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Preamble

The use of new technology and mathematics to study the systems of nature is
one of the most significant scientific trends of the century. Driven by the need for
more precise scientific understand, advances in automated measurement are pro-
viding rich new sources of biological and physiological data. This data provides
information with which to create mathematical models of increasing sophistica-
tion and realism - models that can emulate the performance of biological and
physiological systems with sufficient accuracy to advance our understanding of
living systems and disease mechanisms.

New measurement and modelling methods set the stage for control and sys-
tems theory to play their rôle in seeking out the mechanisms and principles that
regulate life. It is of inestimable importance for the future of control as a dis-
cipline that this rôle is performed in the correct manner. If we handle the area
wisely then living systems will present a seemly boundless range of important
new problems - just as physical and engineering systems have done in previous
centuries. But there is a crucial difficulty. Faced with a bewildering array of
choices in an unfamiliar area, how does a researcher select a worthwhile and
fruitful problem? This lecture is an attempt to help by offering a control –
oriented guide to the labyrinthine world of biology/physiology and the control
research opportunity that it holds.
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June 2007.
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1 Introduction

1.1 Background

In previous articles I have discussed the how and why of systems biology.
Specifically, Schrödinger’s Legacy [1] outlined how the systems view of biology
was foreshadowed by a little book written in Ireland during the 1940’s. While
On the Industrialisation of Biology [2] appealed to the cyclical nature of change
in society to argue why we are at this point in scientific development.

In the current article, the triad of questions: how? – why? – what?
is completed by considering: What are the biological problems where a (con-
trol) systems approach can be useful? This is a huge question and it would be
misleading to suggest that there is a definitive answer. However, a number of
avenues of inquiry exist and they fall into two categories: the definite and the
speculative. The definite category relates to areas in which there is already an
established path for a systems approach. By contrast, the speculative category
includes questions that are fundamental to understanding the mechanisms of
life and where there may be an opportunity for control theory to offer useful
viewpoints. This suggestion is made with caution, in the knowledge that some
of the world’s most talented life scientists have previously trod this ground.
However, there are historically important examples where the physical sciences
have shed new light on the mechanisms of life. And now, at the beginning of the
twenty first century, there is good reason to believe that experts in the theory
of dynamical systems and signals can contribute in a similar way. Indeed, later
in the text we will see areas where control system analysis and theory, alongside
other branches of engineering, are already providing new insights into biological
phenomena.

1.2 Commercial and Scientific Motivation

At no previous peacetime period has the direction of science and technology
been so strongly guided by economic forces and political agencies. Global com-
petition between rival economies means that businesses and governments search
for competitive advantages, with intellectual property derived from novel sci-
ence and technology being one means of providing such advantages. This has
led governments to actively manage and direct research funding in a rigorous
manner. This trend, coupled with the decline of traditional technological in-
dustries, has led researchers in all areas of science to respond accordingly and,
where appropriate, to seek new avenues of inquiry.

In the case of control systems specialists, the transfer of their skills from
physical systems to living systems is an obvious idea. The problem is that the
transfer is not straightforward. Biology is not just another application area of
standard control theory – the language, culture and (most of all) the nature
of the systems is very different. Taken together, these issues present a signifi-
cant intellectual challenge to control systems researchers trained in technological
ways. It is nevertheless a challenge that the control community has accepted as

1



it attempts to make the transition from existing to new sources of important
and useful research tasks. An aim of this article is to help in the transition
by indicating the differences between how biologists consider problems and how
they sub–divide the topics. This is then followed by an outline of the aspects
of systems biology as seen from the life science perspective and the areas where
opportunities exist for the control researcher to gain access to interesting and
relevant life science problems.

1.3 Systems and Life Science: Technical Differences

The life sciences cover an enormous range of systems in scale (temporal and
spatial), function and type. The scope of behaviour starts with the minute
workings of molecular machinery and culminates in the behaviour of the coor-
dinated system of organs and tissue that forms an organism. In between are
cellular systems in which signals are processed, and the hierarchies of organ-
ised assemblies of cells which form tissue types and organs. Beyond the single
organism is the study of populations of organisms and their joint behaviour.

Engineers are by training accustomed to systems with a hierarchy of size
and temporal scale. In biology however the scale and range of the hierarchy
is staggering. For example, human physiological function emerges from the
orchestrated behaviour of around 30,000 genes, more than 100,000 protein and
over 200 cell types. Moreover, these elements function at time scales ranging
from µ seconds at the molecular level, to years in the life span of an organism.

In the engineering world, the purpose of system design is to coordinate the
operation of components so that they contribute in a harmonious way to the
overall performance of a system. The same harmonious coordination seems to
exist in living systems, but with a crucial difference – living organisms are not of
our construction and we can only theorise on how they came to be as they are.
With no design blueprint, we lack an objective frame of reference against which
to assess their performance – a performance which is in any event highly complex
and requires a level of analysis that needs to be more critically attuned than in
physical systems. For example, living systems can be both robust to internal
variations in some conditions and yet sensitive to small changes at other times.
This resilience/sensitivity to changes has interesting parallels in feedback control
where robustness and fragility are opposite faces of the same coin [3, 4]. But
the complexity and strong nonlinearity of living systems is such that parallels
with technology may be misleading, being no more than the human habit of
rationalising the unknown in terms of past certainties. More will be said of this
later in Section 6.

1.4 Systems and Life Science: Cultural Differences

The apparently unfathomable complexity of living systems caused the biological
sciences to adopt a ‘reductionist’ approach. That is to say the biological quest
for understanding of an organism begins by examining the rôle and function of
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the smallest indivisible component. This information is then used in a ‘bottom-
up’ attempt to infer the properties of the organism as a whole. Reductionism
has served well in the past, but the times they are changing and the use of
‘bottom up’ biology as a means of understanding overall function is under fire.
For example, it is the essence of the Lazabnik’s humourous criticism in Can a
Biologist Fix a Radio? [5], while the same point is made more seriously in [6],
and with passion in [7].

The value of reductionism is now openly questioned. But there is an equally
questionable cultural aspect to life science research that is rarely challenged.
This relates to the view of biology as a ‘pure’ discovery–based science in which
systems methods imported from applied sciences can play only a subservient
rôle. The tension that this creates between pure science and the systems ap-
proach has been an interesting, and some times disturbing1, sociological side–
show to the growth of systems biology, and is an indicator of the cultural gulf
that still separates a systems approach to problems and traditional biology.
Paradoxically, it is also this tension that gives systems biology its potential
power, since by the analysis of systems as a connected set of components –
operating at different levels – a new dimension is added to life science. In this
spirit, the multi-level systems approach to analysis is a particularly powerful
complement to traditional life science research methodologies and the reduc-
tionist tradition.

