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Abstract — Plasma etch is a complex semiconductor manufacturing process in which
material is removed from the surface of a silicon wafer using a gas in plasma form.
As the process etch rate cannot be measured easily during or after processing, virtual
metrology is employed to predict the etch rate instantly using ancillary process variables.
Virtual metrology is the prediction of metrology variables using other easily accessible
variables and mathematical models. This paper investigates the use of Gaussian process
regression as a virtual metrology modelling technique for plasma etch data.
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I Introduction

Plasma etching is a semiconductor manufactur-
ing process where material is removed in ex-
act amounts from the surface of silicon wafers.
Etchant gases in plasma form are directed towards
the wafer surface using electric and magnetic fields,
where they react and evaporate to remove matter.
Plasma etching is preferred to wet etching methods
as it is capable of producing a highly anisotropic
etch, allowing deep and narrow trenches to be
etched into the wafer surface [1].

It is important to control and monitor the etch
rate as precisely as possible since the ultimate
trench depth and profile has a dramatic impact
on the performance of the devices being produced.
Measurements of etch rate and etch depth are ex-
pensive, time consuming, and invasive, sometimes
requiring destruction of the device. Etch depth
measurements are not available to machine opera-
tors without considerable metrology delay and it is
not practical for fabrication plants to measure ev-
ery wafer processed. Control is difficult to imple-
ment under such conditions and machines running
out of specification without detection can lead to
days of scrapped product. As Moore’s law drives
component dimensions smaller [2], there is an ur-
gent requirement for more accurate control of such

fabrication processes.

Fortunately a great deal of information is avail-
able from the etch chambers as each wafer is pro-
cessed, such as chamber temperatures, pressures,
gas flows, and electrical signals that are easily
monitored during processing. The aim of virtual
metrology (VM) schemes is to find mathematical
relationships between these easily measured vari-
ables and the variables of interest such as the etch
rate or etch depth.

Fab wide VM schemes have been suggested that
use feed forward and feedback of information be-
tween different processes [3]. However, the in-
dividual VM schemes for each process are not
trivial. The plasma etching process is notori-
ously difficult to model and predict, with more
challenges arising with emerging technologies and
techniques [4]. While the etch process itself is
quite complex, modelling of the process is fur-
ther complicated by multi-step recipes with chang-
ing chemistries, chamber conditioning effects, un-
predictable shifts in process characteristics due to
preventative maintenance (PM) operations, and a
limited amount of downstream metrology data on
which to validate modelling attempts. A compre-
hensive review of virtual metrology in plasma etch
can be found in [5].
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Previous work has examined the disaggregation
of data sets to combat the effect of PM events [6],
the application of windowed modelling methods to
maintain model accuracy [7], and the identifica-
tion of key process variables from data sets [8].
This paper focuses on the use of Gaussian pro-
cess regression (GPR), a non-parametric modelling
technique, to plasma etch data, paying particu-
lar attention to covariance function choice. While
partial least squares (PLS) regression [9] and ar-
tificial neural networks (ANNs) [10] are regularly
employed in the semiconductor manufacturing lit-
erature, the use of Gaussian processes (GPs) for
regression and classification is a relatively new con-
cept.

The remainder of this paper is set out as follows:
Section II describes the GPR technique in detail.
Section III provides details on the etch data set
used for modelling. Sections IV and V give the
results and conclusions of the paper respectively.

II Gaussian Process Regression

A GP can be viewed as a collection of random vari-
ables f(xi) with joint multivariate Gaussian distri-
bution f(x1), f(x2), · · · , f(xn) ∼ N(0,Σ), where
Σij gives the value of the covariance between f(xi)
and f(xj), and is a function of the inputs xi and
xj , Σij = k(xi, xj) [11]. For the purposes of this
discussion, let us assume a one-dimensional input-
output process.

The covariance function k(xi, xj) can be any
function, provided that it generates a positive def-
inite covariance matrix Σ. One of the most com-
monly used covariance functions is the squared ex-
ponential (SE) covariance function, which has the
form:

k(xi, xj) = ν2exp(− (xi − xj)2

2l2
) (1)

where ν and l are hyperparameters that vary the
properties of the covariance function to best suit
the training data set. The SE covariance func-
tion assumes that input points that are close to-
gether in the input space correspond to outputs
that are more correlated than outputs correspond-
ing to input points which are further apart. The
parameter ν controls the scale of the variations be-
tween points xi and xj in the output space, while
l, known as the length scale, determines the de-
gree of variation in the input dimension. Hence,
variations in l and ν control the smoothness of the
covariance function. Examples of the effects of dif-
ferent length scales for a single-input single-output
GP are shown in Figure 1. It can be shown that
the use of a GP with a squared exponential co-
variance function is equivalent to modelling with a
linear combination of an infinite number of Guas-
sian shaped basis functions in the input space [12].

