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Proportional Fair Coding for Wireless Mesh
Networks

K. Premkumar, Xiaomin Chen, and Douglas J. Leith

Abstract—We consider multi–hop wireless networks carrying
unicast flows for multiple users. Each flow has a specified
delay deadline, and the lossy wireless links are modelled as
binary symmetric channels (BSCs). Since transmission time, also
called airtime, on the links is shared amongst flows, increasing
the airtime for one flow comes at the cost of reducing the
airtime available to other flows sharing the same link. We
derive the joint allocation of flow airtimes and coding rates that
achieves the proportionally fair throughput allocation. This utility
optimisation problem is non–convex, and one of the technical
contributions of this paper is to show that the proportional
fair utility optimisation can nevertheless be decomposed into
a sequence of convex optimisation problems. The solution to
this sequence of convex problems is the unique solution to the
original non–convex optimisation. Surprisingly, this solution can
be written in an explicit form that yields considerable insight
into the nature of the proportional fair joint airtime/coding rate
allocation. To our knowledge, this is the first time that the utility
fair joint allocation of airtime/coding rate has been analysed,
and also, one of the first times that utility fairness with delay
deadlines has been considered.

Index Terms—Binary symmetric channels, code rate selection,
cross–layer optimisation, optimal packet size, network utility
maximisation, resource allocation, scheduling

I. INTRODUCTION

In this paper, we consider wireless mesh networks with
lossy links and flow delay deadlines. Packets which are
decoded after a delay deadline are treated as losses. We derive
the joint allocation of flow airtimes and coding rates that
achieves the proportionally fair throughput allocation. To our
knowledge, this is the first time that the utility fair joint
allocation of airtime/coding rate has been analysed, and also,
one of the first times that utility fairness with delay deadlines
has been considered (also, see [1], [2]).

In the special cases where all links in a network are loss–
free or all flow delay deadlines are infinite, we show that
the proportionally fair utility optimisation decomposes into
decoupled airtime and coding rate allocation tasks. That is,
a layered approach that separates MAC scheduling and packet
coding rate selection is optimal. This corresponds to the
current practice, and these tasks can be solved separately using
a wealth of classical techniques.

However, we show that no such decomposition occurs when
one or more links are lossy or, one or more flows have finite
delay deadlines. Instead, in such cases, it is necessary to
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Fig. 1. An illustration of a single cell wireless LAN with 3 flows. The
central node represents the Access Point (AP), and the other nodes represent
the wireless STAtions.

jointly optimise the flow airtimes and coding rates. Further, we
show that the resulting allocation of airtime and coding rates
is qualitatively different from classical results. For example,
consider a single hop wireless network carrying three flows,
see Figure 1. Flow f1 is a delay–sensitive flow (e.g. video)
while flows f2 and f3 are delay–insensitive flows (e.g. TCP
data). Transmissions are scheduled in a TDMA manner, and
the delay deadline for flow f1 is one schedule period, while
the delay deadline for flows f2 and f3 is infinite. The channel
symbol error rate is 10−2 for all flows, and flows use MDS
codes for error correction. The proportionally fair airtime
and coding rate allocation that we show in this paper (see
Eqns. (21) and (22)) results in the allocation of 41% of the
airtime for flow f1 while flow f2 and flow f3 each receive
29.5%. Observe that the proportionally fair allocation assigns
unequal airtimes to the flows, which is a notable departure
from the usual equal–airtime property of the proportional fair
allocation when selection of delay deadlines and coding rate
are not included, e.g. see [3]. The optimal coding rate is 0.62
for flow f1 and 0.97 for flows f2 and f3. The coding rate
for flow f1 is much lower than for flows f2 and f3, since
a smaller block size must be used by flow f1 (and more
redundant symbols for error–recovery) in order to respect the
delay deadline. Due to the delay deadline, these optimal coding
rates yield non–zero loss rates. For flow f1, the packet loss
rate at the receiver, after decoding, is 20%, whereas flows f2
and f3 are loss free. This highlights an important feature of the
joint airtime and coding rate utility optimisation. Namely, that
it allows the throughput/loss/delay trade–off amongst flows
sharing network resources to be performed in a principled,
fair manner. Without consideration of coding rate, the trade–
off between throughput and loss cannot be fully understood
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or optimally managed. Without consideration of airtime, the
contention between flows for shared network resources cannot
be fully captured.

Proportional fairness can be formulated as a utility maximi-
sation task, with the utility being the sum of log flow rates.
Figure 1(b) compares the optimal network utility with that
obtained with a classical type of approach where all flows are
allocated equal airtime and the coding rates are chosen based
on the channel error probabilities alone (this corresponds to
ignoring the delay deadline of flow f1). It can be seen that
the optimal approach that we present in this paper potentially
offers significant performance benefits over classical methods.

We note that one of the reasons why the joint selection of
airtime/coding rate has not been previously studied is that the
proportional fair utility optimisation is non–convex, and hence,
powerful tools from convex optimisation cannot be applied
directly. Also, the study of the throughput performance by
jointly considering the coding and the MAC has not been
performed before. One of the technical contributions of this
paper is to show that the proportional fair utility optimisation
can nevertheless be decomposed into a sequence of convex
optimisation problems. The solution to this sequence of convex
problems is the unique solution to the original non–convex
optimisation. Moreover, this solution can be written in an
explicit form thereby yielding considerable insight into the
nature of the proportional fair airtime/coding rate allocation.

The rest of the paper is organised as follows. The related
literature on utility optimal resource allocation is discussed in
Section II. Section III defines the network model; in particular,
we describe the mesh network architecture, the traffic model,
and the channel model. We also discuss the transmission
scheduling model, decoding delay deadline, and the network
constraints. In Section IV, we obtain a measure for the end–
to–end packet decoding error, and describe the throughput of
the network. In Section V, we formulate a network utility max-
imisation problem subject to constraints on the transmission
schedule lengths, and discuss the optimization framework. In
Section VI, we discuss two special cases of networks: delay–
insensitive and loss–free networks, and show that the tasks of
obtaining optimal airtimes and coding rates decouple in these
special cases. We discuss the optimal airtime/coding solution
with some examples in Section VII. Finally we conclude
in Section VIII. The proofs of Lemmas and Theorems are
provided in the Appendix.

II. RELATED WORK

We consider a multi–hop Network Utility Maximisation
(NUM) problem with deadline constraints and with a practical
model for the PHY layer. By means of channel coding, we try
to recover a packet from the channel errors. Having a low
coding rate helps in recovering the packets, but at the cost of
a small fraction of payload, and at the cost of the transmission
airtimes of other flows. Thus, we consider the problem of
resource allocation that answers the following question: how
to allocate throughput across competing flows with each flow
seeing different channel conditions and respecting the delay
deadline.

The problem of Network Utility Maximisation (NUM) has
been studied in various contexts, with NUM as a network
layering tool introduced in [4].