1.5 General Literature and References

A distinctive form for a systems approach to biology is developing through
the ideas of dynamical systems methods, multi-level analysis and the study
of complexity. The content of this article is intended to add some specific
features to this emerging form as it regards control systems studies. Before
proceeding however, it is good to note that the idea of a systems approach is
gaining credence in biology. At the moment this is mainly through the benefits
of mathematical modelling as a way of capturing biological knowledge in a
quantitative and objective form [9, 10]. There are also books [11, 12] that
cover the growing area of Systems Biology in its various complexions. New
books emerge regularly, with the book by Edda Klipp and her colleagues [13]
being a particularly good and comprehensive introduction. In the engineering
control journals the review paper by Sontag [14] is an excellent guide for control
theorists interested in cellular signalling. The journal IET Systems Biology [15]
is an important outlet for publications in this area, and there are a number of
edited volumes available which illustrate the range of views and approaches that
exist [16, 17, 18].

As background, it is also important to note the long history of mathematical
biology [19, 20] and mathematical physiology [21]. These topics predate the
current growth of interest in a systems approach, and are important sources of

1In words that will hopefully return to haunt him, Ronald Plasterk has described systems
biology as a form of ‘scientific pornography’ [8]
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detail modelling of many fundamental mechanisms. In this spirit, it is important
that we acknowledge the debt that is owed to the pioneers of biochemistry,
mathematical biology and physiology research. Their work underpins current
systems research in biology and physiology.

1.6 Layout of the Material

The article has two parts: Part I discusses the various areas that, taken to-
gether, make up systems biology as a subject. Part II then considers the control
systems opportunities that arise from these areas. Part I is laid out as a bi-
ologist, physiologist or medical practitioner would see things. As a result, the
separation between topics may appear at first sight to be arbitrary. For exam-
ple, metabolism and cell signalling are mutually overlapping processes – both
are concerned with coupled sets of chemical reactions. Nonetheless, they are
considered separately, since this is how they are usually treated. Likewise, the
idea of homeostasis, which is intimately linked to control of the metabolism, is
presented in the context of its medical origins.

These inconsistencies apart, some effort has been made to arrange items in
Part I from a control perspective. Specifically in control systems analysis it is
usual to distinguish between the flow of material and energy through a system
and the information processing components that regulate the system. There is
a loose parallel in living systems, where the flux of chemicals and energy that
sustains life in an organism as a whole is studied as metabolism and the process-
ing of information within a cell as cell signalling2. In this spirit, metabolism
(Section 2) and the transmission of information within the cell (Section 3) are
used to open Part I. This material then provides the background to their use
in systems approaches to physiology (Section 4), and medicine (Section 5).

Part II is straightforwardly arranged in two sections: Section 6 covers some
of the specific control opportunities as they relate to the material in Part I.
Section 7 describes the more speculative areas of life science where a control
theoretic approach may help illuminate areas that are as yet largely unknown.
The article closes with some reflections on the rôle of mathematical modelling
and renewal in science.

Part I

Topics in Systems Biology
Here we are concerned with research topics as they are perceived and classified in
the systems biology community. As indicated previously, the sub-divisions that
have emerged are not systematically arranged. Nevertheless for the purposes
of this article, and its cross-referencing to the systems biology literature, the

2Note: The equally important area of gene regulation is, for reasons of space, omitted
completely from this review.
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accepted classifications are retained.

2 Metabolism

Metabolism: The totality of all chemical transformations carried out
by an organism.

Thus is metabolism described by Franklin Harold in his layperson’s guide
to cell biology [22]. In this article however we distinguish between the trans-
formations that are primarily about material flux and energy, and those that
concern the transmission of information. Thus to Harold’s definition, we add
the codicil: where the primary purpose is the transport, transformation and use
of bio-molecular material to sustain life.

Each metabolic process consists of a large number of interconnected sets
of enzyme catalyzed biochemical reactions. The set of reactions form a net-
work of biochemical pathways which work in concert to achieve the metabolic
purpose. The dynamic behaviour of a metabolic network evolves as a function
of the enzyme kinetics associated with each reaction and their interconnection
through the network. At a qualitative level, metabolism is well understood by
life scientists. However, the quantitative reasons for networks taking particular
forms, and the corresponding metabolic dynamics, are not well known. Thus
although every college text on physiology and medicine deals with metabolism
in detail [23], many challenges remain before we can claim a quantitative under-
standing of metabolic dynamics and structure. From this viewpoint, the area
of metabolism is a good entry point for control systems analysts, particularly
control engineers with a chemical engineering background who will already be
familiar with the biochemical processes involved. In the following sections this
familiarity is assumed, and only the key points are reviewed.

2.1 Reaction Kinetics

The mathematical modelling of metabolism uses the law of mass action ap-
plied to the metabolic reaction sequence diagram and combined with the cor-
responding relations for individual reactions. This statement contains the two
key aspects of metabolism – (a) the modelling of the individual reactions and
(b) the analysis of the networks formed by coupled reactions to achieve the
metabolic purpose. Consider first the reactions: enzymatic reactions [24] are
complex chemical processes leading to nonlinear state space models. Various
simplifying assumptions can be made with regard to the enzyme kinetics, with
the Michealis–Menten [25] quasi-steady state approximation being the most fre-
quently used. A range of other options exist [26], but Michealis–Menten is the
commonly used approximation. Even after such approximations, the model
of the metabolic process remains nonlinear and relies upon either linearising
assumptions for their solution, or simulation for visualisation [13].
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2.2 Metabolic Networks Analysis and Control

The networks of coupled reactions formed by a metabolic process are often large
and complex. However a great deal can be learnt by considering the equilibrium
conditions of the reactions. Specifically, the mass action equations in steady
state gives a network of linear equations with coefficients given by the stoichiom-
etry of the various reactants. The solutions to the network equations provide
information on steady state fluxes, and by adding chemical/thermodynamic con-
straints, a great deal of information can be obtained about the operation of the
metabolic process [27].

