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Abstract

In this thesis, we deal with stability of uncertain positive systems. Although in
recent years much attention has been paid to positive systems in general, there
are still many areas that are left untouched. One of these areas, is the stability
analysis of positive systems under any form of uncertainty. In this manuscript
we study three broad classes of positive systems subject to different forms of
uncertainty: nonlinear, switched and time-delay positive systems. Our focus
is on positive systems which are monotone. Naturally, monotonicity methods
play a key role in obtaining our results.

We start with presenting stability conditions for uncertain nonlinear positive
systems. We consider the nonlinear system to have a certain kind of parametric
uncertainty, which is motivated by the well-known notion of D-stability in
positive linear time-invariant systems. We extend the concept of D-stability
to nonlinear systems and present conditions for D-stability of different classes
of positive nonlinear systems. We also consider the case where a class of
positive nonlinear systems is forced by a positive constant input. We study
the effects of adding such an input on the properties of the equilibrium of the
system.

We then present conditions for stability of positive time-delay systems, when
the value of delay is fixed, but unknown. These types of results are known
in the literature as delay-independent stability results. Based on some recent
results on delay-independent stability of linear positive time-delay systems,
we present conditions for delay-independent stability of classes of positive
nonlinear time-delay systems.

After that, we present conditions for stability of different classes of positive
linear and nonlinear switched systems subject to a special form of structured
uncertainty. These results can also be considered as the extensions of the
notion of D-stability to positive switched systems.
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And finally, as an application of our theoretical work on positive systems, we
study a class of epidemiological systems with time-varying parameters. Most
of the work done so far in epidemiology has been focused on models with time-
independent parameters. Based on some of the recent results in this area, we
describe the epidemiological model as a switched system and present some
results on stability properties of the disease-free state of the epidemiological
model.

We conclude this manuscript with some suggestions on how to extend and
develop the presented results.
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Notations

Symbol Meaning

R The field of real numbers
R+ The set of nonnegative real numbers
Rn The space of column vectors of size n of real numbers
Rn×n The space of n× n matrices of real numbers
C The field of complex numbers
<(c) The real part of the complex number c
=(c) The imaginary part of the complex number c
xi The ith entry of the vector x in Rn, for i ∈ {1, · · · , n}
x0 A vector in Rn that usually represents initial condition
y = |x| A vector with the same dimension as x with yi = |xi|
‖x‖ Any p-norm of the vector x
aij The (i, j) entry of the matrix A
D = diag (x) An n× n diagonal matrix in which dii = xi for all i
AT The transpose of the matrix A
A−1 The inverse of the matrix A
|A| The determinant of the matrix A
‖A‖ Any p-norm of the matrix A
A� B aij > bij, for all i, j ∈ {1, · · · , n}
A > B aij ≥ bij, for all i, j ∈ {1, · · · , n} and A 6= B
A ≥ B aij ≥ bij, for all i, j ∈ {1, · · · , n}
Rn

+ The positive orthant of Rn, given by {x ∈ Rn : x ≥ 0}
I The identity matrix of proper dimensions
0 The zero matrix of proper dimensions
σ(A) The set of all eigenvalues (spectrum) of the matrix A
ρ(A) The spectral radius of the matrix A
µ(A) The spectral abscissa of the matrix A

xi



CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work of this thesis and provide
an overview of the material presented in the following chapters.

1.1 Introductory Remarks
Positive systems are those systems whose states remain nonnegative for all
future times, if started from nonnegative initial conditions. Positivity is not
an inherent property of a system; we might be able to turn a positive system
into a non-positive system with a simple change of variable. However, in many
cases the variables which are normally chosen as state variables can only take
nonnegative values, thus, leading to models which are in fact positive systems.
Such systems can be found in different areas of science and technology. We
recall a few examples here.

Biology and physiology. The theory of positive systems has been used re-
peatedly and successfully to model biological and physiological systems.
That is mainly motivated by the fact that an important characteristic
of biochemical models is that most variables take only nonnegative val-
ues, since they usually represent chemical concentrations. [Son05] and
[HC05] are among the many references that describe the links between
biological systems and positive systems theory.

1



1.1. Introductory Remarks

Ecology and population dynamics. Positive systems are natural choices
for modelling ecological systems. The reason is that in ecological sys-
tems, usually the states of the system are the populations of different
species, which are of course nonnegative valued. That is why since the
early works of Lotka [Lot25] and Volterra [Vol26] on ecological systems,
positive systems have played an important role in this field. Look for
example at [HS98b] for a review of some of the more common ecological
models.

Economics. Perhaps the most significant, but certainly not the only, area in
economics in which the theory of positive systems plays an important
role is input-output analysis. Input-output analysis is introduced by
Leontief in [Leo36]. The input-output analysis deals with the specific
question of what should be the production level of different industries
in an economy, in order to satisfy the demand for a certain product in a
particular economic situation. Another important application of positive
systems in economics is in the study of the von Neumann model, which
is developed by von Neumann in [vN45]. This model introduces the
concept of equilibrium growth and provides the first proof that a solution
to a general equilibrium model exists. [BP94, Chapter 9] provides more
details on the applications of the theory of positive systems in the input-
output model.

Communications. Positive systems have been used successfully in the mod-
elling, analysis and control of different phenomena in communications.
For example in congestion control in TCP networks [SWL06, SKWL07],
and in stability analysis of distributed power control algorithms for cel-
lular communications [PAMS04].

Compartmental systems. A compartment is an amount of some material
that is kinetically homogeneous. Kinetically homogeneous means that
the material of a compartment is at all times homogeneous; any material
entering it is instantaneously mixed with the material of the compart-
ment [JS93]. A compartment can, for example, be a physical model
of a part of the body of a living organism with a more or less homo-
geneous concentration of a chemical compound or of a material. A
compartmental system is compromised of a number of compartments.

2



1.1. Introductory Remarks

Compartmental systems were first used in physiology, but are natural
models for pharmacokinetics, epidemiology, ecology, and other systems
whose models are derived from mass balance considerations. The vari-
ables of interest in a compartmental system are usually the mass of each
compartment and the flows into and out of it. Since we deal with mass
of different substances in these cases, therefore, we can usually describe
the compartmental systems as a positive system. In other words, com-
partmental systems can be described as a subset of the class of positive
systems. Look at [JS93] and [BF02] and references therein for more
information on compartmental systems.

Genetic regulatory network. A genetic regulatory network is a collection
of DNA segments in a cell which interact with each other indirectly
(through their RNA and protein expression products) and with other
substances in the cell, thereby governing the rates at which genes in the
network are transcribed into mRNA. In general, each mRNA molecule
goes on to make a specific protein (or set of proteins). Genes can be
viewed as nodes in a network, with inputs being proteins such as tran-
scription factors, and outputs being the level of gene expression. It is
common to model such a network with a set of coupled (possibly stochas-
tic) ordinary differential equations describing the reaction kinetics of the
constituent parts. In such cases, the states of the systems are the concen-
trations of the corresponding substances, which are in fact nonnegative
variables. [dJ02] provides a review of different approaches in studying
genetic regulatory networks.

Markov chains. A Markov chain is a stochastic process with finite or count-
able states. It is a random process whose next state depends only on
the current state and not on the sequence of events that preceded it.
If the state space is finite, the transition probability distribution of the
Markov chain at each step (or instant of time) can be represented by a
matrix, called the transition matrix. The transition matrix is a stochas-
tic matrix, meaning each of its rows sums to one and all elements are
nonnegative. Markov chains have found numerous applications in differ-
ent areas of science. Look for example at [BP94, Chapter 8] and [Sen06]
for a better understanding of Markov chains in the context of positive
systems.

3



1.1. Introductory Remarks

Chemostats and bioreactors. A bioreactor is a vessel in which a chemical
process is carried out which involves organisms or biochemically active
substances derived from such organisms. A chemostat is a bioreactor to
which fresh medium is continuously added, while culture liquid is con-
tinuously removed to keep the culture volume constant. Chemostats are
used for investigations in cell biology, as a source for large volumes of
uniform cells or protein. The chemostat is often used to gather steady
state data about an organism in order to generate a mathematical model
relating to its metabolic processes. Chemostats are also used as micro-
cosms in ecology and evolutionary biology. The parameters of interest
in a chemostat (for example culture volume, dissolved oxygen concen-
tration, nutrient and product concentrations, pH, cell density, etc.) are
nonnegative variables. Thus a chemostat can be modelled as a positive
system. Look at [SW95] for more information on chemostats and on the
applications of dynamical systems to their analysis.

Epidemiology. Usually in epidemiological models, the population that is un-
der study is divided into different classes and the numbers of individuals
in each of these classes are considered as state variables. That is why
sometimes epidemiological models are studied as a special case of eco-
logical models. We have dedicated a whole chapter in this manuscript
to epidemiological models. Chapter 6 discusses the stability analysis
of a class of epidemiological models described as a positive nonlinear
switched system.

Of course the positivity of systems would not have been of much significance,
if it was not because of the theoretical properties of positive systems that make
their analysis more straightforward. That is ,in particular, true for positive
linear systems that have a rich literature and been investigated thoroughly.
The theory of positive linear systems is intertwined with that of nonnegative
matrices, i.e., matrices with nonnegative entries. In fact, in many applications
of the theory of the positive systems (including some of the above mentioned
examples), only properties of nonnegative matrices have been utilised without
any explicit references to positive systems. In the next chapter, we see that for
a discrete-time linear system to be positive, its representative matrix should be
a nonnegative matrix but that is not necessary for positivity of a continuous-

4



1.2. Overview

time linear system. Although, with a simple transformation, some of those
powerful properties of nonnegative matrices can be used in the analysis of
continuous-time positive linear systems.

Even though stability properties of positive linear time-invariant systems are
now well understood, there are still a lot of unanswered questions in the study
of stability properties of other classes of positive systems, such as positive
nonlinear, time-delay and switched systems. That is in particular true if we
consider positive systems which are subject to uncertainty. Although there
is a rich literature on properties of uncertain systems, they have been rarely
studied in the context of positive systems. To fill this void, in this thesis
work, we deal with stability properties of nonlinear, time-delay and switched
positive systems under different forms of uncertainty. The results presented
for stability of uncertain nonlinear and switched positive systems are inspired
by the concept of D-stability, which is one of the well-known properties of
positive linear systems (as discussed in the next chapter). We also present
conditions for stability of positive time-delay systems, when the value of delay
is fixed, but unknown. Such results are known as delay-independent stability
results.

1.2 Overview
We begin by setting the context and providing the background material for
much of the later work in Chapter 2. Basic concepts of matrix analysis and
dynamical systems as well as the relevant properties of positive linear time-
invariant and nonlinear systems are all reviewed in this chapter. We also
introduce homogeneous and subhomogeneous systems and recall some of the
relevant properties of monotone systems. We also state sufficient conditions
for positivity of monotone systems which are used in the following chapters.
The KKM lemma, which is a well-known result in fixed-point theory is also
discussed in Chapter 2.

In Chapter 3, we introduce the concept of D-stability for positive nonlinear
systems and present results on D-stability for homogeneous and subhomoge-
neous monotone systems. We also present a local D-stability result for general
cooperative systems. Moreover, we study the case where a monotone subho-
mogeneous system is forced by a constant input and study how such an input

5



1.2. Overview

affects positivity and stability properties of its equilibria.

In Chapter 4, we study positive nonlinear systems which are subject to time-
delay. Inspired by the recent results on delay-independent stability of positive
linear time-delay systems, we present delay-independent stability results for
homogeneous and subhomogeneous cooperative time-delay systems. We also
state a local delay-independent result for general cooperative systems.

In Chapter 5, we deal with positive switched systems. In this chapter, we
extend the concept of D-stability to positive switched systems. Most of the
work done on positive switched systems so far has been focused on positive
linear switched systems. In line with those efforts, we present novel necessary
and sufficient stability conditions for positive linear switched systems. Then
we add an irreducibility assumption to state a single necessary and sufficient
condition for positive linear switched systems. We also state D-stability con-
ditions for homogeneous cooperative systems and positive switched systems
with commuting vector fields.

In Chapter 6, we study a class of epidemiological models with time-varying
parameters. We consider the SIS model, which is used to model diseases that
do not confer immunity. SIS models have been used in modelling diseases like
tuberculosis and gonorrhoea and also in studying propagation of computer
viruses. Most of the research done on different classes of epidemiological mod-
els in general and SIS models in particular have been focused on networks
with time-independent parameters. That is clearly a simplistic assumption,
because apart from spatial movements of individuals, their health conditions
are also subject to change, for example via vaccination or malnutrition. As a
step in extending the current results to networks with time-varying parame-
ters, we describe the SIS model as a positive switched system and then state
different stability conditions for the disease-free equilibrium of the switched
SIS model.

In Chapter 7, we summarize the stated results and conclude the thesis by
outlining possible directions for extending those results.

6
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CHAPTER 2
Background

This chapter provides the mathematical basis required to understand the results
presented in the following chapters. We recall some definitions in matrix and non-
linear analysis and state some basic definitions and results related to dynamical
systems.

2.1 Introduction
In this chapter, we define various concepts and results that will be used in the
following chapters. Apart from the results concerning subhomogeneous vector
fields and their properties, the rest of the results presented in this chapter are
well-known results in the literature. We first recall some basic results in linear
algebra and then discuss some known properties and definitions concerning
dynamical systems. Then we focus on linear and nonlinear positive systems
and their properties. Classes of homogeneous and subhomogeneous systems,
which will be repeatedly used in the following chapters, are discussed in the
context of positive systems. Switched systems will be discussed thoroughly in
Chapter 5, therefore, we leave the discussion on basic properties of switched
systems to that chapter.

9



2.2. Basic Concepts in Matrix Analysis

2.2 Basic Concepts in Matrix Analysis
Throughout this manuscript, R and C denote the field of real numbers and
complex numbers, respectively. The real part of c ∈ C is represented by <(c)
and its imaginary part by =(c). Rn×n denotes the space of n × n matrices
with real entries. Rn is the space of column vectors of size n with real entries.
For x ∈ Rn and i = 1, . . . , n, xi denotes the ith coordinate of x. Note that,
we usually use x0 for the initial condition of a system or just a general vector
in Rn. For A ∈ Rn×n, aij denotes the (i, j)th entry of A. AT represents the
transpose matrix of A and A−1 is the inverse matrix of A. Also, for x ∈ Rn,
D = diag (x) is the n×n diagonal matrix in which dii = xi. We use 0 to refer
to a vector or matrix of appropriate dimensions with all entries equal to zero.
I refers to identity matrix of proper dimensions.

We define:
R+ := {x ∈ R : x ≥ 0}

and
Rn

+ := {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}

Rn
+ is called the positive orthant of Rn.

Given a point x0 ∈ Rn and a real number r > 0, B(x0; r) is called an open
ball around x0 if we have:

B(x0; r) = {x ∈ Rn : d(x, x0) < r}

where d(·, ·) represents any metric in Rn. x0 is called the centre and r the
radius of the ball. For any subset U of Rn, a point x0 is called an interior
point of U if there is an open ball around x0 which is wholly contained in U .
The set of all interior points of U is called the interior of U and is denoted by
int (U). In the special case where U = Rn

+, we have:

int (Rn
+) := {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}

For a closed subset U of Rn the boundary of U is defined as:

bd (U) := U \ int (U)

Let x0 be a point in Rn. An open ball B(x0; ε) of radius ε > 0 is often called
an ε-neighbourhood of x0. By a neighbourhood of x0, we mean any subset of
Rn which contains an ε-neighbourhood x0 [Kre78, p. 19].
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2.3. KKM Lemma

Let U and W be subsets of Rn. The set W is a neighbourhood of the set U , if
it contains a neighbourhood of every point of U .

For vectors x, y ∈ Rn, we write: x ≥ y if xi ≥ yi; x > y if x ≥ y and x 6= y;
and x � y if xi > yi for 1 ≤ i ≤ n. Similarly, for matrices A,B ∈ Rn×n,
we write A ≥ B if aij ≥ bij; A > B if A ≥ B and A 6= B; and A � B if
aij > bij for 1 ≤ i, j ≤ n. Note that in this manuscript, we will never use
A > 0 (A < 0) symbol to refer to positive-definite (negative definite) matrices.

For A ∈ Rn×n, we denote the spectrum of A by σ(A). The spectral radius of
A is denoted by ρ(A) and is defined as:

ρ(A) := max{|λ| : λ ∈ σ(A)}

Also, the notation µ(A) denotes the spectral abscissa of A which is defined as
follows:

µ(A) := max{<(λ) : λ ∈ σ(A)}

A matrix A is called Hurwitz, if µ(A) < 0.

A real n×n matrix A = (aij) is Metzler if its off-diagonal entries are nonneg-
ative.

The matrix A is irreducible if and only if for every non-empty proper subset
K of N := {1, · · · , n}, there exists an i ∈ K, j ∈ N \ K such that aij 6= 0.
When A is not irreducible, it is reducible.

2.3 KKM Lemma
The classical theorem of Knaster-Kuratowski-Mazurkiewicz (often called the
KKM theorem, or the KKM lemma or KKM principle) has numerous appli-
cations in various fields of pure and applied mathematics. Extensions and
applications of the core idea of theorem are now known as the KKM theory
[Yua99]. The KKM lemma was first published in 1929, by three Polish math-
ematicians, Bronislaw Knaster (1893 - 1990), Kazimierz Kuratowski (1896 -
1980) and Stefan Mazurkiewicz (1888 - 1945) [KKM29].

In Chapter 3, we will make considerable use of the KKM Lemma. The KKM
lemma as originally stated was concerned with coverings of a simplex by closed
sets, but it is a later version of the result concerning open coverings that we

11
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make use of here [Par00]. A more detailed description of KKM lemma and its
variations can be found in [Yua99]. Before stating the lemma, we first need
to recall some definitions which are adopted from [Yua99].

A set of vectors in Rn represented by {a0, a1, · · · , ar} is affinely independent
if the system of vectors

(a1 − a0), · · · , (ar − a0)

is linearly independent.

Given a set of affinely independent vectors, a0, a1, · · · , ar, the set of all vectors
of the form

x = λ0a0 + λ1a1 + · · ·+ λrar (2.1)

where λi ≥ 0, 0 ≤ i ≤ r, λ0 + λ1 + · · · + λr = 1 is called an r-dimensional
simplex, or briefly an r-simplex. The points a0, a1, · · · , ar are the vertices of
the simplex. For simplicity, we denote the simplex by S(a0, . . . , ar).

For any c ∈ R, cS(a0, . . . , ar) is the set of all vectors cx where x is of the form
(2.1). For any p ∈ Rn and c ∈ R, p + cS(a0, . . . , ar) is the set of all vectors
p+ cx where x is of the form (2.1).

The simplex whose vertices are the standard basis vectors e1, . . . , en of Rn is
referred to as the standard simplex and denoted by ∆n.

Given a simplex S(a0, . . . , ar) and indices 0 ≤ i0 < i1 < · · · < ip ≤ r, the
simplex S(ai0 , . . . , aip) is a face of S(a0, . . . , ar).

In the sequel, we shall use the following open version of the KKM Lemma
[Par00].

Theorem 2.3.1 (KKM Lemma). Let ∆ := S(a0, a1, . . . , ar) be an r-simplex
and let F0, F1, . . . , Fr be open subsets of ∆. If

S(ai0 , . . . , aip) ⊂ Fi0 ∪ Fi1 ∪ · · · ∪ Fip

holds for all faces S(ai0 , . . . , aip), 1 ≤ p ≤ r, 0 ≤ i0 < i1 < · · · < ip ≤ r, then

F0 ∩ F1 · · · ∩ Fr 6= ∅.

The geometric meaning of the KKM lemma is illustrated by Figure 2.1.
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Figure 2.1: The geometric representation of the KKM Lemma.

2.4 Dynamical Systems
In this section, we recall some basic definitions and results concerning dy-
namical systems. The systems we deal with in this chapter are autonomous
continuous-time nonlinear systems of the form:

ẋ(t) = f(x), x(0) = x0 (2.2)

where f : D 7→ Rn is a nonlinear vector field on a subset D of Rn and
x0 ∈ D is called the initial condition. The forward solution (sometimes referred
to as solution) or trajectory of (2.2) with initial condition x0 at t = 0 is
denoted by x(t, x0) and is defined on the maximal forward interval of existence
Ix0 := [0, Tmax(x0)) [Kha02]. Hereafter, if we do not explicitly specify the
maximal forward interval of existence for an initial condition x0, we always
assume Ix0 = [0,+∞).

For some x0 ∈ D, x(t, x0) is said to be decreasing, if for all t ≥ 0 and s > 0
with t+ s ∈ Ix0 , we have:

x(t+ s, x0) < x(t, x0)

Also, x(t, x0) is said to be non-increasing, if

x(t+ s, x0) ≤ x(t, x0)

increasing and non-decreasing trajectories are defined in the obvious manner.

13
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A set U ⊂ D is forward invariant or positive invariant for system (2.2) if and
only if ∀x0 ∈ U , x(t, x0) ∈ U for all t ∈ Ix0 .

A point p is an omega limit point of x0 if there exists an increasing se-
quence of time instances {tk}, with tk → +∞ when k → +∞, such that

lim
tk→+∞

x(tk, x0) = p. The set of all the omega limit points of x0 is called its
omega limit set and is represented by ω(x0). Note that omega limit set of x0

can be empty, for example if the solution starting from x0 diverges.

If Tmax(x0) = +∞, then the set O(x0) := {x(t, x0)|t ∈ R+} is the forward
orbit of the forward solution x(t, x0). O(x) is said to be a T-periodic orbit for
some T > 0 if x(T, x0) = x0. In that case, x(t+ T, x0) = x(t, x0) for all t ≥ 0,
so O(x) = {x(t, x0) : 0 ≤ t ≤ T} [Smi95].

If the model (2.2) is to be a useful mathematical representation of a dynamical
system, then it should have two important properties. The solution for every
initial condition of interest should exist, and it should be unique. To state
the condition for existence and uniqueness of the solution of (2.2), we need to
define the Lipschitz condition.

Definition 2.4.1 (Lipschitz Condition). Let D ⊂ Rn and let f : D 7→ Rn be
a nonlinear vector field. We say f is locally Lipschitz in a closed subset U of
D, if there exists a positive real L such that

‖f(x)− f(y)‖ ≤ L‖x− y‖

for all x, y ∈ U where ‖ · ‖ represents any p-norm.

The Lipschitz property is weaker than continuous differentiability, as stated
in the next lemma which is Lemma 3.2 in [Kha02].

Lemma 2.4.1. If f(a) and ∂f
∂x

(a) are continuous in a subset U of D, then f
is locally Lipschitz in U .

The following theorem, states condition for existence and uniqueness of the
solutions of (2.2) [Kha02, Theorem 3.1].

Theorem 2.4.2 (Local Existence and Uniqueness). Let D ⊂ Rn and let f :
D 7→ Rn be a nonlinear vector field. Let f be continuous and Lipschitz in
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B = {x ∈ D : ‖x − x0‖ ≤ r} for some real r with r > 0. Then there exists
some δ > 0 such that system (2.2) with x(0) = x0 has a unique solution over
[0, δ].

We now extend the concept of irreducibility to nonlinear dynamical systems.
Following [AdL02] System (2.2) is irreducible in Rn

+, if

• For all a ∈ int (Rn
+), ∂f

∂x
(a) is irreducible,

• For all a ∈ bd (Rn
+) \ {0}, either ∂f

∂x
(a) is irreducible or fi(a) > 0 for all

i such that ai = 0.

2.4.1 Stability
We next recall various fundamental stability concepts but before formally
stating definitions of stability, we should define the concept of equilibrium of
a system.

Definition 2.4.2 (Equilibrium Point). Let D ⊂ Rn and let f : D 7→ Rn

be a nonlinear vector field. Any point x̄ ∈ D that satisfies f(x̄) = 0 is an
equilibrium point of the system (2.2).

Now we are ready to define different concepts of stability.

Definition 2.4.3. Let f : D 7→ Rn be a vector field on an open subset D of
Rn. Let the system (2.2) have an equilibrium at p in a positive invariant and
closed subset U of D. We consider U to be the state space of the system (2.2).
Then we say that the equilibrium point p is

• stable, if for each ε > 0, there is δ = δ(ε) > 0 such that

‖x0 − p‖ < δ ⇒ ‖x(t, x0)− p‖ < ε, ∀t > 0.

• unstable, if it is not stable;

• asymptotically stable if it is stable and there exists a neighbourhood N
of p such that

x0 ∈ N ⇒ lim
t→∞

x(t, x0) = p.
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The set
A(p) := {x0 ∈ U : x(t, x0)→ p, as t→∞}

is the domain of attraction or region of attraction of p. If A(p) = U , then we
say p is globally asymptotically stable (GAS for short).

2.4.2 Cooperative Systems
Of special interest for us in this manuscript are cooperative systems and
monotonicity. Monotone methods have been applied since at least the 1920s
[Mül26, Kam32], but not until the work of M. W. Hirsch in the 1980s was
the potential of monotonicity widely appreciated in dynamical systems the-
ory (look at [Hir88b] and references therein). We start with the definition of
monotone systems.

Definition 2.4.4 (Monotonicity). Suppose D ⊂ Rn is a forward invariant set
for system (2.2). The system (2.2) is monotone in D if and only if ∀x0, y0 ∈ D
with x0 ≤ y0, it holds that x(t, x0) ≤ x(t, y0), ∀t ∈ (Ix0

⋂ Iy0).

There is another property which is closely related to monotonicity.

Definition 2.4.5 (Strong Monotonicity). Let D ⊂ Rn be a forward invariant
set for system (2.2). System (2.2) is strongly monotone in D if and only if
∀x0, y0 ∈ D with x0 < y0, it holds that x(t, x0)� x(t, y0), ∀t ∈ (Ix0

⋂ Iy0).

There is an easy way to check monotonicity of a system which is due to
[Kam32]. It is called the Kamke Condition.

Definition 2.4.6 (Kamke Condition). The vector field f : D 7→ Rn on an
open subset D of Rn is said to be of type K or to satisfy Kamke Condition, if
for each i, fi(a) ≤ fi(b) for any two points a and b in D satisfying a ≤ b and
ai = bi.

The following Proposition, which is a restatement of Proposition 3.1.1 in
[Smi95], links Kamke condition with monotonicity.

Proposition 2.4.3. Let f be type K in an open subset D of Rn. Then system
(2.2) is monotone.
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Another concept that we will use repeatedly in this manuscript, and is closely
tied with monotonicity, is the concept of cooperativity. A cooperative system
is defined as follows.

Definition 2.4.7 (Cooperativity). We say that the C1 vector field f : D → Rn

is cooperative on a closed subset U of D if the Jacobian matrix ∂f
∂x

(a) is Metzler
for all a ∈ U . Also, system (2.2) is said to be cooperative, if f is cooperative.

Example 2.4.1. As an example of a cooperative system, consider the follow-
ing system:

ẋ = f(x) = diag (x)(Ax+ b) (2.3)

where A is Metzler. System (2.3) represents a Mutualistic Lotka-Volterra
system [HS98b, Chapter 15] and is a model for interactions between two or
more species, all benefiting from the interaction. For example, in ant-plant
mutualisms, ants defend plants from herbivores or perform other services in
exchange for nest sites and nutrition provided by the plants [Roc06, Chapter
8]. Since xi represents the population of the ith species, therefore, it is logical
to assume x > 0.

Calculating the Jacobian of f(·), we have:

J i(x) = (ai1xi, ai2xi, · · · , 2aiixi + bi +
∑
j 6=i

aijxj, · · · , ai(n−1)xi, ainxi)

where J i represents the ith row of the Jacobian matrix J . It is easy to see
that J is Metzler, which means the system (2.3) is cooperative in Rn

+. �

It can be proved that every cooperative system defined on a suitable set sat-
isfies Kamke condition, hence, is monotone. The following remark, which is
Remark 3.1.1 in [Smi95], describes this relation.

Remark 2.4.1. A subset D of Rn is said to be p-convex if αx + (1− α)y ∈ D
for all α ∈ [0, 1] whenever x, y ∈ D and x ≤ y. Obviously, if D is convex, then
it is also p-convex. Let D be a p-convex subset of Rn and let f : D 7→ Rn be
cooperative, which means we have

∂fi
∂xj

(a) ≥ 0 i 6= j ∀a ∈ D (2.4)
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Then the fundamental theorem of calculus, implies that f satisfies the Kamke
condition in D. In fact, if a ≤ b and ai = bi, then

fi(b)− fi(a) =
∫ 1

0

∑
i 6=j

∂fi
∂xj

(a+ r(b− a))(bj − aj)dr ≥ 0

by (2.4).

Monotonicity is a powerful property and provides a range of different mathe-
matical tools that will help us in the following chapters. One of the properties
of monotone systems that we will repeatedly use is the following lemma which
is a restatement of Proposition 3.2.1. in [Smi95].

Lemma 2.4.4. Let D be an open subset of Rn and let f : D → Rn be a
cooperative vector field. Assume there exists a vector w such that f(w) � 0
(f(w) � 0). Then the trajectory x(t, w) of system (2.2) is decreasing (in-
creasing) for t ≥ 0. In the case of f(w) ≤ 0 (f(w) ≥ 0), the trajectory will be
non-increasing (non-decreasing).

2.4.3 Positive Systems
In this manuscript, we shall be almost exclusively concerned with positive
systems. A system is called positive, if starting from any initial condition
in the positive orthant (Rn

+), the trajectory of the system will remain in the
positive orthant. The formal definition of a positive system is as follows.

Definition 2.4.8. System (2.2) is called positive, if

x(t, x0) ≥ 0 for all t ≥ 0, x0 ≥ 0 (2.5)

In other words, if Rn
+ is an invariant set for the system (2.2), then the system

is positive.

Due to the fact that we deal with positive systems in this manuscript, here-
after, when we say f is cooperative without specifying the set U , we under-
stand that it is cooperative in Rn

+. To avoid complications that may arise
from calculating the Jacobian matrix on the bd (Rn

+), hereafter, unless stated
otherwise, we always assume any vector field is well-defined in W , where W
is a neighbourhood of Rn

+.

The following lemma is an immediate consequence of Lemma 2.4.4.
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Lemma 2.4.5. Let W be a neighbourhood of Rn
+ and let f : W → Rn be a

vector field such that system (2.2) is cooperative and positive. Suppose that the
system (2.2) has an equilibrium point at p ∈ Rn

+. The following statements
hold.

(i) If there exists w > p with f(w) ≥ 0, then x(t, w) ≥ w for all t ≥ 0;

(ii) If there exists 0 ≤ w < p with f(w) ≤ 0, then x(t, w) ≤ w for all t ≥ 0.

In particular, in both case (i) and case (ii), w cannot lie in the domain of
attraction A(p) of p.

Proof: (i) Based on Lemma 2.4.4, if f(w) ≥ 0, then x(t, w) is non-decreasing,
which means x(t, w) ≥ w for all t ≥ 0. If w is in the domain of attraction of
p, then x(t, w) → p as t → ∞. Therefore, since p < w, then for some t1 > 0,
x(t1, w) < w which contradicts the fact that x(t, w) is non-decreasing. Hence
w cannot be in the domain of attraction of p.

(ii) Similar to the proof of (i) with proper changes in inequalities.

