−1·
∏q

j=1(λj(h)+

Aci)(λ
∗
j (h)+Aci) (λj(h)−Aci)

−1(λ∗
j (h)−Aci)

−1 < w′∏q
j=1(λj(h)+Aci)(λ

∗
j (h)+Aci)(λj(h)−

Aci)
−1(λ∗

j (h)−Aci)
−1 < w′.

Since the argument above applies to each index i = 1, . . . ,m, we �nd that for each such
i, w′Cp(Acih) < w′. Hence the system (14) shares a common linear co-positive Lyapunov
function.

An immediate consequence is that if the hypotheses of Theorem 2 hold for the matrices
Ac1, . . . , Acm, then the origin of (14) is exponentially stable.

Comment 4: Using the special structure of 2×2 M-matrices, it is shown in [19] that for
second order switched positive linear systems, the existence of an h0 > 0 that satis�es
the hypothesis of Theorem 2 is guaranteed.

An analogous Theorem may be stated for co-positive quadratic stability by imposing
conditions on real and complex each factor of the Pade polynomial of the form described
in Lemma 1 and Lemma 2 such that for each factor both non-negativity, and preservation
of quadratic Lyapunov functions is guaranteed. Both the statement of this Theorem, and
its proof closely follow Theorem 1. Consequently, we now state this result without proof.

Theorem 2 Consider the system (12). Suppose that Aci is a Metzler and Hurwitz stable
matrix for each i = 1, . . . ,m and let Cp (Acih) be the p− th order diagonal Padé approx-
imation of eAcih. Suppose there exists a common linear co-positive quadratic Lyapunov
function V (x) = x′Px for system (12). Suppose further that there is an h0 > 0 such that
for all 0 < h ≤ h0, the following conditions hold:

(i) for each real pole α of Cp(·), and each i = 1, . . . ,m, the matrix (αh I + Aci)(
α
h I −

Aci)
−1 is nonnegative;

(ii) for each complex pole λ of Cp(·), and each i = 1, . . . ,m, the matrix (λhI−Aci)(
λ∗

h I−
Aci) is an M-matrix;

(iii) for each complex pole λ of Cp(·), and each i = 1, . . . ,m, the matrix (λhI+Aci)(
λ∗

h I+

Aci)(
λ
hI −Aci)

−1(λ
∗

h I −Aci)
−1 is nonnegative.

Then, for some 0 < h < h0, the system

x(k + 1) = A(k)x(k), (14)

11



with A(k) ∈ {Cp(Ac1h), ..., Cp(Acmh)}, shares the same common quadratic co-positive
Lyapunov function as (12).

Comment on Proof : The key point in the proof follows from the fact that the existence
of the interval 0 < h < h0 such that items (i), (ii) and (iii) hold, also implies that we �nd
a h < h0 such that each factor preserves individually preserves the quadratic Lyapunov
function V (x) (see Lemma 2).

3.2. Implications of loss of Lyapunov functions

We have established in the previous section that certain types of Lyapunov functions
may not be preserved when discretising switched linear systems using the diagonal Padé
approximations. The implications of this observation are varied. A nice property of the
Padé approximation for LTI systems is that stability in continuous time is preserved in
discrete time when using this approximation. For switched linear systems, this is no
longer the case, and the discrete time approximation may in fact be unstable, even if
the original continuous time system is globally uniformly (with respect to switching)
exponentially stable. Further details on this topic can be found in the the manuscript
[13], where discretisation of general matrices is considered. Second, for positive systems,
the properties of solutions are closely related to the existence of certain types of Lyapunov
functions. It is shown in [19] that the existence of a common co-positive linear Lyapunov
function implies a certain insensitivity to feedback delays, and also implies the stability
of a certain class of switched system where the columns of the matrices switch in a
certain manner [3]. If such Lyapunov functions are lost as a result of discretisation (as
in Example 1), the solution of the discrete time system may not inherit these properties.
Finally, we note that despite the widespread use of discrete approximations to continuous
systems, and continuous approximations to discrete time systems, the questions as to
what properties of the original system are inherited by the approximation, remains open.
To illustrate what can happen, we give the following example of an unstable switched
system, whose approximation is stable.