Yet more steady state information is obtained using Metabolic Control Anal-
ysis (MCA) [28, 29]. This much studied area is not about control in the usual
sense, but the analysis of how fluctuations in one part of a network can influence
other parts. Specifically, it relates to the sensitivity analysis of concentrations
of molecules and reaction rates in a network to small changes in the steady
state flux condition. This is extremely useful for processes in homeostatic equi-
librium (see Section 5.1), since it provides insights into the local sensitivity of
a metabolism in normal steady state operation. This said, the idea of a set of
steady state levels being the norm in metabolism is not generally true, and dy-
namical studies are of increasing importance [30]. Of particular relevance is the
multi-scale nature of metabolism - multi-scale dynamics is a common feature in
biological processes and more will be said of it later.

3 Cell Signalling

An attractive and well established area of systems biology for control researchers
is the modelling and analysis of the sequences of chemical reactions which cause
information to be transmitted within a cell. It is easy to see why – the cell is
a basic functional element of all organisms and its operational mechanisms are
fundamental to all aspects of biology. From a systems viewpoint, the cell is inter-
esting because it is a closed environment, with distinct input ports and response
mechanisms. The input ports are the receptor sites in the cell membrane where
signalling molecules may attach and initiate coupled sets of chemical reactions
(signalling pathways) within the cellular space [31].

Signalling action through the pathways result in a cellular response which
can take a number of forms [32] including proliferation, cell death and cell
differentiation. The modelling of these pathways is discussed in Section 3.1.
The dynamical models of signalling pathways are nonlinear and the analysis of
their behaviour is challenging and problematic, this is discussed in Section 3.2.
A number of chemical reaction sequences are found repeatedly in biology and
there is a considerable effort to characterise them as distinct modules, this
characterisation is considered in Section 3.3.
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3.1 Cell Signalling Pathway Models

Intracellular signalling paths are less well known than extracellular metabolic
paths, and so typically, ‘what – if’ simulations are used to probe the rôle of var-
ious components of a signalling pathway. This in itself is a big step forward for
biologists for whom intracellular experiments are time–consuming, with results
that are frequently unreliable and unrepeatable. The possibility of rapid, cheap
and exactly repeatable in-silico simulation of cellular signalling mechanisms
represents a breakthrough in the study of cell biology (for example see [33, 34]).

Despite rapid advances, the area is, for various reasons, still in its infancy.
For example, the biological ‘picture–models’ of cell signalling pathways are of-
ten wrong or incomplete. Likewise, there are complexities in the representation
of signal pathways caused by ‘cross-talk’ between different pathways and the
multiplicity of interacting signalling mechanisms. An indication of the scale of
complexity can be gained by glancing at the current ‘best’ picture of the toll
– like receptor signalling network [35], (this network is vital to the immune
system’s response). Despite the complexity of this model, and the great care
associated with its assembly, the representation is still incomplete, possibly in-
correct in parts and gives only a static picture of the receptor signalling network.

3.2 Analysis of Cell Signalling Pathway Models

As noted in the preceding sections, the use of mathematical models in biology in-
volves many approximations – some are known and others unknown. Even if the
current generation of mathematical models were to be structurally correct, there
are issues of model accuracy, calibration and validation. For example, the reac-
tion coefficients are generally unknown and must be either estimated, guessed,
or taken from the literature. In the same spirit, the structure of a mathematical
model is dependant upon the biologist’s current beliefs of what constitutes the
correct signalling pathway – these are often incomplete or incorrect. Indeed,
one reason for mathematical modelling is to test proposed structures, and some
of the most useful contributions by systems biologists have been to suggest new
signalling pathway structures which were subsequently verified by actual exper-
imentation. The uncertainty in parameters and structure means that there is
a need for parameter estimation and structural determination methods to be
developed for the forms of model found in cell signalling. As a result system
identification for signalling pathway models is an area where needs exist. These
are discussing later in Section 6.1.

Intracellular measurements are generally not possible, and those that are
possible are difficult and error prone. As a result, in many cases it is extremely
difficult to estimate the coefficients of a signalling pathway model. In this sit-
uation the special structure of the system dynamics might be used to infer
properties, as in for example positive/non-negative matrices and monotone sys-
tems [36], (see Section 6.1). In practice however, it has been the use of computer
simulations of dynamical models using parameters from the literature that has
shown immediate practical benefit. For examples of such investigative modelling
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see the work on the MAP kinase pathway [37, 38].

3.3 Functional Modules in Signalling Pathways

Just as in metabolic flux pathways, the structural analysis of signalling path-
ways offers many opportunities for creative connections with what we know from
technological control theory. A particular issue is understanding the biological
function of various parts of a pathway. Typically, and allegedly because of the
exploratory nature of evolution, the functions of different parts of a signalling
pathway are not obvious. Indeed some parts may have no apparent rôle in
the cellular function under investigation. A further aspect of this is the multi–
functional nature of biological processes whereby a part of a pathway may only
come into play under certain special circumstances. One extremely worthwhile
objective for control systems analysis is to determine the functions performed
by different parts of a system and when they perform them [39]. A number of
researchers believe that the key to such functional assignment is the encapsula-
tion of frequently recurring patterns of bio-molecular reactions into motifs that
serve specific functions [12, 40]. As an example, a widely occurring structure is
the protein phosphorylation cycle [41].

4 Physiology

The previous section covered the systems associated with intracellular signalling
and metabolic flux pathways. Physiology is concerned with the way biological
structures are actuated and animated by these pathways. Specifically, we con-
sider the systems approach to the cellular assemblies, tissues and organs that
work together to form entire organisms. Taking the meaning of ‘system’ in its
broadest sense, physiology is by definition a systems approach to how organisms
function. The addition of mathematical modelling, and other methods from the
engineering sciences, has however taken physiology from one of general descrip-
tion of function to a level that involves great mathematical and computational
sophistication. The dynamical and control systems problems found at this level
are qualitatively different from metabolic flux pathways and intracellular sig-
nalling, since in addition to bio-chemical dynamics, they also explicitly include
the large scale features of an organism, such as electrical, mechanical and/or
hydraulic effects. This area should be of interest to members of the control
systems community who specialise in the integration of sub–system mathemat-
ical models into models of entire systems. A particular challenge here is that
the mathematical modelling crosses all disciplines, and the integration of model
components spans the complete range of temporal and spatial scales.