Much of the work on NUM is concerned with the flow
scheduling and throughput allocation that achieves the network
stability region. This work focuses on throughput and largely
ignores delay constraints. Resource allocation problems from
the viewpoint of network control and stability is studied by
Georgiadis et al. in [5]. Network flow scheduling problems
are studied in a utility optimal framework by Shakkottai and
Srikant in [6]. In all these works and the references therein, the
emphasis is on the MAC layers and above. In [5], an energy
optimal scheduling problem is studied in which the PHYsical
layer is also considered.

Some recent work explicitly includes delay constraints in
the utility optimisation. In [1], Li and Eryilmaz studied the
problem of end–to–end delay constrained scheduling in multi–
hop networks. They propose algorithms based on Lyapunov
drift minimisation and pricing, and show that by dynamically
selecting service disciplines, the proposed algorithms sig-
nificantly outperform existing throughput–optimal scheduling
algorithms. In [2], Jaramillo and Srikant studied a resource al-
location problem in ad hoc networks with elastic and inelastic
traffic with deadlines for packet reception, and obtained joint
congestion control and scheduling algorithm that maximises
a network utility. In this work the focus is on congestion
control and scheduling, with the PHYsical layer considered
to be error–free.

A short, preliminary version of the work in the current paper
was presented in [7].

III. NETWORK MODEL

A. Cellular Mesh Architecture

We consider networks consisting of a set of C ≥ 1 cells,
C = {1, 2, · · · , C} which define the “interference domains” in
the network. We allow intra–cell interference (i.e transmissions
by nodes within the same cell interfere) but assume that
there is no inter–cell interference. This captures, for example,
common network architectures where nodes within a given cell
use the same radio channel while neighbouring cells using
orthogonal radio channels. Within each cell, any two nodes
are within the decoding range of each other, and hence, can
communicate with each other. The cells are interconnected us-
ing multi–radio bridging nodes to create a multi–hop wireless
network. A multi–radio bridging node i connecting the set of
cells B(i) = {c1, .., cn} ⊂ C can be thought of as a set of n
single radio nodes, one in each cell, interconnected by a high–
speed, loss–free wired backplane. See, for example, Figure 2.

B. Unicast Flows

Data is transmitted across this multi–hop network as a set F
= {1, 2, · · · , F}, F ≥ 1 of unicast flows. The route of each
flow f ∈ F is given by Cf = {c1(f), c2(f), · · · , c`f (f)},
where the source node s(f) ∈ c1(f) and the destination node
d(f) ∈ c`f (f). We assume loop–free flows (i.e., no two cells
in Cf are same).
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Fig. 2. An illustration of a wireless mesh network with 4 cells. Cells a,
b, c, and d use orthogonal channels CH1, CH2, CH3, and CH4 respectively.
Nodes 3, 5, and 6 are bridge nodes. The bridge node 3 (resp. 5 and 6) is
provided a time slice of each of the channels CH1 & CH2 (resp. CH2 &
CH4 for node 5 and CH2& CH3& CH4 for node 6). Three flows f1, f2,
and f3 are considered. In this example, Cf1 = {a, b}, Cf2 = {d, b, a}, and
Cf3 = {c, d}.

C. Binary Symmetric Channels
We associate a binary random variable Ef,c[b] with the b’th

bit transmitted by flow f in cell c. Ef,c[b] = 0 indicates that
the bit is received correctly, and Ef,c[k] = 1 indicates that
the bit is received incorrectly, i.e., the bit is “flipped”. We
assume that Ef,c[1], Ef,c[2], · · · are independent and identi-
cally distributed (iid), and P{Ef,c[b] = 1} = αf,c ∈ [0, 0.5).
That is, we have a binary symmetric channel with cross-over
probability αf,c. A transmitted bit may be “flipped” multiple
times as it travels along the route of flow f , and is received
incorrectly at the flow destination only if there is an odd
number of such flips. The end-to-end cross-over probability
along the route of flow f is therefore given by

αf =
∑

{xc∈{0,1},c∈Cf :
∑

c∈Cf
xc is odd}

∏
c∈Cf

αxc

f,c (1− αf,c)1−xc .

Note that we can accommodate transmission of symbols from
any 2m = M–ary alphabet (i.e. not just transmission of binary
symbols) by associating m channel uses of the BSC for every
transmitted symbol. The symbol error probability (for any
m ≥ 1) is then given by βf = 1− (1− αf )m.

In this channel model, the channel processes across time
are independent copies of the BSCs. In practice this can be
realised by means of an interleaver of sufficient depth (after
the channel encoder), which randomly shuffles the encoded
symbols, combined with a de-interleaver (before the channel
decoder) at the receiver. This interleaving and de–interleaving
randomly mixes any channel fades, which can then be mod-
elled as independent channel processes across time.

D. Flow Transmission Scheduling
A scheduler assigns a time slice of duration Tf,c > 0 time

units to each flow f that flows through cell c, subject to the

constraint that
∑
f :c∈Cf Tf,c ≤ Tc where Tc is the period of the

schedule in cell c. We consider a periodic scheduling strategy
in which, in each cell c, service is given to the flows in a
round robin fashion, and that each flow f in cell c gets a time
slice of Tf,c units in every schedule.

E. Flow Decoding Delay Deadline

At the source node s(f) for flow f , we assume that kf
symbols arrive in each time slot, which allows us to sim-
plify the analysis by ignoring queueing. Information symbols
are formed into blocks of Dfkf symbols, where Df ∈
{1, 2, 3, · · · } is the number of time slots that the block may
span. Each block of Dfkf information symbols is encoded
into a block of Dfnf coded symbols, where nf = kf/rf
symbols, with coding rate 0 < rf ≤ 1. Here, nf is the
number of encoded symbols transmitted in one slot i.e. the
transmitted packet size. The code employed for encoding is
discussed in Section IV. The quantity Df is a user or operator
supplied quality of service parameter. It specifies the decoding
delay deadline for flow f , since after the flow destination has
collected at most Df successive coded packets it must attempt
to decode the encoded information symbols.

F. Network Constraints on Coding Rate

For flow f in cell c, let wf,c be the rate of transmission
in symbols/second, which is determined by the modulation
and spectral bandwidth used for signal transmission and the
within-cell FEC used. Each cell c ∈ Cf along the route of flow
f allocates an airtime of at least nf

wf,c
in order to transmit the

packets of flow f . Let Fc := {f ∈ F : c ∈ Cf} be the
set of flows that are routed through cell c. We recall that the
transmissions in any cell c are scheduled in a TDMA fashion,
and hence, the total time required for transmitting packets for
all flows in cell c is given by

∑
f∈Fc

nf

wf,c
. Since, for cell c, the

transmission schedule interval is Tc units of time, the encoded
packet size nf must satisfy the schedulability constraint∑

f∈Fc

nf
wf,c

6 Tc

Note that since we require sufficient transmit time at each cell
along route Cf to allow nf coded symbols to be transmitted in
every schedule period, there is no queueing at the cells along
the route of a flow.