Example 2 Consider the Metzler and Hurwitz stable matrices:

Ac1 =

[
−50.5 49.5
49.5 −50.5

]
, Ac2 =

[
−87.08 8.6
129.13 −13.9

]
. (15)

Since the matrix product Ac1A
−1
c2 has negative real eigenvalues it follows that there an un-

stable switching between the aforementioned matrices, and that the system ẋ = A(t)x,A(t) ∈
{Ac1, Ac2} is unstable for a fast periodic switching sequence. Now consider Ad1, Ad2 ob-
tained under the 2nd order diagonal Padé approximation of eAcih with the discrete time
step h = 0.1:

Ad1 =

[
0.604 0.301
0.301 0.604

]
, Ad2 =

[
0.381 0.052
0.786 0.826

]
.

It is easily veri�ed that these matrices have a common co-positive quadratic Lyapuov func-
tion. Hence, it follows that the discretisation x(k + 1) = Ad(k)x(k), A(k) ∈ {Ad1, Ad2}
is stable, while the original continuous time system is not.

12



The objective of the previous example is to illustrate that the qualitative properties of
the original system, and the discretisation need not match. Of course, the details of the
example are somewhat trivial.

4. Nonnegativity of the diagonal Padé approximation

Our results in the previous section were concerned with the preservation of linear co-
positive Lyapunov functions. That is, given a Metzler and Hurwitz matrix Ac and a
vector w′ that yields a linear co-positive Lyapunov function for Ac, we were concerned
with whether w′ also yields a linear co-positive Lyapunov function for the diagonal Padé
approximation Cp(hA). That makes sense only if Cp(hA) is a nonnegative matrix and
in this section we address the fundamental question of whether Cp(hA) is nonnegative
when A is Metzler and Hurwitz.

Example 3 We begin with an alarming example which shows that in fact Cp(hA) can
have negative entries for all su�ciently small values of h > 0. To construct this example
we consider a chain of �rst order linear systems. Such systems are ubiquitous and can be
found in practically any elementary text book on control theory. They are also of some
interest in the context of biological systems in the systems community [20, 4], and appear
in the design of cascade �lters [21].

Consider a chain of n linear �rst order systems described by

ẋi = −αixi + kixi+1, for all i = 1, ..., n− 1, (16)

ẋn = −αnxn + knx1 (17)

More formally, the feedback system depicted can be written in state space form as ẋ =
Ax, x ∈ Rn×n where A ∈ Rn×n is the matrix

A =



−α1 k1 0 · · · · · · 0
0 −α2 k2 0 · · · 0
0 0 −α3 k3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · kn−1

kn 0 0 0 −αn


. (18)

By choosing αi ≥ 0 and ki ≥ 0 one obtains that A is Metzler. (Note that with n = 2,
Newton's second law of motion gives rise to such a system.)

13



Now let N be the 8× 8 nonnegative (and nilpotent) matrix

N =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


.

Note that N is a particular example of (18), with n = 8, k1 = k2 = ... = k7 = 1, and
k8 = α1 = ..... = α8 = 0. In this case our system becomes a chain of homogeneous
integrators connected in open loop. In spite of the fact that this is a very elementary sys-
tem, we show below that preserving positivity of this elementary system is far from trivial.

Speci�cally, we shall consider the second order diagonal Padé approximation C2(hN) =
(I+ 1

2hN + 1
12h

2N2)(I− 1
2hN + 1

12h
2N2)−1. In order to do so, we begin with the function

C2(z) = (1 + 1
2z +

1
12z

2)(1− 1
2z +

1
12z

2)−1. Next, we write C2(z) as a power series in z
as C2(z) =

∑∞
j=0 αjz

j . Computing the �rst few coe�cients in that power series, we �nd

that α0 = 1, α1 = 1, α2 =
1
2 , α3 =

1
6 , α4 =

1
24 , α5 =

1
144 , α6 = 0, and α7 = − 1

1728 .

Observing that N8 = 0, it now follows that the second order Padé approximation C2(hN)
can be written as =

C2(hN) = I + hN +
1

2
h2N2 +

1

6
h3N3 +

1

24
h4N4 +

1

144
h5N5 − 1

1728
h7N7.

Note also that for each k, j = 1, . . . , 7, the 1's in Nk do not overlap with the 1's in N j

whenever k ̸= j. Consequently, C2(hN) has a negative entry in the (1, 8) position when-
ever h > 0.