4.1 Modelling of Organ Function

Initially, mathematical physiology [21] was concerned with developing mathe-
matical models of specific physiological phenomena. Over time this has moved
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toward integrating models of individual physiological elements into computer–
based models of organ functions, graduating over the years into mathematical
models of entire organs. The virtual heart project [42] was one of the earliest
among such projects and is the most advanced. Starting with a mathemat-
ical model of cellular electrical potentials [43], the virtual heart project has
progressed into a large multi-partner international collaboration. A number of
other virtual organ projects have started in recent years with aims ranging from
visualisation for education, training and surgical rehearsal to fundamental inves-
tigation of disease and organ malfunction. Most of these projects operate under
the umbrella of an ambitious physiological modelling project – The Physiome
Project.

4.2 The Physiome Project

The aim of the Physiome Project is to provide a coherent framework for the
mathematical modelling and analysis of human physiology. In particular, through
the various projects that compose the Physiome Project [44] international teams
are developing systematic ways in which to apply a systems engineering ap-
proach to physiological processes. This area is a rich one for further develop-
ment as its benefits become clear and it attracts the attention of commerce
and clinicians [45]. The complexity of the Physiome Project means that the
mathematical modelling and analysis of physiological processes associated with
it are progressing as part of an international effort using common repositories
of knowledge and integrated programmes [46].

4.3 Computational Tools for Systems Biology

There is a wide range of computational tools for systems biology, and [47] is
a recent review. However, for metabolic and cell signalling dynamics, research
focussed upon specific pathways and their dynamical and structural properties,
then the standard scientific computing tools of MATLAB, Octave or Scilab are
appropriate. In particular, while the systems of equations involved in signalling
and flux pathway models are strongly nonlinear and often of high dimension,
they are usually within the capability of standard scientific simulation meth-
ods. This approach is further supported by systems biology ‘toolboxes’ specif-
ically designed for widely accepted scientific computing environments, such as
MATLAB [48, 49]. Thus, when relatively small groups of computer literate
researchers are involved, and the models are of reasonable complexity, then
exchanging and understanding models is not a problem. The difficulties lie
in analysing the performance of the model and making biological sense of the
performance.

As mathematical models become accepted in the life science community, then
methods are required with which to transmit the model to different formats for
scientific languages and computational tools. With this in mind, the Systems
Biology Markup Language (SBML) [50, 51] was developed as a method of ex-
changing quantitative biological information. It does this by providing a means
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of capturing research results and modelling developments in a format useable
by a large number and variety of systems biology application programmes. In
the words of the SBML website:

The systems biology community needs information standards if mod-
els are to be shared, evaluated and developed cooperatively. SBML’s
widespread adoption offers many benefits, including: (1) enabling the
use of multiple tools without rewriting models for each tool, (2) en-
abling models to be shared and published in a form other researchers
can use even in a different software environment, and (3) ensur-
ing the survival of models (and the intellectual effort put into them)
beyond the lifetime of the software used to create them.

SBML is targeted specifically at systems of ODEs and nonlinear algebraic
equations in biochemical networks. The alternative language CellML does the
same, but is intended to be more general in that it encodes any system of
ODEs/algebraic equations in MathML and then gives the model components
biological meaning through the metadata [52].

As a final point on computational tools, we note that the time and effort
needed to assemble mathematical models, and determine the numerical values
of their coefficients, has led to the sharing of models. As a result mathematical
models can increasingly be found online. An overview of model databases can
be found on [53], with particular examples: [54], JWS Online [55], the Physiome
project [56] and the cellML model repository [57].

5 Systems Medicine

Medical practice is necessarily cautious and conservative in nature. Since antiq-
uity progress has been a slow evolution based upon observational methods and
diagnosis based upon the particular experience and training of individuals. Un-
fortunately, doctors generally have only a basic knowledge of mathematics. As a
result, the quantitative methods that are available for medical decision–making
are too often ignored or misunderstood [58]. This has meant that the gradual
move to more systematic and mathematically based techniques in biology and
physiology are only slowly touching medicine. But touching it they are, and
this section discusses the ways in which this is happening.

5.1 Homeostasis

The biological and physiological perspectives of systems biology are highly im-
portant. There is however a complementary viewpoint based on the part per-
formed by feedback control in living systems as it is perceived in medicine. It
relates directly to metabolic control (Section 2) and has a bearing on the poten-
tial practical uses of systems biology in physiology, medicine and pharmacology.

Building on ideas that date back to the Greek philosophers, the distinguished
French physiologist Claude Bernard (1813-1878) argued that compensatory in-
ternal physiological processes exist within an organism that work to balance
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externally imposed disturbances. Bernard’s practical observations spoke clearly
of feedback regulation and disturbance rejection mechanisms within living or-
ganisms [59]. These ideas were further codified in the 1950’s by Walter Cannon
The Wisdom of the Body [60]. With extensive historical references (to Hip-
pocrates and Pflüger amongst others) and based on extensive research, Cannon
was able to give a range of practical examples of feedback regulation in phys-
iology. More importantly, he gave it a name – homeostasis. Since Cannon’s
time other researchers [61] have expanded upon the homeostatic principle of
internal physiological control in important ways and homeostasis has become a
fundamental principle in medicine and physiology, (see for example [62]).

5.2 Personalised and Predictive Medicine

The systems approach to metabolism, cell signalling, physiology, and medicine
are different routes that converge on a common aim – an improved understand-
ing of the mechanisms of life and disease. The four have a specific meeting point
in the area of personalised medicine [63]. The personalised medicine proposition
is that mathematical modelling and a systems approach, combined with high-
throughput biological measurement technology, can supply the analytical tools
and individual patient bio-marker data for an individual approach to patient
care. Within this framework, genetic information and proteomic time histories
will allow treatments to be individually tailored and systematically adminis-
tered. Likewise, a time history of an individual patient’s bio-markers will allow
predictive statements to be made with regard to future health states, and en-
able corresponding preventative actions to be taken. This aspect of systems
medicine has been variously referred to as personalised [64], predictive and/or
preventative [65] medicine. The pharmaceutical companies have yet another
interpretation, in which drug treatments would be ‘personalised’ for specific
sub-groups of the population.

Personalised medicine implies a significant shift from what might be termed
population–based medical care, where the emphasis is on average/typical re-
sponses to disease. In personalised medicine, data from population responses
will form a backdrop against which to assess information on how a specific in-
dividual behaves in a diseased state, and subsequently responds to treatment.
For this to be viable, several ingredients may be needed such as:

• More regular monitoring, including self monitoring, of important diagnos-
tic indicators;

• Enhanced tools for learning appropriate individual information from time
trends of individual diagnostic indicators.