2.5 Positive LTI Systems
In this section, we recall some basic properties of linear time-invariant (LTI)
systems with an emphasis on positive LTI systems. Although linear systems
can be rarely found in nature and even in industry, control design methods
based on linear models have proven quite successful in practice. Furthermore,
a lot of concepts and methods related to linear systems can be extended to
nonlinear systems and that is what we will do in this chapter. We present
some properties of LTI systems in this section and in the next section we will
see how some of those properties can be extended to nonlinear systems. A
continuous-time LTI system with zero input can be described as follows:

ẋ(t) = Ax(t), ∀t ≥ 0 (2.6)

x(0) = x0 (2.7)

where A ∈ Rn×n. It is easy to check that the origin is an equilibrium of the
system (2.6). It is a well-known fact that the origin is a GAS equilibrium
of system (2.6) if and only if the matrix A is Hurwitz. Look for example
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at [Rug96] for a comprehensive study of linear systems and their properties.
Another condition for stability of LTI systems is the Lyapunov condition that
in its simplest form can be stated as follows [Che99, Theorem 5.5].

Theorem 2.5.1. The origin is a GAS equilibrium of the LTI system (2.6) if
and only if there exists a symmetric positive-definite matrix P such that the
matrix ATP + PA is negative-definite.

Of special interest to us, are positive LTI systems. The following well-known
theorem, provides a straightforward and easy to check condition for positivity
of LTI systems [FR00, Theorem 2].

Theorem 2.5.2. The continuous-time LTI system (2.6) is positive if and only
if A is Metzler.

Comparing the condition stated in Theorem 2.5.2 with the definition of coop-
erative vector fields, it is clear that a continuous-time LTI system is positive,
if and only if it is cooperative and hence monotone. The following lemma
formally states this property.

Lemma 2.5.3. The LTI system (2.6) is monotone, if and only if it is positive.

Proof: System (2.6) is cooperative if and only if A is Metzler. Therefore,
the proof follows directly from Theorem 2.5.2 and the fact that cooperative
systems are monotone.

It must come as no surprise that in the following chapters we will be mainly
dealing with nonlinear systems which are cooperative. We will use coopera-
tivity as a tool to extend the properties of positive LTI systems to the realm
of positive nonlinear systems.

A famous and very useful property of positive LTI systems is stated in the
Perron-Frobenius Theorem. Perron-Frobenius Theorem is evolved from the
contributions of German mathematicians Oskar Perron (1880-1975) and Fer-
dinand Georg Frobenius (1849-1917). A short and interesting biography of
these two mathematicians can be found in [Mey00, Chapter 11]. Perron pub-
lished his treatment of positive matrices in 1907. In [Per07], he stated some
results on matrices with positive entries which are the basis of what we know
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today as the Perron-Frobenius Theorem. Frobenius, was intrigued by Oskar
Perron’s discovery. In Frobenius’ words from the introduction to [Fro08], the
"characteristic determinant and its sub-determinant" of matrices with positive
real-entries "have some remarkable properties" [Cur99]. He published three
papers on the subject himself, from 1908 to 1912 [Fro08, Fro09, Fro12], con-
taining simplified proofs and significant extensions of the Perron’s results to
matrices with nonnegative entries.

The Perron-Frobenius Theorem, as originally stated by Perron, can be stated
as follows [HJ85, Theorem 8.2.11].

Theorem 2.5.4 (Perron-Frobenius Theorem for strictly positive matrices ).
Let A ∈ Rn×n and A� 0, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue of A.

(iii) ρ(A) is an algebraically and hence geometrically simple eigenvalue of A;

(iv) If x is the eigenvector corresponding to ρ(A), then x� 0;

(v) For every eigenvalue λ 6= ρ(A), |λ| < ρ(A).

Frobenius, extended the above theorem to positive irreducible matrices.

Theorem 2.5.5 (Perron-Frobenius Theorem for positive irreducible matri-
ces). Let A ∈ Rn×n be irreducible and A > 0, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue of A.

(iii) ρ(A) is an algebraically and hence geometrically simple eigenvalue of A;

(iv) If x is the eigenvector corresponding to ρ(A), then x� 0.

Extensions of the Perron-Frobenius Theorem to Metzler matrices have also
been developed. Since we mostly deal with Metzler matrices, we are more in-
terested in the Perron-Frobenius Theorem for Metzler matrices. Before stating
the theorem, we need to define some terminology.
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Definition 2.5.1 (Dominant Eigenvalue and Eigenvector). λF is dominant or
Frobenius eigenvalue of A if and only <(λF ) = µ(A). Eigenvectors correspond-
ing to dominant eigenvalues are called the dominant or Frobenius eigenvectors
of A.

Remembering the conditions of stability for LTI systems, it is clear that a
continuous-time LTI system is globally asymptotically stable if and only if
<(λF ) < 0.

Now we are ready to state the Perron-Frobenius Theorem for Metzler matrices
[FR00, Theorem 11].

Theorem 2.5.6 (Perron-Frobenius Theorem for Metzler Matrices). Let A ∈
Rn×n be Metzler. Then

(i) µ(A) ∈ σ(A);

(ii) If Ax = µ(A)x, then x > 0;

(iii) If x is an eigenvector of A with x� 0, then Ax = µ(A)x.

If we add the extra assumption of irreducibility, then even more can be said
about dominant eigenvalues and eigenvectors. Note that when A is irreducible,
then we say the system (2.6) is irreducible. The Perron-Frobenius Theorem
for irreducible Metzler matrices can be stated as follows [FR00, Theorem 17].

Theorem 2.5.7 (Perron-Frobenius Theorem for Irreducible Metzler Matri-
ces). Let A ∈ Rn×n be Metzler and irreducible. Then

(i) µ(A) is an algebraically simple eigenvalue of A;

(ii) xF � 0 and is unique (up to a scalar multiplication);

(iii) If x is an eigenvector of A with x > 0, then Ax = µ(A)x.

Many necessary and sufficient conditions for stability of LTI systems become
simpler for positive LTI systems. For example, the Lyapunov condition for
stability of positive LTI systems has a simpler form [FR00, Theorem 15].
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Theorem 2.5.8. Let A ∈ Rn×n be a Metzler matrix. The origin is a GAS
equilibrium of LTI system (2.6) if and only if there exists a diagonal matrix
P with diagonal positive entries such that the matrix ATP + PA is negative-
definite.

Another important property of positive LTI systems, that is of utmost impor-
tance in this manuscript and is the inspiration for most of the results presented
in Chapters 3 and 5, is the D-stability of positive LTI systems. D-stability
means that the stability of a positive LTI systems is maintained while the
matrix A is perturbed under certain rules. More specifically, it means if we
substitute a Hurwitz matrix A in (2.6) with DA, where D is a diagonal ma-
trix with positive diagonal entries, then the origin is a GAS equilibrium of the
corresponding system. The following theorem, which is Theorem 16 in [FR00]
states this property in a formal way.

Theorem 2.5.9. Let A ∈ Rn×n be Hurwitz and Metzler. Then the origin is a
GAS equilibrium of the system:

ẋ(t) = DAx(t) (2.8)

for all diagonal D with positive diagonal entries.

The following proposition summarizes the relevant and well-known stability
properties of continuous-time positive LTI systems. The proof for each part
of the following proposition can be found in numerous references including
[Rug96, HJ85, BP94, FR00]

Proposition 2.5.10. Let A be a Metzler matrix. Then the following state-
ments are equivalent:

(a) The origin is a GAS equilibrium of the LTI system (2.6);

(b) A is Hurwitz;

(c) There exists a symmetric positive-definite P ∈ Rn×n such that ATP+PA
is negative-definite;

(d) There exists a diagonal D ∈ Rn×n with positive diagonal entries such
that ATD +DA is negative-definite;
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(e) There exists a vector v � 0 such that Av � 0;

(f) The origin is a GAS equilibrium of system (2.8) for every diagonal D
with positive diagonal entries.

(e) There exists a vector v � 0 such that ATv � 0;

Of special interest for us in the remainder of this manuscript is the equivalence
between items (a) and (f) in the above proposition. In fact our aim in Chapters
3 and 5 will be to extend this equivalence to different classes of nonlinear
and switched positive systems. This interest is motivated by the fact that
uncertainty is an inherent property of most physical systems. That is why
we are interested in methods that enable us to analyse and control uncertain
systems. More on that will be discussed in the following chapters.

We finish this section with a motivational example of D-stability for positive
LTI systems.

Example 2.5.1. Consider we have a market composed of n commodities and
let yi(t) ∈ R+ be the price of commodity i at time t. Also, let the expected
price of the commodity i be ȳi. We assume that ȳi is constant and that
ȳi > 0. The assumption that the expected prices for all future times are
constant cannot be always justified, but in this simple example we do not
consider more general cases (for information on more general models, you can
look for example at [EA56]).

Let xi(t) be the difference between the price of commodity i at time t and the
expected price of the commodity i, i.e., xi(t) = yi(t)− ȳi. We assume that the
demand and the supply of commodity i at time t depend only on x(t) and also
the changes in the x(t) are proportional to the surplus of demand. Therefore,
we have:

ẋi(t) = di[fDi (x(t))− fSi (x(t))] i = 1, · · · , n (2.9)

where d � 0 is the vector of proportionality factors and fD(·) and fS(·)
represent the dependence of demand and supply on the prices, respectively.
When analysing complex economic systems it is unrealistic to imagine that
we know the proportionality factors. Therefore we are interested to know if
there are cases that the system is insensitive to changes in the proportionality
factor.
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A simple answer to this question can be given by assuming that:

• Demand and supply are linear functions of x(t);

• xi has a negative effect on fDi (x) and a nonnegative effect on fDj (x) for
j 6= i;

• xi has a positive effect on fSi (x) and a nonpositive effect on fSj (x) for
j 6= i.

Considering these assumptions, the model (2.9) can be simplified to the fol-
lowing linear system:

ẋ(t) = DA(x(t)) (2.10)

where A is a Metzler matrix and D = diag (d). Based on Theorem 2.5.9,
we can conclude that if A is Hurwitz, then the system (2.10) has a globally
asymptotically stable equilibrium at the origin for every diagonal D with pos-
itive diagonal entries. In other words, if the prices of the n commodities tend
toward a set of expected prices for some vector of proportionality factors, then
they do so for any other positive values of proportionality factors. �

2.6 Positive Nonlinear Systems
In this section, we review some properties and basic definitions related to
positive nonlinear systems. The concepts and results presented in this section
will be used in Chapter 3.

Unlike LTI systems, checking the positivity of nonlinear systems is not al-
ways straightforward. The following lemma provides a general condition for
positivity of nonlinear systems [dL00].

Lemma 2.6.1. System (2.2) is positive, if and only if the following condition
is satisfied:

∀x ∈ bd (Rn
+) : xi = 0⇒ fi(x) ≥ 0 (2.11)

Since in the following chapters we will almost exclusively deal with cooperative
systems, the following lemma provides an easy to check condition for positivity
of cooperative systems.
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Lemma 2.6.2. Let W be a neighbourhood of Rn
+ and let f : W → Rn be

cooperative. If the system (2.2) has an equilibrium at the origin then it is
positive.

Proof: Since f is cooperative, then the system (2.2) is monotone, which
means for every initial conditions y0 and z0 we have:

y0 ≤ z0 ⇒ x(t, y0) ≤ x(t, z0) for all t ≥ 0

Since x(t, 0) = 0 for all t ≥ 0, then for all initial conditions x0 ≥ 0 we have

x0 ≥ 0⇒ x(t, x0) ≥ x(t, 0) = 0 for all t ≥ 0

This means the positive orthant is an invariant set for the system (2.2) and
this concludes the proof.

It should be noted that the condition stated in Lemma 2.6.2 is a sufficient
but not a necessary condition for positivity of cooperative systems. It means,
it is possible to have a positive cooperative system that does not have an
equilibrium in the origin. The following simple example clarifies this notion.

Example 2.6.1. Consider the system (2.2), where f is defined as follows:

f(x) =
 1 + x2

1 + x2
2

1 + x2
1 + x2

2


It is easy to check that condition (2.11) is satisfied which means the system is
positive.

Computing the Jacobian of f(·) at a point a, we have:

∂f

∂x
(a) =

 2a1 2a2

2a1 2a2


which is a Metzler matrix for all a ∈ Rn

+, therefore, system (2.2) is cooperative.
On the other hand

f(0) =
 1

1


Hence with the above choice of f(·), system (2.2) is a positive and cooperative
system that does not have an equilibrium at the origin. �
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Among different classes of cooperative systems, we will be mainly dealing
with homogeneous cooperative and subhomogeneous cooperative systems. In
the remainder of this chapter, we define both classes and present their relevant
properties.

2.6.1 Homogeneous Cooperative Systems
Homogeneous vector-fields are vector-fields possessing a symmetry with re-
spect to a family of dilations [MAPS02]. Homogeneity has proven to be a fruit-
ful concept for solving stabilisation problems [Kaw90, Her91, MM, MPS99b].
Apart from that, due to their special structure, they provide a natural frame-
work to extend some of the stability properties of linear systems to nonlinear
systems.

A homogeneous system can be defined as follows.

Definition 2.6.1. Given an n-tuple r = (r1, . . . , rn)T of positive real numbers
and λ > 0, the dilation map δrλ(x) : Rn → Rn is given by

δrλ(x) = (λr1x1, ..., λ
rnxn)T

If r = (1, · · · , 1)T , then the dilation map is called the standard dilation map.

For an α ≥ 0, the vector field f : Rn → Rn is said to be homogeneous of
degree α with respect to δrλ(x) if

∀x ∈ Rn, λ ≥ 0, f(δrλ(x)) = λαδrλ(f(x)) (2.12)

When f is homogeneous, then we say the system (2.2) is homogeneous.

Let f(x) = Ax where A ∈ Rn×n. Then we have

f(λx) = λf(x), for all λ > 0, x ∈ Rn

which means that an LTI system is homogeneous of degree 0 with respect to
the standard dilation map.

Example 2.6.2. Let W be a neighbourhood of Rn
+ and let f : W 7→ Rn be

defined as follows:

f(x1, x2, x3) =


−2x2

1 + x2
3

x2
1 − 2x2

2 + x3x1

x1x2 + x2
2 − 5x2

3


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f(·) is homogeneous of degree α = 1 with respect to the standard dilation
map, meaning the dilation map δrλ with r = (1, 1, 1)T . To see this, note:

f(δrλ(x)) = f(λx1, λx2, λx3)

=


−2λ2x2

1 + λ2x2
3

λ2x2
1 − 2λ2x2

2 + λ2x3x1

λ2x1x2 + λ2x2
2 − 5λ2x2

3


=

(
λ2f1(x), λ2f2(x), λ2f3(x)

)T
= λ (λf1(x), λf2(x), λf3(x))T

= λαδrλ(f(x))

�

Example 2.6.3. Now we consider a more general homogeneous vector field.
Let W be a neighbourhood of Rn

+ and let g :W 7→ Rn be defined as

g(x1, x2, x3) =


−2x5/3

1 + x3

x2
1 − 2x3/2

2 + x3x
1/3
1

x1x2 + x
7/4
2 − 5x7/5

3


g(·) is homogeneous of degree α = 2 with respect to the dilation map δrλ, with
r = (3, 4, 5). In fact:

g(δrλ(x)) = g(λ3x1, λ
4x2, λ

5x3)

=


−2λ5x

5/3
1 + λ5x3

λ6x2
1 − 2λ6x

3/2
2 + λ6x3x

1/3
1

λ7x1x2 + λ7x
7/4
2 − 5λ7x

7/5
3


=

(
λ5g1(x), λ6g2(x), λ7g3(x)

)T
= λ2

(
λ3g1(x), λ4g2(x), λ5g3(x)

)T
= λαδrλ(g(x))

�

The following lemma, states a well-known property of homogeneous vector
fields that will be useful for us. The statement of the lemma is adopted from
[AdL02].
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Lemma 2.6.3 (Euler’s Formula). Let D be an open subset of Rn and let
f : D 7→ Rn be a C1 and homogeneous vector field of degree α with respect
to the dilation map δrλ(x). Euler’s formula for homogeneous vector fields is as
follows:

∂f

∂x
(a)diag (r)a = diag (r + α∗)f(a) ∀a ∈ D (2.13)

where α∗ := (α, · · · , α)T .

Proof: Euler’s formula can be easily proved by first taking the derivative with
respect to λ on both sides of (2.12) and then evaluating the resulting equation
for λ = 1.

As mentioned before, the Perron-Frobenius Theorem has been extended to
different classes of systems, including homogeneous systems [NL99, GG00,
Kra01, Sin90]. We state the Perron-Frobenius theorem for homogeneous sys-
tems based on the version discussed in [AdL02].

Before stating this result, we need to first present some definitions and a
preliminary result, which are all adopted from [AdL02].

Definition 2.6.2. For x ∈ Rn \ {0} and a fixed but arbitrary dilation map
δrλ(x), Rx := {δrλ(x)|λ ∈ Rn

+} is the ray through x.

Lemma 2.6.4. If system (2.2) is homogeneous and if there exists a point
x̄ ∈ Rn \ {0} such that

f(x̄) = γx̄diag (r)x̄ (2.14)

for some γx̄ ∈ R, then the vector field f(x) is tangent to Rx̄ at each point of
Rx̄.

Lemma 2.6.4 implies that if there exists a point x̄ ∈ Rn \ {0} such that (2.14)
holds, then the forward solution of the system (2.2) starting from an arbitrary
point in Rx̄ stays in this ray for all future times for which this solution is
defined. Such a ray is called an invariant ray for system (2.2).

An invariant ray Rx is said to be asymptotically stable, stable or unstable for
some x ∈ Rx if and only if γx < 0, γx ≤ 0 or γx > 0, respectively.
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The following theorem, which is Theorem 5.2 in [AdL02], can be considered
as the extension of Perron-Frobenius Theorem to irreducible homogeneous
cooperative systems.

Theorem 2.6.5. Let W be a neighbourhood of Rn
+ and let f : W 7→ Rn be

homogeneous of degree α with respect to the dilation map δrλ(x), cooperative
and irreducible such that system (2.2) has a unique equilibrium at the origin.
Then there exists x∗ ∈ int (Rn

+) such that

f(x∗) = γx∗diag (r)x∗

for some γx∗ ∈ R. The equilibrium of system (2.2) is asymptotically stable, if
and only if γx∗ < 0, and is unstable if and only if γx∗ > 0.

Theorem 2.6.5 shows that the invariant rays can be interpreted as the equiv-
alents of dominant eigenvectors for homogeneous systems.

2.6.2 Subhomogeneous Cooperative Systems
Another class of nonlinear systems that we will deal with in the following
chapters is the class of subhomogeneous systems, that can be defined as follows
[BMW11].

Definition 2.6.1. Let W be a neighbourhood of Rn
+. A vector field f :W →

Rn is subhomogeneous of degree α > 0 if f(λv) ≤ λαf(v), for all v ∈ Rn
+, λ ∈ R

with λ ≥ 1. System (2.2) is subhomogeneous when f is subhomogeneous.

Example 2.6.4. Let f : U 7→ Rn with U = {x : 0 ≤ x ≤ 1} such that

ẋ = f(x) = [D +B − diag (x)B]x (2.15)

where D is a diagonal matrix and B > 0. We prove that f is subhomogeneous
of degree α = 1.

We have:
f(λx) = λ(D +B − λdiag (x)B)x (2.16)

and
λf(x) = λ(D +B − diag (x)B)x (2.17)
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Considering the fact that λ ≥ 1 and based on the assumptions imposed on D,
B and x, we can conclude f(λx) ≤ λf(x), which means f(·) is subhomoge-
neous of degree 1.

The vector field introduced in this example arises in compartmental models
in epidemiology and will be the basis of our discussions in Chapter 6. �

The class of subhomogeneous vector fields given above includes different classes
of vector fields. For example, it is easy to check that linear and homogeneous
vector fields with respect to the standard dilation map are subhomogeneous.

Remark 2.6.1. It should be noted that in the definition of subhomogeneity,
unlike homogeneity, we do not introduce the concept of the dilation map. As
mentioned earlier, a homogeneous vector field of degree α > 0 with respect
to standard dilation map will satisfy the equality f(λx) = λαλf(x) while a
vector field which is subhomogeneous of degree α > 0 satisfies the inequality
f(λv) ≤ λαf(v). This means that a homogeneous vector field of degree 0 with
respect to standard dilation map will be subhomogeneous of degree 1.

The following lemma, shows another important class of subhomogeneous vec-
tor fields.

Lemma 2.6.6. Let f : Rn 7→ Rn be a concave vector field such that f(0) ≥ 0.
Then f is subhomogeneous of degree 1.

Proof: Based on the definition of concave vector fields [HJ85, p. 534], we
have

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) (2.18)

for all 0 < α < 1 and for all x, y ∈ Rn, x 6= y. Considering x 6= 0 and y = 0,
we have:

αf(x) + (1− α)f(0) ≤ f(αx)

Since f(0) ≥ 0 and α < 1, we can conclude:

αf(x) ≤ f(αx)

Changing the variable to z = αx, we have:

αf( 1
α
z) ≤ f(z)
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⇒ f( 1
α
z) ≤ 1

α
f(z)

We define λ = 1/α. Since α ∈ (0, 1), we have λ > 1. Therefore:

f(λz) ≤ λf(z) ∀z ∈ Rn, λ ≥ 1

Note that the inequality is trivially true for λ = 1. This means f(·) is a
subhomogeneous vector field of degree 1.

The following result establishes an inequality for subhomogeneous vector fields
that is reminiscent of Euler’s formula for homogeneous functions.

Lemma 2.6.7. LetW be a neighbourhood of Rn
+. The vector field f :W → Rn

is subhomogeneous of degree α > 0 if and only if:

∂f

∂x
(a)a ≤ αf(a) ∀a ≥ 0. (2.19)

Proof: We first show that f is subhomogeneous of degree α if and only if for
any a ≥ 0, the mapping

λ→ λ−αf(λa)

is a non-increasing function for λ > 0.

Let a ≥ 0 be given. If f is subhomogeneous, then for any µ ≥ λ > 0 we have

f(µa) = f
(
µ

λ
λa
)
≤
(
µ

λ

)α
f (λa)

⇒ µ−αf (µa) ≤ λ−αf (λa)

Thus, we can conclude that λ−αf (λa) is a non-increasing function with respect
to λ for all λ > 0. Conversely, if this function is non-increasing for λ > 0,
then by choosing µ ≥ λ = 1, we see immediately that f(µa) ≤ µαf(a).

Differentiating with respect to λ, we see that f is subhomogeneous if and only
if for all λ > 0

d

dλ

(
λ−αf (λa)

)
≤ 0

⇔ −αλ−α−1f (λa) + λ−α
∂f

∂x
(λa) a ≤ 0

Rearranging this inequality, we see that f is subhomogeneous if and only if

∂f

∂x
(λa)(λa) ≤ αf(λa) ∀a ≥ 0; ∀λ > 0
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Evaluating the last statement at λ = 1, we have

∂f

∂x
(a)a ≤ αf(a) ∀a ≥ 0

This concludes the proof.

In the following corollary, some of the basic properties of subhomogeneous
systems are stated.

Corollary 2.6.8. (i) The set of subhomogeneous vector fields of degree α
on Rn

+ is a convex cone.

(ii) A non-negative constant vector field f(x) ≡ c is subhomogeneous of any
degree α > 0.

(iii) Any affine map f(x) = Ax+ b where A ∈ Rn×n and b ∈ Rn
+ is subhomo-

geneous of degree 1.

Proof:

(i) The claim follows as the condition (2.19) has to be satisfied pointwise
and is clearly convex in f and invariant under positive scaling of f .

(ii) Immediate from (2.19) as f(x) ≥ 0 = ∂f/∂x(x) for all x ≥ 0.

(iii) Let f(x) = Ax + b. Then f(λx) = λAx + b and λf(x) = λAx + λb.
Since b ≥ 0 and λ ≥ 1, we have b ≤ λb, therefore, we can conclude
f(λx) ≤ λf(x) for all λ ≥ 1. �

And as the last result of this section, we show that subhomogeneous cooper-
ative systems are positive.

Theorem 2.6.9. Let W be a neighbourhood of Rn
+ and let f : W → Rn be

subhomogeneous of degree α > 0 and cooperative. Then the system (2.2) is
positive.

Proof: It follows from Lemma 2.6.7 and the fact that the Jacobian matrix is
Metzler for all x ∈ Rn

+ that fi(x) ≥ 0 for all x ∈ Rn
+ with xi = 0. Therefore,

condition (2.11) is satisfied and this implies that (2.2) is positive.
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CHAPTER 3
Stability Conditions for Positive

Nonlinear Systems

In this chapter, we extend the notion of D-stability to nonlinear systems and present
some results on D-stability of different classes of positive nonlinear systems. We
exclusively deal with positive systems which are monotone, therefore, monotonicity
plays an important role in the proofs. We also study the behaviour of a class of
positive nonlinear systems forced by a constant positive input.

3.1 Introduction
In this chapter, we focus on stability analysis of positive nonlinear systems
in the presence of uncertainty. Control systems are designed so that certain
designated signals, such as tracking errors and actuator inputs, do not exceed
pre-specified levels. One of the main issues that prevents us from achieving
these goals is uncertainty in the system. Uncertainty can take different forms
and can appear in the plant to be controlled or as errors in measurement
signals (sensors can measure signals only to a certain accuracy) [DFT90].
Dealing with uncertainty in measurement signals is out of the scope of this
manuscript. Our focus in this chapter is on uncertainties about the plant.

There are different sources of uncertainty in the plants. Uncertainty can be
caused by the fact that mathematical models we use in representing real phys-
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ical systems are idealisations. Or it can be caused by the changes in parame-
ters of the system due to, for example, ageing of the system. Therefore, it is
preferable, and usually necessary, to consider such uncertainties in analysing
the stability properties of the systems and designing controllers. In this chap-
ter, we are concerned solely with the stability analysis of uncertain systems.
We focus on a special class of model uncertainties. More specifically, our
main goal is to extend the concept of D-stability of positive LTI systems (as
discussed in Chapter 2) to nonlinear systems.

In Section 3.2, we present preliminary results and definitions, including the
formal definition of D-stability for nonlinear systems. In Section 3.3, we re-
view the relevant results on stability of positive nonlinear systems, with more
emphasis on monotone systems and their properties. Then, we present the
D-stability results in four sections. In Section 3.4, we state a local D-stability
condition for general cooperative systems. In Sections 3.5 and 3.6, we add ex-
tra assumptions of homogeneity and subhomogeneity to cooperative systems
to obtain stronger D-stability results. In Section 3.7, we present an alterna-
tive result for D-stability of cooperative systems, in the planar case. In this
chapter, we also study another class of perturbations applied to positive non-
linear systems. In section 3.8, we consider the effects of forcing cooperative
subhomogeneous systems by a positive constant input and study its effects on
the positivity and stability properties of the equilibria.

3.2 Background
As discussed in Chapter 2, one well-known fact about positive LTI systems is
that they are D-stable. Formally, if the positive LTI system

ẋ = Ax, x(0) = x0

has a globally asymptotically stable (GAS) equilibrium at the origin, then so
does the system

ẋ = DAx, x(0) = x0

for all diagonal matricesD with positive diagonal entries, as stated in Theorem
2.5.9.
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Extending the notion of D-stability to nonlinear positive systems is the cen-
tral theme of this chapter. In this section, we consider continuous-time au-
tonomous nonlinear systems of the form:

ẋ(t) = f(x(t)), x(0) = x0 ∈ D (3.1)

where f : D 7→ Rn is a C1 vector field on D ⊂ Rn.

To define D-stability for system (3.1), we consider the system

ẋ(t) = diag (d(x(t))).f(x(t)), x(0) = x0 ∈ D (3.2)

where d ∈ ∆ and ∆ is the set of all mappings d : D 7→ Rn
+ that satisfy the

following conditions:

(i) d is C1 in D;

(ii) di(x) = di(xi) for 1 ≤ i ≤ n;

(iii) di(xi) > 0, for xi > 0, for 1 ≤ i ≤ n.

Example 3.2.1. Here are some examples of mappings that satisfy the above
mentioned conditions:

d(1)(x) =
(

x2
1

x2
1 + 1 , x2, 1 + sin2(x3)

)T
for all x ∈ R3

+;

d(2)(x) = (ex1 , 1 + 0.5 cos(x2))T for all x ∈ R2
+;

d(3)(x) = (1, 2, 3)T for all x ∈ R3
+;

Definition 3.2.1 (D-stability). Let the system (3.1) have an equilibrium p

in D with a region of attraction Ap ⊂ D. Then we say that p is a D-stable
equilibrium of the system (3.1), if it is an asymptotically stable equilibrium
of the system (3.2) (with possibly different region of attraction than Ap), for
all d ∈ ∆. If p is a GAS equilibrium of both systems (3.1) and (3.2), then we
call it a globally D-stable equilibrium of the system (3.1).

It is easy to see that if a vector d ∈ Rn is a vector with all elements equal
to 1, then d ∈ ∆. In other words, when an equilibrium point p is a D-stable
equilibrium of the system (3.1), then it is an asymptotically stable equilibrium
of the system (3.1).
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Remark 3.2.1. A vector with positive constant elements belongs to ∆. In other
words, if di(x) = ci for i = 1, · · · , n, where ci ∈ R+ is a constant, then d ∈ ∆.
This means that the definition of D-stability for linear systems is a special
case of the more general definition of D-stability for nonlinear vector fields
presented above. In the remaining parts of this chapter, every time we use the
term D-stability, we refer to Definition 3.2.1 for nonlinear systems. Also note
that sometimes in the literature (and in this manuscript), in a slight abuse of
notation, instead of its equilibrium, a positive LTI system itself is said to be
D-stable. That should not cause any confusion.

We make the following simple observation that the properties of cooperativity
and positivity are preserved under pre-multiplication by diag (d(x)) for all
d ∈ ∆. Just as a reminder, system (3.1) is positive if and only if it satisfies
the following condition.

∀x ∈ bd (Rn
+) : xi = 0⇒ fi(x) ≥ 0 (3.3)

Proposition 3.2.1. Let W be a neighbourhood of Rn
+ and let f : W → Rn

be cooperative and satisfy condition (3.3) and d ∈ ∆. Then the vector field
g : W → Rn given by g(x) = diag (d(x))f(x) is cooperative and satisfies
condition (3.3).

Proof: If xi = 0, then fi(x) ≥ 0 as f satisfies condition (3.3). It is now
immediate that gi(x) = di(xi)fi(x) ≥ 0 as di(0) ≥ 0 by continuity. Hence g
satisfies condition (3.3). Direct calculation shows that for i 6= j

∂gi
∂xj

(a) = di(ai)
∂fi
∂xj

(a) ≥ 0

for all a ∈ Rn
+. Therefore, since f is cooperative, then g is also cooperative as

claimed.