Fig. 1: Three possible outputs from GP models with
differing length scales. The GP models with shorter length

scales have more “flexibility” in the output space.

Gaussian process models fit naturally into the
Bayesian modelling framework where, instead of
parameterising the model function f(x), we place
a Gaussian prior on the range of possible func-
tions that could represent the mapping of inputs x
to outputs y. The Gaussian prior incorporates the
analyst’s knowledge about the underlying function
in the data, and is specified using the GP covari-
ance function.

We let the underlying function of our data be
y = f(x)+ε, where ε is a Gaussian white noise term
with variance σ2

n such that ε ∼ N(0, σ2
n). A Gaus-

sian process prior is put on the range of possible
underlying functions f(x) with covariance function
as exemplified in (1) with unknown hyperparame-
ters.

Hence we have

y1, y2, · · · , yn ∼ N(0,K) (2)

K = Σ + σ2
nI (3)

where σ2
nI represents the covariance between out-

puts due to white noise, where σ2
n is the noise

variance and I is the n × n identity matrix. Our
aim now is to use the set of training data points
{xi, yi}ni=1 to find the posterior distribution of y∗,
given input x∗, that is p(y∗|x∗,xtr,ytr), where
{x∗, y∗} denotes an unseen test data point and xtr
and ytr denote the input and output training data.
Before we find the posterior distribution of y∗, the
unknown hyperparameters of the covariance func-
tion (1), l, ν, and the noise variance σ2

n, must be
optimised. This can be performed via a Monte
Carlo method or, more typically, via maximisation
of the log marginal likelihood

log(p(y|X)) = −1

2
yTtrK

−1ytr−
1

2
log(|K|)−N

2
log(2π).



(4)

Equation (4) is made up of a combination of
what can be termed a data fit term, 1

2y
T
trK

−1ytr,
that determines the success of the model in fit-
ting the output data, along with a model com-
plexity penalty 1

2 log(|K|). By maximising the log
marginal likelihood we find the model with the
least complexity that fits the input-output data
set most accurately. This optimisation problem is
non-convex and requires the computation of the
derivative of (4) with respect to each of the hyper-
parameters in the covariance function (1). Since
typical gradient descent optimisation routines are
sensitive to the initial choice of hyperparameters,
during modelling, the initial values of the hyperpa-
rameters are initialised randomly up to five times
to try to find the global minimum and the model
with the lowest log likelihood is chosen for use on
the test data.

With the hyperparameters optimised, we can
now use the GP model to predict the distribution
of y∗ at the input x∗. The predictive distribution
of y∗, p(y∗|x∗,xtr,ytr), can be shown to be Gaus-
sian [12], with mean and variance

µ(x∗) = k∗K
−1ytr (5)

σ2(x∗) = k∗∗ − k∗K
−1kT∗ + σ2

n (6)

respectively, where k∗ =
[k(x∗, x1), k(x∗, x2), · · · k(x∗, xn)] is a vector
of covariances between the test and training data
points and k∗∗ = k(x∗, x∗) is the autocovariance
of the test input.

The vector k∗K
−1 can be seen as a vector of

weights that form a linear combination of the ob-
served outputs ytr to form the prediction at x∗.
The variance on the predicted values, σ2(x∗) is
given by the prior variance k∗∗, which is a posi-
tive term, minus the posterior variance k∗K

−1kT∗
which is also positive. The posterior variance will
be inversely proportional to the distance between
the test point and the training points in the in-
put space, as it depends on k∗, resulting in large
variances for test points that are far from training
points, as shown in Fig. 2.

Other covariance functions can be employed to
fit the training set, depending on the prior knowl-
edge of the analyst about the data. Useful covari-
ance functions include:

1. The squared exponential (SE) covariance func-
tion (as above) detailed in Equation (1) is one
of the most commonly used covariance func-
tions in GP modelling applications and has
the general form

kSE(r) = exp(− r2

2l2
) (7)

Fig. 2: Example prediction and 95% confidence intervals
(2 standard deviation distance) for one dimensional GP.
Note how the variance on the prediction grows with the

distance from observed training points.

where r = |xi − xj| and l defines the charac-
teristic length scale. When a different length
scale is specified for each dimension, input di-
mensions that do not contribute to the model
output are automatically assigned long length
scales during optimisation. This is known
as automatic relevance determination (ARD).
The SE covariance function is infinitely differ-
entiable and, therefore, is very smooth.

2. The linear covariance function has the general
form

klin(xi,xj) = xTi P
−1xj (8)

where P ∈ Rd×d is a diagonal matrix of ARD
parameters p11, p22, · · · pdd, where d is the di-
mension of the input space.