Like personalised medicine, predictive medicine represents a marked change
from current practice. Specifically, it is a move from reactive medical care to
one in which an individual’s susceptibility is predictively treated. In particu-
lar, the use of statistical inference and statistical prediction from bio-marker
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records would allow the forecasting of the onset of a condition, and the use of
preventative measures.

Part II

Opportunities for Control
This part is divided into two sections. The first (Section 6) outlines areas
where the way in which control systems analysis can contribute is reasonably
well defined. The second (Section 7.1), describes more speculative topics where
dynamical systems theory may play a part.

6 Control Systems Analysis in Biology

Control studies in biology have existed for many years, with a convenient time–
stamp being the book [66]. There was enormous respect for Wiener and this
created an enthusiastic following for his ideas of using communications and con-
trol systems to describe biological phenomena. Like Cannon before him, Wiener
also invented a name that captured the imagination – cybernetics. The name
cybernetics was at first a blessing, it gave identity to the transfer of control
and communication ideas from technology to biology. Unfortunately, a well
defined scientific agenda failed to emerge for cybernetics and it was not until
later that the relevance of control in a systems approach to biology began to
take shape. This occurred when ideas of dynamics and control were combined
with well–founded mathematical models of biological function. This took initial
forms in cell signalling pathway analysis (see Section 3.2), in quantitative un-
derstanding of metabolism (see Section 2) and related topics described in Part
I. Subsequently, a wide range of opportunities have emerged for the transfer of
control theoretic principles to the systems that make up living organisms. It
is the aim of this section to summarise these, with Subsection 6.1 covering the
areas already mentioned and Subsections 6.2, 6.3 describing important areas
not directly covered thus far.

6.1 Review of Control Topics in Systems Biology

In this section we collect the aspects of the systems biology topics covered in
Part I and outline the associated control systems opportunities.

Metabolic control analysis.
The study of the metabolism is well established and is thus a good entry
point for the control analyst. Likewise, the mathematical machinery for
metabolic control analysis [67] is framed in a similar way to control system
sensitivity analysis and thus presents familiar territory. Also, as remarked
in Section 2, steady state analysis is insufficient for a full understanding
of metabolic processes. In this vein, MCA has recently been explicitly
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expressed in a control systems format and extended to the dynamical
case [68] in a way which opens other control theoretic opportunities. This
is an important step since, as is emphasised elsewhere in this article, it is
the dynamical analysis of complexity in biological systems that will allow
control systems analysts to add constructively to biology.

Modelling of signalling pathways.
From a pragmatic viewpoint, mathematical modelling and computer sim-
ulation are the most clearly identifiable successes of systems biology. The
current modelling procedures described in Section 3.1 are first generation
methods that have shown the potential for mathematical modelling and
‘what if’ computer simulation. However, as the need to account for dif-
ferent chemical reaction conditions grows, so too will the need for new
modelling approaches. For example, stochastic models are required where
there are few molecules involved [69], while power–law models are suitable
when there is molecular crowding [26]. Likewise, almost all current sig-
nalling modelling neglects the spatial and molecular transport aspects of
the signalling sequence. This simplification has been acceptable in these
early days of modelling of cell signalling when even models containing gross
approximations are proving informative, but it cannot endure. There are
thus very significant opportunities for mathematical modellers with a con-
trol systems and dynamics background to contribute. For an authoritative
guide to the state of the art and future possibilities see [41].

Motifs and functional modules.
Related to the issues of mathematical modelling is the area of functional
blocks in biological processes. The idea of motifs and functional modules
(as described in Section 3.3) is very attractive from a control systems view-
point [70, 71, 40] as it enables functional blocks to be grouped together and
the signalling process made more comprehensible. The area where control
systems analysts can contribute is by determining the complete dynam-
ical performance of these motifs. The idea of assigning specific function
to assemblies of biochemical reactions in this way is seductive. It relates
to research into the function of biomolecular objects (e.g. genes, proteins
etc) in biological networks (see Section 6.3), and at a more abstract level
to speculation concerning general control and organising principles in biol-
ogy (see Section 7.1). From a practical viewpoint, a considerable amount
of work has been done on identifying functional modules. Nonetheless,
there is more to be added, particularly from a viewpoint of metabolic and
signalling networks and their linkage to multi–level/multi–scale control
systems .

Feedback systems in biology.
As hinted earlier in this article, nature apparently uses negative feedback
so that a robustness – sensitivity compromise exists. Control specialists
have analyzed examples of feedback control and written extensively on
biological robustness and sensitivity in living organisms (e.g. [72, 68, 73]).
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Kitano (an influential figure in systems biology) interprets robustness more
broadly than the control theoretic meaning. Other authors on the other
hand draw directly upon results in classical control [74, 75]. In particular,
Doyle and his coworkers [76, 77] have been prominent in developing the bi-
ological perspectives of the control concepts of robustness and fragility [4].
These discussions of biological robustness are scientifically important for
a number of reasons. Not least because of their strategic value for the fu-
ture of control engineering ideas in the life sciences. Specifically, they have
raised the profile of control theory by showing life scientists how a control
systems analysis can provide a theoretical underpinning to experimental
observations.

Within the cell, feedback (positive and negative) is an important struc-
tural feature of signalling networks. Regulatory mechanisms of negative
feedback have already been mentioned, however positive feedback loops
also occur in biological circuits in a way that have oscillator, bi-stable and
gating analogues in electric circuits [78]. While such basic ideas and many
examples of biological feedback have been developed, this area remains a
rich one, both for control theoretic work and for particular biological ex-
amples. In particular, and despite excellent work already referred to, the
concept of robustness is still not sufficiently well formulated in biological
context.

Transient performance and nonlinearity.
This area is in essence related to the previous item, but is treated sep-
arately because of the biological significance of stability and transient
performance. The issue of stability (in particularly instability induced by
positive feedback) was also mentioned in the previous item and is raised
again in Section 6.2. The discussion here however is different, since it
relates to the nonlinearities and multiple timescales which occur in bi-
ological system dynamics, and the implications that these features have
for transient performance. For example, in connection with nonlinear re-
sponse [79] demonstrates how changing initial conditions and the pattern
of external excitation will dramatically change the observed performance
of a nonlinear biological system. As the cited paper remarks:

It would take an experimental biologist many time consuming
and expensive experiments to obtain comparable results under
each operating condition. And then there would be no way of
determining that all the results were generated by the same bio-
logical mechanism.