IV. PACKET ERROR PROBABILITY

Each transmitted symbol of flow f reaches the destination
node erroneously with probability βf . Hence, to help protect
against errors when recovering the information symbols, we
encode information symbols at the source nodes using a block
code (we note here that a convolutional code with zero–
padding is also a block code). An (n, k, d) block code has
the following properties. The encoder takes a sequence of
k information symbols as input, and generates a sequence
of n ≥ k coded symbols as output. The decoder takes a
sequence of n coded symbols as input, and outputs a sequence
of k information symbols. These information symbols will
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be error–free provided no more than bd−12 c of the coded
symbols are corrupted. The Singleton bound [8] tells us that
d 6 n−k+ 1, with equality for maximum–distance separable
(MDS) codes. Thus, an MDS code can correct up to⌊

d− 1

2

⌋
=

⌊
n− k

2

⌋
(1)

errors. Examples for MDS codes include Reed–Solomon codes
[8], and MDS–convolutional codes [9]. In [9], the authors
show the existence of MDS–convolutional codes for any
code rate. Hereafter, we will make use of Eqn. (1), and so,
confine consideration to MDS codes. However, the analysis
can be readily extended to other types of code provided a
corresponding bound on d is available.

Consider a coded block of flow f and let i ∈
{1, 2, · · · , Dfnf} index the symbols in the block. Let Ef [i] be
a binary random variable which equals 0 when the i’th coded
symbol is received correctly and which equals 1 when it is
received corrupted. P {Ef [i] = 1} = βf and P {Ef [i] = 0} =
1 − βf . From Eqn. (1), the probability of the block being
decoded incorrectly is given by

ẽf = P


Dfnf∑
i=1

Ef [i] >
Dfnf −Dfkf

2


The symbol errors Ef [1], Ef [2], · · · , Ef [Dfnf ] are i.i.d.
Bernoulli random variables, and so, the

∑Dfnf

i=1 Ef [i] is a bi-
nomial random variable. Hence, the probability of a decoding
error can be computed exactly. However, the exact expression
is combinatorial in nature, and is not tractable for further
analysis. We therefore proceed by obtaining upper and lower
bounds on the error probability, and show that the bounds are
the same up to a prefactor, and that the prefactor decreases
as the block size Dfnf increases. Hence, we pose the NUM
based on the upper bound on the error probability. Also, we
relax the following constraints: nf ∈ Z+ and kf ∈ Z+, and
allow them to take positive real values, i.e., nf ∈ R+ and
kf ∈ R+.

A. Upper and Lower Bounds

Lemma 1 (Upper Bound). The end–to–end probability ẽf of
a decoding error for flow f satisfies

ẽf ≤ exp
(
−DfnfIEf [1] (xf ; θf )

)
(2)

=: ef (θf , nf , rf ).

where xf :=
1−rf

2 , rf = kf/nf is the coding rate, θf > 0 is
the Chernoff–bound parameter and the function IZ(x; θ) :=
θx− ln(E

[
eθZ
]
) is called the rate function in large deviations

theory.

Proof: See Appendix A.

Lemma 2 (Lower Bound). The end–to–end probability ẽf of
a decoding error for flow f satisfies

ẽf ≥ Γ exp (−DfnfI (B (xf ) ‖B(βf ))) (3)

where
Γ =

βf
1− βf

exp (−DfnfH (B (xf )))

and xf :=
1−rf

2 , B(x) is the Bernoulli distribution with
parameter x, H(P) is the entropy of probability mass function
(pmf) P , and I(P‖Q) is the information divergence between
the pmfs P and Q.

Proof: See Appendix B.

B. Tightness of Bounds

It can be verified that

IEf [1] (xf ; θf ) = θfxf − ln
(
1− βf + βfe

θf
)

Since θf > 0 is a free parameter, we can select the value that
maximises IEf [1] (xf ; θf ) and so provides the tightest upper
bound. It can be verified (e.g. by inspection of the second
derivative) that IEf [1] (xf ; θf ) is concave in θf and so the
KKT conditions are necessary and sufficient for an optimum.
The KKT condition here is

∂IEf [1] (xf ; θf )

∂θf
= xf −

βfe
θf

1− βf + βfeθf
= 0

which is solved by

θ∗f = ln

(
xf
βf

)
− ln

(
1− xf
1− βf

)
.

provided xf > βf . Substituting for θ∗f ,

max
θf>0

IEf [1] (xf ; θf ) = IEf [1]

(
xf ; θ∗f

)
= xf ln

(
xf
βf

)
+ (1− xf ) ln

(
1− xf
1− βf

)
= I (B (xf ) ‖B(βf ))

and by Lemmas 1 and 2, the probability ẽf of a decoding
error satisfies

Γe−Dfnf I(B(xf )‖B(βf )) ≤ ẽf ≤ e−Dfnf I(B(xf )‖B(βf )).

It can be seen that the upper and lower bounds are the same
to within prefactor Γ, and the gap between these bounds
decreases exponentially as the block size Dfnf increases.

V. NETWORK UTILITY OPTIMISATION

We are interested in the fair allocation of flow airtimes
and coding rates amongst flows in the network. Other things
being equal, we expect that decreasing the coding rate rf (i.e.,
increasing the number Dfnf − Dfkf of redundant symbols
transmitted) for flow f will decrease the error probability ef ,
and so increases the flow throughput. However, decreasing
the coding rate increases the coded packet size Dfnf , and
so increases the airtime used by flow f . Since the network
capacity is limited and shared by other flows, this generally
decreases the airtime available to other flows and so decreases
their throughout. Similarly, increasing the packet size Dfkf
of flow f increases its throughput but at the cost of increased
airtime and a reduction in the throughput of other flows. We
formulate this tradeoff as a utility fair optimisation problem.
In particular, we focus on the proportional fair allocation since
it is of wide interest and, as we will see, is tractable, despite
the non–convex nature of the optimisation.
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The utility fair optimisation problem is

max
θ,(n,x)

U (θ, (n,x)) (4)

subject to
∑
f :c∈Cf

nf
wf,c

≤ Tc, ∀c ∈ C (5)

θf > 0, ∀f ∈ F (6)

xf ≤ λf ∀f ∈ F (7)
xf ≥ λf ∀f ∈ F (8)

with θ := [θf ]f∈F the vector of Chernoff parameters, n :=
[nf ]f∈F the vector of flow packet sizes, and x := [xf ]f∈F
the vector of flow coding rates (where we recall that xf =
(1−rf )/2). Eqn. (5) enforces the network capacity (or the flow
schedulability) constraints, Eqn. (6) the positivity constraint on
the Chernoff parameters, and the constraints Eqns. (7)–(8) are
introduced for technical reasons that will be discussed in more
detail shortly.