Now we are ready to state the main results of this chapter, but before that,
we review the relevant results in the literature.
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3.3 Literature Review
The properties of positive matrices have been studied since at least the 1910s,
with the seminal works of Perron and Frobenius, as discussed in Section 2.5.
The formal study of positive dynamical systems however began years later.
The first major textbook in dynamical systems that studies positive systems
is probably [Lue79]. However, previously the powerful properties of positive
matrices were utilised in different areas, most particularly, in economics. One
of the first researchers to investigate the properties of positive economical
systems is Lloyd Metzler, he of the Metzler matrix. Metzler in [Met45] used a
linear positive system to model a market with n commodities. To justify his
linear model, he argues that:

“I believe the case for linear systems is much stronger than is commonly
supposed. Most of the statistical investigations of such important functions
as the propensity to consume and the propensity to import fail to show any
significant departure from linearity.”

Among the earlier works on positive systems, is the Peter’s Principle. Peter’s
principle can be explained in non-technical terms as follows: “In a hierarchical
organisation, people rise until they reach their level of incompetence” [PH69].
Peter’s principle was first stated in non-mathematical terms in [PH69] and
modelled as a positive LTI system in [Kan70]. Another early work utilising
properties of positive matrices is done by Lewis F. Richardson. He developed
a series of linear dynamical models of war [Ric60]. His study, which utilises the
theory of positive matrices is a classical example of the potential of dynamical
system theory in the study of social phenomena [Lue79].

In this chapter, we exclusively deal with positive systems which are cooper-
ative. Therefore, most of our proofs utilise monotonicity methods. Mono-
tonicity methods in differential equations have been studied since at least the
1920s. Müller [Mül26] and Kamke [Kam32] laid the foundations of the theory
of monotone ordinary differential equations. Müller and Kamke’s works were
extended, for example in [Cop65, Wal70], to more general cases, but not until
the seminal work of M. W. Hirsch, were monotonicity methods fully integrated
in the theory of dynamical systems. Hirsch published a series of papers in the
80s and early 90s which are the basis of what is known today as the theory
of monotone dynamical systems [Hir82, Hir85, Hir88b, Hir89, Hir90, Hir91].
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Also, in [Hir88a] he extended the monotonicity methods to infinite dimensional
differential equations. Most of the basic stability and convergence properties
of monotone systems are also due to [Hir88a].

Influenced by the works of Hirsch, other researchers started to develop his
results in different directions. For example, Matano in [Mat84] introduced the
concept of ‘strongly order preserving’ differential equations and developed the
concept in [Mat86, Mat87]. Smith and Thieme in [ST90] showed that Hirsch’s
results, which are stated for strongly monotone systems, are also valid under
the weaker condition of strongly order preserving. The monograph written
by Smith [Smi95], is probably the first book dedicated solely to the theory of
monotone systems. Most of the basic definitions and properties of monotone
systems stated in this manuscript are adopted from [Smi95].

Studying the stability properties of systems subject to different forms of uncer-
tainty is the subject of numerous manuscripts on robust and adaptive control,
for example look at [Dor87, ZDG95, Gup86, AW08] and references therein.
Studying uncertain positive systems has been mostly limited to positive LTI
systems. A class of results on stability analysis of positive systems are studied
under the subject of comparative statics. The term comparative statics refers
to an analysis procedure that focuses on the equilibrium point of a dynamic
system, and how that equilibrium point changes when various system param-
eters are changed [Lue79, Section 6.7]. This form of analysis is concerned
with how the new equilibrium is related to the old one, although to make the
result meaningful, the new equilibrium should be proved to be asymptotically
stable. The results presented in Section 3.8 fall under this category.

Another class of results on stability of uncertain positive LTI systems is related
to the notion of D-stability as stated in Section 2.5. The notion of D-stability
for positive LTI systems comes from economics. Arrow and McManus in their
work on price equilibrium in economic system, coined the term D-stability
[AM58]. In the early references, the D-stability is defined as a property of a
matrix not a property of the equilibrium of an LTI system. A matrix A ∈ Rn×n

is said to be D-stable, if DA is Hurwitz for all diagonal D with positive
diagonal entries. It is easy to see why these two definitions of D-stability
has been often used interchangeably. Apart from D-stability, the notion of
S-Stability is also introduced in [AM58]. A matrix A ∈ Rn×n is said to be
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S-stable, if the matrix SA is Hurwitz for every symmetric positive definite
S. It is evident that if a matrix is S-stable, then it is D-stable. As is shown
in [AM58] via a simple numerical example, Hurwitz Metzler matrices are not
necessarily S-stable, therefore, the concept of S-stability has not been of much
significance in the study of positive LTI systems. [Joh74] and [Kim81] provide
a review of some of the most well-known sufficient conditions for D-stability
of real and complex matrices. In [Kaf02], the notion of strong D-stability is
introduced. According to [Kaf02], a matrix A ∈ Rn×n is called strongly D-
stable if there exists an α > 0 such that A + G is D-stable, where G ∈ Rn×n

satisfies ‖G‖ < α. The thirteen sufficient conditions for D-stability stated
in [Joh74] are proved in [Kaf02] to be also sufficient conditions for strong
D-stability.

There have also been some attempts in applying the robust control method-
ologies to positive linear systems. One approach toward robust stability of
positive systems is based on the concept of stability radii developed by Hin-
richsen and Pritchard in [HP86a, HP86b]. Stability radii are defined as follows.

Definition 3.3.1. Consider a positive LTI system ẋ(t) = Ax(t) which is
subject to the structured perturbations of the form:

A→ A+D∆E (3.4)

where D ∈ Kn×l and E ∈ Kq×n are given positive matrices defining the struc-
ture of the perturbation and ∆ ∈ Kl×q is the disturbance matrix with K = C
or K = R. It should be noted that if D = E = I, then this perturbation rep-
resents unstructured perturbations. Let ‖ · ‖ represent any monotonic norm
in K, meaning:

|x| < |y| ⇒ ‖x‖ < ‖y‖ for all x, y ∈ K

Then the stability radius of such an uncertain continuous-time positive LTI
system is defined as follows:

rK = rK(A;D,E) := inf{‖∆‖ : ∆ ∈ Kl×q, µ(A+D∆E) ≥ 0}

where ‖∆‖ represents the induced norm on Kl×q. For a discrete-time positive
LTI system of the form x(k + 1) = Ax(k), the stability radius is defined as
follows:

rK = rK(A;D,E) := inf{‖∆‖ : ∆ ∈ Kl×q, ρ(A+D∆E) ≥ 1}
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In [Son95] it is shown that for any positive linear discrete-time system x(k +
1) = Ax(k), the complex and real stability radii under unstructured uncer-
tainty A→ A+∆ are equal and can be computed directly by a simple formula,
provided that the spaces under consideration are endowed with vector norms
‖·‖α, for α = 1, 2,∞. In [HS94] the results of [Son95] are extended to discrete-
time positive LTI systems under perturbations of the form (3.4) and in [HS96],
to continuous-time positive LTI systems. Also, in [HS98a], a µ-analysis for
nonnegative matrices is presented and results are applied to analyse robust
stability of continuous-time positive linear systems under arbitrary affine pa-
rameter perturbations.

Our work is motivated by the need to obtain robust stability conditions for
nonlinear positive systems [BMV10, BMV11, BMW11]. In [BMV10], the con-
cept of D-stability in linear systems was extended to nonlinear systems. Also,
D-stability conditions for subhomogeneous cooperative systems are presented
in [BMW11] without explicitly referring to them as D-stability results. These
two papers are the basis for some of the results presented in this chapter.

3.4 D-stability for General Cooperative
Systems

In this section, we present D-stability conditions for cooperative nonlinear
systems. We state the results for two distinct cases: the case where the system
has a unique equilibrium at the origin, and the case where the system has a
unique equilibrium in the interior of Rn

+.

3.4.1 Unique Equilibrium at the Origin
In this section, we present D-stability conditions for system (3.1) when it has
a GAS equilibrium at the origin. Before stating the main theorem of this
section, we need to establish some preliminary results.

Lemma 3.4.1. Let W be a neighbourhood of Rn
+ and let f : W → Rn be

a cooperative vector field. If the system (3.1) has a GAS equilibrium at the
origin, then the system (3.2) has a unique equilibrium at the origin for all
d ∈ ∆.
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Proof: Clearly, (3.2) has an equilibrium at the origin. It remains to show
that it is unique.

Since d ∈ ∆, we know that (3.2) cannot have any equilibrium points in
int (Rn

+). Now, by way of contradiction, suppose diag (d(p))f(p) = 0 for
some p 6= 0 in bd (Rn

+).

We define Z := {i : pi = 0} and NZ := {i : pi 6= 0}. As di(pi) > 0 for all
i ∈ NZ by assumption, we must have fi(p) = 0 for all i ∈ NZ, otherwise
diag (d(p))f(p) 6= 0. As the origin is a GAS equilibrium of (3.1), it follows
from Lemma 2.4.5 that we cannot have f(p) ≥ 0. Hence, there must be some
i0 ∈ Z such that fi0(p) < 0.

On the other hand
∂fi0
∂xj

(s) ≥ 0

for all j 6= i0 and for all s ∈ Rn
+. Furthermore, pi0 = 0 as i0 ∈ Z. Thus, from

the fundamental theorem of calculus, we have:

fi0(p) = fi0(0) +
∫ 1

0

n∑
j=1

∂fi0
∂xj

(sp)pjds ≥ 0.

This is a contradiction and we can conclude that the origin is the only equi-
librium of (3.2).

The following proposition plays a key role in proving later results. We utilise
the KKM lemma (Theorem 2.3.1) in the proof of this proposition.

Proposition 3.4.2. Let W be a neighbourhood of Rn
+ and let f : W → Rn

be a cooperative vector field. If the system (3.1) has a GAS equilibrium at the
origin then there exists a vector v � 0 such that f(v)� 0.

Proof: Lemma 2.6.2 implies that the system (3.1) is positive. Consider the
standard simplex ∆n. We define Ci = {x ∈ ∆n : fi(x) < 0} for i = 1, · · · , n.
As f is continuous, Ci is a relatively open set in ∆n for i = 1, · · · , n. On the
other hand, since the system (3.1) has a GAS equilibrium at the origin, there
is no w > 0 in the simplex, such that f(w) ≥ 0 by Lemma 2.4.5. Therefore,
∪ni=1Ci = ∆n.

Let S(ei0 , ei1 , · · · , eis) be an arbitrary face of the simplex and let x ∈ S(ei0 , ei1 ,
· · · , eis). Then xj = 0 for j /∈ {i0, · · · , is}. Since the positive orthant is an
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invariant set for (3.1), it follows that fj(x) ≥ 0 for j /∈ {i0, · · · , is}. Therefore
as (3.1) has a GAS equilibrium at the origin, Lemma 2.4.5 implies that fk(x) <
0 for some k ∈ {i0, · · · , is}. This means that

x ∈ Ci0 ∪ Ci1 ∪ · · · ∪ Cis .

As x was arbitrary, we conclude that for any face of the simplex, we have

S(ei0 , ei1 , · · · , eis) ⊂ Ci0 ∪ Ci1 ∪ · · · ∪ Cis .

Now it follows from Theorem 2.3.1 that ∩ni=1Ci 6= ∅. As f is continuous, this
means there exists a v � 0 in ∆n such that f(v)� 0.

Remark 3.4.1. Note that since the sets Ci (as defined in the proof of Propo-
sition 3.4.2), for i = 1, · · · , n are open, then ∩ni=1Ci have infinitely many
elements. In other words, there are infinitely many vectors v that lie on the
standard simplex with f(v) � 0. Also, since system (3.1) is assumed to be
globally asymptotically stable, then the same applies to any simplex r∆n for
all real r with r > 0.

To prove the main result of this section, we also need the following theorem
but before stating it, we need to define some terminology which are adopted
from [Kre78].

The following theorem, which is commonly known as Convergence Criterion
for monotone systems, is a simple adaptation of Theorem 1.2.1 in [Smi95].
Note that O(x0) represents the closure of the orbit of the system (3.1) corre-
sponding to initial condition x0.

Theorem 3.4.3 (Convergence Criterion). Let the system (3.1) be cooperative
defined on a subset D of Rn such that O(x0) is closed and bounded for all
x0 ∈ D. If x(t, x0) ≤ x0 for t belonging to some non-empty subset of (0,∞),
then x(t, x0) → p ∈ E as t → ∞ where E is the set of all equilibria of the
system (3.1). In particular, if the system (3.1) is strongly order preserving
and x(T, x0) < x0 for some T > 0 then x(t, x0)→ p ∈ E as t→∞.

Now we are ready to state and prove the main theorem of this section.

Theorem 3.4.4. Let f : W → Rn be a cooperative vector field on a neigh-
bourhood W of Rn

+. If the origin is a GAS equilibrium of the system (3.1),
then it is a D-stable equilibrium of the system (3.1).
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Proof: It follows from Proposition 3.2.1 that the system (3.2) is positive and
monotone. As the origin is a GAS equilibrium of system (3.1), Proposition
3.4.2 implies that there exists a v � 0 such that f(v)� 0.

Lemma 2.4.4 implies that the trajectory x(t, v) of (3.2) starting from x(0) = v

is decreasing. In addition Rn
+ is invariant under (3.2). It now follows from

Theorem 3.4.3 that x(t, v) converges to an equilibrium of (3.2) as t → ∞.
Lemma 3.4.1 implies that the origin is the only equilibrium of (3.2). It follows
immediately that x(t, v)→ 0 as t→∞.

As (3.2) is positive and monotone, for every x0 < v, we have:

0 ≤ x(t, x0) ≤ x(t, v)

for all t ≥ 0. This implies that x(t, x0) → 0 as t → ∞ for all x0 ∈ {x ∈ Rn
+ :

x ≤ v}. This concludes the proof.

Remark 3.4.2. Note that as shown in the proof of the above theorem, the
domain of attraction of the origin for system (3.2) includes the region defined
as {x ∈ Rn

+ : 0 ≤ x ≤ v}. As discussed in Remark 3.4.1, there are infinitely
many vectors v with f(v) � 0 lying on every simplex r∆N with r > 0. It
should be noted that this does not mean that for every x0 ∈ Rn

+, we can find a
v > x0 with f(v)� 0. To make this point more clear, imagine the case where
for all v � 0 with f(v) � 0, there is a real number b > 0 such that vi < b

for some i ∈ {1, · · · , n}. Figure 3.1 illustrates this situation. In this case, we
cannot say whether a point x with xi > a belongs to the region of attraction
of the equilibrium of the system (3.2). As will be seen in Sections 3.5 and 3.6,
we need to impose extra assumptions on the system (3.1) to resolve this issue.
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Figure 3.1: The case discussed in Remark 3.4.2 where for all initial condition x0 with
x02 > b there exists no v � x0 such that f(v)� 0.

3.4.2 Unique Equilibrium in the Interior of the
Positive Orthant

We next state a D-stability result for the case where the system (3.1) has a
unique equilibrium p in int (Rn

+). To understand why we only consider systems
with unique equilibrium in int (Rn

+), not the whole Rn
+, note that many systems

have an equilibrium at the origin or on the bd (Rn
+), whose stability properties

are not interesting for us. The following example clarifies this notion.

Example 3.4.1. Consider a Mutualistic Lotka-Volterra system [HS98b]:

ẋ = f(x) = diag (x)(Ax+ b) (3.5)

where A is Metzler. We also assume b � 0. Based on the discussions in
Example 2.4.1, we know that system (3.5) is cooperative.

Lotka-Volterra systems are commonly used as models for interactions of dif-
ferent species in ecological systems. One of the equilibria of (3.5) is the origin
which represents the undesirable situation where all the species have died out.
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The other equilibrium is x̄ = −A−1b. It is a known fact that if A is Metzler
and Hurwitz, then A−1 is Hurwitz and −A−1 > 0 [Lue79, Theorem 6.5.3].
Also, b � 0, hence −A−1b � 0, which means that system (3.5) has a unique
equilibrium in int (Rn

+).

In Lotka-Volterra model, xi = 0 means the extinction of the ith species. It is
easy to check that each axis is an invariant set for the system (3.5). Hence,
the domain of attraction of x̄ = −A−1b cannot contain bd (Rn

+). �

To prove the main result of this section, we need the following variant of
Proposition 3.4.2.

Proposition 3.4.5. Let f :W → Rn be a cooperative vector field on a neigh-
bourhoodW of Rn

+. Assume that (3.1) has an asymptotically stable equilibrium
at p� 0 and that the domain of attraction of p contains int (Rn

+). Then there
exists vectors v, u ∈ Rn

+, such that v � p with f(v)� 0 and 0� u� p with
f(u)� 0.

Proof: We utilise KKM lemma (Theorem 2.3.1). Let R1(p) and R2(p) be
defined as follows:

R1(p) = {x ∈ int (Rn
+) : x� p}

R2(p) = {x ∈ int (Rn
+) : x� p}

for all p ∈ Rn
+. Figures 3.2 shows these two regions for a planar system.

Firstly, we prove there exists a v ∈ R1(p) such that f(v) � 0. Let ∆n be
the standard simplex. We consider p + ∆n, the standard simplex shifted to
point p and define Ci = {x ∈ p + ∆N : fi(x) < 0} for i = 1, · · · , n. Note the
following facts.

(i) The set {x ∈ Rn
+ : x ≥ p} is forward invariant under (3.1). This is

because p is an equilibrium and (3.1) is monotone.

(ii) There is no x > p with f(x) ≥ 0. This follows from Lemma 2.4.5 as the
domain of attraction of p contains int (Rn

+).

Using (i) and (ii), we can apply the KKM lemma in the same way as in
Proposition 3.4.2 to conclude that there exists v � p such that f(v)� 0.
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Figure 3.2: Regions R1 and R2 for a planar system with an equilibrium p in the int (R2
+).

We next show that there exists a u ∈ R2(p) with f(u)� 0. First, choose r > 0
small enough to ensure that the shifted simplex p − r∆n is wholly contained
in int (Rn

+). As above, it follows that {x ∈ Rn
+ : x ≤ p} is forward invariant

under (3.1) and that there can be no x < p with f(x) ≤ 0. Again applying
the KKM Lemma, we conclude that there exists a u� p, such that f(u)� 0.

Now we are ready to state the main theorem of this section.

Theorem 3.4.6. Let f :W → Rn be cooperative in a neighbourhood W of Rn
+

and let d ∈ ∆. Assume that (3.1) has an asymptotically stable equilibrium at
p � 0 and that the domain of attraction of p under (3.1) contains int (Rn

+).
Then p is a D-stable equilibrium of the system (3.1).

Proof: Proposition 3.4.5 implies that there exists a v � p such that f(v)� 0
and there exists a 0� u� p such that f(u)� 0.

From the properties of d, it follows immediately that d(v)f(v) � 0 and
d(u)f(u)� 0. Hence the trajectory x(t, v) of (3.2) is decreasing while the tra-
jectory x(t, u) is increasing. Further, as p is an equilibrium of (3.2) and (3.2)
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is monotone, the trajectories x(t, v), x(t, u) of (3.2) satisfy p ≤ x(t, v) ≤ v,
u ≤ x(t, u) ≤ p for all t ≥ 0.

Taken together this implies that the trajectories x(t, v), x(t, u) of (3.2) con-
verge monotonically to p.

Let x0 ∈ int (Rn
+) be an initial condition such that u ≤ x0 ≤ v. It now follows

from the monotonicity of the system (3.2) that

x(t, u) ≤ x(t, x0) ≤ x(t, v)

for all t ≥ 0. Hence, x(t, x0) must also converge to p. This means p is an
asymptotically stable equilibrium of (3.1) with {x ∈ Rn

+ : u ≤ x ≤ v} as
domain of attraction. This concludes the proof.

Remark 3.4.3. Similar to Theorem 3.4.4, Theorem 3.4.6 does not provide any
information on whether or not the points outside {x ∈ Rn

+ : u ≤ x ≤ v} belong
to the domain of attraction of the equilibrium of the system (3.2). Also, note
that a cooperative system with a unique equilibrium in int (Rn

+) may not even
be positive. The following example illustrates this fact.

Example 3.4.2. Consider the system (3.1), with f : R2
+ 7→ R2 defined as

follows:

f(x) =
x2

1 − 3
x2

2 − 2


It is easy to see that f is cooperative and that the system (3.1) with the above
choice of f has an a unique equilibrium in Rn

+ at (
√

3,
√

2)T . On the other
hand, for all x with x1 = 0 we have f1(x) < 0 and for all x with x2 = 0
we have f2(x) < 0 which means the system is not positive. Figure 3.3 shows
the trajectory of the system starting from initial condition x0 = (1, 1)T for
t ∈ [0, 6]. �

In Section 3.6, we add the extra assumption of subhomogeneity to obtain a D-
stability result where the domain of attraction of system (3.2) is also int (Rn

+).
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Figure 3.3: Trajectory of a cooperative system with an equilibrium in int (Rn
+) and without

an equilibrium at the origin. Evidently, the system is not positive.

3.5 D-stability for Homogeneous
Cooperative Systems

In this section, we add the extra assumption of homogeneity to the system
(3.1) to obtain a D-stability result where the regions of attraction of systems
(3.1) and (3.2) are the same.

Throughout this section, we assume f : W → Rn satisfies the following as-
sumption on a neighbourhood W of Rn

+.

Assumption 3.5.1. (i) f is continuous and C1 on W ;

(ii) f is homogeneous of degree α with respect to the dilation map δrλ;

(iii) f is cooperative in Rn
+.

The following proposition plays a key role in the proof of the main result of
this section. It should be noted that the following proposition can be proved
using the KKM lemma, but in the interest of completeness, we present an
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alternative proof which is based on the extension of the Perron-Frobenius
theorem to homogeneous systems (Theorem 2.6.5).

Proposition 3.5.1. Let f be cooperative and homogeneous of degree α with
respect to dilation map δrλ and assume system (3.1) has a GAS equilibrium at
the origin. Then for any x0 ∈ Rn

+, there exists a v � x0 with f(v)� 0.

Proof: If f were irreducible, this result would be an immediate consequence
of Theorem 2.6.5. The main step in the proof is to show that we can find an
irreducible, homogeneous cooperative vector field f1 such that f1(x) ≥ f(x)
for all x ∈ Rn

+ and such that ẋ = f1(x) has a GAS equilibrium at the origin.
Consider the vector field g : Rn → Rn given by:

gi(x) =
(

(x2
1)

M
r1 + (x2

2)
M
r2 + ...+ (x2

n)
M
rn

) (ri+α)
M

(3.6)

for all 1 ≤ i ≤ n whereM is a real number such thatM/ri > 1 for i = 1, ..., n.
It can be easily checked that:

∂gi
∂xj

= 2(ri + α)
rj

(
x

2M
rj
−1

j

)(
x

2M
r1

1 + ...+ x
2M
rn
n

) ri+α
M
−1

(3.7)

It follows from (3.6) and (3.7) that:

• g(a) ≥ 0 and ∂gi
∂xj

(a) ≥ 0 for all a ≥ 0 and i 6= j;

• g is continuous on Rn and C1 on Rn \ {0};

• g is irreducible;

• g is homogeneous of degree α with respect to δrλ.

We now claim that f + εg has a GAS equilibrium at the origin for some ε > 0.
We prove this by contradiction. For all ε > 0, we know that (f + εg) is
irreducible and satisfies Assumption 3.5.1. Further, (f + εg)(v) ≥ f(v) for
all v ≥ 0 because g(v) ≥ 0 for all v ≥ 0. If there is no ε′ > 0 such that
the system ẋ = (f + ε′g)(x) has a GAS equilibrium at the origin, Theorem
2.6.5 implies that for every ε > 0, there exists a non-zero w ≥ 0 such that
(f + εg)(w) ≥ 0. We could then pick a sequence εn → 0, such that there exists
a corresponding sequence w(n) ≥ 0, w(n) 6= 0 with (f + εng)(w(n)) ≥ 0 for all
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n. By homogeneity, we can normalize all w(n) such that ‖w(n)‖ = 1. Choosing
a subsequence, if necessary, we can assume that w(n) → w′ with w′ ≥ 0 and
‖w′‖ = 1. Since εn → 0, we know that

lim
n→∞

(f + εng)(w(n)) = f(w′) ≥ 0

Since ‖w(n)‖ = 1 and w(n) ≥ 0, it follows immediately from Lemma 2.4.4, that
x(t, w′) ≥ w′ > 0 for all t ≥ 0 which contradicts the fact that (3.1) has a GAS
equilibrium at the origin. Therefore there must exist an ε1 > 0, such that
f + ε1g has a GAS equilibrium at the origin.

Theorem 2.6.5 implies that there is a vector u � 0 such that (f + ε1g)(u) =
f(u) + ε1g(u) � 0 and since g(u) ≥ 0, then we have f(u) � 0. To conclude
the proof, simply choose λ > 0 such that v := δrλ(u) � x0; the homogeneity
of f implies that f(v)� 0. This completes the proof.

We are now in a position to prove the following theorem, which is the main
result of this section and appears in [BMV10]. The following theorem can
be considered as an extension of Theorem 2.5.9 to homogeneous cooperative
systems.

Theorem 3.5.2. Let W be a neighbourhood of Rn
+ and let f : W 7→ Rn be

cooperative and homogeneous of degree α with respect to dilation map δrλ. If the
origin is a GAS equilibrium of the system (3.1), then it is a globally D-stable
equilibrium of the system (3.1).

Proof: Let d ∈ ∆ and let a ∈ Rn
+ be given. It follows from Proposition 3.5.1

that there exists v � a with diag (d(v))f(v)� 0. Lemma 2.4.4 immediately
implies that the trajectory x(t, v) of the system (3.2) is non-increasing and
bounded. Theorem 3.4.3 implies that it must converge to an equilibrium.
Thus, the theorem can be proven provided we can show that the origin is the
only equilibrium of the system (3.2).

Lemma 3.4.1 has already established the fact that the origin is the unique
equilibrium of the system (3.2) under the stated conditions but we present an
alternative proof in here using properties of homogeneous systems. To this
end, note that since f(0) = 0 and di(xi) > 0 for all i = 1, · · · , n, we know
that the origin is an equilibrium of (3.2). We shall show that it is the only
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equilibrium of the system by way of contradiction. Suppose that there is some
e := [e1, e2, ..., en]T > 0 satisfying diag (d(e))f(e) = 0. Let x(t, a) denote the
solution of (3.2) with initial condition a.

Choose some v � 0 with f(v)� 0. It is immediate that diag (d(v))f(v)� 0.
Define κ = max{( ei

vi
)(1/ri) : 1 ≤ i ≤ n} and let j ∈ {1, ..., n} be such that

( ej
vj

)1/rj = κ. Note that as e 6= 0, κ > 0. It follows from the definition of κ
that e ≤ δrκ(v) and that ej = (δrκ(v))j. As f is homogeneous, we have that
f(δrκ(v)) � 0 and hence diag (d(δrκ(v)))f(δrκ(v)) � 0. Thus, we can pick t1,
such that for all 0 < t < t1,

x(t, δrκ(v))� δrκ(v)

In particular, x(t, δrκ(v))j < κrjvj = ej. But as e ≤ δrκ(v) and the system (3.2)
is monotone, we must have x(t, δrκ(v))j ≥ ej for all t ≥ 0. This contradic-
tion shows that the origin is the only equilibrium of (3.2) as claimed. This
completes the proof.

Remark 3.5.1. The proof of the previous result shows that under the stated
assumptions, the origin is a GAS equilibrium of the cooperative homogeneous
system (3.2) if for any initial condition x0 ∈ Rn

+, there exists a v � x0 with
f(v) � 0. In other words, any other assumption apart from homogeneity
imposed on cooperative system (3.1) that guarantees existence of such a v for
every x0 ∈ Rn

+, guarantees global D-stability of the origin for the system (3.1).
In the next section, we see that subhomogeneity is one such assumption.

The following example illustrates Theorem 3.5.2.

Example 3.5.1. Consider the system (3.1) where

f(x) =


−2x5/3

1 + x3

x2
1 − 2x3/2

2 + x3x
1/3
1

x1x2 + x
7/4
2 − 5x7/5

3


The Jacobian of the system is

J = ∂f

∂x
=


−10

3 x1 0 1
2x1 + 1

3x3x
−2/3
1 −3x1/2

2 x
1/3
1

x2 x1 + 7
4x

3/4
2 −7x2/5

3


It is easy to see that J is a Metzler matrix for all x ≥ 0, which makes system
(3.1) a cooperative system. On the other hand, based on the Example 2.6.3
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3.5. D-stability for Homogeneous Cooperative Systems

we know that f is homogeneous of degree α = 2 with respect to dilation map
δrλ, with r = (3, 4, 5)

Also, for v = (0.5, 0.5, 0.3)T , f(v) = (−0.33,−0.22,−0.38)T � 0. Therefore,
based on Theorem 3.5.2, the origin is a globally D-stable equilibrium of the
system (3.1) with the above choice of f . For example, if we consider d given
by:

d(x) =
(

x2
1

x4
1 + 1 , x

2
2, 1 + sin4(x3)

)T
then d ∈ ∆ and it follows that with the above mentioned choices of d and f ,
system (3.2) has a GAS equilibrium at the origin. Note that system (3.2) is
not homogeneous with these choices of d and f .

Figure 3.4 shows the trajectories for ẋ = f(x) and ẋ = diag (d(x)).f(x) for a
set of initial conditions. �
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0 1 2 3 4 5
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10

15

x 3(t
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Perturbed System
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0
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x 2(t
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x 3(t
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time (t)
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18

Figure 3.4: Evolution of states for the systems (3.1) and (3.2) corresponding to the
Example 3.5.1
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3.6 D-stability for Subhomogeneous
Cooperative Systems

In this section, building on the results presented in Sections 3.4 and 3.5, we
present conditions for D-stability for subhomogeneous cooperative systems.
Since subhomogeneous systems and their basic properties were discussed in
Section 2.6.2, we do not discuss them again in this section. We only recall the
definition of a subhomogeneous system.

Definition 3.6.1. Let W be a neighbourhood of Rn
+. A vector field f :W →

Rn is subhomogeneous of degree α > 0 if f(λv) ≤ λαf(v), for all v ∈ Rn
+,

λ ∈ R with λ ≥ 1. When f is subhomogeneous, then we say system (3.1) is
subhomogeneous.

Throughout this section, we assume that the vector field f is:

• C1 on a neighbourhood W of Rn
+;

• Subhomogeneous of degree α;

• Cooperative on Rn
+.

As mentioned in Section 2.6.2, the class of subhomogeneous vector fields given
above includes concave vector fields. Furthermore, it includes vector fields
which are homogeneous with respect to the standard dilation map and conse-
quently, linear vector fields.

We state the results for two distinct cases of cooperative subhomogeneous
systems. First, when the system (3.1) has a unique equilibrium in the origin
and then when the system (3.1) has a unique equilibrium in int (Rn

+).

3.6.1 Equilibrium at the origin
In this section, we add the subhomogeneity assumption to Theorem 3.4.4 in
order to attain more information on the domain of attraction of the equilibrium
of (3.2). We use the preliminary results stated in Section 3.4.1 to prove the
following theorem.
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Theorem 3.6.1. Let W be a neighbourhood of Rn
+ and let f : W → Rn be a

cooperative vector field that is subhomogeneous of degree α > 0. Assume that
(3.1) has a GAS equilibrium at the origin. Then the equilibrium is a globally
D-stable equilibrium of the system (3.1).

Proof: It follows from Proposition 3.2.1 that the system (3.2) is positive and
monotone. As the origin is a GAS equilibrium of system (3.1), Proposition
3.4.2 implies that there exists a v � 0 such that f(v)� 0.