The clarification of nonlinear dynamics in this and related ways can be of
enormous benefit in unifying apparently unrelated experimental observa-
tions and thereby generalising experimental results. Here mathematical
control theory can play a powerful part in elucidating fundamentals, (see
for example the work of Sontag and colleagues [36])
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As mentioned earlier (Section 4), the wide range of time scales in biolog-
ical responses means that the analysis of transient response must have a
multiple timescale aspect. In analytical terms this means that there may
be no steady state operating point within the classical meaning. As a
result there is scope for control systems experts to fruitfully work on new
stability measures for multiscale systems and descriptions of the temporal
behaviour of specific nonlinear biological phenomena.

Special system structures.
Hybrid Systems. In intracellular systems biology, the continuous time
dynamics of signalling pathways are often combined with the essentially
logical machinery of gene expression. Together with transport delays in
protein synthesis, this may lead to hybrid systems with time delay prop-
erties that are exceedingly difficult to analyse [80]. It has proven possible
to graphically analyze some specific low dimensional hybrid systems,(see
for example [81]). In general however the area is difficult and the level
of analysis is either very abstract, or very specific to the case in hand.
In an effort to make the abstract analysis less general, there is a systems
analysis opportunity to consider the specific hybrid forms that occur in
signaling pathway dynamics [32].

Positive Systems. Dynamical descriptions of metabolic flux and cell sig-
nalling lead to positive systems. This can potentially be used to advantage
since positivity gives special properties to temporal behaviour, and then
enables the analyst to make useful performance statements with limited
knowledge of parameter values. This is useful because of the difficulty
in estimating numerical values for reaction kinetics. As noted previously,
monotone systems theory for systems biology has been pioneered by Son-
tag and his coworkers [14, 36].

System identification and estimation
Thus far, much of system identification work in this area has involved ap-
plied mathematicians, see for example the review [82]. However, because
of their prior experience with parameter and structure estimation for com-
plex dynamical systems, system identification researchers from the control
systems community can add a further dimension to the area. The starting
point for this should be a recognition that biology is not merely an ap-
plication for standard identification methods. Genuinely new approaches
are required that recognise (i) the specific types of nonlinear, time–varying
processes found in living organisms [83], (ii) the particular form of mea-
surements that are available [13] and (iii) the numerous disturbances and
measurements errors that are specific to biological processes and sensing.

With these caveats, there is great scope for system identification experts
to develop signal processing and identification methods that are specific to
the biological application. There are many challenges, including methods
to:
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1. Extract information from biological/medical sensing modalities.

2. Deal with unusual measurement errors and disturbances.

3. Handle unconventional data forms and data collection protocols.

4. Incorporate unusual forms of prior information and constraints.

Getting information from measurements.
The previous paragraph mentioned that the measurement methods avail-
able in biology are quite specific. This bears expanding upon because,
compared to the measurement and sensing of physical systems, the mea-
surement of variables in living systems is either difficult, crude or not
possible. The difficulty in biological measurements means that there are
significant opportunities for new sensor data analysis procedures and sen-
sor data fusion methods to be developed. This is an area where instrument
engineers are very active, but the scope is vast and the opportunities cor-
respondingly large.

Modelling and computational tools.
As described in Section 4.3, the Systems Biology Markup Language is
widely used as a format for representing models in a machine transfer-
able way. There are many software tools and modelling packages that
support SBML – over 100 at the last count. For the control systems spe-
cialist the most attractive of these tools is the Systems Biology Toolbox
for MATLAB [48]. This toolbox is a good starting point in the modelling
of biological systems, and has the usual scope for extension.

Despite a wealth of tools and packages, as shown in [47], the area of com-
putational tools for biology is one of growth. The underlying modelling
principles on the other hand are less well studied. In this spirit, one poten-
tial area for research is the development of common modelling and model
analysis tools which import the expertise from dynamical systems mod-
elling. For example, systems biology is an area where systematic methods
for model development and analysis, such as bond graphs, could make
useful new contributions as they have done in the physical world [84].

Modelling tools for large scale biological or physiological systems might
also benefit from software–oriented control experts in hierarchical tech-
niques developed for total plant management and enterprise control. This
may even inform the multi-level/multi-scale systems biology modelling de-
scribed in [52]. In this vein, any control systems researcher with a strong
interest in computational aspects of systems biology modelling is strongly
recommended to refer to the detailed Physiome Project Roadmap [46].
Hunter’s comprehensive and informative description of the Physiome Project
makes the roadmap an essential working reference.

Control and predictive medicine.
Thus far the personalised/predictive medicine described in Section 5.2 has
focussed on the static case where high throughput measurements are used
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with regular sampling of personal bio–markers to design therapy and pre-
dict outcomes using regular feedback from the bio–markers. However, a
moment’s thought is sufficient to see that such an approach must take into
account the dynamics of internal homeostatic feedback loops. Without a
proper understanding of the physiological and biological dynamics associ-
ated with a patient with a specific condition, then personalised/predictive
medicine may be self defeating [85].

More generally, the use of a quantitative and more technologically based
approach to medical investigation and practice has attracted a great deal of
interest in medical circles, (for example see [86, 87]). Nonetheless progress
will be slow and with many organisational issues to address. The difficulty
of obtaining and sharing patient records, for example, means that this
area will need a structured ethical code for data handling. The primary
ways in which control systems specialists can assist here are in the areas
of mathematical signal processing and data handling. For example, the
design of predictive methods for disease trends from the high throughput
data and biomarker sources is a clear area where random signal processing
can be of use. However the data sources are distributed, inconsistent
and unreliable. Thus the methods of data fusion and validation (used in
sensor data integration) and secure control networks (from military and
enterprise control and management) may be a starting point for the control
community.

6.2 Oscillations in Living Systems

The harmonic analysis of signals is basic to the way in which we analyze physical
systems and design technological systems. We use frequency domain methods to
analyze and explain the physical world, and the frequency domain is an essential
tool in communications and control systems technology. Given the universal
nature of harmonic behaviour in physical systems, it is therefore natural that
we ask whether living systems employ frequency modulation for communication
and control. The answer is an unequivocal ‘yes’, and so we devote an entire
subsection to parallels between frequency domain properties of technological
systems and our understanding of biological signalling and function.