3. The Matérn class of covariance functions is
given by

kMatern(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
(9)

with positive parameters ν and l, where Kν

is a modified Bessel function. The Matérn
covariance functions are ν − 1 times differen-
tiable. Hence the parameter ν can be used
to allow very jagged outputs. As ν → ∞,
kMatern(r)→ kSE(r).

4. The rational quadratic (RQ) covariance func-
tion has the form

kRQ(r) =

(
1 +

r2

2αl2

)−α

(10)



with α, l > 0 and can be visualised as an in-
finite sum of squared exponential covariance
functions of differing length scales. The RQ
covariance function hence allows the GP to
vary the length scale over the range of each
input dimension. The limit of the RQ covari-
ance for α→∞ is the SE covariance function.

5. The neural network (NN) covariance function
has the form

kNN (xi,xj) =

σ sin−1 . . .

(
x̃Ti P

−1x̃j√
(1 + x̃Ti P

−1x̃j)(1− x̃Ti P
−1x̃j)

)
(11)

where x̃i and x̃j vectors are augmented vec-
tors such that x̃ = (1, x1, x2, · · ·xd)T . P = cI
where c is constant, and σ controls the signal
variance.

Depending on the the form of the training data,
covariance functions can be summed or multiplied
to form suitable GP models. Different models can
then be compared using the marginal likelihood of
each. The choice of this covariance structure origi-
nated from prior knowledge of the target signal. A
more complete treatment of the covariance func-
tions mentioned, along with some others, can be
found in [12].

GP models have several advantages over other
modelling techniques. Using GPR, useful models
can be created from training data sets with a rel-
atively small number of training points and the
analyst’s prior beliefs about the data can be en-
capsulated in the GP covariance function. Because
the model form is not specified explicitly, both lin-
ear and non-linear functions can be approximated.
Finally, confidence intervals on predictions can be
evaluated easily as each prediction is given in the
form of a distribution. However, during the train-
ing procedure, GP models require the inversion of
large covariance matrices, the size of which are de-
termined by the number of training data points.
This computational demand can be prohibitive in
applications with large training data sets.

III Description of data set

The models examined in this report are con-
structed and tested on a data set collected from
a multi-step trench etch process in an industrial
semiconductor fabrication plant over a period of
six months. The data consists of measurements
collected from three different sources.

Etch process (EP) data consist of 131 variables
such as temperatures, pressures, and gas flow rates
for each process step collected directly from the
processing tool. These EP data are reduced to

Number of Wafers 12133
Measured Wafers 529
PM Cycles 12
Measurement Frequency 4.4 %

Table 1: Data sets contents.

a set of 28 variables by discarding variables un-
related to the main etch step and variables with
little or no variance.

A plasma impedance monitor (PIM) sensor
records an additional 159 variables for every wafer,
comprising 53 harmonics each of electrode current,
voltage, and phase. From these variables, it is pos-
sible to calculate the reactance (X) and resistance
(R) of the chamber at each of the 52 harmonics
(denoted XR data). Calculations of power and
impedance are also possible. An extra collection
of variables, denoted EP+ data, is formed with
a combination of EP data along with power and
impedance values calculated from the XR data.

Optical measurements of the etch depth, taken
downstream from the etch process, are available
for a limited number of wafers.

Summary statistics such as mean and standard
deviation are derived from the time series traces
for each variable. Wafers recorded with erroneous
data are detected using a T 2 statistic and removed
(see [13]). After removal of wafers with incorrectly
recorded information, a total of 12133 wafers with
correctly recorded EP and PIM data are available
for analysis. Table 1 summarises the contents of
the data set.

The data from each of the etch tools are manip-
ulated in two separate ways. In order to test the
prediction accuracy of models, first the data set is
kept in chronological order, where the first 7/10 of
wafers is used to train the model, and the remain-
ing 3/10 is designated as test data to test model
performance.

To test the prediction accuracy in a second way,
an interleaved data set is introduced. For the in-
terleaved data sets, the training and training sets
are interleaved throughout the full set of wafers.
Again the wafers are split using the ratios 7/10
and 3/10 for training and test data respectively.

IV Modelling results

Nine different input variable selections are inves-
tigated as candidate modelling inputs. Stepwise
selection [14] and principal component analysis
(PCA) [15] are investigated as variable selection
and data reduction techniques for the input vari-
ables. The five covariance function forms described



Data Source Covariance Function

Linear SE RQ Matern NN

R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE
EP 0.31 1.18 0.18 1.23 0.17 1.24 0.25 1.31 0.27 1.29

EP Step 0.31 1.18 0.26 1.17 0.26 1.17 0.20 1.61 0.22 1.51
PIM 0.12 1.36 0.00 3.22 0.12 1.33 0.18 1.28 0.20 1.23

PIM PCA 0.17 1.45 0.01 2.42 0.06 1.33 0.16 1.29 0.16 1.26
PIM Step 0.14 1.46 0.17 1.47 0.16 1.48 0.13 1.58 0.13 1.55

XR 0.07 1.40 0.01 2.07 0.13 1.35 0.11 1.34 0.17 1.28
XR PCA 0.16 1.32 0.08 1.39 0.07 1.31 0.06 1.38 0.10 1.34
XR Step 0.16 1.43 0.18 1.33 0.18 1.33 0.17 1.38 0.18 1.42

EP+ 0.16 1.43 0.18 1.39 0.18 1.39 0.17 1.38 0.17 1.42

Table 2: GPR modelling results for chronologically ordered data.