For proportional fairness, we select the sum of the log of
the flow throughputs as our network utility U . For flow f
the expected throughput is Dfkf (1 − ẽf ) symbols in every
time interval of duration DfTd(f) (we recall that d(f) is the
destination cell of flow f ), which is the same as kf (1 − ẽf )
symbols every time interval of duration Td(f), where Dfkf is
the information packet size and ẽf the packet decoding error
probability. As the exact expression of ẽf is intractable, we
use the upper bound for ẽf which is ef . Thus, the objective
function is given by

U (θ, (n,x)) :=
∑
f∈F

ln (kf (1− ef (θf , nf , xf )))

=
∑
f∈F

ln (nfrf (1− ef (θf , nf , xf )))

=
∑
f∈F

ln (nf (1− 2xf ) (1− ef (θf , nf , xf )))

=
∑
f∈F

ln (nf ) +
∑
f∈F

ln (1− 2xf )

+
∑
f∈F

ln (1− ef (θf , nf , xf )) .

The optimisation problem yields the proportional fair flow
coding rates and coded packet size nf . Since the PHY trans-
mission rates wf,c are known parameters, the coded packet
size is proportional to the airtime used by a flow (i.e., the
airtime is given by nf/wf,c).

A. Non–Convexity

The objective function U(θ, (n,x)) is separable in
(θf , (nf , xf )) for each flow f . However, it can be readily
verified that ln (1− ef (θf , nf , xf )) is not jointly concave in
(θf , (nf , xf )), and so, the optimisation is non–convex. Hence,
the network utility maximisation problem defined in Eqns. (4)–
(8) is not in the standard convex optimisation framework.

B. Reformulation as Sequential Optimisations

We proceed by making the following key observation.

Lemma 3. . For convex sets Y and Z , and for a function
f : Y × Z → R that is concave in y ∈ Y and in z ∈ Z ,
but not jointly in (y, z), the solution to the joint optimisation
problem

max
y∈Y,z∈Z

f(y, z) (9)

is unique, and is the same as the solution to

max
z∈Z

max
y∈Y

f(y, z), (10)

if f(y∗(z), z) is a concave function of z, where for each z ∈ Z ,
y∗(z) := arg max

y∈Y
f(y, z).

Proof: See Appendix C.
This lemma establishes conditions under which we can

transform a non–convex optimisation into a sequence of con-
vex optimisations. Roughly speaking, we proceed by optimis-
ing over each variable in turn and substituting the optimal
variable value that is found back into the objective function.
This creates a sequence of objective functions. Provided each
member of this sequence is concave in the variable being
optimised (but not necessary jointly concave in all variables),
the solution to the sequence of convex optimisations coincides
with the solution to the original non–convex optimisation. Ev-
idently, the condition that concavity holds for every objective
function in this sequence is extremely strong. Remarkably,
however, we show that it is satisfied in our present network
utility optimisation.

C. Optimal θ∗(xf )

Taking a sequential optimisation approach, we begin by first
solving the optimisation

max
θ

U (θ, (n,x))

subject to θf > 0, ∀f ∈ F

given packet sizes n ∈ ZF+ and coding rates x ∈ [λf , λf ]F .
The objective function is separable and concave in the θf s.
The partial derivative of U (θ, (n,x)) with respect to θf is
given by

∂U (θ, (n,x))

∂θf
=
efDfnf
1− ef

[
xf −

βfe
θf

1− βf + βfeθf

]
(11)

Setting this derivative equal to zero, provided xf > βf this is
solved by

βfe
θ∗f

1− βf + βfe
θ∗f

= xf

or, eθ
∗
f =

xf
βf

1− βf
1− xf

or, θ∗f = ln

(
xf
βf

)
− ln

(
1− xf
1− βf

)
. (12)

Observe that in fact θ∗f is function only of xf and not both
nf and xf . The requirement for xf > βf ensures that θ∗f > 0.
When xf ≤ βf , the derivative (Eqn. (11)) is negative for all
θf > 0. In this case, the optimum θ∗f is zero which yields
an error probability ef of one. Thus, for error recovery we
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require xf > βf i.e. the coding rate rf < 1− 2βf , and for a
non–empty feasible region in the NUM problem formulation
in Eqns. (4)–(8) the constraints on xf should satisfy the
following: λf < 1−2βf and λf > 0. We note that the capacity
region for a BSC having a cross–over probability αf with an
m–ary signalling is (0,m(1 − H(αf ))), and the coding rate
1− 2βf lies in the capacity region.

D. Optimal (n∗f , x
∗
f )

The next step in our sequential optimisation approach is to
solve

max
(n,x)

U (θ∗(x), (n,x))

subject to
∑
f :c∈Cf

nf
wf,c

≤ Tc, ∀c ∈ C

xf ≤ λf ∀f ∈ F
xf ≥ λf ∀f ∈ F

That is, we substitute into the objective function for the
optimal θ∗f found in Section V-C. Defining If = xf ln

(
xf

βf

)
+

(1− xf ) ln
(

1−xf

1−βf

)
,

U (θ∗(x), (n,x)) =
∑
f∈F

ln (nf ) +
∑
f∈F

ln (1− 2xf )

+
∑
f∈F

ln
(
1− e−Dfnf If

)
.

It can be verified that U (θ∗(x), (n,x)) is not jointly concave
in (n,x). To proceed, we therefore rewrite the objective in
terms of the log–transformed variables ñf = ln(nf ) and
Ĩf = ln(If ). Observe that the mapping from nf to ñf is
invertible and similarly the mapping from xf to Ĩf . Since Ĩf
is a monotone increasing function of xf (this can be verified
by inspection of the first derivative), the inverse mapping
from Ĩf to xf exists and is one-to-one. With the obvious
abuse of notation, we write inverse map as xf (Ĩf ). In terms
of these log–transformed co-ordinates, the objective function
is U

(
θ∗(Ĩ), (ñ, Ĩ)

)
. We note that the problem defined in

Eqns. (4)–(8) is equivalent to the problem,

max
θ,(ñ,Ĩ)

U
(
θ, (ñ, Ĩ)

)
subject to

∑
f :c∈Cf

eñf

wf,c
≤ Tc, ∀c ∈ C (13)

θf > 0, ∀f ∈ F (14)

Ĩf ≤ λ̃f ∀f ∈ F (15)

Ĩf ≥ λ̃f ∀f ∈ F (16)
and hence, by Lemma 3, the solution to the log–transformed
problem is the same as that of the problem defined in
Eqns. (4)–(8). We solve the maximisation problem by convex
optimisation method. We show that the objective function is
jointly concave in

(
ñ, Ĩ
)

in the following Lemma.

Lemma 4.