Another computation shows that

C2(hN)2 = I + 2hN + 2h2N2 +
4

3
h3N3 +

2

3
h4N4 +

19

72
h5N5 +

1

12
h6N6 +

17

864
h7N7,

so that C2(hN)2 is a nonnegative matrix. From this, and the expression for C2(hN), we
may deduce that C2(hN)3 is also a nonnegative matrix. It now follows that for any h > 0
and k ≥ 2, C2(hN)k is entrywise nonnegative. Thus we have identi�ed an example of a
nonnegative matrix N such that C2(hN) fails to be a nonnegative matrix for any h > 0,
but all higher powers of C2(hN) are nonnegative.

Comment 5: Before proceeding, note that while the matrix N above is nonnegative, it
is not Hurwitz. So, next we modify the example above to produce a related example of
a matrix that is both Hurwitz and Metzler. Fix t > 0, and let A be the Hurwitz and
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Metzler matrix A = −tI + N . Since N8 = 0, we may write C2(hA) =
∑7

j=0 βj(h)N
j ,

where each βj , j = 0, . . . , 7, is a function of h that is continuous in a neighbourhood of 0.
Further, from the fact that C2(hA) can also be written as

∑7
j=0 αjh

j(−tI+N)j+O(h8),

it follows that for each j = 0, . . . , 7, βj(h) = αjh
j +O(hj+1). In particular, we �nd that

for all su�ciently small h > 0, β7(h) < 0. Hence, for all su�ciently small positive h, we
see that C2(hA) fails to be nonnegative. An analysis similar to the above also reveals
that for all su�ciently small h > 0, and any k ≥ 2, C2(hA)k is nonnegative.

In the context of using a Padé approximation for the purposes of simulating a continu-
ous time positive system by a discrete time positive system, the above example has the
following implication. It is possible for the �rst iterate of the discrete time simulation to
leave the nonnegative orthant (and hence to be incompatible with the notion of a positive
system), for the next iterate to return to the nonnegative orthant, and for all subsequent
iterates to remain in the nonnegative orthant. While those subsequent iterates are indeed
nonnegative, the fact that they are predicated on the incompatible �rst iterate calls their
reliability into question. In particular, if one is not tracking every iterate of the discrete
time simulation, but is instead sampling from the sequence of iterates over time, then
there is the danger that the sampling will fail to observe the violation of nonnegativity.
Thus the sampled iterates may be unreliable, but that unreliability can remain unde-
tected.

In view of the preamble, we now turn our attention to providing su�cient conditions
under which, for a given Metzler and Hurwitz matrix A, Cp(hA) will be a nonnegative
matrix. Our approach will be �rst to analyse the situation for some simple, Padé-like,
rational functions, then to decompose Cp into a suitable product of such functions. We
begin with the following straightforward result, which has also been noted in [22, 19] in
conjunction with preservation of quadratic Lyapunov functions and is a special case of
the main result in [23].

Lemma 3 Let Ac = {aij} be the Metzler and Hurwitz stable matrix. Fix h > 0 and
suppose that α0 > 0. Set α(h) = α0

h , and de�ne Ad by

Ad = (α(h)I +Ac) (α(h)I −Ac)
−1 . (19)

If

h ≤min
i

α0

|aii|
(20)

then Ad is nonnegative and Schur stable (since Ac is assumed to be Hurwitz and conse-
quently has all diagonal entries negative).

Proof. Observing that Ad can be rewritten as a �rst order diagonal Padé approximation
(possibly with a di�erent value of h), the Schur stability of Ad now follows from properties
of diagonal Padé approximations, see [18]. Next we note that since Ac is a Metzler and
Hurwitz stable matrix then (α(h)I − Ac)

−1 ≥ 0. If we also have Θ = α(h)I + Ac ≥ 0
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then Ad is non-negative. The i− th element on the main diagonal of Θ is α(h)− |aii|, so
if h ≤min

i

α0
|aii| , then α(h)I +Ac ≥ 0.

Corollary 1 Let Ac be a Metzler and Hurwitz matrix. If h ≤min
i

2
|aii| , then C1(hAc) is

a nonnegative and Schur stable matrix.

Proof. We have C1(hA) = (I+ h
2A)(I−

h
2A)

−1, so in the notation of Lemma 3, we have
α0 = 2. The conclusion follows immediately.