Let x0 ∈ Rn
+ be given. We can find a λ ≥ 1 such that w = λv > x0. From

subhomogeneity, it follows that

f(w) = f(λv) ≤ λαf(v)� 0.

Further, since d ∈ ∆, then

diag (d(w))f(w)� 0.

Lemma 2.4.4 implies that the trajectory x(t, w) of (3.2) starting from x(0) = w

is decreasing. In addition Rn
+ is invariant under (3.2). It now follows from

Theorem 3.4.3 that x(t, w) converges to an equilibrium of (3.2) as t → ∞.
Lemma 3.4.1 implies that the origin is the only equilibrium of (3.2). It follows
immediately that x(t, w)→ 0 as t→∞.

As (3.2) is positive and monotone and as x0 < w, it follows that

0 ≤ x(t, x0) ≤ x(t, w)

for all t ≥ 0. This implies that x(t, x0) is bounded for all x0 ∈ Rn
+ and

x(t, x0)→ 0 as t→∞. This concludes the proof.

The following example shows a simple application of Theorem 3.6.1.

Example 3.6.1. Consider the system

ẋ = f(x) =


−x1 + x2

m+ x2

−x2 + x1

n+ x1

 (3.8)
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wherem > 1, n > 1. It can be easily checked that f is C1 on Rn\{(−n,−m)},
which means it is C1 in Rn

+. The Jacobian of this system is as follows:

J = ∂f

∂x
=
 −1 m

(m+x2)2

n
(n+x1)2 −1


which is a Metzler matrix for all x ∈ Rn

+. Also for λ ≥ 1, we have:

f(λx) =
 −λx1 + λx1

m+λx2

−λx2 + λx1
n+λx1


≤

 −λx1 + λx1
m+x2

−λx2 + λx1
n+x1


= λf(x)

which means f is subhomogeneous of degree 1. Also f(x) = 0 has two solu-
tions, one is x = 0 and the other is

x =
(1−mn

1 +m
,
1−mn
1 + n

)
Since m,n > 1, the second solution is outside the positive orthant. Hence
the origin is the unique equilibrium of the positive system (3.8) in Rn

+. As
f(1, 1) � 0, the argument in the previous proof can be readily adapted to
show that the origin is a GAS equilibrium of (3.8).

If we define

d(x) =


x4

1
x3

1 + 1

1 + sin10(x2)


then we have d ∈ ∆. Now based on Theorem 3.6.1 we can say that the system
ẋ = diag (d(x))f(x) has a GAS equilibrium at the origin. Note that this new
system is cooperative but not subhomogeneous.

Figure 3.5 shows trajectories of the systems (3.8) and (3.2) with the above
choices of f and d with a = 2 and b = 3 for a variety of initial conditions. �

56



3.6. D-stability for Subhomogeneous Cooperative Systems
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Figure 3.5: Trajectories of the systems (3.1) and (3.2) for Example 3.6.1

3.6.2 Equilibrium in the interior of the Positive
Orthant

We next derive a version of Theorem 3.6.1 for the case where (3.1) has a
unique equilibrium p in int (Rn

+). For this scenario, apart from showing that
asymptotic stability of p for (3.1) implies asymptotic stability of p for (3.2),
we show that if the domain of attraction of p under (3.1) contains int (Rn

+),
then the domain of attraction of p under (3.2) also contains int (Rn

+).

Theorem 3.6.2. Let f : int (Rn
+) → Rn be subhomogeneous of degree α and

cooperative in a neighbourhood W of Rn
+. Assume that (3.1) has an asymptot-

ically stable equilibrium at p� 0 and that the domain of attraction of p under
(3.1) contains int (Rn

+). Then p is a D-stable equilibrium of the system (3.1)
and the domain of attraction of p under (3.2) contains int (Rn

+).

Proof: Proposition 3.4.5 implies that there exists a v � p such that f(v)� 0
and there exists a 0 � u � p such that f(u) � 0. It follows from the
subhomogeneity of f that for any λ ≥ 1,

f(λv) ≤ λαf(v)� 0

Similarly, for any 0 < µ ≤ 1,

f(µu) ≥ µαf(u)� 0
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3.7. D-stability for Planar Cooperative Systems

Let x0 ∈ int (Rn
+) be an arbitrary initial condition. Then we can choose λ > 1

and µ < 1 such that
µu ≤ x0 ≤ λv (3.9)

From the properties of d, it follows immediately that d(λv)f(λv) � 0 and
d(µu)f(µu) � 0. Hence the trajectory x(t, λv) of (3.2) is decreasing while
the trajectory x(t, µu) is increasing. Further, as p is an equilibrium of (3.2)
and (3.2) is monotone, the trajectories x(t, λv), x(t, µu) of (3.2) satisfy p ≤
x(t, λv) ≤ λv, µu ≤ x(t, µu) ≤ p for all t ≥ 0.

Taken together this implies that the trajectories x(t, λv), x(t, µu) of (3.2)
converge monotonically to p. It now follows from the monotonicity of the
system (3.2) and the inequality (3.9) that

x(t, µu) ≤ x(t, x0) ≤ x(t, λv)

for all t ≥ 0. Hence, x(t, x0) must also converge to p. This completes the
proof.

3.7 D-stability for Planar Cooperative
Systems

In Section 3.4.1, we presented a weak result concerning D-stability for general
cooperative systems. While it applied to general systems, it only provided a
local form of D-stability. It this section, we investigate whether or not the
assumptions of homogeneity and subhomogeneity are necessary for the more
general D-stability results presented in Sections 3.5 and 3.6. In other words,
we check if the following conjecture is true.

Conjecture 3.1. Let f :W 7→ Rn be a cooperative vector field on a neighbour-
hood W of Rn

+. If the system (3.1) has a GAS equilibrium at the origin, then
the origin is a globally D-stable equilibrium of the system (3.2).

The conjecture was considered in [BMV10]. However, as the following example
from [BMV11] shows, it fails even for planar systems.

Example 3.7.1. Consider the system on R2
+ given by

ẋ = f(x) =


− x1

1 + x3
1

+ x2

−x2

 (3.10)
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3.7. D-stability for Planar Cooperative Systems

It is easy to verify that f is cooperative and that the origin is the only equi-
librium of this system. Also, for v = (1, 0.25)T , f(v) = (−0.25,−0.25)T � 0.
This system is not homogeneous or subhomogeneous. We prove that the origin
is a GAS equilibrium of (3.10) but is not a GAS equilibrium of (3.2) for the
above choice of f(·).

First note that

ẋ1 + ẋ2 = − x1

1 + x3
1

+ x2 − x2 = − x1

1 + x3
1
≤ 0

for all x1, x2 ∈ R+. This implies that for every K > 0, the bounded set

{(x1, x2) ∈ R2
+ : x1 + x2 ≤ K}

is invariant under (3.10). In particular, the trajectories of (3.10) have closed
and bounded closure in R2

+. Using Theorem 3.2.2 in [Smi95], we can conclude
that the single equilibrium of this system, which is the origin, is globally
asymptotically stable.

Now choosing d(x) = (1, x3
2), (3.2) takes the form:

ẋ = diag (d(x))f(x) =


− x1

1 + x3
1

+ x2

−x4
2

 (3.11)

As stated in Example 3.11 of [RKW10], the origin is not a GAS equilibrium
of (3.11). In fact, for the initial condition (x1(0), x2(0)) = (1, 1), the x1

component of the associated solution grows without bound. This shows that
the origin is not a GAS equilibrium of the system (3.2). This means the
conjecture 3.1 is false even in planar case. �

Although the above example clearly shows that Conjecture 3.1 is not true, we
can still ask what extra assumptions (apart from homogeneity or subhomo-
geneity) could be added to Conjecture 3.1, to make it true. In this section,
we report on one of the possible answers to this questions, which appeared in
[BMV11].

Throughout the section, f : W → R2 is assumed to satisfy the following
assumptions in a neighbourhood W of R2

+:
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Assumption 3.7.1. (i) f is C1 on W ;

(ii) f is cooperative on R2
+;

(iii) For any a1 ≥ 0, there exists some δa1 and εa1 > 0 such that

∂f2

∂x2
(a1, δ) ≤ −εa1 for all δ ≥ δa1 ; (3.12)

(iv) For any a2 ≥ 0, there exists some δa2 and εa2 > 0 such that

∂f1

∂x1
(δ, a2) ≤ −εa2 for all δ ≥ δa2 . (3.13)

Items (i) and (ii) of Assumption 3.7.1 are just the usual assumptions required
for the existence and uniqueness of the solutions and monotonicity. The extra
items (iii) and (iv) are useful to prove the next proposition which in turn is
used to prove the main theorem of this section.

Proposition 3.7.1. Assume that the system (3.1) has a GAS equilibrium at
the origin and f satisfies Assumption 3.7.1. Then given any a ∈ R2

+, there
exists v � a with f(v)� 0.

Proof: Let
Ω1 := {x� a : f1(x) < 0}

and
Ω2 := {x� a : f2(x) < 0}

where a ∈ R2
+. We prove that the items (iii) and (iv) of Assumption 3.7.1,

guarantee that Ω1 and Ω2 are not empty. We show that there exists u ≥ a

with f1(u) < 0. (The proof that there is w ≥ a with f2(w) < 0 is identical).
By Assumption 3.7.1, there exist some constants δa2 , εa2 > 0 such that

∂f1

∂x1
(δ, a2) < −εa2

for all δ ≥ δa2 . Therefore, for δ ≥ δa2 , we have

f1(δ, a2) = f1(δa2 , a2) +
∫ δ

δa2

∂f1

∂x1
(s, a2)ds

≤ f1(δa2 , a2)− ε(δ − δa2)
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3.7. D-stability for Planar Cooperative Systems

This immediately implies that for every

δ > δa2 + f1(δa2 , a2)
εa2

(3.14)

we must have f1(δ, a2) < 0 which means Ω1 is not an empty set. Using similar
argument, we can prove that Ω2 is also not an empty set. Therefore, we know
for every a ∈ R2

+ there exists u ≥ a and w ≥ a with f1(u) < 0 and f2(v) < 0.
Let

Ω := {x ∈ R2 : x� a}

As f is cooperative and GAS, it follows from Lemma 2.4.4 that there cannot
exist a non-zero vector z ≥ 0 with f(z) ≥ 0. Hence Ω = Ω1 ∪ Ω2. It is clear
that Ω is a connected set and Ω1, Ω2 are open and non-empty subsets of Ω.
Therefore, Ω1 ∩Ω2 is non-empty and this means that there exists some v � a

with f(v)� 0 as claimed. This completes the proof.

Theorem 3.7.2. Let f satisfy Assumption 3.7.1. If the origin is a GAS
equilibrium of the system (3.1), then it is a D-stable equilibrium of the system
(3.1).

Proof: Let d : R2 → R2 be in ∆. It follows from Lemma 3.4.1 that the origin
is the only equilibrium of the system (3.2).

Theorem 3.7.1 implies that for any x0 ∈ R2
+, there exists some v � x0 with

diag (d(v))f(v) � 0. It now follows from Lemma 2.4.4 that the trajectory
x(t, v) of (3.2) is non-increasing and bounded from below. Hence as the origin
is the only equilibrium of the system (3.2), x(t, v) → 0 as t → ∞. It follows
immediately from the monotonicity and positivity of (3.2) that x(t, x0) ≤
x(t, v) also converges to the origin. This completes the proof.
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3.8 Positivity of Equilibria
In this section we study the case where the system (3.1) is forced by a constant
input. Since we deal with positive systems, we are particularly interested in
the case where the constant input is nonnegative. We are concerned with
how the new equilibrium is related to the old one, although to make the
result meaningful, the new equilibrium should be proved to be asymptotically
stable. This form of analysis belongs to the domain of comparative statics,
which we first mentioned in Section 3.3. For example, the result that relates
the equilibrium of the positive LTI system ẋ = Ax + b to the equilibrium of
the positive LTI system ẋ = Ax is a simple example of comparative statics.
This simple result, can be stated as follows [FR00].

Theorem 3.8.1. Consider the system

ẋ = Ax+ bū (3.15)

where A ∈ Rn×n is Metzler and Hurwitz, b ∈ Rn with b > 0 and ū ∈ R with
ū > 0. Let x̄ be the equilibrium of the system (3.15). Then x̄ > 0.

The above theorem only states a condition for positivity of the equilibrium of
(3.15). It is shown in [MR91] that if the system (3.15) is excitable, then its
equilibrium is globally asymptotically stable if and only if it is strictly positive
(for the definition of excitability, look at [PR02]).

In [PR02], it is shown that the equivalence between asymptotic stability and
strict positivity of equilibria for the system (3.15), does not hold for excitable
nonlinear cooperative systems, although weaker results hold.

In [dLA01], results relating the stability properties of a homogeneous cooper-
ative irreducible system ẋ = f(x) to the existence of positive equilibria of the
associated system ẋ = f(x) + b are presented. The arguments of this paper
rely on the extension of the Perron-Frobenius Theorem to homogeneous irre-
ducible cooperative systems (as stated in the Theorem 2.6.5). In this section,
we extend some of these results to subhomogeneous systems. Specifically, we
consider the system (3.1), where f is assumed to be cooperative, subhomoge-
neous and irreducible, and relate it to the existence and stability of positive
equilibria of the associated system

ẋ = f(x) + b, b ∈ Rn. (3.16)
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We do not specifically use the main theorem of [dLA01] to prove the results
presented in this section. However, in the interest of completeness, we state
it here.

Theorem 3.8.2. Let W be a neighbourhood of Rn
+ and let f : W 7→ Rn be

cooperative, irreducible and homogeneous of degree α with respect to dilation
map δrλ. Then there exists a unique equilibrium point x̄ in Rn

+ for system
(3.16). This equilibrium is in int (Rn

+) and is GAS for system (3.16).

The main theorem of this section, states a similar condition for the positivity
and stability of the equilibrium of system (3.16) when f is subhomogeneous.
We first state some preliminary results. The following proposition establishes
a sufficient condition for the system (3.16) to be positive.

Proposition 3.8.3. Let f : W → Rn be subhomogeneous and cooperative on
a neighbourhood W of Rn

+ and let b ≥ 0. Then the system (3.16) is positive.

Proof: Let g(·) = f(·) + b. Since f is subhomogeneous and λ ≥ 1, we have

g(λx) = f(λx) + b

≤ λτf(x) + b

≤ λτf(x) + λτb

= λτ (f(x) + b)

= λτg(x)

which means g(·) is subhomogeneous. Also ∂f
∂x

(a) = ∂g
∂x

(a) for all a ∈ Rn
+ which

means g is cooperative. The result now follows from Theorem 2.6.9.

The following proposition, provides a condition for positivity of equilibria for
the systems of the form (3.16).

Proposition 3.8.4. Let W be a neighbourhood of Rn
+ and let f :W → Rn be

subhomogeneous of degree α and cooperative and let b > 0 be given. Assume
that the system (3.1) has a GAS equilibrium at the origin. Then the system
(3.16) has at least one equilibrium in int (Rn

+).
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Proof: From Proposition 3.4.2, we know there exists a v � 0 such that
f(v) � 0. The subhomogeneity of f implies that f(λv) ≤ λαf(v) for all
λ ≥ 1. By choosing λ large enough we can ensure that f(λv) + b � 0.
Since g(·) = f(·) + b is also cooperative, it follows from Lemma 2.4.4 that the
trajectory x(t, λv) of (3.16) starting from λv is decreasing.

Given any x0 ∈ Rn
+, we can find λ > 1 with λv ≥ x0 and f(λv) + b � 0.

Further, as (3.16) is positive, this implies that

0 ≤ x(t, x0) ≤ x(t, λv) ≤ λv

for all t ≥ 0. Hence, the forward solution {x(t, x0) : t ≥ 0} is bounded for any
x0 ∈ Rn

+. It follows immediately from Theorem 3.4.3 that x(t, λv) converges
to an equilibrium point p ∈ Rn

+.

We have shown that there exists an equilibrium in Rn
+. To complete the

proof, we show that every equilibrium of (3.16) is in int (Rn
+). Since b > 0

and f(0) = 0, the origin cannot be an equilibrium of the system (3.16). Next
consider z ∈ bd (Rn

+) \ {0} with zi = 0. Since system (3.16) is positive, then
based on (3.3), fi(z) > 0. Also b > 0, hence f(z) + b cannot be zero. This
concludes the proof.

To prove the main result of this section, we need the following proposition,
which extends Proposition 4 of [dLA01] to subhomogeneous vector fields.

Note that in the remainder of this section, we impose the extra assumption of
irreducibility on the vector field f .

Proposition 3.8.5. Let W be a neighbourhood of Rn
+ and let f : W → Rn

be subhomogeneous of degree α, cooperative and irreducible and let b > 0 be
given. Then the Jacobian matrix of f(x) + b evaluated at an equilibrium point
of the system (3.16) is a Hurwitz matrix.

Proof: We prove the proposition by contradiction. Choose an arbitrary equi-
librium point p. Based on Proposition 3.8.4 we know that p ∈ int (Rn

+). As f
is irreducible and cooperative and p ∈ int (Rn

+), ∂f
∂x

(p) is an irreducible Metzler
matrix. By way of contradiction, suppose that ∂f

∂x
(p) is not a Hurwitz matrix.

Writing µ for the maximal real part of the eigenvalues of ∂f
∂x

(p), we have µ ≥ 0.
Perron-Frobenius Theorem for irreducible LTI systems (Theorem 2.5.7) then
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implies that there exists a vector v ∈ int (Rn
+) with

vT
∂f

∂x
(p) = µvT (3.17)

On the other hand based on Lemma 2.6.7, we know that
∂f

∂x
(p)p ≤ αf(p). (3.18)

Multiplying (3.18) by vT on the left and invoking (3.17) we have

µvTp ≤ αvTf(p) (3.19)

We know that f(p) = −b < 0. Therefore there exists at least one j such
that fj(p) < 0. This implies that the right hand side of (3.19) is strictly
negative, while the left hand side is nonnegative. We have therefore reached
a contradiction and we can conclude that ∂f

∂x
(p) is a Hurwitz matrix.

Now we are ready to state and prove the main theorem of this section.

Theorem 3.8.6. Let W be a neighbourhood of Rn
+ and let f : W → Rn be

subhomogeneous of degree α, cooperative and irreducible such that the system
(3.1) has a GAS equilibrium at the origin. Then for any b > 0, the system
(3.16) has a unique equilibrium in int (Rn

+), and this equilibrium is GAS.

Proof: We know from Proposition 3.8.4 that (3.16) has an equilibrium in
int (Rn

+). We first prove that this equilibrium is unique.

To this end, suppose that there are two distinct equilibria p � 0, q � 0.
Proposition 3.8.5 implies that Jacobian of g(·) = f(·) + b evaluated at each
equilibrium point is Hurwitz. Further, as g is cooperative and irreducible,
the Jacobian evaluated at each equilibrium point is irreducible and Metzler.
Perron-Frobenius Theorem for irreducible LTI systems (Theorem 2.5.7) im-
plies that there exist vectors xp, xq with ‖xp‖ = 1, ‖xq‖ = 1 such that

∂g

∂x
(p)xp � 0

and
∂g

∂x
(q)xq � 0

Without loss of generality, we can assume that

max
i

qi
pi
> 1 ∀i = 1, · · · , n
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As g is C1, it follows from Taylor’s theorem that by choosing t > 0 sufficiently
small, we can ensure that g(p+ txp)� 0, g(q− txq)� 0. Define v = p+ txp,
w = q−txq. Then g(v)� 0, g(w)� 0. Also, choosing a smaller t if necessary,
we can ensure that

λ := max
i

wi
vi

= wk
vk

> 1

Now note the following facts:

(i) λv ≥ w and λvk = wk;

(ii) g(λv) ≤ λαg(v) (as b > 0, g is also subhomogeneous).

As g is cooperative, it follows from (i) that

gk(λv) ≥ gk(w) > 0

On the other hand, it follows from (ii) that

gk(λv) ≤ λαgk(v) < 0.

This is a contradiction, which shows that there can only be one equilibrium
of (3.16) in int (Rn

+) as claimed.

To complete the proof, we show that this unique equilibrium point is GAS.
Let p� 0 be the equilibrium point of (3.16). As the Jacobian of g evaluated
at p is Hurwitz, Metzler and irreducible, it follows from Taylor’s theorem (as
in the previous paragraph) that there is some v ≥ p with g(v)� 0. Further,
as f(0) = 0, we have g(0) = b > 0. Hence from Lemma 2.4.4 the trajectory
x(t, 0) of (3.16) is non-decreasing and satisfies

0 ≤ x(t, 0) ≤ p

for all t ≥ 0. As p is the only equilibrium of (3.16) in int (Rn
+) it follows that

x(t, 0)→ p as t→∞.

Let x0 ∈ Rn
+ be given. As g is subhomogeneous, we can find a λ > 1 such

that w = λv � x0, and g(w) � 0. Lemma 2.4.4 implies that the trajectory
x(t, w), starting from w is decreasing and satisfies

w ≥ x(t, w) ≥ p
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for all t ≥ 0. Thus x(t, w)→ p as t→∞.

As 0 ≤ x0 ≤ w and (3.16) is monotone, it follows that

x(t, 0) ≤ x(t, x0) ≤ x(t, w)

for all t ≥ 0. It is now immediate that x(t, w)→ p as t→∞. This concludes
the proof.

Example 3.8.1. We again, consider the system defined in Example 3.6.1. In
other words, we consider f : W 7→ Rn to be defined on a neighbourhood W
of Rn

+ as follows:

ẋ = f(x) =


−x1 + x2

m+ x2

−x2 + x1

n+ x1


where n > 1, m > 1. In Example 3.6.1, it was proved that f is cooperative
and subhomogeneous of degree 1. Also looking at the Jacobian of f :

J = ∂f

∂x
=
 −1 m

(m+x2)2

n
(n+x1)2 −1


we can see that it is irreducible for all x ∈ Rn

+. It was also shown that for
v = (1, 1)T , f(v) � 0 and the origin is the GAS equilibrium of the system
(3.1) with the above choice of f . This means that the system (3.1) satisfies
all the conditions stated in Theorem 3.8.6. Therefore, system (3.16) with the
above mentioned choice of f has a unique GAS equilibrium in int (Rn

+) for all
vectors b with b > 0.

Figure 3.6 shows the trajectories of the systems (3.1) and (3.16) for a set of
initial conditions with m = 2, n = 3 and b = (1, 1)T .
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Figure 3.6: Trajectories of Systems (3.1) and (3.16) corresponding to Example 3.8.1

3.9 Concluding Remarks
The main theme of this chapter was extending the notion of D-stability to
nonlinear positive systems. D-stability is a novel concept in nonlinear systems
theory and therefore, much is left to study. Our focus in this chapter was
on monotone positive systems. As mentioned before, for LTI systems, posi-
tivity and monotonicity properties are equivalent but that does not hold for
nonlinear systems. Therefore, a natural extension to the results presented in
this section is to study positive nonlinear systems which are not necessarily
cooperative.

Even for monotone positive systems, there is still much left to do. The most
immediate is to obtain a necessary and sufficient condition for the D-stability
for the general cooperative system (3.1), such that the equilibria of the system
(3.2) have the same domain of attraction as the equilibria of (3.1). Also, we
only considered the cases where system (3.1) has a unique equilibrium in Rn

+ or
in int (Rn

+). D-stability of monotone positive systems with multiple equilibria
is another interesting problem that can be studied.

Apart from the different types of positive systems we can consider, the defini-
tion of D-stability itself may also be extended. It is interesting to ask if similar
D-stability conditions for a more general ∆ could be derived, in particular,
the case where the condition di(x) = di(xi), i = 1, · · · , n, for d ∈ ∆ is eased.

Also, there is a possible extension to the results presented in Section 3.8. In
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that section, we did not assume excitability in stating the results, instead we
used the assumption of irreducibility. Therefore, studying the positivity and
asymptotic stability of the equilibrium of the system (3.16) when system (3.1)
is cooperative, excitable and homogeneous or subhomogeneous, is the next
logical step in extending those results.
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CHAPTER 4
Delay-Independent Stability of

Positive Nonlinear Systems

In this chapter, we review the basic concepts and properties of time-delay systems.
Then we present conditions for delay-independent stability of classes of positive
time-delay systems.

4.1 Introduction
Dynamical systems with time-delay have attracted much interest [XFS09].
There are many reasons for this. One reason is that nature is full of systems
subject to delay. Another reason is that time-delay systems are often used to
model a large class of engineering systems, where propagation or transmission
of information or material is involved. The presence of delays (especially
long delays) can make system analysis and control design much more difficult
[Zho06]. Systems with delay are often referred to as time-delay or delayed
systems.

In this chapter, our attention is focused on positive nonlinear delayed systems,
particularly, homogeneous and subhomogeneous cooperative delayed systems.
We present conditions for stability of these systems that hold for fixed but
unknown values of delay. We also report on an attempt to generalise these
results to more general classes of cooperative delayed systems.
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4.2 Background
A common hypothesis in the modelling of physical systems is to assume that
the future behaviour of the system depends only on the present value of the
states of the system. Such models, when the number of states is finite, fall
into the category of ordinary differential equations, ODEs. Sometimes, we face
situations in which the influence of the past states should also be considered.
For example, in population dynamics, time-delay should be added to the model
to account for hatching and maturation periods [Hut48]. A familiar example
in control engineering is the delay in measuring the states of a plant due to
technological or physical limitations.

As a theoretical example, consider the following system:

ẋ(t) = −x(t− τ)

where τ is real with τ > 0. In such cases, the state cannot be the vector x(t)
anymore. The above equation can have infinite number of solutions for the
same value of x(0) and in order to calculate the future values of x(t), we need
to know the history segment {x(s) : t− τ ≤ s ≤ t}. In systems like the above
example where a time-delay exists, the state should be defined over the time
period [−τ, 0].

Mathematical models of time-delay systems, such as the above mentioned ex-
ample, belong to the family of functional differential equations. Functional
differential equations are generally infinite dimensional, which makes them
harder to analyse than ordinary differential equations. If the past dependence
appears only in the state variables and not the derivative of the state vari-
ables, then the functional differential equation is called retarded functional
differential equations or retarded differential equations [Hal77].

There are also a number of applications in which the delayed argument occurs
in the derivative of the state variable as well as in the independent variable.
Such functional differential equations are called neutral differential equations
[Hal77]. Neutral differential equations are less common compared to retarded
differential equations and are out of the scope of this manuscript. Hereafter,
every time we use the term functional differential equations, we only refer to
retarded functional differential equations.
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While modelling a time-delay system as a functional differential equation,
based on the information we have on τ , the value of the delay, we are usually
faced with three situations:

(1) τ is fixed and its exact value is known;

(2) τ is fixed but its exact value is unknown;

(3) τ is time-variable, i.e., τ = τ(t) for t ≥ [−τ,∞).

In this chapter, we are interested in the second case, i.e., when we know τ is
fixed, but we do not know its precise value. The results stated in this chapter
hold for all positive (but fixed) values of time-delay. Such stability results are
called delay-independent stability conditions.

The states of the functional differential equation we consider in this manuscript
belong to C([−τ, 0],Rn), where C([a, b],Rn) is the space of continuous func-
tions mapping the interval [a, b] into Rn for a, b ∈ R with b > a. For any
φ ∈ C([a, b],Rn), we use the norm defined as

‖φ‖ := sup
a≤θ≤b

‖φ(θ)‖

where ‖·‖ in the right hand side can be any p-norm in Rn, for example 2-norm.
Even though ‖ · ‖ is used for norms in different spaces, no confusion should
arise.

Let tf ∈ R with tf ≥ 0. For x ∈ C([−τ, tf ],Rn) and t ∈ [0, tf ], we define
x(t) ∈ C([−τ, 0],Rn) as follows:

x(t)(θ) = x(t+ θ), θ ∈ [−τ, 0]

Let Ω be a subset of C([−τ, 0],Rn). Then a retarded functional differential
equation can be represented by

ẋ(t) = h(x(t)) (4.1)

with h : Ω 7→ Rn. A function x is said to be a solution or trajectory of (4.1)
on [−τ, tf ), if there is tf > 0 such that x ∈ C([−τ, tf ),Rn), x(t) ∈ Ω and x(t)
satisfies (4.1) for all t ∈ [0, tf ) [Hal77].
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For a given φ ∈ C([−τ, 0],Rn), we say x(t, φ) is a solution of (4.1) with
initial condition φ, or simply a solution through φ, if there is a tf > 0, such
that x(t, φ) is a solution of (4.1) on t ∈ [−τ, tf ) and x(0)(θ) = φ(θ) for all
θ ∈ [−τ, 0] [Hal77].

Similar to ordinary differential equations, we are only interested in those cases
where the solution of a functional differential equation exists and is unique.
The following two theorems are adopted from [Hal77].

Theorem 4.2.1 (Existence). Let Ω be an open subset of C([−τ, 0],Rn), and
let h : Ω 7→ Rn be continuous in Ω. Then for every φ ∈ Ω, system (4.1) has a
solution through φ.

To state the condition for uniqueness of solutions of (4.1), we need to ex-
tend the Lipschitz condition (Definition 2.4.1) to vector fields defined on
C([−τ, 0],Rn).

Definition 4.2.1 (Lipschitz Condition). Let h : K 7→ Rn where K is a closed
and bounded subset of C([−τ, 0],Rn). We say h is Lipschitz in K, if for any
φ1, φ2 ∈ K, there exists a constant k > 0, such that

‖h(φ1)− h(φ2)‖ ≤ k‖φ1 − φ2‖

The condition for uniqueness of the solution of (4.1) can be stated as follows.

Theorem 4.2.2 (Uniqueness). Let h : Ω 7→ Rn where Ω is an open subset of
C([−τ, 0],Rn). If h is Lipschitz on every closed and bounded subset of Ω, then
system (4.1) has a unique solution for every initial condition φ ∈ Ω.

In the remainder of this chapter, we always assume all vector fields satisfy the
existence and uniqueness conditions, even if it is not explicitly mentioned.

In this chapter, we deal with positive time-delay systems. The definition of
a positive time-delay system is as stated in the following and in principle, is
similar to the concept of positivity for nonlinear systems stated in Chapter 2.

Definition 4.2.2 (Positivity). Let Ω be an open subset of C([−τ, 0],Rn), and
let h : Ω 7→ Rn be continuous in Ω. Also, let Ω+ be defined as follows:

Ω+ := {φ ∈ Ω : φ(θ) ≥ 0 for all θ ∈ [−τ, 0]} (4.2)
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Then the system (4.1) is said to be positive, if for every φ ∈ Ω+, we have
x(t, φ) ≥ 0 for all t ≥ 0.

In this chapter, we deal with monotone time-delay systems. Monotonicity in
functional differential equations is defined as follows.

Definition 4.2.3 (Monotonicity). Let Ω be a subset of C([−τ, 0],Rn) and
let x(t, φ) represent the trajectory of the system (4.1) with respect to initial
condition φ ∈ Ω at time t. Then the system (4.1) is said to be monotone if
for every φ, ψ ∈ Ω, satisfying

φ(θ) ≤ ψ(θ), for all − τ ≤ θ ≤ 0

we have:
x(t, φ) ≤ x(t, ψ)

It is known that the quasimonotone condition, provides a sufficient condition
for monotonicity of the system (4.1) [Smi95, Section 5.1]. The quasimonotone
condition can be stated as follows.