For example, oscillatory behaviour is believed to be important for communi-
cation in neurological systems, (see [88]), and the references therein). In partic-
ular, the frequency selectivity represented by the distinct alpha, beta, delta and
gamma-bands is apparently used to achieve distinct signalling and communica-
tions objectives. This suggests that information is passed at several frequencies
as a method of differentiating between different brain signalling functions. Addi-
tionally, because neural connections are formed by dense groups of connections,
the issue of synchronisation (or the lack of it) within a group is important.
Thus frequency and phase of oscillations appear to be used to encode neural
information, while the absolute amplitude is apparently less important.

The brain is a well–known example of a biological sub–system in which it
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is believed that frequency sensitivity is used in intercellular communication.
Actually, oscillatory behaviour is everywhere in living systems. Moreover it has
a determining rôle in many biological outcomes from the circadian rhythm, to
the control of heart beat and beyond to the internal functioning of a cell [89]. For
example, in [90, 91], frequency sensitivity is shown at the intracellular level. By
externally modulating the frequency of oscillations in intracellular calcium it is
shown that the level of gene expression is a function of frequency. This raises an
interesting parallel with technological systems in which frequency modulation is
routinely used to encode information. The pursuit of this idea from a systems
viewpoint has radical implications for how we probe the biological function
of proteins and genes. Specifically, analysis of biological function is currently
performed on averaged ‘steady state’ data. If gene expression is sensitive to
oscillations in the cytoplasm, then genetics is currently only looking at the origin
on the frequency spectrum of protein/gene function. This has implications for
the network ideas discussed in Section 6.3.

Let us take this point further. A fundamental feature of physical systems and
their components is that they exhibit a response/output that varies depending
upon the frequency of the stimulus. Frequency dependence is an expression of
the dynamical nature of physical systems, thus the observation that responses of
biological systems may also be frequency dependent suggests a potentially use-
ful analogue between technical and biological components. In this context, it is
interesting to recall that classical biology and physiology is concerned with the
steady state behaviour of organisms. For engineers versed in systems dynam-
ics, there is the exciting possibility of using frequency domain ideas in biology.
The analysis of oscillatory processes in living organisms is led by the works of
Winfree [92] and Goldbeter [93]. Thus there is already a rich literature on oscil-
lations in biology as seen from a mathematical [94] and control systems theory
perspective [95]. There remains however many stimulating opportunities for
generalised harmonic analysis of biological phenomena.

6.3 Network Methods: Assigning Function via Structure

The Human Genome Project marked a turning point in the evolution of sys-
tems biology. Specifically, the use of automatic analysis technology to increase
the rate and reliability of biological data capture and analysis was crucial to
performing the sequencing in a reasonable time. The speed and repeatability of
high–throughput automatic analysis of biological samples was fundamental to
the project’s success. It gave the means to rapidly and efficiently perform the
many experiments required in the Human Genome Project, thereby supplant-
ing traditional manual laboratory methods with systematic automation. To this
day for many biologists, the automation of biological measurement is systems
biology.

The technological lessons learnt from the Human Genome Project were not
wasted upon the scientists involved. It was a natural extension to use high–
throughput (e.g. automated) methods to search for, and associate biological
function with, individual genes and proteins. This is important to biologists
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since the Human Genome Project showed remarkable similarities between the
human genome and that of other species. Thus finding special complexities
in the relationships between genes (and the proteins that they coded for) in
generating biological function was seen a potential way of distinguishing us as
a species. An issue here is that the genome only represents a small fraction of
the total DNA, and thus a valid question is ‘What function does the remaining
DNA have?’ This is pursued later in Section 7, so for the moment we stay with
the fundamental dogma that genes code for proteins and proteins are the basic
elements of biological function.

Graph theory has emerged as an important tool in the search for biologi-
cal function, with new approaches (such as scale free networks [96]) being used
to explain features of gene/protein interaction networks. A key problem with
these interaction networks, and what makes this area interesting for the con-
trol systems analyst, is that functional genomics and proteomics is done with
only partial data (e.g. samples from the whole interaction network) and noisy
information. The graphs which show interconnections between objects contain
only a sub-set of the possible interconnections, and measurement difficulties
mean that even those interconnections may be false due either to systematic or
random measurement errors. In addition, and vitally important for the control
systems analyst, the dynamic and contextual properties of gene and protein
interaction are not accounted for.

There is an interesting comparison here with the mid twentieth century de-
velopments of network theory for complex dynamical electrical networks [97].
Although biological networks are far more complex, there is good reason to be-
lieve that traditional network dynamics will offer insights additional to the static
network view. Thus with most of what is published being rapidly superseded
by new experimental observations or theories, this whole area is ripe for theo-
retical analysis from a network dynamics viewpoint. For a current summary of
this area see the survey paper [98].

7 Mechanisms of Life

In this section, we consider some interesting fundamental issues in biology where
a control systems viewpoint may offer a different and helpful perspective. These
are problems which have big prizes for the right answers, and there is reason to
believe that a view from outside the confines of biology may be needed. After
all, and as noted previously, many of the most significant breakthroughs in
biology have been made by outsiders. For example, Mendel studied physics at
the University of Vienna and Delbrück, Schrödinger, Crick, and Wilkins all had
physics backgrounds. More generally, there is ample historical evidence that a
view from outside a subject’s conventions leads to new results [99]. With this
in mind, we indicate some possible topics for study by control specialists.
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7.1 General Principles in Living Systems

Our quantitative understanding of the physical world is based upon a family of
general principles and laws that underly the behaviour of physical systems and
processes – Newton’s Laws, Relativity Theory and so on. Not surprisingly a
strong motivation for theorists is to find corresponding general principles that
will explain living organisms [100]. Within control systems theory, for example
some general principles from feedback control have been applied to successfully
explain a number of observed properties of organisms. (An example, is the
analysis of the movement of organisms in response to chemical gradients [101]).
There is a strong consensus however that a straightforward mapping of current
control theories on to biological problems is not enough, and researchers are
proposing a range of alternatives with the following as examples:

Organising Principles. Mesarović and his co-workers have been prominent
in developing a theory of multi-level systems [102] in order to determine
general organising principles for biology. The power of the multi-level
concept is that it accounts for much of what is missed in other functional
theories for biology. For example, in proteomics the straightforward asso-
ciation of protein groups with particular functions is flawed since it does
not account for the context (or ‘level’) in which the proteins are operating.