We now consider a Padé-like rational function where the numerator and denominator are
both quadratics. Speci�cally, suppose that λ0 is a complex number with Re(λ0) > 0.
Suppose that h > 0, set λ(h) = λ0

h , and de�ne Ad via

Ad = (λ(h)I +Ac) (λ
∗(h)I +Ac) (λ(h)I −Ac)

−1 (λ∗(h)I −Ac)
−1 . (21)

Set

Θ1 =
(
|λ(h)|2I + 2Re(λ(h))Ac +A2

c

)
,Θ2 =

(
|λ(h)|2I − 2Re(λ(h))Ac +A2

c

)
, (22)

so that Ad = Θ1Θ
−1
2 . We note in passing that taking λ0 = 3+

√
3i, (21) yields C2(hAc).

De�ne Ac = {aij} and A2
c = {bij} then let P be the set of indices i, j, i ̸= j, such that

bij ̸= 0.

Lemma 4 Let Ac = {aij} be a Metzler and Hurwitz stable matrix and Ad be the matrix
achieved through the transformation (21). Suppose that

0 < h ≤ 2Re(λ0) min
i,j∈P

aij
|bij |

. (23)

Then Θ1 of (22) is a nonnegative matrix, Θ2 of (22) is an M-matrix, and Ad is nonneg-
ative and Schur stable.

Proof. Let z be an eigenvalue of Ac, and note that Re(z) < 0 by hypothesis. A
straightforward computation shows that

||λ(h)|2 + 2Re(λ(h))z + z2| < ||λ(h)|2 − 2Re(λ(h))z + z2|,

from which it follows that Ad is Schur stable via Lemma 2.

We claim that Θ1 is a nonnegative matrix. To see this, �rst note that for each index i,
the i− th diagonal entry of Θ1 is

|λ(h)2|+ 2Re(λ(h))|aii|+ bii. (24)

Since bii = a2ii+
∑n

j=0,j ̸=i aijaji, it is easy to verify that the expression (24) is positive for
all h > 0. Further, for any pair of distinct indices i, j, the (i, j) entry of Θ1 is given by
2Re(λ(h))aij + bij . >From the hypothesis, it follows that 2Re(λ(h))aij −|bij | ≥ 0, which

16



readily yields the fact that 2Re(λ(h))aij + bij ≥ 0. Thus Θ1 is nonnegative, as claimed.

Next, we claim that Θ2 is a nonsingular M-matrix. Note that the i − th diagonal en-
try of Θ2 is equal to |λ(h)2| − 2Re(λ(h))|aii| + a2ii +

∑n
j=0,j ̸=i aijaji, which is readily

seen to be positive. Further, for distinct indices i, j, the (i, j) entry of Θ2 is given
by −2Re(λ(h))aij + bij ≤ −2Re(λ(h))aij + |bij | ≤ 0, the last inequality following
from our hypothesis. Finally, suppose that v is a nonnegative eigenvector of Ac cor-
responding to the eigenvalue r, say. Then Θ2v = (|λ(h)|2 − 2Re(λ(h))r + r2)v; since
|λ(h)|2 − 2Re(λ(h))r + r2 > 0, it now follows from Theorem 2.7 of [15] that Θ2 is a
nonsingular M-matrix, as claimed.

From the two claims above, we now �nd that Ad = Θ1Θ
−1
2 is a nonnegative matrix.

Lemmas 3 and 4 will now yield the following result regarding the nonnegativity of a p-th
order diagonal Padé approximation.

Theorem 3 Let Ac be a Metzler and Hurwitz stable matrix and Ad(h) = Cp(Ach) be the
p − th order diagonal Padé approximation to eAch. Let αl, denote the m real poles of
Cp(·), and let λk, λ

∗
k, k = 1, . . . , n2 denote the n

2 complex conjugate pairs of non�real poles

of Cp(·). If m ≥ 1, we de�ne α̂ = min
l=1,...,m

αl, and if n ≥ 2, we de�ne λ̂ = min
k=1,...,n

2

Re(λk).

Then Ad(h) is nonnegative and Schur stable for every h ≤ h∗, where

h∗ = min
i

α̂

|aii|
, if n = 0, m ≥ 1 (25)

h∗ = 2λ̂ min
i,j∈P

aij
|bij |

, if m = 0, n ≥ 2 (26)

h∗ = min
(
min
i

α̂

|aii|
, 2λ̂ min

i,j∈P

aij
|bij |

)
, if m ≥ 1, n ≥ 2 (27)

where aij and bij denote the (i, j) element of Ac and A2
c respectively.

