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Abstract— Prognostics is the ability to predict the remaining
useful life of a specific system, or component, and represents
a key enabler of any effective condition-based-maintenance
strategy. Among methods for performing prognostics such as
regression and artificial neural networks, particle filters are
emerging as a technique with considerable potential. Particle
filters employ both a state dynamic model and a measurement
model, which are used together to predict the evolution of
the state probability distribution function. The approach has
similarities to Kalman filtering, however, particle filters make
no assumptions that the state dynamic model be linear or that
Gaussian noise assumptions must hold true.

The technique is applied in predicting the degradation of
thermal processing units used in the treatment of waste gases
from semiconductor processing chambers. The performance of
the technique demonstrates the potential of particle filters as a
robust method for accurately predicting system failure.

In addition to the use of particle filters, Gaussian Mixture
Models (GMM) are employed to extract signals associated
with the different operating modes from a multi-modal signal
generated by the operating characteristics of the thermal
processing unit.

I. INTRODUCTION
Within the semiconductor manufacturing industry there is

an increasing focus on process yields, tool uptime and wafer
throughput. Furthermore, as the size of wafers increases
alongside the introduction of new material technologies, the
value of wafers is also increasing [1]. As a result, the impact
of equipment failures resulting in tool downtime and loss of
wafers is a major concern.

Regular Preventative Maintenance (PM) has long been a
standard approach to maintenance in semiconductor man-
ufacturing. However, as condition monitoring technology
improves, Condition-Based Maintenance (CBM) approaches
are being introduced alongside the more traditional PM
approaches. A key component of any effective CBM program
is prognostics.

Prognostics is the ability to estimate the Remaining-
Useful-Life (RUL) of equipment and provide maintainers
with notification to take corrective action in a timely and
organised manner, significantly reducing both maintenance
costs and impacts on tool uptime and availability.

Within semiconductor manufacturing, regular PM activi-
ties on process tool chambers will continue to be standard
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practice as the chambers require regular maintenance to
maintain performance characteristics. Ideally, tool operators
would like for any necessary maintenance on support equip-
ment such as vacuum pumps, and abatement equipment
be performed at the same time, to maximise overall tool
availability [2]. Prognostics represents a key component in
achieving this goal.

In this study, we address the issue of degradation of
equipment used in the abatement of exhaust emissions from
semiconductor processing chambers. Gaussian mixture mod-
els are used for feature extraction and multimode signal
tracking. Particle filters are then employed to generate RUL
estimates using the extracted features from the GMM as
inputs.

The use of particle filters as a tool for prognostics has
been increasing in recent years, and they have been applied
to a range of applications, including Lithium-ion battery
capacity depletion [3], turbine engine blade and gearbox
plate crack growth prediction [4]. The attraction of particle
filters is the framework provided for handling the significant
levels of uncertainty inherent in the generation of long-term
predictions.

II. PROBLEM DESCRIPTION

Typical semiconductor fabrication processes utilise a wide
range of dangerous chemicals, which are often corrosive,
toxic, and flammable. The fabrication processes will gener-
ally only consume a small proportion of the chemicals used
within the processing chamber, which results in large quanti-
ties of chemicals and environmentally damaging greenhouse
gases being discharged from the process chamber into the
exhaust system.

A standard method for treating chamber effluent streams
is to employ scrubbers for the treatment of effluent gases
[5]. However, on particularly harsh processes, such methods
are often not sufficient to remove the more toxic elements
of the exhaust stream and additional treatment is required.
One method is to incinerate the more toxic effluent process
gases to oxidise the toxic materials and reduce their toxicity.
The oxidised effluent streams are then forwarded to the
large scrubbers for further treatment. The equipment used
to incinerate the exhaust gas streams is commonly known as
a Thermal Processing Unit (TPU).

A issue that can occur with the use of TPUs on certain pro-
cesses is the generation of silicon oxides in the combustion
process, which can deposit on the walls of the combustion
chamber. The deposits formed can be relatively large and, as
the deposition gradually increases, this can result in reduced
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combustion of the effluent stream and eventually clog the
combustion chamber.