Data Source Covariance Function

Linear SE RQ Matern NN

R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE
EP 0.67 1.23 0.56 1.44 0.69 1.17 0.71 1.12 0.70 1.14

EP Step 0.69 1.17 0.69 1.12 0.70 1.12 0.66 1.17 0.66 1.18
PIM 0.69 1.16 0.00 2.23 0.72 1.12 0.73 1.10 0.72 1.11

PIM PCA 0.72 1.13 0.72 1.11 0.71 1.15 0.73 1.10 0.73 1.11
PIM Step 0.72 1.13 0.71 1.12 0.71 1.14 0.73 1.11 0.73 1.11

XR 0.70 1.16 0.01 2.23 0.72 1.13 0.72 1.12 0.71 1.14
XR PCA 0.68 1.19 0.67 1.24 0.65 1.26 0.71 1.14 0.70 1.16
XR Step 0.68 1.20 0.69 1.19 0.69 1.19 0.69 1.20 0.68 1.21

EP+ 0.67 1.20 0.67 1.20 0.67 1.20 0.67 1.18 0.66 1.20

Table 3: GPR modelling results for interleaved data.

in II are investigated as potential covariance func-
tions where the multidimensional ARD version of
each covariance function is used, along with con-
stant and noise terms. The results of the analysis
are presented in Tables 2 and 3 for chronological
and global modelling respectively. Data sources
labelled “PCA” are first translated to a princi-
pal component space before modelling. Stepwise
regression is applied to choose the most relevant
input variables for data sources marked “Step”.
Models performance is reported in terms of their
mean absolute percentage error (MAPE) and co-
efficient of determination (R2) on unseen data.

The best model performance for the chronolog-
ical data set is achieved using stepwise selected
EP data and the SE covariance function. The
best model performance for the interleaved data is
achieved using a Matérn covariance function with
the PCA reduced PIM data as input variables.

In general, the performance for the interleaved
data is more accurate than for the chronological
data. For the interleaved data set, the training
data points contain information from the same PM
cycles as the test data points. For chronological
data investigations, models are expected to predict
etch rate in completely unseen PM cycles, where
the system behaviour may have changed.

The results suggest that model performance for
the etch rate data is relatively insensitive to co-
variance function choice, with the exception of the

SE covariance function that fails with input sets
with a relatively large number of variables (PIM
and XR inputs). Further tests with combinations
of different covariance functions used together do
not yield any substantial further improvement in
prediction accuracy. Best results from modelling
tests with neural networks, a commonly applied
modelling technique for such tasks, fail to better
the results of Tables 2 and 3, yielding MAPEs of
1.37% and 1.21% for chronological and interleaved
data respectively (see [16] for neural network im-
plementation details).

The simple evaluation of confidence intervals
(CIs) on the etch rate predictions is useful in
plasma etch monitoring as it can provide a measure
of model accuracy, and can be used by engineers
to maintain etch rate within specification. While
models cannot follow the high frequency fluctua-
tions of the real etch rate value, these variations
are captured within the CIs. These variations may
arise due to external disturbances in the manufac-
turing process not reflected in the collected data
set. Fig. 3 shows the etch rate predictions and
CIs from an GPR model using interleaved PIM
data as input variables.

V Conclusions

Gaussian process regression models have been ap-
plied to semiconductor etch data and shown to ac-
curately predict real etch rate using process data.



Fig. 3: Normalised etch rate prediction with confidence
intervals.

The modelling results have shown that the pre-
diction accuracy is relatively insensitive to covari-
ance function choice for this data set. For analysts,
this insensitivity simplifies model setup and allows
a quick modelling time, without needing extensive
investigation into different covariance functions.

Predictions are given in the form of distribu-
tions, allowing simple calculations of confidence
intervals on predicted values. These confidence
intervals are useful to engineers, allowing an esti-
mation of the degree of variation possible on each
predicted value.

The prediction performance and ease of CI cal-
culation means that GPR models have the capabil-
ity to gain increased popularity in industry in the
near future, competing with ANNs and other sta-
tistical methods as a virtual metrology technique.
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