U
(
θ∗(Ĩ), (ñ, Ĩ)

)
=
∑
f∈F

ñf +
∑
f∈F

ln
(

1− 2xf (Ĩf )
)

+
∑
f∈F

ln
(

1− e−Dfe
ñf+Ĩf

)
.

is jointly concave in ñf and Ĩf .

Proof: See Appendix D.
Hence, we have the following convex optimisation problem

max
(ñ,Ĩ)

U
(
θ∗(Ĩ), (ñ, Ĩ)

)
(17)

subject to
∑
f :c∈Cf

eñf

wf,c
≤ Tc, ∀c ∈ C (18)

Ĩf ≤ λ̃f ∀f ∈ F (19)

Ĩf ≥ λ̃f ∀f ∈ F (20)

We solve the above maximisation problem using the La-
grangian relaxation approach. The Lagrangian function of the
problem is given by

L
(
ñ, Ĩ,p,ν,ν

)
:=
∑
f∈F

Uf (θ∗f (Ĩf ), (ñf , Ĩf ))−
∑
c∈C

pc

∑
f∈Fc

eñf

wf,c
− Tc


−
∑
f∈F

νf

(
Ĩf − λ̃f

)
+
∑
f∈F

νf

(
Ĩf − λ̃f

)
where p ≥ 0, ν ≥ 0, and ν ≥ 0 are Lagrangian multipliers
corresponding to the constraints given in Eqns. (18)–(20). The
channel error probabilities βf s are strictly positive, and the
channel coding rates are always assumed to be in the interior
of the feasibility region. Hence, the constraints for the channel
coding rate given in Eqns. (19), (20) are not active at the
optimal point, and the Lagrangian costs νf s and νf s are zero.
Thus, the shadow costs corresponding to these constraints will
not appear in the Lagrangian relaxation.

Since the optimisation problem falls within convex optimi-
sation framework, and the Slater condition is satisfied, strong
duality holds. Hence, the KKT conditions are necessary and
sufficient for optimality. Differentiating the Lagrangian with
respect to ñf at ñf = ñ∗f , and setting equal to zero yields the
KKT condition

1 +
Dfexp(ñ∗f + Ĩ∗f )e−Df exp(ñ∗f+Ĩ

∗
f )

1− e−Df exp(ñ∗f+Ĩ
∗
f )

=
∑
c∈Cf

pce
ñ∗f

wf,c

or, 1 +
Dfn

∗
fIf (x∗f )e−Dfn

∗
f If (x

∗
f )

1− e−Dfn∗f If (x
∗
f )

=
∑
c∈Cf

pcn
∗
f

wf,c
(21)

Similarly, the KKT condition for Ĩ∗f is

Dfexp(ñ∗f + Ĩ∗f )e−Df exp(ñ∗f+Ĩ
∗
f )

1− e−Df exp(ñ∗f+Ĩ
∗
f )

=
2

1− 2x∗f

I∗f
θ∗f

or,
Dfn

∗
fIf (x∗f )e−Dfn

∗
f If (x

∗
f )

1− e−Dfn∗f If (x
∗
f )

=
2

1− 2x∗f

If (x∗f )

θ∗f (x∗f )
(22)
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Combining eqns. (21) and (22), yields∑
c∈Cf

pcn
∗
f

wf,c
− 1 =

2

1− 2x∗f

If (x∗f )

θ∗f (x∗f )
. (23)

Observe that the LHS is a function of n∗f and the RHS is a
function of x∗f . Thus, the choice of packet size parameter n∗f
and coding rate parameter x∗f are in general coupled.

E. Distributed Algorithm for Solving Optimisation

Given the values of the Lagrange multipliers p∗, the solution
to Eqn. (23) specifies the optimal packet size and coding rate.
To complete the solution to the optimisation it therefore re-
mains to calculate the multipliers p∗. These cannot be obtained
in closed form since their values reflect the network topology
and details of flow routing. However, they can be readily found
in a distributed manner using a standard subgradient approach.

We proceed as follows. The dual problem for the primal
problem defined in Eqn. (17) is given by

min
p≥0

D(p),

where the dual function D(p) is given by

D(p) = max
(ñ,Ĩ)

∑
f∈F

Uf (θ∗f (Ĩf ), (ñf , Ĩf ))

+
∑
c∈C

pc

Tc − ∑
f∈Fc

eñf

wf,c

 (24)

=
∑
f∈F

Uf

(
θ∗f (Ĩf (p)), (ñ∗f (p), Ĩ∗f (p))

)

+
∑
c∈C

pc

Tc − ∑
f∈Fc

eñ
∗
f (p)

wf,c

 .

From Eqn. (24), for any (ñ, Ĩ),

D(p) ≥
∑
f∈F

Uf (θ∗f (Ĩf ), (ñf , Ĩf )) +
∑
c∈C

pc

Tc − ∑
f∈Fc

eñf

wf,c

 ,

and in particular, the dual function D(p) is greater than that
for Ĩf = Ĩ∗f (p̃) for some arbitrary p̃, i.e.,

D(p) ≥
∑
f∈F

Uf

(
θ∗f (Ĩ∗f (p̃)), (ñ∗f (p̃), Ĩ∗f (p̃))

)

+
∑
c∈C

pc

Tc − ∑
f∈Fc

eñ
∗
f (p̃)

wf,c


= D(p̃) +

∑
c∈C

(pc − p̃c)

Tc − ∑
f∈Fc

eñ
∗
f (p̃)

wf,c

 (25)

Thus, a sub–gradient of D(·) at any p̃ is given by the vectorTc − ∑
f∈Fc

n∗f (p̃)

wf,c


c∈C

,

and the projected subgradient descent update is

pc(i+ 1) =

pc(i)− γ ·
Tc − ∑

f∈Fc

n∗f (p(i))

wf,c

+

where γ > 0 is a sufficiently small stepsize, and [f(x)]+ :=
max{f(x), 0} ensures that the Lagrange multiplier never goes
negative (see [10]).

The subgradient updates can carried out locally by each
cell c since the update of pc only requires knowledge of the
packet sizes n∗f (p(i)) of flows f ∈ Fc traversing cell c. Thus,
at the beginning of each iteration i, the flow source nodes
choose their packet sizes as Dfn

∗
f (p(i)) and the coding rates

as 1 − 2x∗f (p(i)), and each cell computes its cost based on
the packet sizes (or equivalently the rates) of flows through
it. The updated costs along the route of each flow are then
fed back to the source nodes to compute the packet size and
coding rate for the next iteration.

Observe that the Lagrange multiplier pc can be interpreted
as the cost of transmitting traffic through cell c. The amount
of service time that is available is given by ∆ = Tc −∑
f∈Fc

n∗f (p(i))

wf,c
. When ∆ is positive and large, then the La-

grangian cost pc decreases rapidly (because the dual function
D(·) is convex), and when ∆ is negative, then the Lagrangian
cost pc increases rapidly to make ∆ ≥ 0. We note that the
increase or decrease of pc between successive iterations is
proportional to ∆, the amount of service time available. Thus,
the sub–gradient procedure provides a dynamic control scheme
to balance the network load.