Shown in Fig. 1(a) is a plot of the Combustor Temperature
(CT) signal from a TPU which suffered from clogging of
the combustion chamber. Shown below it in Fig. 1(b) is a
zoomed in section from the first three days of data shown in
Fig. 1(a).
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Fig. 1. TPU Failure Example

The clogging of the combustion chamber is reflected in
the CT signal by a gradual loss of temperature as the level
of deposits increase. Another feature of the CT signal is
the large fluctuations in temperature observed over certain
periods as seen in Fig. 1(b). This is as a result of how
the TPU system is operated. Wafer processing generally
occurs intermittently as batches of wafers arrive and leave
each tool. In a typical TPU combustion chamber, free of
deposits, the temperature is maintained using methane gas
at approximately 850o C. However, during processing of
wafers when large quantities of gas are being discharged
to the TPU, a signal is sent to the TPU unit which results
in oxygen or oxygen-enriched gas being injected into the
combustion chamber to increase the temperature in order
to ensure complete combustion of the effluent stream. This
results in the large fluctuations in CT observed in the data.

In the following sections, the issue of TPU combustion
chamber clogging is addressed using both Gaussian mixture
models to extract relevant features from the multi-modal CT
signal, and particle filters to estimate the RUL of the system
using the extracted features as inputs.

A. Data Collection

In this study, a data set from several TPUs installed in a
large semiconductor manufacturing facility was employed to
develop and test a particle filter approach to RUL estimation.
Each of the TPUs in the facility are connected to a networked
monitoring system, which also monitors all of the mechanical
dry pumps within the facility. Each piece of equipment on
the monitoring network sends updates on sensor values and
status to a central database for further processing and storage
[1].

In addition to the sensor data, a status signal indicating
those times at which oxygen is being injected into the TPU
combustion chamber (Processing Mode) or otherwise (Idling
Mode) is recorded by the networked monitoring system.

III. MULTI-MODE SIGNAL TRACKING

Within a typical TPU system, only the CT signal, provides
any indication that deposits are forming within the combus-
tion chamber. The method in which the TPUs are operated
results in a the generation of a multi-modal CT signal with
the different signal modes corresponding to the different
operating modes of the TPU. Fig. 2 plots the distribution of
CT values over a three day period from a normally operating
TPU.
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Fig. 2. Distribution of CT Values

The distribution of the CT signal reflects the different
operating modes of the TPU system associated with the
injection of oxygen gas into the combustion chamber. It is
proposed to model the underlying distribution as a mixture
of univariate Gaussian distributions. By employing a sliding
window and iterating through the data, it will allow for
changes in the distribution of the CT signal in each of
the TPU operating modes to be tracked over time. At each
iteration, the best fit mixture of Gaussian distributions is fit to
the CT signal within each window. The length of the window
is considered in section III-C.

A. Gaussian Mixture Models

To track the CT signal in each of the modes of the TPU
system, it is proposed to use a sliding window, where at
each iteration the best-fit mixture of Gaussian distributions is
determined which best describes the underlying distribution
of the CT signal within each window.

In modelling the underlying distribution of the data we
consider it as a superposition of K Gaussian densities such
that [6],

p(x) =
K

∑
k=1

πk p(x|θk) (1)

where the k values refer the individual densities, πk is the
discrete probability that a point is sampled from density k,
and is commonly referred to as the mixture parameter. The
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individual component densities are given by p(x|θk) where
[6],

p(x|θk) =
1√

2πσ2
k

e−
(x−µk)

2

2σ2
k

(2)

is the probability that x takes on a certain value given that
is from density k, and muk and σ2

k are the mean and variance
of the individual densities respectively. The probabilities are
also subject to a number of constraints [6] such that,

K

∑
k=1

πk = 1 where 0≤ πk ≤ 1 (3)

The problem is now to estimate the parameters of the
model Θ, which include the mixture parameters, mean, and
variance of each of the individual densities.

Θ = {{π1,µ1,σ1}, ...{πk,µk,σk}} (4)

The most common approach to estimating parameters
of the model (4) is the Expectation-Maximisation (EM)
algorithm [6]. It is an iterative procedure to find the maxi-
mum likelihood estimates of the model parameters. However,
the EM algorithm suffers from the requirement that the
user must specify the number of components and does not
automatically adjust this number to fit the data. In this work,
the Figueiredo-Jain (F-J) algorithm was employed which
automatically optimises the number of components to fit the
data, and estimates the statistical parameters of the model
using a modified version of the EM algorithm [7]. This
method was used to determine the parameters of the Gaussian
mixture model at each iteration of the sliding window.