Definition 4.2.4 (Quasimonotone Condition). Whenever φ(θ) ≤ ψ(θ), for all
−τ ≤ θ ≤ 0 and φi(0) = ψi(0) holds for some i, then hi(φ) ≤ hi(ψ).

The next theorem, which is a restatement of Theorem 5.1.1 in [Smi95], for-
mally states the relation between quasimonotone condition and monotonicity
of the system (4.1).

Theorem 4.2.3. Let Ω be a subset of C([−τ, 0],Rn). The system (4.1) is
monotone in Ω, if the quasimonotone condition is satisfied for every φ, ψ ∈ Ω.

The quasimonotone condition is an extension of the Kamke condition (Defi-
nition 2.4.6) to vector fields in C([−τ, 0],Rn). It can be easily seen that for
the special case where τ = 0, the quasimonotone and Kamke conditions are
in fact the same.

From now on, for any p ∈ Rn we define p̂ ∈ C([−τ, 0],Rn) to be:

p̂(θ) ≡ p, ∀θ ∈ [−τ, 0] (4.3)
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Let Ω be an open subset of C([−τ, 0],Rn). The equilibria of (4.1) in Ω are
those φ ∈ Ω such that

h(φ) = 0 (4.4)

This means that at θ = −τ and for t ∈ [0, τ ], we have:

x(t− τ, φ) = φ(t− τ) = φ(−τ)

This implies that φ(t− τ) = φ(−τ) for all t ∈ [0, τ ], which means φ should be
a constant function. Thus the set of equilibria is given by

E = {p̂ ∈ Ω : p ∈ Rn and h(p̂) = 0} (4.5)

If p̂ ∈ E with p = 0, then we say the system (4.1) has an equilibrium at the
origin.

The following lemma states that there is a one-to-one correspondence between
the equilibria of the system (4.1) and the equilibria of the following system

ẏ(t) = H(y(t)) (4.6)

where H : Rn 7→ Rn and
H(y) = h(ŷ) (4.7)

with y ∈ Rn and ŷ as defined in (4.3).

Lemma 4.2.4. Let h : Ω 7→ Rn, where Ω is an open subset of C([−τ, 0],Rn).
Let h satisfy quasimonotone condition and let p be an equilibrium of the system
(4.6). Then p̂, as defined in (4.3), is an equilibrium of the system (4.1).

Proof: The proof is based on discussions in Section 5.1 (pp. 77-78) of [Smi95].
Let Ω be an open subset of C([−τ, 0],Rn). As already discussed, the set of
equilibria of the system (4.1) in Ω is:

E = {p̂ ∈ Ω : p ∈ Rn and h(p̂) = 0}

Since H(p) = h(p̂), H(p) = 0 if h(p̂) = 0. Therefore, we can conclude that the
equilibria of (4.1) consists of those p̂ for which p is an equilibrium of (4.6).
This concludes the proof.

The following result is the analogue for delayed systems of Lemma 2.4.4 and
follows immediately from Corollary 5.2.2 of [Smi95].

75



4.2. Background

Lemma 4.2.5. Let h : Ω 7→ Rn satisfy the quasimonotone condition in Ω,
where Ω is an open subset of C([−τ, 0],Rn). If v ∈ Rn is such that v̂ ∈ Ω and
h(v̂) ≤ 0, then x(t, v̂), solution of (4.1) through v̂, is non-increasing for all
t ≥ 0.

Note that since H(v) = h(v̂), as defined in (4.7), then H(v) ≤ 0 implies
h(v̂) ≤ 0 and vice versa. Therefore, Lemma 4.2.5 can be also stated as follows.

Lemma 4.2.6. Let h : Ω 7→ Rn satisfy the quasimonotone condition in Ω,
where Ω is an open subset of C([−τ, 0],Rn) and let H be defined as (4.7).
Assume that there exists a vector v ≥ 0 with H(v) ≤ 0. Then the trajectory
x(t, v̂) of the system (4.1) is non-increasing for all t ≥ 0.

We use Lemma 4.2.6 instead of Lemma 4.2.5 in the following sections, because
the statement of Lemma 4.2.6 is more suitable for the framework we have
chosen for our stability conditions.

We also use a variation of the Convergence Criterion (Theorem 3.4.3) for de-
layed systems. The following theorem, is a simple adaptation of the Theorem
1.2.1 in [Smi95].

Theorem 4.2.7 (Convergence Criterion). Let h : Ω 7→ Rn satisfy the quasi-
monotone condition in an open subset Ω of C([−τ, 0],Rn). Let x(t, x̂0), the
trajectory of the system (4.1) be bounded for all t ≥ 0 and for all x̂0 ∈ Ω. If
x(t, x̂0) ≤ x̂0 for t belonging to some non-empty subinterval of (0,∞), then
x(t, x̂0)→ p̂ ∈ E as t→∞, where E is the set of all equilibria of the system
(4.1).

Note that the statement of the Convergence Criterion as stated in Theorem
4.2.7 is very similar to Theorem 3.4.3. In fact, Theorem 1.2.1 of [Smi95] is
stated in a general framework and can be applied to both systems (3.1) and
(4.1).

To close this section, we state a condition for positivity of monotone time-
delay systems. The following result, is the equivalent of the Lemma 2.6.2 for
time-delay systems.
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Lemma 4.2.8. Let Ω be an open subset of C([−τ, 0],Rn), and let h : Ω 7→ Rn.
If the system (4.1) is monotone and has an equilibrium at the origin, then it
is positive.

Proof: The proof is in principle, similar to the proof of Lemma 2.6.2. Since
h is monotone, then based on the definition, we know that for two initial
conditions φ, ψ ∈ Ω, if φ(θ) ≤ ψ(θ) for all θ ∈ [−τ, 0], then we have

x(t, φ) ≤ x(t, ψ) for all t ≥ 0 (4.8)

The origin is an equilibrium of the system (4.1), which means if ψ(θ) = 0 for
all θ ∈ [−τ, 0], then x(t, ψ) = 0 for all t ≥ 0. Therefore, based on (4.8), we can
conclude that for all φ ∈ Ω+, with Ω+ as defined in (4.2), we have x(t, φ) ≥ 0.
This concludes the proof.

In the remainder of this chapter, we deal with monotone time-delay systems
that have an equilibrium at the origin. Therefore, based on Lemma 4.2.8,
they are all positive systems, although we do not explicitly mention this fact
in each of the following sections of this chapter.

4.3 Literature Review
Time delay systems have been studied since at least the 1920s. The great
number of monographs written on the subject, particularly in recent years,
is evidence for the continuing interest of mathematicians and engineers in
delayed systems. For example, look at survey papers [Kha99, KNG99, Ric03],
special issues [LR97, RK998, DDN01, NR002, FS003], monographs [Kua93,
CL07, Zho06, Ern09, XFS09, LMNS09, LS10] and references therein. We note
the following points concerning time-delay systems:

(i) With increasing expectations of dynamic performances, engineers need to
use more and more realistic models. Many processes and systems include
time-delay in their inner dynamics. Monographs [KM92, Nic01, CL07, Ern09]
provide numerous examples of time-delay systems in biology, chemistry, eco-
nomics, mechanics, physics, physiology, population dynamics, communication
networks, queueing theory and other fields of science and engineering.

(ii) Time-delay systems are ‘resistant’ to many classical controllers [Ric03].
One apparent solution for this problem is to approximate the delay systems
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with a finite-dimensional system, most commonly using Padé approximation.
Although this method sometimes works, it can lead to complex controllers and
in worst cases, can have disastrous results in terms of stability, as discussed
below:

(a) Linear systems with a single constant delay remain the favourite do-
main of application for these methods. But, even in this case, designing
controllers that stabilize Padé approximations may lead to unstable be-
haviours of the original system [SDB01].

(b) When there is uncertainty in the value of delay, the stability analysis
results developed for certain constant delay may allow stability analysis
for uncertain time-delay systems but cannot be applied straightforwardly
to define a control law. And even if we are only interested in stability
analysis, there exist other competitive methods, such as the pseudo-
delay technique, which has proven to be preferable to any approximation
method [HJZ84], [WM87], [MCH89, Chapter 7].

(c) Rational approximations are not an appropriate choice for time-varying
delays [Ric03]. For instance, it is shown that a simple, first-order system
with a variable delay can be unstable while each of the values taken
by the delay (when constant) provides a stable model. For example,
consider the following delay system in which the delay s(t) corresponds
to a sampling device with a unit period:

ẋ(t) = ax(t) + bx(t− s(t))

s(t) = t− k, for all t ∈ (k, k + 1], k ∈ N

It is easy to see that 0 < s(t) ≤ 1. In [HS80] it is shown that the
system has an unstable equilibrium for a = −3.5 and b = −4. It is
also shown that for a = −1, b = 1.5, the equilibrium is asymptotically
stable, whereas the system with s(t) ≡ 0 has an unstable equilibrium in
this case. Thus, choosing a mean value of the delay and applying finite-
dimensional rational approximations cannot be justified for the stability
analysis of the time-delay systems with time-varying delays.

(d) Finite-dimensional rational approximations do not extend readily to the
analysis of nonlinear or time-varying functional differential equations
[Ric03].
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(e) When dealing with positive systems, we are only interested in those
approximations that preserve positivity of the system. Recently, it is
been shown in [ZCKS12] that the Padé approximation does not preserve
positivity of the system. Therefore, apart from the above mentioned
disadvantages, applying Padé methods is a particularly poor technique
for positive delayed systems, because we may lose the positivity of the
system in the process.

(iii) Delay affects stability properties of the systems, sometimes drastically.
That is one of the most important reasons that has led to the development
of the theory of delayed systems. The effects of delay on stability can be
considered from two different angles.

(a) Delay usually has a ’bad reputation’ when it comes to its effects on
stability properties of a system. Sometimes even small values of delay
that seem harmless to ignore in modelling a system, can lead to instabil-
ity. For example, consider the following LTI system, which has a GAS
equilibrium at the origin:

ẋ(t) + 2ẋ(t) = −x(t)

On the other hand, the trivial solution of the following neutral functional
differential equation

ẋ(t) + 2ẋ(t− τ) = −x(t)

is unstable for any τ > 0 (for a proof look at [Hal77, p. 28]).

(b) Delay can also have surprising effects on improving the stability of the
systems. Several studies have shown that voluntary introduction of de-
lays can also benefit the control. For example, in damping and stabilisa-
tion of ordinary differential equations [ADBRB93] [RGBTD98, Chapter
11], delayed resonators [JO98] and nonlinear limit cycle control [ARS00].

(iv) Although time-delay systems are infinite dimensional, the class of func-
tional differential equations are relatively simple to analyse in the very complex
area of partial differential equations (PDEs). That is why sometime time-delay
systems are used to approximate PDEs. For instance, hyperbolic PDEs can
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be locally understood as neutral delay systems [HVL93, KN86]. [Ric03, Table
1] provides a list of such approximations and their domain of application.

(v) Different approaches for solving functional differential equations have been
suggested as early as the 1950s [Él’55]. Although, due to their more complex
nature compared to ordinary differential equations, simulation of time-delay
systems in many cases has not been possible until recently. Rapid advances in
computational power have revived interest in time-delay systems in the past
couple of decades. Apart from that, new areas of research have appeared that
demand the use of theory of delayed systems. These two factors have led to
numerous applications of time-delay systems in different areas. For example,
time-delay has been considered in the analysis of congestion control in TCP-
based communication networks [LAQ+08, EGOP10], in life science [Smi10], in
consensus problems in networks [OSM04], in the analysis of traffic scheduling
algorithms [SV98], in modelling blood production in patients with leukaemia
[MG77, GM88], in modelling business cycles [SKT01, SK05], in modelling
predator-prey systems [GE00], in studying different neural assemblies in body
[SC00], in chemostat models [RW96, WX97, WXR97, WW06], in modelling
HIV/AIDS [MGC07], to name a few. More examples of applications of time-
delay systems in different areas of science and engineering can be found in
[Ern09, CL07, BZ03] and references therein.

The above mentioned factors, have motivated the study of time-delay systems
since its first appearance in mathematical literature, which is probably [Vol28].
In his work on predator-prey models and viscoelasticity [Vol28, VB30], the
Italian mathematician Vito Volterra (1860-1940), formulated some relatively
general differential equations incorporating past states of the system. Unfor-
tunately, this aspect of his work was almost completely ignored and didn’t
have much immediate impact. In the early forties, Minorsky in his study of
ship stabilization and automatic steering [Min42], showed the importance of
considering delay in the feedback mechanisms. In the late forties and fifties,
more attempts were made to develop the theory of systems with time-delay.
Most notable among them is the work of Krasovskĭi [Kra59, Kra63], which ex-
tended the Lyapunov methods to delayed systems. Approaches based on this
line of work are commonly known today as the Lyapunov-Krasovskĭi func-
tional method [DV98, GKC03]. In the past four decades, an extensive number
of textbooks and papers devoted to the theoretical properties of time-delay
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systems have appeared. The standard reference on properties of functional
differential equations is [Hal77], from which most of the basic definitions and
results stated in the previous section are adopted.

Time-delay in the context of monotone systems has been studied since the
late 1970s and early 1980s. The first papers that introduced the quasimono-
tone condition and the basic properties of monotone functional differential
equations are [KS79], [Mar81] and [Oht81]. Stability properties of monotone
time-delay systems were studied by different researchers in the 1980s. Two of
the most important of these manuscripts are [KN84] and [Smi87]. In [KN84]
some results on stability for abstract linear delay differential equations are pre-
sented which are based on Perron-Frobenius theory. [Smi87], presented some
fundamental results on stability of monotone functional differential equations.
In [Smi87] it is proved that the stability of the equilibrium of a cooperative
and irreducible time-delay system is determined by a real characteristic root
and that this stability is the same as for an associated systems of coopera-
tive ordinary differential equations. A good reference, that summarizes the
fundamental properties of monotone time-delay systems is [Smi95, Chapter
5].

In the past two decades, different aspects of monotone and positive time-
delay systems have been investigated and developed in different directions.
In [HC04], a condition for delay-independent stability of linear positive time-
delay systems is presented. This result is the basis of the results presented in
this chapter. We discuss it in the next section. Similar results are also pre-
sented for neutral linear functional differential equations in [NNS07], for pos-
itive linear Volterra equations in [NNSM08] and for Linear Volterra-Stieltjes
Differential Systems in [NMN+09] and most recently, for a class of posi-
tive linear integro-differential equations with infinite delay in [Ngo11]. Also,
systems with delay in inputs are considered in [DlS07]. The problem of
designing a positive observer for positive time-delay systems is studied in
[ARHT07, Hua08, LLS09] and excitability of linear positive time-delay sys-
tem is addressed in [DlS09].
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4.4. Time-delay Homogeneous Cooperative Systems

4.4 Time-delay Homogeneous Cooperative
Systems

The main theorem of this section, can be considered as an extension of the
main result of [HC04] to homogeneous cooperative delayed systems. In [HC04],
a condition for asymptotic stability of the equilibrium of a class of linear
functional differential equations is presented. That result can be stated as
follows.

Theorem 4.4.1. Consider a linear time-delay system of the form

ẋ(t) = Ax(t) + Adx(t− τ), t ≥ 0 (4.9)

x(θ) = φ(θ), − τ ≤ θ ≤ 0

where A ∈ Rn×n is Metzler, Ad ≥ 0 ∈ Rn×n, τ ≥ 0 and φ(·) is the initial state.
The origin is an asymptotically stable equilibrium for the system (4.9) for all
τ ∈ [0,∞) if and only if there exists vectors q � 0 and r � 0 such that

(A+ Ad)T q + r = 0

In other words, Theorem 4.4.1 states that the linear time-delay system (4.9) is
asymptotically stable for every τ > 0 if and only if there exists a vector v � 0
such that (A+Ad)Tv � 0. Note that if (A+Ad)Tv � 0 for some v � 0, then
based on Theorem 2.5.10, the undelayed system (system (4.9) with τ = 0) has
an asymptotically stable equilibrium at the origin. The similarity between
this condition and the stability conditions stated in Chapter 3, inspired us to
extend Theorem 4.4.1 to positive nonlinear time-delay systems.

The nonlinear time-delay system we consider in this chapter, is as follows:

ẋ(t) = f(x(t)) +
m∑
i=1

g(i)(x(t− τi)) τi ≥ 0, ∀i = 1, · · · ,m (4.10)

where f : W → Rn and g(i) : W → Rn are vector fields on a neighbourhood
W of Rn

+ and τi > 0 are delays for i = 1, · · · ,m. We define:

τ := max
1≤i≤m

τi

We also define h : C([−τ, 0],Rn) 7→ Rn to be

h(x(t)) = f(x(t)) +
m∑
i=1

g(i)(x(t− τi)) (4.11)
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4.4. Time-delay Homogeneous Cooperative Systems

In the remainder of this chapter, f and g(i), for i = 1, · · · ,m, satisfy the
following assumption.

Assumption 4.4.1. For i = 1, · · · ,m, we have:

• f and g(i) are C1 on W ;

• f is cooperative in Rn
+ and g(i) is non-decreasing in Rn

+.

Since f and g(i), for i = 1, · · · ,m, are C1, it can be easily seen that the
conditions of the Theorems 4.2.1 and 4.2.2 are satisfied. Therefore, the first
part of assumption 4.4.1, guarantees existence and uniqueness of the solutions
of the system (4.10). The second part of the assumption 4.4.1, guarantees
monotonicity of the system (4.10), as proved in the following lemma.

Lemma 4.4.2. Let f and g(i), for i = 1, · · · ,m, satisfy Assumption 4.4.1.
Then the system (4.10) satisfies the quasimonotone condition in Rn

+.

Proof: The proof follows directly from Theorem 4.2.3 as discussed in [Smi95,
p. 79] for a system with single delay. In the interest of completeness, we
repeat that argument in here. We define:

z(x, y(1), · · · , y(m)) = f(x(t)) +
m∑
i=1

g(i)(y(i)(t))

where x, y(i) ∈ Rn, for i = 1, · · · ,m. This means we can rewrite (4.10) as:

ẋ(t) = z(x(t), x(t− τ1), · · · , x(t− τm)) = f(x(t)) +
m∑
i=1

g(i)(x(t− τi)) (4.12)

Now if z(x, y(1), · · · , y(m)) satisfies

∂zi
∂xj
≥ 0, ∀i 6= j (4.13)

and
∂zi

∂y
(k)
l

≥ 0, ∀i, l (4.14)

then the system (4.12) satisfies the quasimonotone condition. To this end,
note that for all a ∈ Rn

+, we have:

∂z

∂q
(a) = ∂f

∂q
(a) +

m∑
i=1

∂g(i)

∂q
(a), ∀a ∈ Rn

+
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4.4. Time-delay Homogeneous Cooperative Systems

where q represents x or y(k) for some k = 1, · · · ,m. Since f is cooperative and
g(i) is non-decreasing in Rn

+, it can be easily checked that (4.13) and (4.14)
hold. This concludes the proof.

The aim of the following result, which is the main theorem of this section, is
to relate the stability properties of the equilibrium of the system (4.10), to
the following system:

ẋ(t) = H(x) = f(x(t)) +
m∑
i=1

g(i)(x(t)) i = 1, · · · ,m (4.15)

It is easy to see that system (4.15) is generated from (4.10), with τi = 0,
for i = 1, · · · ,m. Note that based on Lemma 4.2.4, there is a one-to-one
correspondence between the equilibria of (4.10) and (4.15).

Theorem 4.4.3. Consider the system (4.10) where vector fields f and g(i),
for i = 1, · · · ,m, are homogeneous of degree α with respect to the dilation
map δrλ and satisfy assumption 4.4.1. If the origin is a GAS equilibrium of
the system (4.15) then the system (4.10) has a GAS equilibrium at the origin
for all τi ≥ 0 with i ∈ {1, · · · ,m}.

Proof: Note that if p is an equilibrium of (4.15), then p̂, as defined in (4.3), is
an equilibrium of (4.10) and vice versa. Since (4.15) has a unique equilibrium
at the origin by assumption, therefore, the origin is the unique equilibrium of
(4.10).

Let h(·) be defined as in (4.11). Based on Proposition 3.5.1, we know that
there exists some v � 0 such that H(v)� 0. Based on homogeneity of H(·),
we can conclude that H(δλr (v))� 0 which based on (4.7) implies h(δλr (v̂)) < 0,
where δλr (v̂) ∈ C([−τ, 0],Rn

+) is defined as follows:

δλr (v̂)(θ) := δλr (v) ∀θ ∈ [−τ, 0]

It now follows from Lemma 4.2.6 that the solution x(t, δλr (v̂)) of (4.10) is non-
increasing and bounded. Hence, the convergence criterion (Theorem 4.2.7) im-
plies that it converges to an equilibrium of the system (4.10). Since the origin is
the only equilibrium of this system, therefore, we can conclude x(t, δλr (v̂))→ 0
as t→∞.
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4.4. Time-delay Homogeneous Cooperative Systems

Since v � 0, for any initial condition φ ∈ C([−τ, 0],Rn
+) there exists some

λ > 0 such that
φ� δλr (v̂) ∀θ ∈ [−τ, 0]

Hence, based on positivity and monotonicity of the system (4.10), we can
conclude that for all φ ∈ C([−τ, 0],Rn

+), x(t, φ)→ 0 as t→∞.

The following example, illustrates the result.

Example 4.4.1. Consider the system (4.10), with m = 1, where

f(x1, x2, x3) =


−5x3

1 + x1x2

x1x3 − 7x2
2

x3
1x2 + 0.5x2

1x3 − 10x5/3
3



g(1)(x1, x2, x3) =


x3

1 + 2x3

0.5x2
1x2 + x1x3 + 1.5x2

2 + 2x4/3
3

x1x
2
2 + x3x2 + 2x5/3

3 + x5
1


It can be easily checked that both f and g(1) are homogeneous of degree 2 with
respect to the dilation map δrλ with r = (1, 2, 3). Moreover, f is cooperative
and g(1) is non-decreasing for x ∈ Rn

+. Note that (f + g(1))(1, 1, 1)� 0.

It can also be easily checked that the origin is the only equilibrium of the
system (4.15) with these choices of f and g(1). Therefore, we can conclude
that the origin is the unique equilibrium of the system (4.10) and it is globally
asymptotically stable for every non-negative and fixed value of delay.

Figure 4.1 shows the evolution of the states for the above mentioned system,
for τ = 2 and initial condition φ which is defined as φ(θ) = (3, 1, 5)T for all
θ ∈ [−2, 0].
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Figure 4.1: Evolution of states for the system (4.10) corresponding to Example 4.4.1.

4.5 Time-delay Subhomogeneous
Cooperative Systems

In this section, we extend the result stated in the previous section to subhomo-
geneous cooperative systems. To prove the main result, we need the following
proposition which can be considered as the equivalent of the Proposition 3.5.1
for subhomogeneous systems.

Proposition 4.5.1. Let W be a neighbourhood of Rn
+ and let f :W → Rn be

subhomogeneous of degree α and cooperative. If (3.1) has a GAS equilibrium
at the origin then for every x0 ∈ Rn

+ there exists v � x0 such that f(v)� 0.

Proof: Since f is cooperative, then based on Proposition 3.4.2, we know that
there exists a w � 0 such that f(w) � 0. Therefore, for every x0 ∈ Rn

+

there exists a β > 1 such that v = βw � x0. On the other hand, since f is
subhomogeneous of degree α, we know that f(v) = f(βw) < βαf(w)� 0 and
this concludes the proof.

Now we are ready to prove the main result of this section.

Theorem 4.5.2. Consider the system (4.10) where vector fields f and g(i), for
i = 1, · · · ,m, are subhomogeneous of degree α and satisfy assumption 4.4.1. If
the system (4.15) has a GAS equilibrium at the origin then the system (4.10)
has a GAS equilibrium at the origin for all τi ≥ 0, for i = 1, · · · ,m.
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Proof: The proof is similar to the proof of Theorem 4.4.3. Since the origin
is the only equilibrium of system (4.15), then system (4.10) has also a unique
equilibrium at the origin.

Based on Proposition 4.5.1 and with the similar argument as presented in
the proof of Theorem 4.4.3, we can conclude that for any initial condition
φ ∈ C([−τ, 0],Rn

+), we can find a v � 0 such that φ� v̂ and h(v̂)� 0 where
h(·) is defined as in (4.11).

It now follows from Lemma 4.2.6 that the solution x(t, v̂) of (4.10) is non-
increasing and bounded. Hence, Convergence Criterion (Theorem 4.2.7) im-
plies that it converges to an equilibrium which is the origin. Finally, the
monotonicity and positivity of (4.10) imply that the solution x(t, φ) of (4.10)
also converges to the origin as t→∞.

Remark 4.5.1. Note that in both Theorems 4.4.3 and 4.5.2, we used homo-
geneity and subhomogeneity only to show that for all x0 ∈ Rn

+, there exists a
v � x0 such that H(v)� 0. The rest of the proofs, follows from monotonicity
of the systems. Therefore, Theorems 4.4.3 and 4.5.2 can be extended to any
class of monotone systems for which a vector v with H(v) � 0 can be found
for any initial condition x0 ∈ Rn

+.

4.6 Time-delay General Cooperative Systems
In this section, we generalise the results stated in the previous two sections
to general cooperative delayed systems. Similar to the result stated in Sec-
tion 3.4, the delay-independent stability result for general cooperative systems
holds only locally.

In the proof of the following theorem, which is the main result of this section,
we utilise the KKM lemma (Theorem 2.3.1).

Theorem 4.6.1. Consider the system (4.10) where vector fields f and g(i),
for i = 1, · · · ,m, satisfy assumption 4.4.1. If the system (4.15) has an asymp-
totically stable equilibrium at the origin then the system (4.10) has an asymp-
totically stable equilibrium at the origin for all τi ≥ 0, for i = 1, · · · ,m.

Proof: Note that since the system (4.10) is monotone and (4.15) has a unique
equilibrium at the origin, then system (4.10) also has a unique equilibrium at
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4.7. Time-delay Planar Cooperative Systems

the origin. Let h(·) be defined as in (4.11) and H(·) be defined as in (4.15).
Based on the Proposition 3.4.2, there exists a vector v with v � 0, such that
H(v)� 0. Since H(v) = h(v̂), we can conclude that h(v̂)� 0 with v̂ defined
as in (4.3).

It now follows from monotonicity of the system (4.10) and Lemma 4.2.6 that
the solution x(t, v̂) of (4.10) is non-increasing and bounded. Hence, Con-
vergence Criterion (Theorem 4.2.7) implies that it converges to an equilib-
rium which is the origin. Finally, the monotonicity of (4.10) implies that
the solution x(t, φ) of (4.10) also converges to the origin as t → ∞ for every
φ ∈ C([−τ, 0] that satisfies φ ≤ v̂.

Note that Theorem 4.6.1, unlike Theorems 4.4.3 and 4.5.2, states only a local
condition for delay-independent stability of the system (4.10).

4.7 Time-delay Planar Cooperative Systems
In this section, we try to provide a more general delay-independent stability
result for cooperative systems compared to the result presented in the previous
section while removing the homogeneity and subhomogeneity assumptions.
The main result of this section, which appeared in [BMV11], is based on the
results presented in the Section 3.7 for planar monotone nonlinear systems.

Throughout this section, f :W → R2 is assumed to satisfy Assumption 3.7.1
and f and g(i) : W → R2, for i = 1, · · · ,m, satisfy Assumption 4.4.1 on a
neighbourhood W of R2

+.

In the proof of the following theorem, which is the main and only result of
this section, we use Proposition 3.7.1 and Lemma 4.2.6.

Theorem 4.7.1. Let W be a neighbourhood of R2
+ and let f : W 7→ Rn and

g(i) : W → R2, for i = 1, · · · ,m, satisfy Assumption 4.4.1 and let f + g(1) +
· · ·+ g(m)(·) satisfies assumption 3.7.1. Then the origin is a GAS equilibrium
of the system (4.10), if system (4.15) has a GAS equilibrium at the origin.

Proof: We know that (4.10) has the same equilibria as (4.15). Proposition
3.7.1 implies that for any initial condition φ ∈ C([−τ, 0],R2

+), there exists
some v ∈ R2

+ with φ(s) � v for all s ∈ [−τ, 0] and (f + ∑m
i=1 g

(i))(v) � 0.
Further as the equilibria of (4.15) coincide with those of (4.10), it follows

88



4.8. Concluding Remarks

that (4.10) has a unique equilibrium at the origin. These facts combined with
Lemma 4.2.6 imply that x(t, v̂) → 0 as t → ∞. Based on monotonicity, we
can conclude x(t, φ)→ 0 as t→∞ and this concludes the proof.

4.8 Concluding Remarks
In this chapter, we extended some delay-independent stability results on lin-
ear time-delay systems to different classes of positive nonlinear time-delay
systems. The basic properties of time-delay systems were introduced with
emphasis on monotone systems. We first stated the condition for stability of
homogeneous cooperative time-delay systems and then extended that result
to subhomogeneous cooperative time-delay systems. Similar to Chapter 3,
we also stated a local stability result for general cooperative systems without
imposing homogeneity or subhomogeneity assumptions. We also presented a
global stability result for planar cooperative systems while removing homo-
geneity and subhomogeneity assumptions.

The results presented in this chapter can be extended in a number of ways.
One possible direction is to try to find a more general assumption to add
to Theorem 4.6.1 to obtain global results. As stated in Remark 4.5.1, every
assumption on the vector fields of the system (4.10) that guarantees for all
x0 ∈ Rn

+, there exists a v � x0 such that H(v) � 0 can be used to obtain
global stability results similar to Theorems 4.4.3 and 4.5.2. But it may be
possible to find alternative assumptions that may lead to such global results.

Another possible direction for extending the presented results is to consider
delayed systems with time-varying delays. In this chapter, we only dealt with
systems with constant delays, although the value of delay was considered
to be uncertain. It should be noted that stability analysis of systems with
time-varying delays requires the theory of non-autonomous systems which is
generally more complicated than the theory of autonomous systems.
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CHAPTER 5
D-stability in Positive Switched

Systems

In this chapter, the concept of D-stability for switched systems is defined and con-
ditions for D-stability of different classes of positive linear and nonlinear switched
systems are presented.

5.1 Introduction
Recently, switched systems have attracted a lot of attention in the literature
(look at [SWM+07, Lib03, SG11] and references therein). This has been pri-
marily motivated by the fact that many man-made systems and some physical
systems can be modelled within this framework. While major advances have
been made in this area, many important questions that relate to the behaviour
of switched systems still remain unanswered, even for linear switched systems.
One of the most important of these relate to the stability of such systems.