The resulting distributed implementation of the joint air-
time/coding rate optimisation task is summarised in Algorithm
1.

Algorithm 1 Distributed implementation of joint air-
time/coding rate optimisation.

Each cell c runs:
loop

1. pc(i+ 1) =

[
pc(i)− γ ·

(
Tc −

∑
f∈Fc

n∗f (p(i))

wf,c

)]+
end loop
The source for each flow f runs:
loop

1. Measure
∑
c∈Cf

pc
wf,c

, the aggregate cost of using the
cells along the route of flow f . E.g. if each cell updates
the header of transmitted packets to reflect this sum, it can
then be echoed back to the source by the flow destination.
2. Find the unique packet size n∗f and coding rate x∗f that
solve (23). Since there are only two variables, a simple
numerical search can be used.

end loop

VI. TWO SPECIAL CASES

A. Delay–Insensitive Networks

Suppose the delay deadline Df → ∞ for all flows. For
any positive bounded n∗fI

∗
f , i.e., 0 < n∗fI

∗
f <∞, the LHS of
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Eqn. (22) can be written as

Dfn
∗
fI
∗
f e
−Dfn

∗
f I
∗
f

1− e−Dfn∗f I
∗
f

=
Dfn

∗
fI
∗
f

eDfn∗f I
∗
f − 1

=
Dfn

∗
fI
∗
f∑∞

j=1

(Dfn∗f I
∗
f )

j

j!

=
1

1 +
∑∞
j=2

(Dfn∗f I
∗
f )

j−1

j!

∴ lim
Df→∞

Dfn
∗
fI
∗
f e
−Dfn

∗
f I
∗
f

1− e−Dfn∗f I
∗
f

= 0. (26)

Thus, the asymptotic optimal coding rate x∗f as the delay
deadline requirement Df →∞ is the solution to

2

1− 2x∗f

If (x∗f )

θ∗(x∗f )
= 0. (27)

Since βf < xf < 1/2, it is sufficient to find the solution to

If (x∗f )

θ∗(x∗f )
= 0.

Note that lim
x∗f→βf

If (x∗f )

θ∗(x∗f )
= 0,

and hence, lim
Df→∞

x∗f = βf . (28)

Since this is the limiting solution and x∗f > βf , one can use
x∗f = βf + ε for some arbitrarily small ε > 0. Similarly, from
Eqn. (21), the asymptotic optimal packet size n∗f as Df →∞
is

n∗f =
1∑

c∈Cf
pc/wf,c

(29)

where the multipliers pc are obtained, as before, by subgradient
descent

pc(i+ 1) =

pc(i)− γ ·
Tc − ∑

f∈Fc

n∗f (p(i))

wf,c

+

(30)

Observe that the optimal coding rate x∗f = βf + ε which is
given by the solution of Eqn. (28) is determined solely by
the channel error rate βf of flow f . It is therefore completely
independent of the other network properties. In particular, it
is independent of the packet size n∗f used, of the other flows
sharing the network and of the network topology. Conversely,
observe that the optimal packet size n∗f in Eqn. (29) and
Eqn. (30) is dependent on the network topology and flow
routes, but is completely independent of the error rate βf
and coding rate xf . That is, in delay–insensitive networks,
the joint airtime/coding rate optimisation task breaks into
separate optimal airtime allocation and optimal coding rate
allocation tasks which are completely decoupled. Our optimi-
sation therefore yields a MAC/PHY layering, whereby airtime
allocation/transmission scheduling is handled by the MAC
whereas coding rate selection is handled by the PHY, with no
cross-layer communication. It is important to note, however,
that this layering does not occur in networks where one or
more flows have finite delay–deadlines; see Section VII for a
more detailed discussion.

B. Loss-Free Networks

Suppose the channel symbol error rate βf = 0 for all flows.
From Eqn. (12), we observe that

lim
βf→0

θ∗f =∞, (31)

and this yields ef = 0 for all flows. The objective function
in Eqn. (17) degenerates to

∑
f∈F ln(nf (1− 2xf )). We note

that for any x∗f > βf > 0, as βf ↓ 0, If (x∗f ) → ∞. Hence,
the LHS of Eqn. (22) becomes,

lim
βf↓0

Dfn
∗
fIf (x∗f )e−Dfn

∗
f If (x

∗
f )

1− e−Dfn∗f If (x
∗
f )

= 0. (32)

In the same was as in Eqn. (28), this limit can be achieved
by x∗f = 0 (i.e. r∗f = 1). Similarly, the optimal packet size is
n∗f = 1∑

c∈Cf
pc/wf,c

. This optimal packet size is identical to

that for delay–insensitive networks, see Eqn. (29), and it can be
verified that in fact it corresponds to the classical proportional
fair rate allocation for loss–free networks, as expected.

VII. EXAMPLES

A. Single cell

We begin by considering network examples consisting of a
single cell carrying multiple flows. The network topology is
illustrated schematically in Figure 1 and might correspond, for
example, to a WLAN.

1) Mix of delay–sensitive and delay–insensitive flows:
Suppose the flows in the network belong to two classes, one of
which is delay–sensitive and has a delay–deadline D whereas
the other is delay–insensitive i.e. has an infinite delay deadline.
These classes might correspond, for example, to video and
data traffic. Figure 3(a) plots the optimal airtime allocation
as the delay deadline D is varied. In this example, there is
a single delay–sensitive flow and two delay–insensitive flows,
and the airtime allocation is shown for the delay–sensitive
flow and for one of the delay–insensitive flows (both receive
the same airtime allocation). As expected, it can be seen
that the airtime allocations of the delay–sensitive and delay–
insensitive flows approach each other as the delay deadline
D is increased. However, it is notable that they approach
each other fairly slowly, and when the delay deadline is low
the airtime allocated to the delay–sensitive flow is almost
50% greater than that allocated to a delay–insensitive flow.
This behaviour is qualitatively different from the classical
proportional fair allocation neglecting coding rate and delay–
deadlines, which would allocate equal airtimes to all flows.
By taking coding rate and delay deadlines into account, our
approach allows the resource allocation to flows with different
quality of service requirements to be carried out in a principled
and fair manner.

Figure 3(b) plots the optimal airtime allocation as the
number N of delay–insensitive flows is varied. It can be seen
that the airtime allocated to each flow decreases as N is
increased, as expected since the number of flows sharing the
network is increasing. Interestingly, observe that the airtime
allocated to the delay–sensitive flow is a roughly constant
margin above that allocated to the delay–insensitive flows. The
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(a) Optimal airtime allocation vs delay deadline D, N=2.
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(b) Optimal airtime allocation vs N. D = 1.