B. Feature Extraction

The TPU systems are operated in two distinct modes,
idling and processing. This would suggest that we would
expect the underlying distribution of the CT signal to be a
mixture of two Gaussian densities. However, analysis of the
distribution using the F-J algorithm, identifies the underlying
distribution as a mixture of three Gaussian densities. This is
illustrated in Fig. 3(a), which shows the distribution of the
CT signal, and Fig. 3(b) which shows the best fit mixture of
three Gaussian densities identified using the F-J algorithm,
which best model the underlying distribution.

This additional mode is as a result of two principal factors:
1) periods where oxygen gas is injected for short periods

of time and the times when no gas is being injected
(idling) and,

2) the temperature signal is falling from an immediately
preceding period of high values (processing).

This additional mode will be referred to as the transition
mode.

The availability of a status signal indicating the injection
of oxygen into the combustion chamber is of significant
benefit as it allows the data to be first partitioned by mode in
a supervised manner. If the CT signal were simply bi-modal
then we could use the partitioned data to track the CT values
by mode. However, analysis has shown that the data is in fact
tri-modal as seen in Fig. 3.
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Fig. 3. Distribution of CT Values by Mode

An additional benefit of the status signal, which allows
supervised partition of the data, is that wafer production
does not occur in a regular predictable manner. In the
absence of a status signal, the ability to identify different
distributions associated with the different operating modes
within each window would be influenced by the rate of wafer
processing within each respective window which can vary
widely, affecting the generation of associated distributions.

By using the status signal, we separate the CT signal into
values associated with idling and processing. Within each of
these modes we then model the associated data as a mixture
of two Gaussian densities. This is illustrated for the idling
mode in Fig. 4 below. Fig. 4(a) shows the distribution of
CT values over a three day period at which no gas was
being injected into the chamber and 4(b) shows the best fit
mixture of two Gaussians as identified by the F-J algorithm,
representing the idling and transition modes in the underlying
distribution.
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The distribution of the data within the processing mode for
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Fig. 5. Distribution of CT Values (Processing)

data from the same period is shown in Fig. 5. Once again
it is a combination of two Gaussian densities, generated by
the processing and transition modes.

C. TPU Mode Tracking

Analysis of the failure mode of TPUs, suffering from
clogging of the combustion chamber, shows that the tem-
perature values associated with the idling mode gradually
fall as the level of clogging increases. To track how the CT
signal values associated with the idling mode change over
time we first identify all those samples at which no gas is
being injected into the chamber. We then employ a sliding
window, whereby at each iteration, the best-fit mixture of
two Gaussian densities is determined and the mean value of
the lower density represents the value of the CT signal at that
instant. The window iterates through the data, resulting in a
moving signal which tracks the changes in the distribution of
values in the idling mode. A number of factors which affect
the performance of the algorithm have to be considered.

The length of window over which the underlying distri-
bution is a major factor to consider. The longer the window,
the greater the number of samples present and the greater
the likelihood that we are identifying the true underlying
distribution. However, if the window is too long, it will not
respond quickly enough to the changes in the underlying
distribution as the TPU starts to clog. A range of values
were considered and a sliding window with a length of 4.5
hours was chosen. This window length is also consistent
with existing TPU signal tracking techniques using window
methods [8]. The sliding window iterated through the data
in steps of 10 minutes.

The performance of the algorithm in tracking the CT val-
ues associated with the idling mode is shown in Fig. 6. Each
value in the mode tracking signal represents the mean of the
lower Gaussian density estimated by the sliding window up
to that point. The tracking of this signal represents a robust
and reliable method for tracking the clogging of the TPU
combustion chamber, from the raw, multi-modal CT signal.
In the following section, we develop a prognostic approach
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Fig. 6. TPU Mode Tracking (Idling)

to estimating the RUL of a TPU using the extracted idling
mode signal as input.

IV. PARTICLE FILTERS FOR PROGNOSTICS

Prognostics is the ability to predict accurately and pre-
cisely the RUL of a failing system. It involves the genera-
tion of long-term predictions describing the evolution of a
particular fault mode or condition. Inherent in the generation
of such predictions is a large element of uncertainty which
must be handled appropriately.