In this chapter, we are concerned with the stability properties of positive
switched systems. We introduce the concept of D-stability of switched systems
which is a stability condition for switched systems subject to a particular
form of uncertainty. This concept, is inspired by the notion of D-stability in
positive linear time-invariant systems although different from the concept of
D-stability for nonlinear systems presented in Chapter 3. In this chapter, we

90



5.2. Background

present conditions for D-stability for different classes of linear and nonlinear
positive switched systems. Looking at the different resources in the literature,
it can be seen that most of the research in stability analysis of positive switched
systems has focused on positive linear switched systems. Therefore, there is
a clear need to extend these results to positive nonlinear switched systems.
In this chapter, we first state conditions for D-stability for different classes
of positive linear switched systems and then extend those results to classes
of positive nonlinear switched systems. It should be noted that the methods
we use in this chapter in proving the results differ from most of the previous
works in this area, in the sense that we do not use Lyapunov-based methods
in the proofs. Apart from the difference in the proofs, the results themselves
are also novel stability conditions that can be used as alternative conditions
for the known results on positive linear switched systems.

The structure of this chapter is as follows. In the next section, we present the
basic definitions concerning switched systems and introduce the concept of D-
stability. In Section 5.3, we review the relevant results in the literature, with
more emphasis on stability properties of positive switched systems. In Section
5.4, we present D-stability conditions for linear positive switched systems and
show that by adding irreducibility assumptions, we can obtain a necessary
and sufficient condition for D-stability of such systems. In Section 5.5 we are
concerned with D-stability in nonlinear positive switched systems. We study
three different classes of nonlinear positive switched systems and extend the
D-stability conditions to these systems. Finally, in Section 5.6, we present the
conclusions and outline some possible extensions of the results presented in
this chapter.

5.2 Background
A switched system is a system whose behaviour is governed by two sets of
states. In one level, a set of continuous or discrete-time states, which are
described by differential or difference equations and in another level, a logic-
based switching. In this chapter, we only deal with the case where switching
happens between a set of continuous-time systems. Each of these continuous-
time systems is called a subsystem or constituent system or constituent sub-
system of the switched system. In the models we deal with in this chapter and
the next, the logic based switching is represented by a piecewise continuous
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function σ : R+ 7→ {1, · · · ,m} called the switching signal. m is the number of
constituent subsystems of the switched system. The points of discontinuity of
σ(·) are called switching instances or switching times and are represented by
t0 = 0, t1, t2, · · · . To avoid the complications caused by infinitely fast switch-
ing, hereafter, we assume there exists a dwell time τ > 0. Formally, this
means:

∃τ > 0 such that ti − ti−1 > τ for all i = 1, 2, 3, · · ·

Assuming the switched system has a dwell time is a reasonable assumption
in most applications, specifically in epidemiology, which is the subject of the
next chapter.

The most general switched model we consider in this chapter, is as follows:

ẋ(t) = f (σ(t))(x(t)); x(0) = x0 ∈ D (5.1)

where f (i) : D 7→ Rn for i = 1, · · · ,m is a nonlinear continuous-time vector
field in an open subset D of Rn. Since we only deal with positive switched
systems in this chapter, we always assume f (i), for i = 1, · · · ,m, is defined
over a neighbourhoodW of Rn

+, unless explicitly stated otherwise. As already
mentioned, each of the systems ẋ(t) = f (i)(x(t)), for i = 1, · · · ,m represents
a constituent subsystem of the switched system.

We always assume σ ∈ S, where S is a subset of the set of all the admissible
switching signals for the switched system (5.1). The set of admissible switching
signals is usually defined based on the context. For example, if the only
limitation imposed on the switching signal is the existence of a dwell time, then
every possible switching signal with a dwell time is an admissible switching
signal. If there is no constraint on the admissible switching signals and if S
includes all the admissible switching signals, then the switched system (5.1)
is being considered under arbitrary switching. Note that in this chapter, in
a slight abuse of notation, we use the term arbitrary switching to refer to
the case where the switched signal has a dwell time. The reason for that is
discussed in the next section.

A switching signal σ(·) can be a function of time, states and initial conditions.
If σ(·) is only a function of time, then we have time-dependent switching.
When σ(·) is a function of the states of the system, we have state-dependent
switching.
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The (forward) solution or trajectory of the switched system with respect to
initial condition x0 and switched signal σ is represented by x(t, x0, σ) and is
defined for t ∈ [0,+∞). Also, x(i)(t, x0) represents the trajectory of the ith
subsystem.

Switched system (5.1) is said to be well-defined if for all σ ∈ S and for all
x0 ∈ Rn

+, there exists a unique absolutely continuous solution of system (5.1)
over [0,+∞). The switched system (5.1) is well-defined if each subsystem
satisfies an appropriate Lipschitz condition [SG11]. Hereafter, we assume that
the Lipschitz condition holds for all the subsystems, therefore, the switched
system (5.1) is well-defined.

Remark 5.2.1. Note that in this manuscript, we do not deal with impulse
effects, which are the instantaneous jumps of the trajectory of the switched
system at switching instances. In other words, we assume that the trajectory
of the switched system is continuous everywhere, including the switching in-
stances, although in general it loses differentiability at the switching instances.

In this chapter, we exclusively deal with positive switched systems. A positive
switched system can be defined as follows.

Definition 5.2.1 (Positive Switched System). Switched system (5.1) is posi-
tive, if

x(t, x0, σ) ∈ Rn
+ for all x0 ∈ Rn

+, t > 0, σ ∈ S

The following lemma, provides a necessary and sufficient condition for posi-
tivity of switched systems.

Lemma 5.2.1. The switched system (5.1) is positive, if all of its constituent
subsystems are positive.

Proof: The proof is almost trivial. Let x0 ≥ 0 be the initial condition for
the switched system and without loss of generality, let f (i) be the vector field
representing the system for t ∈ [0, t1] where i ∈ {1, · · · ,m}. Since system
ẋ = f (i)(x) is positive, then x(i)(t1, x0) ≥ 0. Let f (k) be the vector field
representing the switched system in t ∈ [t1, t2) for some k = {1, · · · ,m}.
x(i)(t−1 , x0) is the initial condition for the new subsystem, and since ẋ = f (k)(x)
is positive, we have x(k)(t, x0) ≥ 0 for t ∈ [t1, t2). Following this procedure,
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we can prove that x(t, x0, σ) ≥ 0 for all x0 ≥ 0 and σ ∈ S. This concludes the
proof.

In the following sections of this chapter, we do not explicitly discuss pos-
itivity of each class of switched system we deal with. The reason is that
the constituent subsystems of all the switched systems discussed in the se-
quel are in fact different classes of linear and nonlinear positive systems dis-
cussed in Chapters 2. Therefore, Lemma 5.2.1 guarantees the positivity of
the switched systems discussed in this chapter and the next. Also, we always
assume x0 ∈ Rn

+.

5.2.1 Stability and D-stability
We next recall various fundamental stability concepts, but first, we should
define an equilibrium of a switched system.

Definition 5.2.2 (Equilibrium of a Switched System). The point x̄ is called
an equilibrium of the switched system (5.1), if

f (σ(t))(x̄) = 0 for all t ≥ 0, σ ∈ S

Comment 5.2.2. Note that, based on the Definition 5.2.2, a point x̄ is an
equilibrium of the switched system (5.1) under arbitrary switching, if and
only if, it is an equilibrium point of each subsystem of the switched system
(5.1). Also, since we deal with positive switched systems in this chapter, we
are only interested in the equilibria of the switched system (5.1) in Rn

+.

Although we defined different stability concepts in Chapter 2 for a single
autonomous system, it is necessary for the rest of our discussion to extend
those concepts for switched systems.

Definition 5.2.3. Let x̄ ≥ 0 be an equilibrium of the system (5.1). Then, we
say the equilibrium point x̄ is

• stable if for each ε > 0 there exists δ = δ(ε) > 0 such that:

‖x0 − x̄‖ < δ ⇒ ‖x(t, x0, σ)− x̄‖ < ε, ∀t > 0, σ(·) ∈ S

• unstable, if it is not stable;
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• uniformly asymptotically stable if it is stable and there exists a neigh-
bourhood N of x̄ such that

x0 ∈ N ⇒ lim
t→∞

x(t, x0, σ) = x̄, ∀σ(·) ∈ S

The set
A(x̄) := {x0 ∈ Rn

+ : x(t, x0, σ)→ x̄, as t→∞}

is the domain of attraction of x̄. Since we are exclusively dealing with pos-
itive switched systems, if A(x̄) = Rn

+, then we say x̄ is globally uniformly
asymptotically stable, GUAS for short.

Note that the term ’uniformly’ in the definition refers to uniformity with
respect to switching signals.

Comment 5.2.3. When an equilibrium of the switched system (5.1) is not uni-
formly asymptotically stable under arbitrary switching, it may be possible
to find a switching signal for which the equilibrium is asymptotically sta-
ble. Finding such switching signals is referred to as the stabilisation problem
[Lib03].

In Chapter 2, we talked about the concept of D-stability for positive LTI
systems and in Chapter 3, we saw how can we extend it to classes of positive
nonlinear systems. Our main aim in this chapter, is to extend D-stability
property of positive LTI systems to positive switched systems.

D-stability of switched systems is defined as follows.

Definition 5.2.4 (D-stability). Let x̄ be an equilibrium of the system (5.1).
Then x̄ is said to be D-stable, if it is a uniformly asymptotically stable equi-
librium of the corresponding switched system

ẋ(t) = Dσ(t)f
(σ(t))(x(t)); x(0) = x0 ∈ Rn

+ (5.2)

for any set {D1, · · · , Dm} of diagonal matrices with positive diagonal entries
and all σ(·) ∈ S. If x̄ is a GUAS equilibrium of the system (5.2), then it is
said to be a globally D-stable equilibrium of the system (5.1).

Comment 5.2.4. Note that in the definition of D-stability, nothing is said
about the domain of attraction of the equilibrium. In other words, if x̄ is
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an asymptotically stable equilibrium of both systems (5.1) and (5.2) with
different domains of attraction, it is still said to be a D-stable equilibrium of
the system (5.1).

As can be seen, the definition of D-stability is different from the definition
of D-stability for nonlinear systems presented in Chapter 3 in the sense that
the vector fields are pre-multiplied by constant matrices rather than nonlinear
vector fields.

5.3 Literature Review
Switched systems belong to the more general class of hybrid systems. Loosely
speaking, hybrid systems consist of continuous-time and/or discrete-time pro-
cesses interfaced with some logical or decision-making process. The continu-
ous/discrete time component might consist of differential/difference equations
or continuous/discrete time state models [DBPL00]. In the case of continuous-
time switched systems that we study in this manuscript, the switching signal
has the role of the logical or decision-making process.

One of the earliest models of a hybrid system to appear in the literature is
[Wit66], which studies “a class of continuous-time systems with part contin-
uous, part discrete state”. Since then, there has been a great interest in the
subject and numerous papers and books are published that study hybrid and
switched systems from different angles. Several monographs, review papers
and special issues are dedicated to the subject. For example, look at books
[SS00, MS00, SB99, SE02, SG11, SG05, Lib03], review paper [SWM+07] and
special issues [PS995, AN998, MPS99a, ES999, Ben01, HL001]. This is moti-
vated by the wide range of applications of hybrid systems in different areas of
science and engineering. You can look at any of the above mentioned mono-
graphs for different examples of the applications of switched systems but as
a simple example, consider a car with a manual gearbox. The motion of the
car can be characterised by two continuous variables, the position of the car
and its velocity. These two variables are controlled by the throttle angle and
the engaged gear. In each mode (engaged gear), the dynamics of the system
evolves in a continuous manner. Transitions between modes are abrupt and
depend on the decision of the driver in changing the gear. In other words, we
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have a set of differential equations and a decision-making process that governs
the transition between those differential equations.

It is a well-known fact that even if all the subsystems of a switched system
have asymptotically stable equilibria, the equilibria of the switched system
may be unstable. You can look at [Lib03, p. 19], [Mas04, Section 1.1] and
[Kno11, Section 2.2.1] for some examples. That is one of the main reasons
that has motivated the study of the stability properties of switched systems.
Different stability conditions have been stated and proved for switched sys-
tems. Probably the most well-known of these conditions is the existence of a
common Lyapunov function for all the subsystems of a switched system. This
condition, can be stated as follows, but before stating the theorem, we need to
clarify what we mean by a common Lyapunov function for a switched system.

Definition 5.3.1 (Common Lyapunov Function). Given a positive definite C1

function V : Rn 7→ R, we say that it is a common Lyapunov function for the
system (5.1) if there exists a positive definite continuous functionW : Rn 7→ R
such that we have

∂V

∂x
(a)f (i)(a) ≤ −W (a), ∀ a ∈ D, i ∈ {1, · · · ,m} (5.3)

The Lyapunov condition for stability in switched systems can be stated as
follows [Lib03, Theorem 2.1]

Theorem 5.3.1. If all the subsystems of the system (5.1) share a radially
unbounded common Lyapunov function and a unique equilibrium at the origin,
then the switched system (5.1) has a GUAS equilibrium at the origin.

Theorem 5.3.1 can be proved using the same method that is used in proving
the Lyapunov theorem for nonlinear systems [Lib03, Section A.3].

A few points regarding the Theorem 5.3.1 should be noted:

• Theorem 5.3.1 holds even if the switched system has an infinite number
of subsystems. If the switched system has a finite number of subsystems
(which is the case we consider in this chapter), then condition (5.3) can
be replaced with the following condition and the Theorem (5.3.1) still
holds:

∂V

∂x
(a)f (i)(a) < 0, ∀ a ∈ D \ {0}, i ∈ {1, · · · ,m}
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• When the common Lyapunov function is quadratic, i.e. V (x) = xTPx

where P is a positive definite matrix, then the switched system is said
to be quadratically stable.

• Theorem 5.3.1 states a stability condition under arbitrary switching.
That includes the case where the switching happens arbitrarily fast.

We could restrict ourselves to switching signals that have a specified lower
bound for the dwell time. Such switching signals are usually studied as a
special class of constrained switching called slow switching. It is a well-known
fact that if all the subsystems of a switched system have asymptotically stable
equilibria, then the equilibria of the switched system are asymptotically stable
if the dwell time is large enough, so to allow the transient effects of switching to
dissipate [Lib03]. In the results stated in the following sections of this chapter,
we always consider that the switching signal has a dwell time, however, we only
need the dwell time to take any positive value and do not set any positive lower
bound on the value of dwell time. That is the reason that the results stated
in the remainder of this chapter are said to hold under arbitrary switching.
Although it is out of the scope of this manuscript, switched systems with
a specified lower bound on the dwell time have been studied extensively in
the literature. As a more recent example, in [AB10] a switched system with
multiple equilibria is studied and a lower bound on the dwell time guaranteeing
the attractivity of the equilibria is given.

Many papers which have dealt with stability analysis of positive switched
systems have utilised copositive Lyapunov functions and in particular, linear
copositive Lyapunov functions. Copositive Lyapunov functions are only re-
quired to satisfy the requirements of a Lyapunov function within the positive
orthant and may lead to less conservative stability conditions for positive linear
switched systems than can be obtained using traditional Lyapunov functions
[SWM+07]. A linear copositive Lyapunov function has the form V (x) = vTx,
where v ∈ Rn and v � 0. Sufficient and necessary conditions for the existence
of common copositive Lyapunov functions were initially studied in [MS07a]
and [MS07b]. Those results were further extended to switched systems with
arbitrary many subsystems in [KMS09]. [FV10a, FV10b, LYW10] are among
the most recent papers to have utilised (linear) copositive Lyapunov functions.
In [FV12], the results on linear copositive Lyapunov functions for continuous-
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time systems are extended to discrete-time case. It is also shown in [FV12]
that for discrete-time positive linear systems, if a linear copositive common
Lyapunov function can be found, then it ensures the existence of a quadratic
copositive common function.

Efforts have been made to study stability properties of switched systems sub-
ject to uncertainty, in particular, parametric uncertainty [Lib03, Chapter 6].
To date, relatively little has been written on positive switched systems subject
to uncertainty. The works of [MBS09], [BMW10a] and [BMW10a] are of this
nature and are the basis for some of the results presented in this chapter and
the next.

Besides stability, other properties of switched systems and positive switched
systems are also studied from different angles in the literature. These include
input to output (or input to state) properties [HM99b, HM99a, Lib99, Hes02,
VCL07, EPL08, XWL01], controllability and observability [LAH87a, LAH87b,
CvS04, BFTM00, SGL02, VCSS03], reachability [Val09b, XW03, FV09, VS08,
Val09a, SV08, SV06a, SV06b, SV06c], excitability [Val07b, Val07a] and pas-
sivity [PJS98, ZBS01, ZH06, ZH08, GCB12].

5.4 D-stability for Linear Positive Switched
Systems

In this section, we present different results on stability and D-stability of pos-
itive linear switched systems. A linear switched system is a switched system
which consists of two or more linear subsystems. Linear switched systems
provide a framework which bridges linear systems and complex and/or un-
certain systems. On one hand, switching among linear systems may produce
complex system behaviour such as chaos and multiple limit cycles [SG05].
On the other hand, linear switched systems are relatively easy to handle as
many powerful tools from linear and multi-linear analysis are available to cope
with these systems. Moreover, the study of linear switched systems provides
additional insights into some complex problems, such as intelligent control,
adaptive control, and robust analysis and control.

Switched linear systems have been investigated for a long time in the control
literature and have attracted increasingly more attention since the 1990s (look
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at [SWM+07] and references therein). Quite a number of fundamental con-
cepts and powerful tools have been developed since then. Despite the rapid
progress made so far, many fundamental problems are still either unexplored
or less well understood. One of these areas is the D-stability of linear positive
switched systems which is the subject of this section.

The systems we consider in this section can be modelled as follows:

ẋ(t) = Aσ(t)x(t); x(0) = x0 ≥ 0 (5.4)

where {A1, · · · , Am} is a set of Metzler matrices in Rn×n representing each
of the m constituent subsystems of the switched system and σ : R+ 7→
{1, · · · ,m} is the switching signal. In this section, we always assume Ai is
Hurwitz for i = 1, · · · ,m.

Following Definition 5.2.4, the origin is a D-stable equilibrium of the linear
switched system (5.4), if it is a GUAS equilibrium of the following system:

ẋ(t) = Dσ(t)Aσ(t)x(t); x(0) = x0 ≥ 0 (5.5)

for all diagonal Di, for i = 1, · · · ,m, with positive diagonal entries.

Remark 5.4.1. Note that when Ai, for i = 1, · · · ,m, is Hurwitz, then the origin
is the only equilibrium of the switched systems (5.4) and (5.5). Therefore, if
the origin is a D-stable equilibrium of the system (5.4), then it is a globally
D-stable equilibrium.

Before stating the main results of this section, we recall some preliminary
results on linear switched systems. The following is a well-known necessary
stability condition for linear switched systems [SWM+07]. Note that this
results holds for linear switched systems which are not necessarily positive.

Lemma 5.4.1. Let A1, A2 ∈ Rn×n be Hurwitz. Suppose that the associated
linear switched system (5.4) has a GUAS equilibrium at the origin. Then for
any real γ ≥ 0, A1 + γA2 is Hurwitz.

In [GSM07, Theorem 3.2], it is shown that Lemma 5.4.1 can be stated as a
necessary and sufficient condition for positive linear switched systems defined
on R2 as stated below.
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Lemma 5.4.2. Let A1, A2 ∈ R2×2 be Metzler and Hurwitz. Then the switched
system (5.4) has a GUAS equilibrium at the origin, if and only if A1 + γA2 is
Hurwitz for all real γ ≥ 0.

Note that Lemma 5.4.2 is not true for arbitrary dimensions, even in R3×3, as
shown in [FMC09] via a counter-example.

Now we can state and prove the following theorem.

Theorem 5.4.3. Let A1, A2 ∈ R2×2 be Metzler and Hurwitz. The positive
linear switched system (5.4) has a globally D-stable equilibrium at the origin
if and only if A1 + DA2 is Hurwitz for all diagonal matrices D with positive
diagonal entries.

Proof:

Necessity:

Since the origin is a globally D-stable equilibrium of the system (5.4), we
know that D1A1 and D2A2 are Hurwitz for all diagonal D1, D2 with positive
diagonal entries. Therefore, based on Lemma 5.4.1, D1A1 +γD2A2 is Hurwitz
for all γ > 0 including γ = 1. We have:

D1A1 +D2A2 = D1(A1 +D−1
1 D2A2) = D1(A1 +DA2)

where D = D−1
1 D2 is an arbitrary diagonal matrix with positive diagonal

entries.

Since D1(A1 + DA2) is Metzler and Hurwitz, then based on D-stability of
positive LTI systems (Theorem 2.5.9), we can conclude A1 +DA2 is Hurwitz
where D can be any diagonal matrix with positive diagonal entries.

Sufficiency:

To prove sufficiency, let D1 > 0, D2 > 0 be diagonal matrices and let γ ≥ 0 be
any nonnegative real number. By hypothesis, A1 + γD−1

1 D2A2 is Hurwitz for
γ > 0 and it is trivially true for γ = 0. However, this matrix is also Metzler and
hence based on D-stability of positive LTI systems (Theorem 2.5.9), D1A1 +
γD2A2 = D1(A1 + γD−1

1 D2A2) is also Hurwitz. It now follows immediately
from Lemma 5.4.2 that the switched system associated with D1A1, D2A2 is
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stable. As this is true for any diagonal D1 > 0, D2 > 0, then the origin is a
globally D-stable equilibrium of the system (5.4).

In Chapter 2, we mentioned that for positive LTI systems, stability and D-
stability are equivalent (Theorem 2.5.9). The following example clearly shows
that unlike positive linear systems, D-stability is not an intrinsic property of
positive linear switched systems, even in the planar case.

Example 5.4.1. Consider the Metzler, Hurwitz matrices in R2×2

A1 =
 −2 0

1 −4

 , A2 =
 −1 5

0 −1


It is straightforward to verify that eigenvalues of A1 +γA2 are λ1 = −(3+γ)+
√

11γ + 9 and λ2 = −(3+γ)−
√

11γ + 9 which means A1 +γA2 is Hurwitz for
all γ ≥ 0. Hence by Lemma 5.4.2, the associated switched system is stable.
On the other hand, choosing

D =
 20 0

0 0.5


it is easy to check that eigenvalues of A1 + DA2 are λ1 ' −26.54 and λ2 '
+0.04 which means A1 + DA2 is not Hurwitz. Hence by Theorem 5.4.3 the
origin is not a D-stable equilibrium of the associated switched system (5.4).
�

5.4.1 General Linear Positive Switched Systems
In this section, we state new conditions for D-stability for different classes of
positive linear switched systems. We state the necessary and sufficient condi-
tions in two separate theorems. The next result states a sufficient conditions
for D-stability in linear positive switched systems, which first appeared in
[MBS09].

Theorem 5.4.4. Let Ai ∈ Rn×n, for i = 1, · · · ,m, be Metzler and Hurwitz.
If there is some v � 0 with Aiv � 0, for i = 1, · · · ,m, then the origin is a
globally D-stable equilibrium of the system (5.4).

Proof: The first step in the proof is to show that the existence of such a v
is sufficient for the stability of the switched system (5.4). With this in mind,
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suppose that there exists some v � 0 satisfying Aiv � 0, for i = 1, · · · ,m, and
let a switching signal σ(·) be given. Furthermore, let 0 = t0, t1, t2, . . . , tk, . . . ,

be the switching times. Let x(., x0, σ) denote the unique, piecewise C1 solution
of (5.4) corresponding to the initial condition x0 and the switching signal σ.
Also, for i = 1, · · · ,m, let x(i)(., x0) denote the unique solution of the stable
positive LTI system ẋ = Aix corresponding to the initial state x0. Note the
following readily verifiable facts concerning the solutions of the positive LTI
system with system matrix Ai.

(a) For i = 1, · · · ,m, if x0 > 0, x1 > 0 satisfy x0 < x1, then x(i)(t, x0) <
x(i)(t, x1) for all t ≥ 0. This simply records the well-known fact that
positive LTI systems are monotone (Lemma 2.5.3);

(b) For i = 1, · · · ,m, as d
dt
x(i)(0, v) = Aiv � 0, it follows that there is some

δ > 0 such that x(i)(t, v)� v for 0 ≤ t ≤ δ.

Combining (a) and (b) we see immediately that for 0 < t ≤ δ, and i =
1, · · · ,m,

x(i)(t+ δ, v) = x(i)(t, x(i)(δ, v)) < x(i)(t, v) < v.

Simply iterating this process, it is easy to see that for i = 1, · · · ,m, x(i)(t, v) <
v for all t ≥ 0.

Now consider the solution x(t, v, σ) of (5.4) corresponding to the initial con-
dition v and the switching signal σ. The argument in the previous paragraph
guarantees that for 0 ≤ t ≤ t1, x(t, v, σ) < v (as the dynamics in this in-
terval are given by one of the constituent positive LTI systems). But in the
second interval [t1, t2), the system dynamics are again given by a positive LTI
system with x(t1, v, σ) < v as initial condition. Hence from the previous ar-
gument combined with point (a) above, we can conclude that for t1 ≤ t ≤ t2,
x(t, v, σ) < v. Continuing in this way, we can easily see that for all t ≥ 0, we
have x(t, v, σ) < v. As the switching signal σ was arbitrary, we can conclude
that x(t, v, σ) < v holds for all switching signals.

It is now straightforward to show that the solutions of (5.4) are uniformly
bounded. Firstly, note that for any α > 0, we have:

x(i)(t, αv) = αx(i)(t, v)
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for i = 1, · · · ,m. Therefore, we can use the same method as we used above
to show that

x(t, αv, σ) < αv

Let x0 > 0 be an initial condition such that ‖x0‖∞ ≤ K1. Then x0 <

(K1/vmin)v where vmin = min{v1, . . . , vn}. It now follows that for all t ≥ 0,

x(t, x0, σ) < (K1/vmin)v

and hence
‖x(t, x0, σ)‖∞ ≤ K1(vmax/vmin)

for all t ≥ 0 where vmax = max{v1, . . . , vn}.

So far, we have shown the trajectory of the switched system starting from
any initial condition x0 > 0 is bounded. Now we show that the trajectory is
not only bounded, but tends to the origin. Now if there is some v � 0 with
Aiv � 0 for i = 1, · · · ,m, then (Ai + εI)v � 0 for sufficiently small positive
ε > 0. It is easy to see that (Ai + εI) is a Metzler matrix and also, based
on Ostrowski’s Theorem on continuity of eigenvalues [Wil65, Section 2.2], we
can select a small enough ε such that (Ai + εI) is Hurwitz for i = 1, · · · ,m.
Therefore, based on the discussions so far, for some ε > 0, the trajectories of
the switched system

ẏ(t) = (Ai + εI)y(t) (5.6)

are also uniformly bounded for all x0 ∈ Rn
+. If y(·, x0, σ) is the solution of the

system (5.6) corresponding to the initial condition x0 and switched signal σ,
then we have:

y(t, x0, σ) = e(Aσ(t)+εI)tx0 = eεIteAσ(t)tx0 = eεItx(t, x0, σ)

Hence, based on the boundedness of y(t) and the fact that eεIt →∞ as t→∞,
we can immediately conclude that the switched system (5.4) is GUAS.

To complete the proof, note that for all diagonal matrices Di with positive di-
agonal entries, the matricesDiAi are Metzler and Hurwitz for all i = 1, · · · ,m.
Moreover, if Aiv � 0 for i = 1, · · · ,m, then DiAiv � 0. The above argument
now immediately implies that the origin is a GUAS equilibrium of the system
(5.5) and hence the origin is a globally D-stable equilibrium of the system
(5.4) as claimed.
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Remark 5.4.2. It should be noted that the sufficient condition stated in the
Theorem 5.4.4 is only a sufficient and not a necessary condition for D-stability
in linear switched systems, as demonstrated by the following example.

Example 5.4.2. Consider the Metzler Hurwitz matrices A1 and A2 given by:

A1 =
 −2 1

2 −2

 , A2 =
 −3 1

2 −1


Using Theorem 4.1 of [MS07a] it is straightforward to show that there is no
vector v � 0 with A1v � 0 and A2v � 0. On the other hand, it can be
verified algebraically that for any diagonal D ∈ R2×2 with positive diagonal
entries, A1 +DA2 is Hurwitz and hence based on the Theorem 5.4.3, the origin
is a globally D-stable equilibrium of the switched system (5.4). �

The next theorem, provides a necessary condition for D-stability in linear
positive switched systems. To prove it, we need the following two lemmas.
The first one, is a restatement of Theorem 3.1 in [MS07a].

Lemma 5.4.5. Let A1, A2 ∈ Rn×n be Metzler and Hurwitz. Suppose that there
is no vector v ∈ Rn with v > 0 such that Aiv ≤ 0 for i = 1, 2. Then there is
some diagonal D with positive diagonal entries such that A1 +DA2 is singular.

The following lemma, follows from Lemma 5.4.1.

Lemma 5.4.6. Let A1, A2 ∈ Rn×n be Metzler and Hurwitz. Suppose that
the origin is a globally D-stable equilibrium of the associated linear positive
switched system (5.4). Then for any diagonal matrix D with positive diagonal
entries, A1 +DA2 is Hurwitz.

Proof: The origin is a globally D-stable equilibrium of the system (5.4),
which means it is a GUAS equilibrium of the system (5.5) for all choices of
diagonal D1, D2 with positive diagonal entries. Therefore, based on Lemma
5.4.1, D1A1 + γD2A2 is Hurwitz. We have:

D1A1 + γD2A2 = D1(A1 + γD−1
1 D2A2)

Since D1 is an arbitrary diagonal matrix with positive diagonal entries, based
on Theorem 2.5.9 we can conclude that A1+γD−1

1 D2A2 is Hurwitz. SinceD2 is
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also an diagonal matrix with positive diagonal entries, then so is D = D−1
1 D2.

Therefore, A1 +DA2 is Hurwitz for all diagonal D with positive entries. This
concludes the proof.

Now we are ready to state the following theorem.

Theorem 5.4.7. Let Ai ∈ Rn×n, for i = 1, 2, be Metzler and Hurwitz. If the
origin is a globally D-stable equilibrium of the system (5.4) then there exists
some v > 0 with Aiv ≤ 0 for i = 1, 2.

Proof: The proof follows immediately from Lemmas 5.4.5 and 5.4.6. Since
the origin is a globally D-stable equilibrium of the system (5.4), then based
on Lemma 5.4.5, A1 +DA2 is Hurwitz for all diagonal D with positive entries.
Therefore, based on Lemma 5.4.6, there should exists a v > 0 such that
Aiv ≤ 0 for i = 1, 2. This concludes the proof.

Remark 5.4.3. It is important to note the difference between the D-stability
condition stated in this section and the existence of common linear copositive
Lyapunov function. The following counter example shows that the existence
of a common linear copositive Lyapunov function does not imply D-stability
of the linear switched system (5.4).