Fig. 3. Single WLAN with one delay–sensitive flow and N delay–insensitive
flows. Delay sensitive flow has delay deadline D, delay–insensitive flows have
infinite delay deadlines. Raw channel symbol error rate is 10−2 for all flows,
PHY rate for all flows is 10 symbols per schedule period. Optimal airtimes
are given as a proportion of the schedule period.

delay–sensitive flow is therefore “protected” from the delay–
insensitive flows. However, in contrast to ad hoc approaches,
this protection is carried out in a principled and fair manner.

2) Mix of near and far stations: Consider now a situation
where all flows have the same delay deadline D, but where for
some flows the sources are located close to the destination and
for other flows the sources are further away. We therefore have
two classes of flows, one with a higher channel symbol error
rate than the other when both use the same PHY rate. Figure
4(a) plots the optimal airtime allocation for a flow in each
class as the channel error rate for one class is varied. When the
channel error rates for both classes is the same (βf = 10−2),
it can be seen that the airtime allocation is the same. As the
channel error rate decreases, the airtime allocated to flow 1
decreases. Conversely, as the channel error rate increases, the
airtime allocated to flow 1 increases.

Figure 4(b) plots the optimal airtime allocation when flows
in both classes have the same channel error rate but different
PHY rates i.e. where the PHY modulation has been adjusted
to equalise the channel error rates. When the PHY rates
are the same (wf,c = 10 symbols per schedule period), the
airtime allocation is the same to both classes. As the PHY
rate is increased, the airtime allocation for flow 1 decreases.
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(a) Optimal airtime allocation vs channel symbol error rate for
flow 1, symbol error rate for flow 2 is held fixed at 10−2.
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(b) Optimal airtime allocation vs PHY rate of flow 1, PHY rate
for flow 2 is held fixed at 10 symbols/schedule.

Fig. 4. Single WLAN with two delay–sensitive flows, both with delay
deadline D = 1. In upper figure, PHY rate for both flows is 10 symbols
per schedule period and channel symbol error rate for flow 1 is varied. In
lower figure, channel symbol error rate for both flows is 10−2, and PHY rate
for flow 1 is varied.

Conversely, as the PHY rate is decreased, the airtime allocation
for flow 1 increases. Again, note that this is qualitatively dif-
ferent from the classical proportional fair allocation neglecting
coding rate and delay–deadlines which would allocate equal
airtimes to all flows.

3) Unequal Airtimes: The basic observations in these ex-
amples apply more generally. In particular, as noted above,
in a loss-free, delay–insensitive single-cell network the pro-
portional fair allocation is to assign equal air–time to all
flows ([3] and Section VI-B). However, when delay deadlines
are introduced and/or links are lossy, we see an interesting
phenomenon.

Lemma 5. The optimum rate allocation x∗ (or equivalently
r∗) is not equivalent to an equal air–time allocation.

Proof: See Appendix E
In particular, flows that see a better channel get less air–

times than flows that see a worse channel.

B. Multiple cells

We now consider a mesh network consisting of N cells
carrying N+1 flows in the well-studied Parking Lot topology.
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1

flow 1

flow 2 flow 4

2 3 N-1 N

flow N+1flow 3

Fig. 5. A linear Parking Lot network with N cells and N + 1 flows (one
multi-hop flow and N single-hop flows).

The network topology is illustrated in Fig. 5. The flows in this
network can be assigned to two classes: class 1 consists of the
N -hop flow, and class 2 consists of the single–hop flows 2,
3, · · · , N + 1. Each cell has the same schedule period, i.e.
Tc = T, ∀c ∈ C.

1) Impact of number of hops: Suppose that both classes
of flow use the same symbol transmission PHY rate and
experience the same loss rate in each cell. Then the N -hop
flow will experience a higher end-to-end symbol error rate
that the single hop flows, and the loss rate will increase with
N . Fig. 6 plots the ratio of optimal airtimes allocated to each
class of flow versus N . Results are shown for three delay
deadline requirements: both classes of flow are delay–sensitive
with delay deadline D1 = D2 = 1; class 1 is delay–sensitive
(D1 = 1) while class 2 is delay–insensitive (D2 = 105); class
1 is delay–insensitive while class 2 is delay–sensitive. It can
be seen that in the first case, where both classes have the
same delay deadline, the ratio of airtimes is larger than 1.
This is in accordance with the previous observation that flows
with poorer channel conditions are allocated more airtime than
flows with better channel conditions. In the second case, where
class 2 is delay–insensitive (D2 = 105), additional airtime
is allocated to class 1, the delay–sensitive flow, which also
corresponds with the single cell analysis. In the third case,
where class 1 is delay–insensitive (D1 = 105) and class 2 is
delay–sensitive, it can be seen that class 2 flows are allocated
slightly more airtime that the class 1 flow. Interestingly,
however, observe that the airtime allocated to the class 1 flow
is insensitive to the number N of hops. This contrasts with
the behaviour when the class 1 flow is delay–sensitive.

2) Impact of different flow PHY rates: Now consider a
situation where the number of cells N = 3 and all flows
have the same delay deadline D1 = D2 = 1. Flow 2 and flow
4 have symbol error rate 10−4, and flow 1 and flow 3 have
symbol error rate 2.5× 10−1. We classify the flows into three
sets: class 1 consists of multi-hop flow 1, class 2 consists of
single-hop flows 2 and 4, class 3 consists of single-hop flow
3. Let w denote the PHY rate used used by class 1 and class
2 flows, and w3 denote the PHY rate used by the class 3 flow.
Fig. 7 plots the optimal coded packet size versus the ratio
w3/w. We begin by observing that when w3/w = 1, all flows
have the same PHY rate and it can be seen that flows in classes
2 and 3 are allocated the same packet sizes (and so the same
airtime). Hence, although the flow in class 3 crosses a much
more lossy link than the flows in class 2, the optimal allocation
ensures that all of the single-hop flows have the same airtime.
The multi-hop flow in class 1 is allocated a smaller packet size
(and so less airtime) than the single hop flows. It can also be
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Fig. 6. Ratio of airtimes vs. number N of cells in Parking Lot topology of
Fig. 5. The y-axis is the ratio of the airtime allocated to the N -hop flow to
that allocated to a single hop flow; note that the airtime of the N -hop flow is
the sum of allocated airtime in each cell along the flows route. Data is shown
for three different delay deadline requirements, as indicated in the legend. All
flows have the same PHY rate.
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Fig. 7. Coded packet size vs. ratio of PHY rates w3/w for Parking Lot
topology of Fig. 5 with N = 3 cells. Class 1 consists of multi-hop flow 1,
class 2 consists of single-hop flows 2 and 4, class 3 consists of single-hop
flow 3; class 1 and 2 flows use PHY rate w bit/sec, the class 3 flow uses a
PHY rate of w3 bit/sec. All flows have delay deadline D = 1.

seen that varying the PHY rate for the single-hop flow in class
3 does not affect the optimal coded packet sizes of flows in
class 1 and class 2, and hence the airtime of class 1 and class
2 flows remains the same as w3 is varied. The coded packet
size of the class 3 flow increases linearly with w3/w, and so
the airtime of the class 4 flow remains invariant as well.