To perform accurate prognostics, and provide a long term
prediction of equipment failure, two important conditions
must be satisfied: A model which describes the progression
of the fault condition and an accurate estimate of the current
state. In this study, we consider the use of particle filters to
estimate the RUL of a degrading TPU. Particle filters employ
a state dynamic model and a measurement model to predict
the posterior Probability Distribution Function (PDF) of the
system state. The appeal of particle filters is that they avoid
the linearity and Gaussian noise assumptions associated with
Kalman filtering and provide a robust framework for long-
term prognosis while accounting effectively for uncertainties
[4].

Particle filters are a class of Sequential Monte Carlo
(SMC) methods that use both information available from sys-
tem measurements, but also incorporate any system models
available which describe the system behaviour. The use and
application of particle filters for prognostics has developed
in recent years and is growing in acceptance as a providing
an appropriate framework for handling the various sources of
uncertainty which arises in estimating the RUL of a system
[4], [9], [3].

Using particle filters, the system state PDF is approxi-
mated by a set of particles which represent sampled values
from the unknown state space, and an associated set of
weights which represent the discrete probability mass for
each particle. The set of particles are recursively updated
using a non-linear process model, a measurement model,
measurement updates and an a priori estimate of the state
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PDF. In this study, we use particle filters to estimate the
RUL of a degrading TPU. The approach taken comprises
two steps; state estimation and RUL prediction.

A. State Estimation

The principle of particle filtering is the approximation of
the conditional state probability distribution, p(xk|zk) by a
set of samples or “particles” with a set of corresponding
weights, representing the discrete probability masses. Parti-
cles are generated from an initial estimate of the state PDF
p(x0) and are recursively updated using a nonlinear process
model (5) which describes the evolution of the system under
investigation, and a measurement model (6) which uses a set
of available measurements z1:k = (z1, ...zk).

xk = fk(xk−1,ωk)↔ p(xk|xk−1) (5)

zk = hk(xk,υk)↔ p(zk|xk) (6)

where fk is a possibly nonlinear function describing the
state evolution, hk is a possibly nonlinaer function and ω and
υ represent the process and measurement noise sequences
respectively.

Considering the problem from a Bayesian perspective, the
objective is to recursively calculate some degree of belief
in the state xk at time k, taking different values, given the
data z1:k up to time k, and to construct a conditional state
PDF p(xk|z1:k). As in any Bayesian estimation problem, the
estimation process comprises two main steps; prediction and
update.

In the prediction step, the knowledge of both the previous
state estimate and the process model in (5) is used to generate
an a priori estimate of the state PDF for the next time instant
[10] as shown in (7).

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (7)

The next stage is the filtering step. At time k, a measure-
ment zk becomes available, and this is combined with the a
priori state estimate to generate the a posteriori state PDF
using Bayes’ rule [10], as

p(xk|z1:k) =
p(zk|xk p(xk|z1:k−1))

p(zk|z1:k−1)
(8)

The actual distributions are approximated by a set of
samples and a set of corresponding normalised weights.
Consider the dataset {xi

k,w
i
k}

Ns
i=1 which characterises the

posterior PDF p(xk|z1:k), where xk is the set of sample points
with associated weights wk. The weights are normalised such
that ∑i wi

k = 1. The posterior density at time k can then be
approximated [10], by

p(xk|z1:k)≈
N

∑
i=1

w̃k(xi
0:k).δ (x0:k− xi

0:k) (9)

The weights are chosen using the principle of importance
sampling [10], such that the weight update equation is given
by,

wk = wk−1
p(zk|xk)p(xk|xk−1)

q(xk|x0:k−1,z1:k)
(10)

where the importance density function q(xk|x0:k−1,z1:k)
can be approximated by the a priori PDF for the state [9],
p(xk|xk−1), such that wk becomes,

wk = wk−1 p(zk|xk) (11)

A final issue which must be considered is that of particle
degeneracy. As the algorithm iterates, the variance of the
weights continually increases so that after a few iterations
all but one of the particles will have negligible weights.
To overcome this problem, a common method is to perform
resampling of the weights.