Example 5.4.3. Consider the linear switched system (5.4) withm = 2, where:

A1 =
 −1 1

2 −3

 , A2 =
 −6 2

6 −5


Clearly, A1 and A2 are Metzler and it can be easily checked that they are both
Hurwitz. For w = (2.4 1)T , we have:

AT1w =
 −0.4
−0.6

 < 0, AT2w =
 −8.4
−0.2

 < 0

This means that there exists a common copositive Lyapunov function for the
positive linear switched system (5.4) with the above choices of A1 and A2,
therefore, the origin is a GUAS equilibrium of the system (5.4). On the other
hand, it can be proved that the origin is not a D-stable equilibrium of the above
mentioned system. To this end, note that based on the Theorem (5.4.7), if the
origin is a D-stable equilibrium of the system (5.4), then there should exists
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a vector v = (v1 v2)T > 0, such that

AT1 v =
 −v1 + v2

2v1 − 3v2

 ≤ 0 and AT2w =
 −6v1 + 2v2

6v1 − 5v2

 ≤ 0 (5.7)

For (5.7) to hold, we should have v1 ≥ v2 and 5v2 ≥ 6v1. These two inequalities
hold only if v1 = v2 = 0. Therefore, there is no v > 0 such that A1v ≤ 0 and
A2v ≤ 0 and that means the origin is not a D-stable equilibrium of the system
(5.4) with the above choices of A1 and A2. �

5.4.2 Irreducible Linear Positive Switched Systems
Looking at Theorems 5.4.4 and 5.4.7, it can be easily seen that there is a
gap between the sufficient and necessary D-stability conditions given in these
theorems. In the next result, which appears in [BMW10a], we show that under
the extra assumption of irreducibility, it is possible to give a single necessary
and sufficient condition for D-stability in linear switched systems.

Theorem 5.4.8. Let A1, A2 ∈ Rn×n be Metzler, irreducible and Hurwitz.
Then the origin is a globally D-stable equilibrium of the switched system (5.4)
if and only if there exists a vector v � 0 such that A1v < 0 and A2v < 0.

Proof:

Proof of Necessity:

From Theorem 5.4.7, we already know that if the origin is a globally D-stable
equilibrium of the switched system (5.4), then there exists a v > 0 such that
A1v < 0 and A2v < 0. We shall show that if A1 and A2 are irreducible, then
any such v must be strictly positive.

To this end, assume that v > 0, Aiv < 0 for i = 1, 2 and v is not strictly posi-
tive. Without loss of generality, we assume that precisely the first k elements
of v are non-zero, so vi > 0 for i = 1, · · · , k and vi = 0 for i = k + 1, · · · , n.
Now we partition A1 and A2 as follows:

A1 =
 A11 A12

A21 A22

 and A2 =
 A′11 A′12

A′21 A′22


In which A11 and A′11 are k×k, A22 and A′22 are (n−k)× (n−k) and A21 and
A′21 are (n− k)× k sub-matrices. Note that A11, A

′
11, A22 and A′22 are Metzler

and A12, A
′
12, A21 and A′21 are element-wise nonnegative.
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We know that A1v < 0 and since the last n − k elements of v are zero, then
we should have A21v

′ < 0, in which v′ = [v1, · · · , vk]T . Since we know A21

is a nonnegative matrix and v′ � 0, then the only way that this inequality
can hold is that A21 is a zero matrix. Using the same method, we can easily
conclude that A′21 should also be a zero matrix. This implies that both A1

and A2 are reducible, which is a contradiction. Therefore, v cannot have zero
entries and we must have v � 0 as claimed.

Proof of Sufficiency:

Let σ be a given switching signal with switching instances t0, t1, t2, ... with
a dwell time τ > 0. We shall also write ij = σ(tj) for j = 0, 1, ..., so the
following formulae will be easier to read. We denote by x(t, x0, σ) the solution
of switched system (5.4) corresponding to a given switched signal σ and initial
condition x0 ∈ Rn

+.

Now note that for an irreducible Metzler matrix A, eAt � 0 for all t > 0 [BP94,
Theorem 6.3.12]. Consider for any such A, the system ẋ(t) = Ax(t). Then
for any solution x(t) of this system, y(t) = Ax(t) also satisfies ẏ(t) = Ay(t).
As eAt � 0 for all t > 0, it immediately follows that if y(0) < 0 then we must
have y(t) � 0 for all t > 0. In terms of the original system, this means that
Ax(0) < 0 implies that Ax(t) � 0 for all t > 0. This argument guarantees
that there is some α < 1 such that for i = 1, 2:

eAiτv ≤ αv. (5.8)

Further, as tj+1 − tj ≥ τ for all j, we can also conclude that for i = 1, 2 and
j = 0, 1, 2, 3, ...

eAi(tj+1−tj)v ≤ eAi(τ)v. (5.9)

Now consider any time t > 0 and assume that tK is the final switching instant
before t. Then

x(t, v, σ) = eAiK (t−tK)eAiK−1 (tK−tK−1) · · · eAi0 (t1−t0)v. (5.10)

It follows from (5.9) and (5.10) that x(t, v, σ) ≤ αKv. A little thought (we can
“lose” at most one power of α per switch) shows that if we define Nt to be the
largest integer less than or equal to t

2τ , then for any switching signal (whether
there are finitely many switches or infinitely many switches) we must have

x(t, v, σ) ≤ αNtv
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implying that x(t, v, σ)→ 0 as t→∞.

Now let x0 ∈ Rn
+ be given. Choose λ > 0 with x0 ≤ λv. It follows from

eAit � 0 for all t > 0 and i = 1, 2 that

x(t, x0, σ) ≤ x(t, λv, σ) = λx(t, v, σ)

and hence x(t, x0, σ) → 0 as well. The result now follows as it is immediate
thatDiAiv < 0 for i = 1, 2, for any diagonal matricesDi with positive diagonal
entries.

Remark 5.4.4. Note that in Theorem 5.4.4, the sufficient condition for D-
stability of the equilibrium of positive linear switched system (5.4) is the
existence of a vector v � 0 such that Aiv � 0, for i = 1, · · · ,m. That
condition is relaxed to Aiv < 0 in Theorem 5.4.8, which is a consequence of
adding the irreducibility assumption.

5.4.3 Commuting Linear Positive Switched Systems
We close this section with a result on commuting positive linear switched
systems. A commuting linear switched system is a linear switched system
with commutative system matrices.

Definition 5.4.1. Two Matrices A1, A2 ∈ Rn×n are commutative (or com-
mute) if and only if

A1A2 = A2A1 (5.11)

The above definition is a special case of commuting vector fields, which will
be considered in Section 5.5.2.

It has been previously shown [NB94] that linear switched systems with com-
muting system matrices have a GUAS equilibrium. In the following result,
we show that for positive linear switched systems, commutativity implies the
stronger property of D-stability [BMW10a].

Theorem 5.4.9. Let A1 ∈ Rn×n and A2 ∈ Rn×n be Metzler and Hurwitz.
Further, assume that A1A2 = A2A1. Then the origin is a globally D-stable
equilibrium of the switched system (5.4) under arbitrary switching.

Proof: Recall that for Metzler, Hurwitz matrices A1 and A2, A−1
1 < 0 and

A−1
2 < 0 [Lue79, Theorem 6.5.3]. Now let w � 0 in Rn be given. Then
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v = A−1
1 A−1

2 w � 0, and therefore:

A1v = A1A
−1
1 A−1

2 w = A−1
2 w � 0

and
A2v = A2A

−1
1 A−1

2 w = A2A
−1
2 A−1

1 w = A−1
1 w � 0

Thus, we have v � 0 such that A1v � 0 and A2v � 0, and it follows from
Theorem 5.4.4 that the switched system (5.4) has a D-stable equilibrium at
the origin.

5.5 D-Stability for Positive Nonlinear
Switched Systems

Nonlinear switched systems are those switched systems whose subsystems are
nonlinear. Due to the nature of nonlinear systems, usually the methods ap-
plied in attaining stability results for linear switched systems cannot be ap-
plied to nonlinear switched systems. Nevertheless, there have been differ-
ent attempts made to obtain stability results for nonlinear switched systems
[SG11]. In line with those efforts, in this section we present some results on
stability and D-stability for nonlinear switched systems.

5.5.1 Homogeneous Cooperative Switched Systems
As already discussed in Chapters 2 and 3, homogeneous cooperative systems
have some characteristics that makes them natural candidates when we want
to extend some properties of positive linear systems to nonlinear systems.
Therefore, as a first step in extending the results on D-stability in positive
linear switched systems, we consider homogeneous cooperative switched sys-
tems.

Throughout this section, all vector fields are assumed to be cooperative and
homogeneous of degree 0 with respect to a fixed dilation map δrλ. Further, we
shall assume that all vector fields are C1 on a neighbourhood W of Rn

+. As
noted in [AdL02], this ensures existence and uniqueness of solutions for the
associated autonomous system.

The main theorem of this section, which extends Theorem 5.4.4 to cooperative
homogeneous systems, is as follows [BMW10a].
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Theorem 5.5.1. Consider the switched system (5.1) where f (i), for i =
1, · · · ,m, is cooperative and homogeneous of degree 0 with respect to dila-
tion map δrλ and let each constituent subsystem have a unique GAS equilib-
rium at the origin. If there exists a v � 0 such that f (i)(v) � 0 for all
i ∈ {1, 2, ...,m}, then (5.1) has a globally D-stable equilibrium at the origin
under arbitrary switching.

Proof: We prove the theorem in a number of steps. The first step is to show
Lyapunov stability of the system.

(i) Proof of Stability

Let an arbitrary switching signal σ : [0,∞) → {1, . . . ,m} be given with
switching instances 0 = t0, t1, t2, · · · . For x0 ∈ Rn

+, let x(t, x0, σ) denote the
solution of (5.1) corresponding to the initial condition x0 and the switching
signal σ.

To begin with, from the homogeneity of the vector fields f (i) it follows that
for any λ > 0, f (i)(δrλ(v))� 0 for i = 1, . . . ,m. Thus as each f (i) is coopera-
tive, Lemma 2.4.4 implies that the trajectory of (5.1) starting from the initial
condition x0 = δrλ(v) is non-increasing for 0 ≤ t < t1. In particular,

x(t, δrλ(v), σ) < x(0, δrλ(v), σ) = δrλ(v), for all 0 ≤ t ≤ t1

At t = t1, we switch to a new system whose initial condition is equal to
x(t1, δrλ(v), σ). We know that this new system is cooperative and we also
know that f (i)(δrλ(v)) � 0, for i = 1, . . . ,m. Therefore, based on Lemma
2.4.4, we can conclude the trajectory of this new system is also non-increasing
and we have:

x(t, δrλ(v), σ) < δrλ(v), for all t1 ≤ t ≤ t2

Continuing in this way we can conclude that x(t, δrλ(v), σ) < δrλ(v) for all t ≥ 0.

For an arbitrary initial condition x0, we can always find a λ > 1 such that
x0 < δrλ(v). Therefore, based on monotonicity, we have:

x(t, x0, σ) < x(t, δrλ(v), σ) < δrλ(v), for all 0 ≤ t ≤ t1

Let ε > 0 be given. Then we can choose λ > 0 so that ‖δrλ(v)‖∞ < ε. Now
putting

δ = min
i

(δrλ(v))i
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we see that if x0 ≥ 0 and ‖x0‖∞ < δ, then x0 ≤ δrλ(v) and the above argument
guarantees that

‖x(t, x0, σ)‖∞ < ε, for all t ≥ 0

Therefore, based on Definition 5.2.3, the origin is a stable equilibrium of the
system (5.1). Note that our choice of δ does not depend on the switching
signal σ.

(ii) Proof of Global Asymptotic Stability

Choose α > 0 such that

f (i)(v) + αdiag (r)v � 0

for 1 ≤ i ≤ m and for i = 1, . . . ,m, define g(i) : Rn → Rn by

g(i)(y) = f (i)(y) + αdiag (r)y

It is evident that with our choice of α, g(i)(v) � 0. Since for i = 1, · · · ,m,
f (i) is cooperative, we know that for k 6= j:

∂g
(i)
k

∂xj
(a) = ∂f

(i)
k

∂xj
(a) ≥ 0 ∀a ∈ Rn

Therefore, g(i) is also cooperative. On the other hand, for the vector δrλ(v), we
have:

g(i)(δrλ(v)) = αdiag (r)δrλ(v) + f (i)(δrλ(v))

= αdiag (r)δrλ(v) + δrλ(f (i)(v)) = δrλ(gi(v))

for i = 1, · · · ,m. This shows that g(i), for i = 1, · · · ,m, is homogeneous of
degree 0 with respect to dilation map δrλ.

Now consider the following switched system

ẏ(t) = g(σ(t))(y(t)) (5.12)

We have shown that for i = 1, · · · ,m, g(i) is cooperative, homogeneous of
degree 0 with respect to dilation map δrλ and g(i)(v) � 0 for some v � 0.
Therefore, using the same method as utilised in the previous step we can
prove that the origin is a stable equilibrium of the switched system (5.12) and
the trajectory of the system (5.12) starting from any initial condition x0 ∈ Rn

+

is uniformly bounded.
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Let x(t, x0, σ) be a solution of (5.1) with initial condition x0. Then it can be
shown that

y(t) = δrλ(x(t)) = (er1αtx1, · · · , ernαtxn)T (5.13)

is a solution of (5.12) with y(0) = x0 where λ = eαt. Note that if we show
(5.13) holds for subsystems of the switched system (5.1), then it is true for
the switched system itself. To this end, for all i in {1, · · · ,m}, we have:

ẏ(t) = (er1αtẋ1 + r1αe
r1αtx1, · · · , ernαtẋn + rnαe

rnαtxn)T

= (λr1f
(i)
1 (x) + r1αλ

r1x1, · · · , λrnf (i)
n (x) + rnαλ

rnxn)T

= δrλ(f (i)(x)) + αdiag (r)δrλ(x)

= f (i)(δrλ(x)) + αdiag (x)δrλ(x)

= f (i)(y) + αdiag (r)y = g(i)(y(t))

Now, we define rp = min
i
ri for i = 1, · · · , n and

z(t) = (erpαtx1, · · · , erpαtxn) = erpαtx(t)

It is obvious that z(t) < y(t) for all t > 0. We proved y(t) is uniformly
bounded, therefore, z(t) is also uniformly bounded. On the other hand,
erpαt → ∞ as t → ∞, hence, we can conclude that x(t, x0, σ) → 0 as t → ∞
for all x0 ∈ Rn

+, σ ∈ S, meaning the system (5.1) is globally uniformly asymp-
totically stable.

(iii) Proof of D-stability

Let matrices D1, . . . , Dm be given such that Di is a diagonal matrix with
positive diagonal entries, for i ∈ {1, . . .m} . For all j ∈ {1, . . .m}, j 6= k, we
have:

∂Dif
(i)
k

∂xj
(a) = Di

∂f
(i)
k

∂xj
(a) ≥ 0 ∀a ∈ Rn

which means all systems ẋ = Dif
(i)(x) are cooperative for i ∈ {1, . . .m}.

On the other hand, we have:

Dif
(i)(δrλ(x)) = Diδ

r
λ(f (i)(x)) = δrλ(Dif

(i)(x))

which means Dif
(i)(v) is homogeneous of degree 0 with respect to the dilation

map δrλ(x). Note that Diδ
r
λ(f (i)(x)) = δrλ(Dif

(i)(x)) follows from the fact that
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Di is diagonal with constant diagonal entries. Further, Dif
(i)(v) � 0 for

1 ≤ i ≤ m. It now follows from the previous arguments, that the origin
is a GUAS equilibrium of the system (5.2) and hence is a globally D-stable
equilibrium of the system (5.1).

5.5.2 Commuting Positive Nonlinear Switched
Systems

In this section, we consider the case where the vector fields of the subsystems
of a nonlinear switched system commute. Before presenting the main results
of this section, we need to define commuting vector fields.

Definition 5.5.1. Let D ⊂ Rn. The Lie bracket, or commutator, of two C1

vector fields f (1), f (2) : D 7→ Rn, is the vector field defined as follows

[f (1), f (2)](·) := ∂f (2)(·)
∂x

f (1)(·)− ∂f (1)(·)
∂x

f (2)(·)

We say two vector fields f (1) and f (2) commute, if and only if

[f (1), f (2)](x) ≡ 0 ∀x ∈ D

Note that for linear systems, we have f (1)(x) = A1x and f (2)(x) = A2x which
means the two linear vector fields commute if A1A2 = A2A1. Therefore,
as mentioned in Section 5.4, Definition 5.4.1 is a special case of the general
definition of commuting vector fields presented here.

The following results, which is due to [MA00], states a stability condition for
switched systems whose subsystems have commuting vector fields.

Theorem 5.5.2. Let {f (i) : i = 1, · · · ,m} be a finite set of C1 commuting
vector fields and let the origin be a GAS equilibrium of all the subsystems of the
switched system (5.1), then the origin is a GUAS equilibrium of the switched
system (5.1).

Our next result, provides a condition for D-stability for a class of commuting
vector fields. To prove the next result, we make use of Theorem 2.6.5.

Theorem 5.5.3. Consider the switched system (5.1) with m = 2. Assume
that f (1) and f (2) commute and are irreducible, cooperative and homogeneous
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of degree 0 with respect to dilation map δrλ(x). If the switched system (5.1)
has a GUAS equilibrium at the origin, then the origin is a globally D-stable
equilibrium of the switched system (5.1).

Proof: Since the subsystem ẋ = f (2)(x) is homogeneous, cooperative and
irreducible and has a GAS equilibrium at the origin, then based on Theorem
2.6.5, we know that there exists a v � 0 such that

f (2)(v) = γdiag (r)v (5.14)

in which γ < 0 is a scalar. Now, applying Euler’s formula to f (2) and evaluating
it at v, we have:

∂f (2)

∂x
(v)diag (r)v = diag (r)f (2)(v) (5.15)

Substituting f (2)(v) in the right-hand side of (5.15) from (5.14), we have:

∂f (2)

∂x
(v)diag (r)v = diag (r)γdiag (r)v

⇒ diag (r)−1∂f
(2)

∂x
(v)diag (r)v = γdiag (r)v

therefore diag (r)v is an eigenvector of (diag (r))−1 ∂f (2)

∂x
(v). Since ∂f (2)

∂x
(v)

and therefore diag (r)−1 ∂f (2)

∂x
(v) is irreducible and Metzler, and considering

the fact that diag (r)v � 0, the Perron-Frobenius Theorem for irreducible
matrices (Theorem 2.5.7) implies that γ is the right-most eigenvalue of the
matrix diag (r)−1 ∂f (2)

∂x
(v) and diag (r)v is its unique eigenvector (up to scalar

multiple).

On the other hand, by evaluating the commutativity equality at x = v, we
have:

∂f (1)

∂x
(v)f (2)(v) = ∂f (2)

∂x
(v)f (1)(v)

By applying (5.14) and Euler’s formula to the left-hand side of the above
equation, we have:

γdiag (r)f (1)(v) = ∂f (2)

∂x
(v)f (1)(v)
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⇒ γf (1)(v) = diag (r)−1∂f
(2)

∂x
(v)f (1)(v)

Therefore, f (1)(v) is also an eigenvector corresponding to γ. Since the eigen-
vector corresponding to this eigenvalue is unique up to scalar multiple, then
we should have:

f (1)(v) = κdiag (r)v

where κ is a scalar. Since ẋ = f (1)(x) is homogeneous, cooperative and ir-
reducible and has a GAS equilibrium at the origin, then based on Theorem
(2.6.5), κ < 0. Thus f (1)(v) � 0 and from (5.14) we know f (2)(v) � 0. It
now follows from Theorem 5.5.1 that the switched system (5.1) has a globally
D-stable equilibrium at the origin under arbitrary switching.

5.6 Concluding Remarks
In this chapter, we extended the notion of D-stability to positive switched
systems. We presented necessary and sufficient condition for D-stability of
general positive linear switched systems and unified the necessary and suffi-
cient conditions with adding the extra assumption of irreducibility. We also
extended a well-known result on stability of commuting linear switched sys-
tems and presented a condition for D-stability of commuting positive linear
switched systems. We then extended the D-stability conditions to cooperative
homogeneous systems of degree 0 and also nonlinear positive switched systems
with commuting vector fields.

There are some possibilities to extend the presented results in different direc-
tions. Regarding the results on positive linear switched system, probably the
most immediate possibility is to extend the necessary condition for D-stability
of general positive linear switched systems (Theorem 5.4.7) to switched sys-
tems with more than two subsystems. Doing that, Theorem 5.4.8 would be
easily extended to positive irreducible switched systems with more than two
subsystems.

Another possible extension can be stating Theorem 5.5.1 for a switched system
with subsystems which are homogeneous of degree α > 0. That extension
would let us easily extend Theorem 5.5.3 to commuting switched systems
with subsystems which are cooperative and homogeneous of degree α > 0.
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Also, in parallel to the results presented in Chapters 3 and 4, it may be
possible to state D-stability conditions for positive nonlinear switched systems
with subsystems which are cooperative and subhomogeneous. In an even more
general case, it might be possible to state a (probably local) D-stability results
when subsystems are cooperative without imposing any other assumptions.

Finally, the definition of D-stability for switched systems (Definition 5.2.4)
may be extended to include more general classes of systems. One possibility,
is to extend the definition of D-stability for nonlinear systems (Definition
3.2.1) to positive nonlinear switched systems.
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CHAPTER 6
Spread of Epidemics in

Time-Dependent Networks

In this chapter, we study the properties of a class of epidemiological models, namely,
the SIS model. Most of the work done on SIS models has been focused on models
with time-invariant parameters. In this chapter, we consider a switched SIS model
and present different stability conditions for such system.

6.1 Introduction
Mathematical epidemiology is the study of disease propagation in a network
of individuals. Unlike most other systems, it is usually impossible and even
unethical to do experiments in epidemiology. That is one of the reasons for
importance of this area. As is mentioned in [Bai75]: "we need to develop
models that will assist the decision-making process by helping to evaluate the
consequences of choosing one of the alternative strategies available. Thus,
mathematical models of the dynamics of a communicable disease can have
a direct bearing on the choice of an immunisation programme, the optimal
allocation of scarce resources, or the best combination of control or education
technologies". The whole idea of modelling the spread of infectious diseases
becomes much more important, when we note the fact that in spite of all the
advancement in vaccination and prevention of disease transmission in the past
few decades, infectious and parasitic diseases are the second leading cause of
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death worldwide (after cardiovascular diseases) [Wor08, Figure 4]. They are
the leading cause of death in low-income countries [Wor08, Table 2] and in
children aged under five years [Wor08, Figure 5].

In this chapter, we focus on a special class of models, which is called SIS model.
This class is particularly useful when dealing with diseases that do not confer
immunity. We are specially interested in cases where the parameters of the
model are not time-independent. We describe the SIS model as a switching
system and study the model from two different angles. First, we present
conditions that guarantee the disease will be eradicated from the population.
Then, we state a condition to stabilise the disease free state of the system. In
other words, we study the case where the disease does not disappear in the
population under arbitrary switching of the parameters of the SIS model, but
we can reach that goal under a certain class of switching signals.

6.2 Literature Review
It is amazing to realize that the theory that microbes (germs) were the cause
of many diseases was not really established until the 1870s. In 1876, Ger-
man physician Robert Koch, published his results showing that while anthrax
bacillus could not survive for long outside a host, anthrax built persisting en-
dospores that could last a long time. An endospore is a dormant, tough, and
temporarily non-reproductive structure produced by certain bacteria. Koch
showed these endospores, embedded in soil, were the cause of unexplained
‘spontaneous’ outbreaks of anthrax [Nob].

Some attempts were made in the first half of the twentieth century to create
models of disease propagation, most notably [Ham06, Ros10, KM27]. The
model presented in [Ham06] may have been the first to consider the mass-
action law in disease propagation (as discussed in the next section). Mathe-
matical epidemiology seems to have grown exponentially starting in the middle
of the 20th century [Het00]. The first edition of the Baily’s book [Bai57] is con-
sidered as an important landmark in mathematical epidemiology. A tremen-
dous variety of models have now been formulated, mathematically analysed,
and applied to infectious diseases. [AM91] and [Het00] are two good references
on applications of mathematical tools in modelling propagation of infectious
disease and different models commonly used in this field today.
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An interesting aspect of epidemiological models is that they can also be used
in different areas of science and engineering. For example, in the study of
spread of rumours and information in a network of individuals [Die67, HHL88,
GGLNT04], in modelling spread of malignant software in computer networks
[OOVM09, vMOK09], in wireless sensor networks [ASSC02] and in the analysis
of social networks [CSW05, POM09, WPF+09].

In mathematical epidemiology, it is common to divide the population into
different compartments. These compartments are given labels such as M, S,
E, I, and R. Compartment M represents those infants who have temporary
passive immunity which is acquired through antibodies transferred to them by
their mothers. Compartment S represents the susceptible individuals, those
healthy individuals who are not immune to the disease. Compartment I in-
cludes infective individuals, those who are already infected and can transfer
the disease to a susceptible. Based on the nature of the disease, sometimes
when there is an adequate contact of a susceptible with an infective and the
transmission occurs, the susceptible may enter the exposed compartment E of
those in the latent period, who are infected but not yet infectious. Compart-
ment R involved those who have recovered and have immunity to the disease.
Acronyms for epidemiological models are based on the flow of the transmission
of the disease. For example, in SIR model, the individuals in the population
are considered to be initially susceptible. When a disease is introduced to
the population and there is adequate contact between a susceptible and an
infective individual, the susceptible becomes infective (without entering any
latent period) and when the infection period ends, the individual recovers from
the disease with immunity. Another popular model is the SIS model. In the
SIS model, all individual are considered to be either susceptible or infective.
When susceptibles are in sufficient contact with infectives, they becomes in-
fectives themselves. When infectives are restored to health, they re-join the
susceptible compartment.

In this chapter, among the different models proposed in mathematical epi-
demiology, we exclusively deal with SIS models, which are arguably among
the simplest epidemiological models. SIS models have been used to model
diseases that do not confer immunity on the survivors. Tuberculosis and gon-
orrhoea are two much studied diseases which are mathematically described
using SIS models [CY73, HY84, New03]. Computer viruses also fall into this
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category; they can be "cured" by antivirus software, but without a permanent
virus-checking program, the computer is not protected against the subsequent
attacks by the same virus.

A simple mathematical representation of an SIS model, with contacts obeying
the mass action law, is as follows:

Ṡ(t) = −(β/N)S(t)I(t) + γI(t) (6.1)

İ(t) = (β/N)S(t)I(t)− γI(t)

S(0) = s0 > 0, I(0) = i0 > 0

where S(t) and I(t) represent the population of compartments S and I, respec-
tively. N = S(t) + I(t) is the total number of individuals in the population,
which is considered to be constant. β is called the contact rate and is the
average number of adequate contacts, i.e., contacts sufficient for the transmis-
sion of the disease. γ is called the transfer rate and is the average number of
infectives who are cured at each time. It is been shown that 1/γ is the average
infectious period for each individual [HSvdD81].

It is easy to check that the point corresponding to I(t) = 0 is an equilibrium
of the system (6.1). Since this point represents the case where there are
no infectives in the population, it is usually referred to as the disease-free
equilibrium, DFE for short. Based on the values of the parameters of the
system (6.1), it can have another equilibrium in int (Rn

+). This equilibrium
is called the endemic equilibrium. Like any other dynamical system, these
equilibria can be unstable, stable or asymptotically stable. We will see shortly
that for the enhanced SIS model we consider in this section, instability of the
DFE corresponds to the existence and asymptotic stability of the endemic
equilibrium. Also, asymptotic stability of the DFE means that it is the only
equilibrium of the SIS model and therefore, is GAS.

Looking at the model (6.1), we see that it can be enhanced in a number of
directions. Most notably, in (6.1) it is assumed that the population is com-
pletely homogeneous and the probability of contact between every susceptible
and infective is the same. In the real world, age, general health condition,
lifestyle, profession and whether or not a person is vaccinated against the dis-
ease are all important factors affecting the probability of the transmission of
a disease to an individual and also how fast the individual is cured.

121



6.2. Literature Review

To consider such heterogeneities in the model, in the ideal case, the contact
rate β should differ for each two individuals and since contacts between in-
dividuals change with time, it should be time-varying. The same applies to
the transfer rate γ. Of course implementing such a model, particularly when
the number of individuals is high, needs a lot of computational power and is
too complicated to analyse. Apart from that, it is usually difficult to gather
the parameters of the model. Also, it is not always easy to estimate contact
rate for different individuals in real-life situations, although, some efforts have
been made in this regard (look at [Yon09] and references therein). Therefore,
it is more practical to further divide compartments I and S to smaller sub-
compartments (Instead of dividing them to separate individuals) and then as-
sume different contact and transfer rates depending on the sub-compartments.

Some attempts have been made in describing the SIS model for a heteroge-
neous population, most notably [FIST07, HL06, vdDW02]. Although hetero-
geneous models are studied extensively, most of the work done in this area
does not take into account the dependence of parameters of the system on
time.

In this chapter, we address this last issue by describing the SIS model as a
switched system. This assumption is more relevant when we consider cases
where a health policy is implemented that affects the society almost instantly.
For example, when vaccination for a large group of individuals (like pupils or
health-care workers) is proposed or even made obligatory and when the schools
are shut down for a period of time. The switched SIS model we consider in this
chapter, is based on the time-invariant model discussed in [FIST07]. In the
next section, we recall the model used in [FIST07] and introduce our switched
SIS model.
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6.3 Problem Description
As already mentioned, we use an SIS model which is inspired by the model
used in [FIST07]. In this model, the population of interest is first divided into
two compartments S, susceptibles, and I, infectives, and each compartment is
sub-divided into n groups. These groups can represent different age groups,
different health condition, etc. Let Ii(t) and Si(t) be the number of infectives
and susceptibles at time t in group i for i = 1, · · · , n, respectively. Also, let
Ni(t) = Si(t) + Ii(t) be the total population of group i. The total population
of each group is assumed to be constant; formally, Ni(t) = Ni.

βij, the contact rate between groups i and j, denotes the rate at which sus-
ceptibles in group i are infected by infectives in group j for i, j = 1, · · · , n.
Further, γi, the transfer rate, is the rate at which an infective individual in
group i is cured. We also consider birth and death in the population, although
to keep the total population constant, we assume for each group the birth and
death rates are equal to the value µi. Using the mass-action law, the basic
SIS model is then described as follows [FIST07]:

Ṡi(t) = µiNi − µiSi(t)−
n∑
j=1

βi,j
Si(t).Ij(t)

Ni

+ γiIi(t)

İi(t) =
n∑
j=1

βi,j
Si(t).Ij(t)

Ni

− (γi + µi)Ii(t)

Since the population of each group is constant, it is sufficient to know Ii(t).
If we set xi(t) = Ii(t)/Ni and β̃i,j = βi,jNj/Ni and αi = γi + µi, we obtain the
following differential equation:

ẋi(t) = (1− xi(t))
n∑
j=1

β̃i,jxj(t)− αixi(t), ∀i = 1, · · · , n (6.2)

Based on the definition, x ∈ Bn where Bn := {x ∈ Rn
+ : x ≤ 1}. We can write

the differential equation (6.2) in compact form as:

ẋ = [D +B − diag (x)B]x (6.3)

where D = −diag (αi) and B = (β̃ij) > 0.

The following properties of (6.3) are easy to check.

(i) f(x) = [D + B − diag (x)B]x with D and B defined as above is C1 in
Rn, therefore, the solution for every initial condition in Rn exists and is
unique for all t ≥ 0.
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(ii) Since D is diagonal and B > 0, it can be easily seen that system (6.3)
is cooperative.

(iii) The origin is an equilibrium point of (6.3). This equilibrium is referred
to as the disease-free equilibrium (DFE) of the system (6.3).

(iv) Since the system (6.3) is cooperative and has an equilibrium at the
origin, then based on Lemma 2.6.2, the system (6.3) is positive.