VIII. CONCLUSIONS

In this paper, we posed a utility fair problem that yields
the optimum airtime and the coding rate across flows in
a capacity constrained multi-hop network with delay dead-
lines. We showed that the problem is highly non–convex.
Nevertheless, we demonstrate that the global network utility
optimisation problem can be solved. We obtained the optimum
airtime/packet size, channel coding rate, and analysed its
properties. We also analysed some simple networks based on
the utility optimum framework we proposed. To the best of our
knowledge, this is the first work on cross–layer optimisation
that studies optimum coding across flows which are competing
for network resources and have delay–deadline constraints.
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APPENDIX A
PROOF OF LEMMA 1
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APPENDIX B
PROOF OF LEMMA 2

.

ẽf = P


Dfnf∑
i=1

Ef [i] >
Dfnf −Dfkf

2


= P


Dfnf∑
i=1

Ef [i] > Dfnf
1− rf

2


=

Dfnf∑
i=Dfnf

1−rf
2 +1

(
Dfnf
i

)
βif (1− βf )Dfnf−i.

The binomial coefficients can be bounded as follows:

1 6

(
n

k

)
=

n(n− 1) · · · (n− k + 1)

1 · 2 · · · k
6 nk.

Hence,

ẽf >
Dfnf∑

i=Dfnf
1−rf

2 +1

βif (1− βf )Dfnf−i

>
βf

1− βf
β
Dfnf (

1−rf
2 )

f (1− βf )Dfnf (
1+rf

2 )

=
βf

1− βf
exp

(
−Dfnf

[(
1− rf

2

)
ln(1/βf )

])
exp

(
−Dfnf

[(
1 + rf

2

)
ln(1/(1− βf ))

])
=

βf
1− βf

exp

(
−Dfnf

[(
1− rf

2

)
ln

(
1− rf
2βf

)])
exp

(
−Dfnf

[(
1 + rf

2

)
ln

(
1 + rf

2(1− βf )

)])
· exp

(
Dfnf

[(
1− rf

2

)
ln

(
1− rf

2

)])
· exp

(
Dfnf

[(
1 + rf

2

)
ln

(
1 + rf

2

)])
=

βf
1− βf

exp

(
−DfnfH

(
B
(

1− rf
2

)))
exp

(
−DfnfI

(
B
(

1− rf
2

)
‖B(βf )

))
�

APPENDIX C
PROOF OF LEMMA 3

For any z ∈ Z , the function f(y, z) is concave in y. Hence,
for each z, there exists a unique maximum y+(z), which is
given by

f(y+(z), z) = max
y∈Y

f(y, z)

=: g(z)

If f(y+(z), z) is a concave function of z, then there exists a
unique maximiser, which is denoted by z+, i.e.,

z+ = arg max
z∈Z

f(y+(z), z).

We show that (y+(z+), z+) is an optimum solution to
Eqn. (9). Since z+ is the maximiser of g, we have for any
z ∈ Z ,

g(z+) > g(z)

or f(y+(z+), z+) > f(y+(z), z).

For any given z ∈ Z , y+(z) is the maximiser of f(y, z) over
all y ∈ Y , i.e.,

f(y+(z), z) > f(y, z),

and hence, for all (y, z) ∈ Y × Z ,

f(y+(z+), z+) > f(y+(z), z) > f(y, z).

We note that y+(·) maps Z into Y , and hence, (y+(z+), z+) ∈
Y × Z . Hence, (y+(z+), z+) is a global maximiser. �
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APPENDIX D
PROOF OF LEMMA 4

Consider the optimisation problem,

max
ñ,Ĩ

∑
f∈F

ñf + ln(1− 2xf (Ĩf )) + ln(1− e−Df exp(ñf+Ĩf ))

s.t.
∑
f :c∈Cf

eñf

wf,c
6 Tc, ∀c ∈ C

We show that the objective function is jointly (strictly)
concave in (ñ, Ĩ). The objective function is separable in
(ñf , Ĩf ), and we show that xf (Ĩf ) is convex, and ln(1 −
e−Df exp(ñf+Ĩf )) is concave.

Since, for xf ∈ (βf , 0.5), If is a monotone function of xf ,
and Ĩf is a monotone function of If , it is clear that Ĩf is
invertible. Note that

Ĩf = ln(If )

dĨf
dxf

=
θ∗f (xf )

If
dxf

dĨf
=

If
θ∗f (xf )

d2xf

dĨ2f
=

If
θ∗f (xf )

[
1− If

θ∗f (xf )2
1

xf (1− xf )

]
Define g(xf ) := xf (1 − xf )θ∗f (xf )2 − If . If g(xf ) > 0,
then xf (Ĩf ) is (strictly) convex. Note that g′(xf ) = (1 −
2xf )θ∗f (xf )2 + θ∗f (xf ) is increasing with xf , and hence,
g(xf ) > g(βf ) = 0.

Define h(x, y) = ex+y . consider the function

f(x, y) = ln(1− e−Dfg(x,y))

∂f

∂x
=

Dfe
−Dfg

1− e−Dfg

∂g

∂x
∂f

∂x
=

Dfge
−Dfg

1− e−Dfg
.

Similarly,
∂f

∂y
=

Dfge
−Dfg

1− e−Dfg
.

Also,

∂2f

∂x∂y
=
−D2

fg
2e−2Dfg

(1− e−Dfg)2
+
Dfge

−Dfg

1− e−Dfg
−
−D2

fg
2e−Dfg

1− e−Dfg

=
−Dfg

(1− e−Dfg)2
·
[
Dfge

−2Dfg+

Dfg(1− e−Dfg)e−Dfg − (1− e−Dfg)e−Dfg
]

=
−Dfg

(1− e−Dfg)2
[
Dfg − (1− e−Dfg)e−Dfg

]
Similarly, one can show that ∂2f

∂x2 = ∂2f
∂y2 = ∂2f

∂x∂y . Define
`(x) = Dfx − (1 − e−Dfx)e−Dfx. If `(x) > 0, then f(x, y)
is (strictly) convex. Note that `′(x) = (Df − Dfe

−2Dfx) +
(Dfe

−Dfx−Dfe
−2Dfx) > 0. Therefore, `(x) > `(0) = 0. �

APPENDIX E
PROOF OF LEMMA 5

From Eqn. (21), it is clear that even for a single cell, because
of the non–zero second term in the LHS, the air–time of flow
f given by nf

wf,c
is not the same for all the flows f . �
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