Resampling is performed when the effective number of
particles Pe f f < Pthreshold , where Pe f f is computed as the
inverse of the sum of the squared normalised particle weights
in (10). The resampling operation is carried out by selecting
a new set of P particles from the current set of particles,
where the probability of selecting a particle is proportional
to its current weight. The old set of particles is then replaced
with the new resampled set, and each particle is assigned an
equal weighting, given by 1/P.

B. Prediction

To estimate the RUL of a system using particle filters, a
number of approaches are possible. A thorough description
of the different approaches is presented by Orchard [4].
The simplest approach is to extend the trajectories of the
individual particles x̂i

0:t+p for the required number of p steps
into the future as in (12), where the current state value
estimate associated with each particle is used as the initial
condition,

p̃(i)t+p = E[ ft+p(x̃
(i)
t+p−1,ωt+p)]; (12)

where p̃(i)t+p is the predicted value of particle i at time p,
E is the expectation and ft+p is the process model in (5)
which is recursively calculated to estimate particle values at
time p. The current particle weights are propagated in time
without any change.

Presented in [4] are two alternative methods which in-
volve applying update equations to the particle weights or
resampling of the weights. However, it is noted that the error
generated by considering the particle weights invariant for
future time instants is negligible with respect to other sources
of error which may appear in practical applications, such
as model inaccuracies or measurement and process noise
assumptions [4], and that the simplified method provides
satisfactory performance.

To generate an estimate of the RUL of the TPU system,
a specific hazard zone must be specified within which it
is expected that the probability of equipment failure is
very high. For the current application, the clogging of the
TPU combustion chamber is well reflected by the loss of
temperature. A specific temperature range is specified with
upper (Hub) and lower bounds (Hub) which represents the
hazard zone. This range is defined from both historical failure
analysis and input from equipment maintainers.

Once the hazard zone has been specified, it is possible to
combine the predicted particle trajectories, their weights and
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the specified hazard zone to generate the system RUL PDF
as in (13),

pT T F(T T F) =
N

∑
i=1

Pr{Hlb ≤ x(i)T T F ≤ Hub}w̃
(i)
T T F (13)

where pT T F(T T F) is the probabiity of system failure at
time T T F , w̃(i)

T T F is the weight of particle i at time T T F ,
and x(i)T T F is the predicted value of particle i at time T T F .

V. RESULTS

The algorithm was tested on a number of historical fail-
ures. For this study, the state transition model described by
14 was used to model the evolution of the chamber clogging
process. The model was adapted from an ageing model for
battery Lithium-ion battery cells [11] which exhibit similar
degradation characteristics to the TPU clogging process.

xk+1 = xk−β1
exp(β2

tk
)

t2
k
−β3exp(β4tk) (14)

where x is the combustor temperature signal value in the
idling mode and β1,β2, β3 and β4 are model parameters
which were estimated by performing a curve fitting exercise
on historical failure examples. Both the measurement and
process noise variance ωk and υk respectively were modeled
as Gaussian densities.

An example of the performance of the particle filter
approach is illustrated in Fig. 7(a). The hazard zone for the
TPU systems was specified as between 640oC and 660oC.
The figure shows the mean value of the state estimate and
the upper and lower limits of the estimated state PDF at each
sample time. A prediction of the RUL of the TPU system was
performed once the state PDF reached 775o. The upper and
lower bounds on the predicted particle trajectories is shown
by the shaded region. Shown in Fig. 7(b) is the predicted
RUL PDF of the TPU system calculated from (13).

VI. CONCLUSIONS

The use of particle filters for prognostics is continually
growing in acceptance as a suitable technique for han-
dling the significant levels of uncertainty associated with
the generation of long-term predictions. In addition, the
generation of a RUL PDF and associated confidence intervals
is a natural component of the approach, which is lacking
in the use of alternate prognostic approaches such as ar-
tificial neural networks. In this study we have illustrated
how the particle filter approach can provides accurate and
actionable estimates of the RUL, with sufficient lead time
provided to maintenance personnel to take corrective action
in an organised and timely manner, reducing instances of
equipment failure. In addition, by simply altering the model
parameters and hazard zone specifications, the approach can
be applied to TPU systems operating on different processes
with different failure characteristics.
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