Proof. We begin by noting that αl > 0, l = 1, . . . ,m and Re(λk) > 0, k = 1 . . . , n2 , and
that m + n = p. Decomposing the p − th order diagonal Padé approximation into real
and complex conjugate pairs of poles [13], we have:

Ad(h) =

m∏
l=1

(αl(h)I +Ac)×
n/2∏
k=1

(
|λk(h)|2I + 2Re(λk(h))Ac +A2

c

)
×

m∏
l=1

(αl(h)I −Ac)
−1

n/2∏
k=1

(
|λk(h)|2I − 2Re(λk(h))Ac +A2

c

)−1
,

(28)

where αl(h) = αl
h , l = 1, . . . ,m and λk(h) = λk

h , λ∗
k(h) =

λ∗
k
h , k = 1, . . . , n2 . For each

l, we may apply Lemma 3 to the factor (αl(h)I + Ac)(αl(h)I − Ac)
−1 to deduce that

it is nonnegative. Similarly, for each k we apply Lemma 4 to the factor
(
|λk(h)|2I +
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2Re(λk(h))Ac + A2
c

)(
|λk(h)|2I − 2Re(λk(h))Ac + A2

c

)−1
to �nd that it is also nonnega-

tive. We �nd immediately that Ad(h) is nonnegative. Finally, since Ad(h) is a diagonal
Padé approximation, it is necessarily Schur stable [18].

Comment 6: Recall that for a q × q matrix M , the directed graph of M,D(M), is the
directed graph on vertices labeled 1, . . . , q such that for any pair of vertices i, j, D(M)
contains the arc i → j if and only if mij ̸= 0. (See [15] for further background.) In this
remark, we provide an interpretation of the condition that h∗ > 0 in Theorem 3 in terms
of D(Ac). Note that h

∗ > 0 if and only if for each nonzero o�diagonal entry in A2
c , the

corresponding entry in Ac is also nonzero. We claim that the condition that h∗ > 0,
is equivalent to the condition that for any pair of distinct indices i, j, either i → j in
D(Ac), or there is no path from i to j in D(Ac). To see the claim, �rst suppose that
h∗ > 0, and suppose that we have a pair of distinct indices i and j such that there is a
path from i to j in D(Ac). Select a shortest such path, say i ≡ i0 → i1 → . . . → il ≡ j,
and note that necessarily the vertices i0, . . . , il must be distinct. Suppose that l ≥ 2,
and note that in that case, the (i0, i2) entry of A2

c is positive, since that entry is equal to∑
k ai0kaki2 ≥ ai0i1ai1i2 > 0. Since h∗ > 0, it must be the case that ai0i2 > 0, but then

i ≡ i0 → i2 → . . . → il ≡ j, is a path from i to j of length less than l, a contradiction.
We conclude that l = 1, so that i → j in D(Ac). Conversely, suppose that for any pair of
distinct indices i, j, either i → j in D(Ac), or there is no path from i to j in D(Ac). Select
a pair of distinct indices i, j such that the (i, j) of A2

c is nonzero - i.e.
∑

k aikakj ̸= 0.
Then for some index k we have aik and akj both nonzero. If k is either i or j, then
certainly aij > 0; if k is neither i nor j, then D(Ac) contains the path i → k → j, and so
by hypothesis D(Ac) must contain the arc i → j, and again we see that aij > 0. In either
case we �nd that the (i, j) entry of Ac is positive, and it follows readily that h∗ > 0. This
completes the proof of the claim. Observe that in the special case that Ac is irreducible,
so that for any pair of distinct vertices i, j, D(Ac) contains a path from i to j, we �nd
that if h∗ > 0, then necessarily every o�-diagonal entry of Ac must be positive.

Comment 7: We note that in the case that n ≥ 2, the quantity h∗ in Theorem 3 is
positive if and only if, for each nonzero o�diagonal entry in A2

c , the corresponding entry
in Ac is also nonzero. It is important to stress here that this condition is always met for
2× 2 matrices, see [19]. This follows as a consequence of the following lemma [19].

Lemma 5 Let Ac ∈ R2×2 be a Metzler and Hurwitz matrix. Denote the entries of this
matrix by aij and the entries of A2

c by bij, i, j ∈ {1, 2}. Then bij = 0 if and only if
aij = 0.