(v) System (6.3) may have an equilibrium in int (Rn
+) (also referred to as an

endemic equilibrium). Conditions for existence of endemic equilibrium
for the system (6.3) will be stated shortly.

(v) Linearising the system (6.3) around the origin, we obtain the following
linear system:

ẋ(t) = (D +B)x(t) (6.4)

The system (6.2) (or equivalently system (6.3)) has two other important prop-
erties which are stated and proved below.

Lemma 6.3.1. Let Bn := {x ∈ Rn
+ : x ≤ 1}. Then Bn is an invariant set for

the system described in (6.2).

Proof: As already mentioned above, the system (6.2) is positive, hence xi ≥ 0
for all i ∈ {1, · · · , n}. On the other hand, if for some i ∈ {1, · · · , n} we have
xi = 1, then based on differential equation (6.2):

ẋi(t) = −αi < 0

Therefore, xi ≤ 1 for all i ∈ {1, · · · , n}. This concludes the proof.

Lemma 6.3.2. The system (6.3) is subhomogeneous of degree 1.

Proof: Let f(x) = [D +B − diag (x)B]x. Let λ > 1, then we have:

f(λx) = λ[D +B − λdiag (x)B]x

and
λf(x) = λ[D +B − diag (x)B]x
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As B > 0, for all x ≥ 0, we have:

[D +B − λdiag (x)B]x ≤ [D +B − diag (x)B]x, ∀ λ ≥ 1

Therefore, we have f(λx) ≤ λf(x) for all λ ≥ 1, x ≥ 0 and this concludes the
proof.

One of the most important parameters in an epidemiological model is the basic
reproduction number, R0. There are different definitions for the basic repro-
duction number. Probably the most common definition is as follows. The basic
reproduction number is the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective individual during its
entire period of infectiousness [DHM90]. There is also another interpretation
of the reproduction number that can be found , for example, in [vdDW02].

For the SIS model (6.3), following the reference [FIST07], it can be proved
that R0 = ρ(−D−1B). The reproduction number can be used to characterise
the existence and stability of the equilibria of (6.3). The following result is
Theorem 2.3 in [FIST07].

Theorem 6.3.3. Consider the system (6.3). Assume that the matrix B is
irreducible. The disease-free equilibrium of the system (6.3) is globally asymp-
totically stable if and only if R0 ≤ 1.

The next result considers the existence and stability of endemic equilibria and
is a restatement of Theorem 2.4 and the discussion in Section 2.2 of [FIST07].

Theorem 6.3.4. Consider the system (6.3) and assume that B is irreducible.
There exists a unique endemic equilibrium x̄ in int (Rn

+) if and only if R0 > 1.
Moreover, in this case, x̄ is asymptotically stable with the region of attraction
Bn \ {0}.
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6.3.1 Switched SIS Model
Our main aim in this chapter is to extend Theorem 6.3.3 to switched SIS
models.

Let {D1, · · · , Dm} be a given set of diagonal matrices with negative diago-
nal entries and {B1, · · · , Bm} be a given set of positive matrices. Then the
switched SIS model we consider in this chapter can be described as follows:

ẋ = (Dσ(t) +Bσ(t) − diag (x)Bσ(t))x. (6.5)

where σ : R+ 7→ {1, · · · ,m} is a piecewise constant switching signal and m

is the number of subsystems. We always assume that σ(·) ∈ S, where S is
the set of switching signals. Di ∈ Rn×n is a diagonal matrix with negative
diagonal entries and Bi ∈ Rn×n with Bi > 0, for all i = 1, · · · ,m. Since as
mentioned earlier, systems of the form (6.3) are continuous and C1, then, as
mentioned in Section 5.2, the existence and uniqueness of the solution of the
switched system (6.5) for any initial condition in Rn

+ and any switching signal
σ is guaranteed.

Linearising (6.5) around the origin, we obtain the linear switched system

ẋ = (Dσ(t) +Bσ(t))x. (6.6)

In the next section, we see that the linear switched system (6.6), can be very
useful in studying stability properties of the nonlinear switched system (6.5).

6.4 Global Asymptotic Stability of the
Disease Free Equilibrium

In this section, we present an extension of Theorem 6.3.3 to the switched SIS
model (6.3), specifically, we present conditions for global uniform asymptotic
stability of the disease free equilibrium (DFE) of the system (6.5). In this
section, we assume the switching signal belongs to the set S, where S includes
all the admissible switching signals. In other words, the results presented in
this section hold under arbitrary switching. We start with a general stability
condition for the DFE of the nonlinear model (6.5) based on the stability
properties of the linear switched system (6.5). Then, we present some more
specific results.

126



6.4. Global Asymptotic Stability of the Disease Free Equilibrium

6.4.1 A General Stability condition
The main result of this section can be stated as follows. Note that unlike
Theorem 6.3.3, we do not impose an irreducibility assumption on the matrix
B.

Theorem 6.4.1. Let the DFE be a GUAS equilibrium of the linear switched
system (6.6) under arbitrary switching. Then it is a GUAS equilibrium of the
switched system (6.5).

Proof: Let σ ∈ S and x0 ∈ Rn
+ be given. Let ϕ(t, x0) be the solution of the

system (6.5) and ψ̃(t, x0) be the solution of the system (6.6) with the initial
condition x0 ∈ Bn. Since based on the assumption, the origin is a GUAS
equilibrium of the system (6.6), then we know that ψ̃(t, x0) → 0 as t → ∞.
We will prove that ϕ(t, x0) ≤ ψ̃(t, x0) for all t ≥ 0. From the positivity of
(6.5), this will establish the result.

Note that if ϕ(t, x0) = 0 for any t > 0, then we are done, therefore, we assume
this is not the case.

Consider the system:

ẋ = (Dσ(t) +Bσ(t) + ε̂eeT )x with ε̂ > 0 (6.7)

in which e is the vector of size n with all elements equal to 1. Let ψ̂(t, x0) be
the solution of the system (6.7) for initial condition x0 ∈ Bn. When ε̂ → 0,
then ψ̂(t, x0) → ψ̃(t, x0). This follows from the fact that both ψ̂(t, x0) and
ψ̃(t, x0) are solutions of differential equations with piece-wise continuous right-
hand sides [Fil88, Section 7]. Therefore, it is enough to prove ϕ(t, x0) is always
bounded by ψ̂(t, x0) for all values of ε̂.

Let x0 ∈ Bn be an arbitrary initial condition. Looking at (6.5) and (6.7), it is
evident that

ϕ(0, x0) < ψ̂(0, x0)

We claim
ϕ(t, x0) ≤ ψ̂(t, x0) for all t ≥ 0

Suppose this is not true. Then there would be a t∗ defined as below:

t∗ := inf{t ≥ 0 : ∃i, ϕi(t, x0) > ψ̂i(t, x0)}
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Based on the definition, we have:

ϕ(t∗, x0) ≤ ψ̂(t∗, x0) (6.8)

and
ϕi(t∗, x0) = ψ̂i(t∗, x0) for some i (6.9)

Now we consider any i that satisfies (6.9). The system (6.5) is positive and
we assumed ϕ(t, x0) 6= 0 for all t ≥ 0. Also B > 0, hence

−diag (ϕ(t, x0))Bσ(t) ≤ 0 for all t ≥ 0

and we have:

ϕ̇i(t∗, x0) = [(Dσ(t∗) +Bσ(t∗) − diag (ϕ(t∗, x0))Bσ(t∗))ϕ(t∗, x0)]i (6.10)

< [(Dσ(t∗) +Bσ(t∗) + ε̂eeT )ϕ(t∗, x0)]i

Note that in (6.10) we consider the right-sided derivative to avoid compli-
cations that arise when t∗ happens to be a switching instance. If we define
Â = Dσ(t∗) +Bσ(t∗) + ε̂eeT , we have:

ϕ̇i(t∗, x0) < (Âϕ(t∗, x0))i (6.11)

And based on (6.8) and the fact that Â is Metzler, we can conclude:

(Âϕ(t∗, x0))i ≤ (Âψ̂(t∗, x0))i = ˙̂
ψi(t∗, x0) (6.12)

Therefore, based on (6.11) and (6.12), we have:

ϕ̇i(t∗, x0) < ˙̂
ψi(t∗, x0) (6.13)

and again, we consider right-sided derivatives. Therefore, there exists a small
δi > 0 such that

ϕi(t, x0) < ψ̂i(t, x0) for t ∈ [t∗, t∗ + δi)

This means that there exists a δ = min
i
δi > 0 such that

ϕ(t, x0) ≤ ψ̂(t, x0) for t ∈ [t∗, t∗ + δ)

which is a contradiction to the definition of t∗. Therefore, such t∗ cannot exist
and we have:

ϕ(t, x0) ≤ ψ̂(t, x0) for all t ≥ 0
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We also know that ψ̂(t, x0) → 0 as t → ∞ and the system (6.5) is a positive
system, therefore, we can conclude that ϕ(t, x0)→ 0 as t→∞. This concludes
the proof.

As already mentioned, Theorem 6.4.1 states that any condition that guaran-
tees that DFE is a GUAS equilibrium of the linear switched system (6.6),
guarantees that DFE is a GUAS equilibrium of the nonlinear switched SIS
model (6.5). Therefore, following the result stated in Section 5.4.1, we can
state the following theorem.

Theorem 6.4.2. If there exists some vector v � 0 with (Di + Bi)v � 0, for
i = 1, · · · ,m, then the DFE is a globally uniform asymptotically equilibrium
of the switched SIS model (6.6).

Proof: Theorem 5.4.4 states that the if there exists some vector v � 0
with (Di + Bi)v � 0, for i = 1, · · · ,m, then the DFE is a globally uniform
asymptotically equilibrium of the linear switched system (6.6). Now it fol-
lows directly from Theorem (6.4.1) that DFE is a GUAS equilibrium of the
nonlinear switched system (6.5).

6.4.2 Stability Condition via Joint Spectral Radius
In this section, we establish a stability condition for the DFE of the linear
switched system (6.6) using a formulation of the joint spectral radius for con-
tinuous time systems as described in [Wir02].

LetM = {A1, · · · , Am} ⊂ Rn×n be a set of matrices. Then for all t ≥ 0, we can
define a semigroup St as follows. St consists of all time-evolution operators
φA(t, 0) corresponding to measurable selection maps A : [0,∞) → M and
the associated time-varying differential equation ẋ(t) = A(t)x(t). The joint
spectral radius is then given by

ρ(M) := lim
t→∞

sup{(ρt(M))1/t} (6.14)

where

ρt(M) := sup{ρ(M) : M ∈ St}.

The joint spectral radius can be used to characterise uniform asymptotic sta-
bility of linear switched systems (see [Wir02] and references therein). For our
purposes the following fact is sufficient.
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Lemma 6.4.3. Let M = {A1, . . . , Am}. If ρ(M) < 1, then the origin is a
uniformly asymptotically stable equilibrium of the linear switched system

ẋ(t) = Aσ(t)x(t)

under arbitrary switching.

The following lemma is a direct application of Lemma 6.4.3 to the system
(6.6) [BMW10b].

Lemma 6.4.4. Let M = {D1 + B1, . . . , Dm + Bm}. If ρ(M) < 1, then
the origin is a global uniform asymptotically stable equilibrium of (6.6) under
arbitrary switching..

The following Theorem, states a condition for global uniform asymptotic sta-
bility of the DFE for the nonlinear model (6.5) using joint spectral radius..

Theorem 6.4.5. LetM = {D1 +B1, . . . , Dm +Bm}. If ρ(M) < 1, then the
DFE is a GUAS equilibrium of the switched SIS model (6.5) under arbitrary
switching.

Proof: Lemma 6.4.4 state that the condition ρ(M) < 1 is a sufficient con-
dition for global uniform stability of the DFE for the linear switched system
(6.6). It now follows from Theorem 6.4.1, that DFE is GUAS equilibrium for
the nonlinear switched system (6.5).

6.4.3 Stability Conditions via Common Lyapunov
functions

In Section 5.3, we mentioned that if all the subsystems of a switched system
have a unique equilibrium at the origin and share a common Lyapunov func-
tion, then the switched system has a globally uniformly asymptotically stable
equilibrium at the origin. Also, in Section 2.5 we showed that a quadratic
Lyapunov function for a positive LTI system can be of the form V (x) = xTPx

where P is a diagonal matrix with positive diagonal elements. Considering
these two well-known results, we can state the following result for stability of
the switched system (6.6).
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Theorem 6.4.6. DFE is a GUAS equilibrium of the system (6.6), if all its
subsystems have a common quadratic Lyapunov function of the form V (x) =
xTPx where P is a diagonal matrix with positive diagonal entries.

Based on Theorem 6.4.1, we can directly conclude that the existence of a
common quadratic Lyapunov function as described in the above theorem,
guarantees that DFE is GUAS equilibrium of the nonlinear switched model
(6.5). In the following theorem, we show that the existence of a common
Lyapunov function for the linear switched system (6.6), guarantees the exis-
tence of a common Lyapunov function for the nonlinear switched system (6.3)
and hence global uniform asymptotic stability of the DFE of the switched SIS
model (6.5).

Theorem 6.4.7. The nonlinear SIS model (6.5) has a common quadratic Lya-
punov function, if the system (6.6) has common quadratic Lyapunov function
of the form V (x) = xTPx where P is a diagonal matrix with positive diagonal
entries.

Proof: We show that the common quadratic Lyapunov function of the system
(6.6), V (x) = xTPx, is also a common quadratic Lyapunov function for system
(6.5). For every fi(x) = (Di +Bi− diag (x)Bi)x, with i = 1, · · · ,m, we have:

∂V

∂x
fi(x) = ẋTPx+ xTPẋ

= xT (ATi −BT
i diag (x))Px+ xTP (Aix− diag (x)Bi)x

= xTATi Px+ xTPAix− (xTBT
i diag (x)Px+ xTPdiag (x)Bix)

where Ai = Bi +Di for i = 1, · · · ,m.

We know that x, P and Bi are all element-wise nonnegative, therefore

−(xTBT
i diag (x)Px+ xTPdiag (x)Bix) < 0

On the other hand, since V (x) is a common Lyapunov function of the system
(6.6), we have:

xTATi Px+ xTPAix < 0
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Therefore, we can conclude:

∂V

∂x
fi(x) < 0

In other words, V (x) is a common quadratic Lyapunov function for (6.5).
Hence, DFE is a GUAS equilibrium of the system (6.5) and this concludes the
proof.

As mentioned in Section 5.3, a special class of Lyapunov functions which is
particularly useful for linear positive switched systems is the class of linear
copositive Lyapunov functions. The next states a similar result to Theorem
6.4.7, but for linear copositive Lyapunov functions.

Theorem 6.4.8. Let the system (6.6) have a common linear copositive Lya-
punov function of the form V (x) = vTx where v ∈ Rn with v � 0. Then
the nonlinear SIS model (6.5) also has a common linear copositive Lyapunov
function.

Proof: The proof is similar to the proof of the previous theorem. We show
that the common linear copositive Lyapunov function of the system (6.6),
V (x) = vTx, is also a common linear copositive Lyapunov function for system
(6.5). For every fi(x) = (Di +Bi− diag (x)Bi)x, with i = 1, · · · ,m, we have:

∂V

∂x
fi(x) = vT ẋ

= vT (Di +Bi − diag (x)Bi)x

= vT (Di +Bi)x− vT (diag (x)Bi)x

We know that vT , x, Bi are all element-wise nonnegative, therefore

−vT (diag (x)Bi)x < 0

On the other hand, since V (x) is a common Lyapunov function of the system
(6.6), we have:

vT (Di +Bi)x < 0

Therefore, we can conclude:

∂V

∂x
fi(x) < 0
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And this means V (x) is a common Lyapunov function for (6.5), therefore,
DFE is a GUAS equilibrium of the system (6.5).

Remark 6.4.1. Note that Theorems 6.4.7 and 6.4.8 hold even for the case where
the switched signal does not have a dwell time and the switching happens
arbitrarily fast. Of course infinitely fast switching may not be meaningful but
it provides us with a useful tool to expand the stability results to SIS models
with parameters which are continuous functions of time.

6.5 Stabilisation of the Disease-Free
Equilibrium

In the previous section we stated conditions for stability of a switched epi-
demiological system under arbitrary switching. In this section, we study the
case where DFE is not a GUAS equilibrium of the switched system (6.5) un-
der arbitrary switching and try to find a switching signal, that stabilises the
system. The main result of this section is inspired by the results in [BS04]
and [Lib03, Section 3.4]. In [BS04], a condition for stabilisation of an affine
switched systems is presented.

We begin with recalling the definition of quadratically stable equilibrium
points.

Definition 6.5.1. Let P ∈ Rn×n be a symmetric positive definite matrix
and let V (x) = xTPx > 0 and V̇ (x) ≤ −εxTx along the trajectory of the
switched system (6.5) corresponding to some switching signal σ ∈ S and initial
condition x0 ∈ Bn. Then the switched system (6.5) is said to be quadratically
stabilizable.

Remark 6.5.1. As already mentioned in Section 2.5, a necessary and sufficient
condition for the global asymptotic stability of the origin for the LTI system
ẋ = Ax is the existence of a quadratic Lyapunov function of the form V (x) =
xTPx, where P is a symmetric positive definite matrix. We also mentioned
that in the case where A is Metzler, the matrix P can be diagonal with positive
diagonal entries.

To prove our main result in this section, we need the following theorem which
is a restatement of Theorem 3.4 and the following discussions in [Lib03, p.
67].
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Theorem 6.5.1. Consider the linear switched system (6.6) and let Ai = Bi+
Di for i = 1, · · · ,m. If there exist αi ∈ (0, 1) such that

m∑
i=1

αi = 1

and
Aeq =

m∑
i=1

αiAi

is Hurwitz, then switched system (6.6) is quadratically stabilizable.

Note that in the above theorem, Ai, for i = 1, · · · ,m, does not need to be
Hurwitz. If, say, Ak is Hurwitz for some k ∈ {1, · · · ,m}, then we can select the
switching signal to be σ(t) ≡ k and the switched system will be quadratically
stabilizable. Therefore, we exclude these trivial cases and assume Ai is not
Hurwitz for i = 1, · · · ,m.

Definition 6.5.2. The system

ẋ = (Aeqx− diag (x)Beq).x (6.15)

is called an Average system for system (6.5) if

Aeq = Deq +Beq

where

Beq =
m∑
i=1

αiBi

Deq =
m∑
i=1

αiDi

m∑
i=1

αi = 1, αi ∈ (0, 1)

Now we are ready to state the main result of this section.

Theorem 6.5.2. If there exist αi ∈ (0, 1), for i = 1, · · · ,m such that Aeq is
Hurwitz, then system (6.5) is quadratically stabilizable.

Proof: Since Aeq is Metzler and Hurwitz, based on Theorem 2.5.8, there
exists a diagonal matrix P with diagonal positive entries such that the matrix
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ATeqP + PAeq is negative-definite. Hence, we select our quadratic Lyapunov
function to be V (x) = xTPx where P is a diagonal matrix with positive
diagonal entries. We evaluate V̇ (x) along trajectories of the average system
(6.15):

V̇ (x) = ẋTPx+ xTPẋ

= xT (ATeq −BT
eqdiag (x))Px+ xTP (Aeqx− diag (x)Beq)x

= xTATeqPx+ xTPAeqx− (xTBT
eqdiag (x)Px+ xTPdiag (x)Beqx)

We know that x, P and Beq are all element-wise nonnegative, therefore

−(xTBT
eqdiag (x)Px+ xTPdiag (x)Beqx) < 0

On the other hand, based on Theorem 6.5.1, we know

xTATeqPx+ xTPAeqx ≤ −εxTx

Therefore, we can conclude

xTATeqPx+ xTPAeqx− (xTBT
eqdiag (x)Px+ xTPdiag (x)Beqx) < −εxTx

Now, substituting the expressions for Aeq and Beq in the above inequality, we
have:

m∑
i=1

αi(xT (AiP + PAi)x− xT (BT
i diag (x)P + Pdiag (x)Bi)x) < −εxTx

or equivalently
m∑
i=1

αi(xT (AiP + PAi)x− xT (BT
i diag (x)P + Pdiag (x)Bi)x+ εxTx) < 0

which means that for all x ∈ Rn
+, the following inequality should be satisfied

for some i = 1, · · · ,m:

xT (AiP + PAi)x− xT (BT
i diag (x)P + Pdiag (x)BI)x+ εxTx < 0

Now we define

Ωi := {x : xT (ATi P + PAi)x < −εxTx} (6.16)

for i = 1, · · · ,m. Note that each Ωi is an open region and their union covers
Rn

+ \ {0}.
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We prove any switching signal with σ(t) = i while the trajectory of the system
(6.5) is in region Ωi, for i = 1, · · · ,m, assures quadratic stability of the system
(6.5).

Within the region Ωi we have:

V̇ (x) = V̇i(x) = xT (ATi P + PAi)x− xT (BT
i diag (x)P + Pdiag (x)Bi)x

Since
xT (ATi P + PAi)x < −εxTx

and
−xT (BT

i diag (x)P + Pdiag (x)B)x < 0

therefore, we have:
V̇ (x) < −εxTx

Discontinuity of V̇ (x) which is caused by the discontinuity of the switched
system in the switching instance can be overcome by introducing Filippov
Solutions [Fil88]. As a reminder, a continuous function x(·) is a solution of
the switched system (6.5) in the sense of Filippov, if it is the solution of the
switched system (6.5) for all t > 0 except the switching instances and is the
solution of some average system (6.15) at the switching instances. Therefore,
at switching instances, we have:

V̇ (x) = sup
γi
{
∑
i:x∈Ωi

γiV̇i(x)} ≤ max
i:x∈Ωi

{V̇i(x)} < −εxTx

where γi ∈ [0, 1] and
∑
i

γi = 1. This means that there exists a diagonal

P with positive diagonal entries and ε > 0 that satisfy conditions stated in
Definition 6.5.1. Therefore, the system (6.5) is quadratically stabilizable with
the above mentioned choices of switching signals.

Remark 6.5.2. While implementing the above mentioned switching policy, we
should pay attention to two issues. Firstly, we would like to have a positive
lower bound on the rate of decrease of V to make sure that V̇ (x) 6= 0 for all
x 6= 0. This can be achieved by modifying the regions Ωi for i = 1, · · · ,m.
Secondly, we want to avoid chattering (infinitely fast switching on the bound-
aries of the regions). This can be achieved using hysteresis. For more details
on both issues, you can look at [Lib03, p. 66].
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6.6 Concluding Remarks
In this chapter, we studied a special class of epidemiological models, namely
the SIS model. Based on existing results on SIS models with time-independent
parameters we stated some results for SIS models with time-varying parame-
ters described as a switching systems. We showed that some of those results
hold for switched SIS models under arbitrarily fast switching. Hence, they
can be used in stability analysis of SIS models with parameters whose values
vary continuously in time. We also stated a condition for stabilisation of the
disease-free equilibrium (DFE) of a switched SIS model.

There is a common criticism about epidemiological models of the kind we have
used in this chapter. This criticism, which mainly comes from epidemiologists
and immunologists who are more familiar with complexities of real infections
in real populations is that our ‘basic models’ are too oversimplified. The
answer to such criticisms, is best said in the introduction chapter of [AM91]:

“We see these models as having many uses: they provide insight into essential
aspects of host-parasite interactions; they serve as a point of departure for
adding realistic complications step-by-step, in an understandable way (so that
we do not lose our way in a snowstorm of parameters), and, most important
of all, they help to suggest what kinds of data need to be sought in order
effectively to design and monitor programmes of control.”

In fact the results presented in this chapter are a testimony to this justification.
Our results are another step in dealing with the complexities of epidemiological
models, enhancing the existing results based on simpler models.

The results presented in this chapter can themselves be extended in different
directions. Firstly, we did not study the stability properties of the endemic
equilibria. Note that unlike the DFE, each subsystem of the switched SIS
model (6.5) may have different endemic equilibria. Therefore, the switched
SIS model may not have a unique endemic equilibrium. In such cases, we
may be interested in whether or not there exists a region that attracts the
trajectory of the switched SIS system.

SIR models are another important and useful class of epidemiological models.
Extending the results stated in chapter to switched SIR models would be also
very useful.
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CHAPTER 7
Conclusions

In this chapter, we review and summarise the results presented in this manuscript
and give recommendations for possible extensions to those results.

7.1 Summary
The main theme of this manuscript was the stability analysis of different
classes of positive systems subject to uncertainty. We considered three types
of positive systems: nonlinear, time-delay and switched positive systems.

We started with a brief introduction to positive systems in Chapter 1 with
some examples of their applications in different areas. We highlighted that
relatively little is known about nonlinear positive systems subject to uncer-
tainty.

In Chapter 2, we introduced the basic concepts and theorems which were
needed in proving the results presented in the following chapters. We first
reviewed some relevant concepts in matrix analysis and presented the basic
definitions and theorems on dynamical systems with emphasis on their sta-
bility properties. We formally defined positive systems and presented some
well-known properties of linear and nonlinear positive systems. Cooperative
systems and monotonicity were also among the main topics that we discussed
in that chapter. We also presented some results that link monotonicity and
positivity of nonlinear positive systems. Properties of homogeneous and sub-
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homogeneous systems were reviewed in that chapter too. Also, we reviewed
the KKM lemma, which is a well-known result in fixed-point theory. We used
the KKM lemma to prove some of the results in Chapters 3 and 4.

In Chapter 3, which is the first of four chapters in which we described our
new results, we stated D-stability properties for different classes of monotone
positive nonlinear systems. The well-known concept of D-stability for linear
positive systems was extended to nonlinear positive systems and conditions for
D-stability of different classes of positive nonlinear systems were presented. In
particular, we presented D-stability conditions for homogeneous cooperative
and subhomogeneous cooperative systems. We also presented a similar result
for general cooperative systems without imposing the assumptions of homo-
geneity and subhomogeneity. We showed that the D-stability condition for
general cooperative systems only works locally. In an attempt to obtain non-
local results without adding the homogeneity or subhomogeneity assumptions,
we presented an alternative result for a different class of cooperative systems
which was proved only for planar case. We also dealt with subhomogeneous
cooperative systems forced by a constant positive input. Built on the existing
results on linear and homogeneous cooperative systems we stated a condition
for positivity and asymptotic stability of such systems.

In Chapter 4, we considered positive time-delay systems with fixed but un-
known values of delay. We presented conditions for stability of classes of
positive time-delay systems for all positive values of delay. Similar to Chap-
ter 3, we stated the results for homogeneous cooperative, subhomogeneous
cooperative and general cooperative systems. Again, the results on general
cooperative time-delay systems were shown to be true only locally.

In Chapter 5, we extended the concept of D-stability in another direction.
We defined a notion of D-stability for switched systems and presented con-
ditions for D-stability for different classes of positive switched systems. We
first presented D-stability results for positive linear switched systems and then
extended those results to positive nonlinear switched systems whose subsys-
tems are cooperative and homogeneous of degree 0. We also stated D-stability
conditions for positive linear and nonlinear switched systems with commuting
vector fields.

And finally, in Chapter 6, as an example of the wide range of applications of
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positive systems, we studied stability properties of a class of epidemiological
models with time-varying parameters. We reviewed the compartmental epi-
demiological models and focused on the SIS model. This model is useful in
studying diseases that do not confer immunity. We highlighted that most of
the results on different epidemiological models have been focused on models
with time-invariant parameters. Clearly, such an assumption is simplistic and
there is a need to extend those results to models with time-varying parame-
ters. To address this issue, we considered an epidemiological system modelled
as a positive switched system. We presented different conditions for global
uniform asymptotic stability of the disease-free equilibrium of such systems.
Some of those results were proved to hold for the cases where the switching
happens infinitely fast.

7.2 Future Works
In the concluding sections of each of the previous four chapters, we discussed
possible directions for extending the main results presented in each chapter.
In this section, instead of dealing with the details of those possible extensions,
we discuss some general ideas for the extension of the presented results.

As already mentioned in Section 3.9, the definition of D-stability for nonlinear
systems may be extended to include more general classes of structured un-
certainties. But apart from that, there are many other methodologies to deal
with uncertain nonlinear systems which are studied under the broad topic of
robust stability and robust control. There are some attempts made in ap-
plying robust control methods to positive linear systems, some of which were
reported in Section 3.3. Some of the existing robust stability methods, may re-
sult in stronger stability conditions when considered in the context of positive
systems.

In almost all the main results presented in this manuscript, we have used mono-
tonicity methods in the proofs. Needless to say, there are positive systems
which are not monotone. One obvious extension of our work is to investigate
whether similar results can be obtained for positive systems not necessarily
monotone. Although due to the fact that monotonicity is a powerful property,
proving the same results without that assumption may not be possible.

In all of the results presented in Chapter 4, we dealt with time-delay systems
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with fixed but unknown values of delay. Another type of uncertainty in time-
delay systems, which was absent from our discussions, are time-delay systems
with unknown time-varying delays. Obtaining delay-independent stability re-
sults for such delayed systems can be of significant importance. It is actually
one of the open questions in the study of time-delay systems in general.

Since we exclusively dealt with stability analysis in this manuscript, we did not
consider systems with inputs and outputs (with the exception of the results
presented in Section 3.8). There are some properties of dynamical systems
that cannot be studied if we ignore inputs and outputs. Properties like con-
trollability and reachability, and some properties specific to positive systems
like excitability. There have been some efforts in studying such properties in
the context of positive systems. Similar to the question of stability, there has
been very little done in studying the effects of uncertainty in those properties.

There are different approaches in dealing with epidemiological models. Prob-
ably the most common, is the graph theoretical approach, in which each indi-
vidual is considered as a node in a graph and the contact and transfer rates
are the weights of the edges. This approach can be incorporated in the dy-
namical system approach we have adopted in Chapter 6. Matrices D and B as
defined in that chapter contain contact and transfer rates for different groups
of individuals. Ideally, the dimension of the considered model should be equal
to the number of individuals in the population, but that is not practical for
two reasons. The first is that for large populations, such a model would need
a huge amount of computational power, which is not always available. The
second reason is that estimating contact rate for each two individual is a very
difficult task. The results presented in Chapter 6, are novel conditions for sta-
bility analysis of the disease-free equilibrium of the considered model but they
have another significant property. They link stability properties of a nonlinear
switched system to that of a linear switched system.

One of the issues that was completely absent from our discussion in the Chap-
ter 6 is the stability analysis of the endemic equilibrium. Although there are
some results on the properties of the endemic equilibrium for the nonlinear
time-invariant models, extending these results to switched nonlinear models
may not be as straightforward as extending the results on the disease-free
equilibrium. Also, the same set of results may be valid for other epidemiolog-
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ical models, specifically for the SIR model, which is another important and
common class of epidemiological models.

As already mentioned, the study of nonlinear, switched and delayed positive
systems subject to any form of uncertainty, is an area with many open prob-
lems. The main aim of this manuscript was to address some of those problems,
or better to say, to provide a first step in laying the foundations of the stability
analysis of uncertain systems in the context of positivity. Undoubtedly, there
is much left to be done, but hopefully, this manuscript will motivate other
researchers to work on this fascinating subject. As is best said by Albert Ein-
stein, “The process of scientific discovery is, in effect, a continual flight from
wonder”.
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