Modelling Frameworks. The multi-level systems theory of Mesarović pro-
vides one possible way of developing organising principles in living organ-
isms. This paradigm is appealing since it recalls the form of descriptions
used in physical systems, and as such it appeals to the unity of science.
Similar remarks can be made of modelling frameworks that describe bi-
ological principles. As an example, consider Wolkenhauer and Hofmeyr’s
model of self-organisation in cellular life [103]. This approach brings to-
gether the issues of adaption and development of functional blocks in bi-
ology (Section 3.3).

Language and mathematical formalism. The previous two items represent
attempts to build a theory for living systems using language that would
be familiar to a mathematical physicist or engineer. However, others ar-
gue that we need to re-formulate the theoretical study of living systems
by changing the language of discourse. In practical terms this means al-
ternative mathematical formalisms that can encompass the complexity,
diversity and contextual adaptation that, as we have seen, are the essence
of living systems. For example, [104] has suggested that ideas of agency
might be used, and explores the theme in a wide ranging paper [105]. In
a related context, we note that computer scientists are also addressing
this area using formal logic [106]. It seems likely that the world of control
systems dynamics and computer science will converge in this area.
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7.2 Beyond the Human Genome

The scientific world was surprised when the human genome was found to contain
so few components and that a large number of these components are shared
with other species. Thus the human genome is in itself insufficient to explain
the complexity and variety of human life, and the subsequent research thrust
in genomics has been an attempt to explain this puzzle. There are however
a number of possibilities [7] associated with information that lies beyond the
genome3, but one has a special resonance for engineers. It goes as follows: the
genome is accounted for by a small percentage of the total DNA sequence. The
remaining non-coding DNA is generally considered to be ‘junk’ left over from
many generations of random evolutionary steps.

To an engineer the more plausible theory is that the non-coding DNA is
associated with the operation and regulation of gene expression. In this theory
the genome is the ‘set of parts’ for a system, and the non-coding DNA provides
the assembly and operating instructions for those parts. This analogy gains
credence when one compares the manner of operation of coding DNA sequences
with the action of formal computer code [108]. A prominent proponent of this
viewpoint is Mattick [109] who’s explanation of non-coding DNA resembles the
language of digital computer control [110]. This and other features of non-coding
DNA are susceptible to a systems interpretation that offer exciting research
opportunities for the control theorist.

7.3 Evolvability of Living Systems

This is an area that holds many opportunities for dynamical systems theory [111]
for the following reasons. The basic tenet of the Theory of Evolution [112] is
that evolution occurs through a series of random mutations. However, the
practical evidence of evolution is that once useful features of an organism have
arisen, they are preserved in subsequent evolutionary stages. The eukaryotic cell
and distinct organs are examples of useful evolutionary developments that are
preserved features. The implication is that evolution proceeds not by a series of
truly random mutations, but is constrained in a way whereby components are
not subject to change in future evolutionary steps if they are beneficial to the
organism.

The idea of preserved features is taken to the cellular level in [113], from a
molecular and genetic viewpoint, and elsewhere from a systems viewpoint [114].
The idea of constraint within a process of sequential improvement immediately
causes a control theorist to think of constrained stochastic optimisation tech-
niques. Thus, detailed biological issues apart, it should be possible to study
constrained evolutional systems from the control theoretic viewpoint of con-
strained optimal control. In this framework stochastic populations of objects
change in response to changes in environment and within constraints prescribed
by the principle of retained function. This approach would offer a theory that

3Beyond the DNA code itself there are yet more possibilities in the area known as epige-
nomics [107]
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included retention of evolved features, and could potentially offer insights into
the underlying organising principles of Section 7.1.

As a codicil to this subsection, the idea of there being general organising prin-
ciples underlying the mechanisms of life occurs in all areas of biological systems
research. Concepts of evolvability, emergent behaviour, context – dependent
adaption and robustness occur in different interpretations. These range from
the view in [73] of robustness (Section 6.1) as an organising principle rather than
a property endowed by structure, to the biological reading of adaption in [113]
and evolvability of motifs mentioned in Section 3.3 [115]. These ideas overlap
in ways described in, for example, [116]. Any control theorist venturing into
this area will need to read widely and deeply – the intellectual challenges are
enormous, but the reward could be important to our understanding of life.

8 Conclusion

8.1 On models

The systems biology approach to living organisms can been considered as part
of the ongoing process of unification within science in which mathematical mod-
els have played a central rôle [117]. Newtonian physics presented mathematical
rules which, when combined with the ideas of many other great scientists, gave
the means to build deterministic mathematical models of the physical world –
models that were later enriched by Relativity Theory. Quantum physics then
gave a model of atomic structure which laid down the physical basis for chem-
istry. In a similar vein, astrophysics presents models of the structure and com-
position of the universe and how elements are formed, and our understanding
of carbon-based molecules provides models of how life could arise.

Considered from this viewpoint, the systems approach to biology – with its
current focus on the development of mathematical models and their analysis –
is a logical sequel to the sequence of research that established the mathematical
foundations for modern physics and chemistry. In the context of biology, the
wonderful thing about a mathematical model is that it gives an objective quan-
titative format within which to embed and collate experimental observations,
and then test the validity of biological hypotheses. By harnessing the power of
modern scientific computation, such models provide a means for analysis and
the organisation of information across a range of different and complex top-
ics. In this spirit, a mathematical model can become the repository of shared
knowledge and a focus for the interdisciplinary team work that systems biology
requires.

8.2 On change

As mentioned in the introduction, the complexity of life means that applying
a systems approach to biological processes is vastly more difficult than any
problem that the physical and technological worlds have yet presented. Thus
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progress in systems biology will be slow and by steady increments. The com-
plexity of life will require us to check many directions and establish activities
in many research areas. The aim of this article has been to show in general
where research is already going, and in particular to indicate some research ar-
eas suitable for those control systems experts who elect to change to systems
biology.

Changing one’s area of intellectual pursuit is hard in the modern research
environment where constant productivity is demanded, but in the case of control
systems research it is timely. The fact is that control as a research discipline has
long reached maturity. The excitement of the early days has faded and there is
a need for renewal – a situation that makes Goethe’s maxim [118] appropriate:

Becoming older means entering on fresh business. All circumstances
change and one must completely stop acting or take a new rôle with
deliberation and awareness.
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