The proof of Theorem 3 shows that for each complex pole λ of Cp, the matrix Θ2 of (22)
(and Lemma (2)) is an M-matrix whenever h ≤ h∗. Next, we discuss a method for �nding
the quantity h0 in Theorem 2. Suppose that we are given Metzler and Hurwitz matrices
Ac1, . . . , Acm and suppose that (12) has a common linear co-positive Lyapunov function.
For each i = 1, . . . ,m, compute the value h∗ for the matrix Aci according to (25), (26),
(27), and denote the corresponding value by h∗i . Now set h0 = min{h∗1, . . . , h∗m}; observe
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that h0 > 0 if and only if for each i = 1, . . . ,m,A2
ci has nonzero o��diagonal entries

only in positions where Aci is positive. An inspection of the proof of Theorem 2 now
shows that for all 0 < h ≤ h0, the discretised system (14) shares the same common linear
co-positive Lyapunov function as the continuous�time system (12).

The expression for h∗ given in Theorem 3 depends in part on the functions α̂ and λ̂ that
are computed from the poles of the Padé approximation Cp. In order to give the reader
some sense of the magnitude of those quantities, the following table provides computed
values for α̂ and λ̂ for a few small values of p. Note that a ∗ entry in the α̂ or λ̂ column
denotes the fact that Cp has no real roots, or no complex roots, respectively.

p α̂ λ̂

1 0.5 ∗
2 ∗ 0.25
3 0.2153 0.1423
4 ∗ 0.0916
5 0.1371 0.0640
6 ∗ 0.0474
7 0.1006 0.0367
8 ∗ 0.0293
9 0.0794 0.0240
10 ∗ 0.0201
11 0.0656 0.0171
12 ∗ 0.0147
13 0.0559 0.0128
14 ∗ 0.0113
15 0.0487 0.0100

5. An alternative approximation to the exponential matrix

The previous sections illustrate some disadvantages of the Padé approximation and mo-
tivates the search for other approximations to the matrix exponential. In this section we
present a Padé-like approximation that has the following properties: one can always �nd
a sampling time such that positivity is preserved, and in addition, for any h, both linear
and quadratic co-positive Lyapunov functions are preserved.

The basic idea is to divide the time window of length h into h
p intervals and, in every

time interval to use an approximation that has some desired properties. As our interval
approximation we use the generalised �rst order diagonal Padé, since from the discus-
sion in Section 3, for such approximations one can always �nd an upper bound of the
sampling time h, below which positivity is guaranteed. Hence we introduce the following
approximation to the exponential matrix:

Aad =

[(
I +

Ach

2p

)(
I − Ach

2p

)−1
]p

, p ∈ N. (29)
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We claim that as p → ∞, Aad → eAch. To see the claim, we �rst note that Aad can

be rewritten as
(
I + Ach

2p

)p (
I − Ach

2p

)−p
. Let Nk be the k × k matrix with ones on the

superdiagonal and zeros elsewhere, and let z be a complex number. A straightforward

exercise shows that as p → ∞,
(
I + (zI+Nk)h

2p

)p
→ e(zI+Nk)h/2 while

(
I − (zI+Nk)h

2p

)−p
→

e−(zI+Nk)h/2. Appealing to the Jordan canonical form for Ac, it now follows that as p →
∞,
(
I + Ach

2p

)p (
I − Ach

2p

)−p
→ eAch/2 · (e−Ach/2)−1 = eAch, as claimed. Consequently,

Aad converges to eAch as p → ∞. We then have the following result.

Theorem 4 Let {Ac,1, . . . , Ac,m} be a set of Metzler and Hurwitz stable matrices. For
each i = 1, . . . ,m, let Aad,i(h) = Cap(Ac,ih) be the p − th order of the approximation to
exponential matrix eAc,ih de�ned in Equation (29). Then the following properties hold
1. Fix an i between 1 and m, and suppose that

0 < h ≤ hi =min
j

2

|ajj,i|
, (30)

where ajj,i are the elements on the main diagonal of the matrix Ac,i. Then Aad,i is both
nonnegative and stable.
2. Consider the following continuous-time switching positive system

ẋ(t) = Ac(t)x(t), x(0) = x0, (31)

where x(t) ∈ Rn
+ , x0 ∈ Rn

+ is the initial condition and Ac(t) belongs to {Ac,1, . . . , Ac,m}.
Suppose that (30) holds. Then the discretised system

x(k + 1) = A(k)x(k) (32)

is positive, where A(k) ∈ {Cap(Ac,1h), ...., Cap(Ac,mh)}. Moreover, if there exists a com-
mon quadratic or linear co-positive Lyapunov function for system (31), then the origin
x = 0 is globally uniformly exponentially stable for system (32).

Proof. 1. Write the matrix Aad,i as:

Aad,i =

(I +Ac
ĥ

2

)(
I −Ac

ĥ

2

)−1
p

= Ap
d1,i, (33)

where ĥ = h
p ≤ 2 min

j

1
|ajj,i| . Therefore, from Corollary 1, Aad,i is a nonnegative matrix.

Schur stability follows from Lemma 3 since Ac,i is Metzler and Hurwitz.

2. Nonnegativity of the Aad,i is evident from the de�nition of h. Now, assume that there
exists a w > 0 is such that w′Ac,i < 0, for all i ∈ {1, 2, . . . ,m}. We now show that this
implies that w′Aad,i < w′ for all i ∈ {1, 2, . . . ,m}. As in the previous part of the proof
we can write Aad,i = Ap

d1,i for all i ∈ {1, 2, . . . ,m}. From Lemma 1, we know that

w′Ad1,i < w′, (34)
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from which it follows that

w′Aad,i = w′Ap
d1,i = w′Ad1,iA

p−1
d1,i < . . . < w′Ad1,i < w′, ∀ i ∈ {1, 2, . . . ,m}. (35)

Hence linear common co-positive Lyapunov functions are preserved by this approximation
to the exponential matrix.
Now, assume that there exists a positive de�nite P = P ′ ≻ 0 such that for all non-
negative x, x′Px > 0, and x′(A′

c,iP +PAc,i)x < 0 for all i ∈ {1, 2, . . . ,m}. Following the
same rationale used above we will prove that the same P satis�es also

x′(A′
ad,iPAad,i − P )x < 0, ∀ x > 0, i ∈ {1, 2, . . . ,m}. (36)

Recalling that Aad,i = Ap
d1,i, with Ad1,i nonnegative and Schur for each i ∈ {1, 2, . . . ,m},

and that x′A′
d1,iPAd1,i < x′Px, ∀ x > 0, i ∈ {1, 2, . . . ,m} according to Lemma 1, we

can write

x′A′
ad,iPAad,i = x′A′

d1,i

[(
Ap−1

d1,i

)′
P
(
Ap−1

d1,i

)]
Ad1ix < . . . < x′Px, ∀ i ∈ {1, 2, . . . ,m}.

(37)

Hence both positivity linear/quadratic common co-positive Lyapunov function are pre-
served through this approximation.
The conclusion now follows readily.

Comment 9: The approximation to the exponential matrix given by (29) is in fact a
minor variation on the well-known scaling and squaring method for computing the ma-
trix exponential (see [24]). The scaling and squaring method exploits the fact that for
a square matrix M and j ∈ N, eM = (eM/2j )2

j
. Accordingly, the scaling and squaring

method proceeds by scaling the original matrix by a power of two, computing a Padé
approximant of the resulting matrix, and then successively squaring that approximant
to produce an approximation to the exponential of the original matrix.

Thus, if p is chosen as a power of 2, then (29) coincides exactly with the scaling and
squaring method, where the Padé approximant computed is the �rst order diagonal Padé
approximant. Following the analysis given in section 11.3.1 of [24], we �nd that if p = 2j

is chosen so that ||hAc||∞ ≤ 2j−1, then the matrix Aad of (29) has the property that

||eAc −Aad||∞
||eAc ||∞

≤ h

6
||Ac||∞e

h
6
||Ac||∞ .

In particular, for small values of h,Aad approximates ehAc with high relative accuracy,
in addition to the above mentioned features that Aad preserves both positivity and lin-
ear/quadratic co-positive Lyapunov functions.

With p = 2j chosen as above, the algorithm presented in [24] for implementing the
scaling and squaring method using the �rst order diagonal Padé approximant requires
about 2(j+ 4

3)n
3 �ops, where n is the order of the matrix in question. Thus we �nd that

if Ac is n× n, then the matrix Aad of (29) can be computed in 2(j + 4
3)n

3 �ops.
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6. Conclusions

In this paper we examine the suitability of diagonal Padé transformations for discretising
positive systems. Unfortunately, the results of this investigation are uniformly bad. In
particular, a number of problems with this transformation are noted, and an alternative
method is presented that avoids these pitfalls.
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