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Distributed Probabilistic Synchronization Algorithms for
Communication Networks

Mehmet Akar and Robert Shorten

Abstract—In this paper, we present a probabilistic synchronization al-
gorithm whose convergence properties are examined using tools of row-
stochastic matrices. The proposed algorithm is particularly well suited for
wireless sensor network applications, where connectivity is not guaranteed
at all times, and energy efficiency is an important design consideration. The
tradeoff between the convergence speed and the energy use is studied.

Index Terms—Common Lyapunov function, consensus, scrambling
matrix, switched systems, synchronization.

I. INTRODUCTION

Synchronization phenomena have been a topic of research in the
physical sciences and in mathematics for quite some time [1]-[26].
This interest has been primarily motivated by applications that re-
quire networks of agents to acquire a common state. Such applica-
tions are pervasive, and include clock synchronization in computer
networks [1]-[7], coordination of unmanned air vehicles [20]—[24],
and allocation of network resources fairly [27].

The objective of this paper is to discuss and develop distributed
algorithms that can be used for value synchronization in communi-
cation networks with time-varying topologies, and for which efficient
power utilization is important. In particular, we propose a probabilistic
synchronization algorithm whose convergence properties are examined
using the theory of row-stochastic matrices. A random agreement algo-
rithm was considered in [28], where the authors studied a special class
of random topologies for which the graph of the network is complete
almost surely. In this sense, our main result provides not only more
relaxed conditions, but also an alternative proof for the result in [28].
Furthermore, we give convergence bounds and study the tradeoff be-
tween convergence speed and energy use.

II. PROBLEM DESCRIPTION AND MATHEMATICAL PRELIMINARIES

Let 2(t) = [@1(t),22(¢),...,2, (#)]T € R" denote the values of
some network-wide variable for n agents. The objective is to achieve
a common value for all nodes, ideally = (t) = 22 (t) = --- = x,, (¢)
for all ¢, which will be referred to as nodes being synchronized in
this paper. Clearly, this requires at least a single node transmitting
to all others for all time; an assumption that usually fails in mobile
ad hoc and sensor networks due to the lack of connectivity at certain
time intervals. Therefore, we are interested in distributed algorithms
that achieve synchronization at least asymptotically [i.e., z; (t) — c as
t — oo] that can be tackled by using the well-known averaging ideas
first studied by Markov [16]. To this end, let each agent update its value
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Fig. 1. Simple network in Example 1.

according to
n
j=1

where w; ; (t) are nonnegative averaging coefficients that satisfy

wij(t) >0 Vi>.j7 i, Zwu (t) =1 Vl,t 2)

As we shall see in Section III, the weights used by each node depend
only on the number of receptions.

A. Graph Representation

At each time ¢, we can associate a graph [V, E(t)] with (1), where
V ={1,2,...,n} is the set of vertices, E(t) is the set of directed
edges, and (j,7) € E(t) holds if and only if w;;(t) > 0 (i.e., there
is communication from node j to node ¢). The graph is said to be
symmetric if (j,i) € E(t) implies (i,j) € E(t). A graph is said to be
connected if it is symmetric and if there is a path between any two
vertices. A connected graph is complete if there is a direct connection
between all vertices. An adjacency matrix for (V, E) is defined as
an n X n matrix G = [g;;], where g;; = 1 if w;; > 0 and g;; = 0 if
w;; = 0. A complete graph has a positive adjacency matrix. In this
paper, we consider directed graphs, although more can be deduced for
the special class of networks that can be represented with undirected
graphs.

Example 1: Consider the four-node network depicted in Fig. 1. Let
the averaging matrix be

1/2 1/2 0 0
1/3 1/3 1/3 0

W=10 13 13 1/3 )
0 0 1/2 1/2
This network has the adjacency matrix
1100
1110
G= 01 11 @
0 0 11
which is symmetric and connected.
B. Stochastic Matrices
The value evolution can be described by the recursion
z(t+1)=W()z(t), W(t)eW 5)

where W (t) in the set W is a nonnegative row-stochastic matrix with
positive diagonal elements. For a row-stochastic matrix W, all entries
are nonnegative, and the rows add up to 1; therefore, we have We = e
where e = [1,1,...,1] € R". In this paper, we are interested in the
dynamic properties of (5) in the subspace A = {§ € R": 6T e = 0}.
Note that any vector in " is in the joint span of A and the vector
e. Hence, if we can demonstrate that the system (5) is stable in the
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subspace A, it would imply that the iterations of (5) would converge
to a scalar multiple of e, which, in turn, means that all nodes have a
common value.

Lemma 1 (Markov [16]): Let y be a nonnegative vector and W a
stochastic matrix. If z = Wy, then

max z; —minz; < 7(W) (max ¥; — min yi) (6)
2 1 7 1

where

1
T(W) = 3 nila;xz |wi, — W] @)
Tk

The parameter 7 (W) in (7) is referred to as the coefficient of ergodicity
of W, and it satisfies 0 < 7(W) < 1 [16]. Furthermore, if 7(W) < 1,
the matrix W is called a scrambling matrix. A scrambling matrix W
is contractive not only in A, but also on the difference of the entries
in a vector [16], [17]. A stochastic matrix W is called ergodic if
lim; .o, W' = ed” for some d. A scrambling matrix is ergodic, but
the converse is not true in general. This fact is illustrated with the
following example.

Example 2: Reconsider the row-stochastic matrix in (3), for which
the coefficient of ergodicity 7(W') can be computed to be 7(W) = 1
from (7). Hence, this matrix is not scrambling. On the other hand, it is
ergodic, as we have

02 03 03 02
02 03 03 02

o

ImWE=102 03 03 02
02 03 03 02

where d = [0.2, 0.3, 0.3, 0.2]7.

This paper relates the mathematical concepts of induced one norm,
scrambling matrices, and ergodicity to nodes being synchronized. For
instance, if there is a master node that distributes value information
to others in the network, then this implies a scrambling matrix in our
problem formulation. If such a master node exists all the time, it is
extremely easy to note (both mathematically and practically) that the
network value synchronization is achieved. We should note that one
cannot rely on such centralized information in networks with time-
varying topologies. The matrix in (3) is not a scrambling matrix (and
there is no master node); however, synchronization is still achieved,
since it is ergodic. Hence, the example matrix in (3) illustrates the fact
that the scrambling matrix implies ergodicity, whereas ergodicity does
not necessarily imply a scrambling matrix.

If all matrices in W are scrambling, then the matrix-induced one
norm is common and decreasing for all matrices in the subspace A;
therefore we call it a common Lyapunov function (CLF) for the set
W. Given that such a CLF exists, it is straightforward to note that any
trajectory in the subspace A is contracting; hence, consensus will be
achieved under arbitrary switching. In the case that the existence of a
CLF is not so obvious, it is important to relate the structural properties
of the weighting matrices to synchronization, which is the focus of this
paper in a probabilistic setting.

Example 3: To gain further insight into the problem, consider the
following averaging matrices:

=ed"

1 0 07

Wy =|1/4 3/4 0 (8)
Lo 0 1]
T 0 07

Wy=1[0 1 0 )
L0 7/8 1/8]
r8/9 1/9 07

Wy=|0 1 0 (10)
Lo 0 1]
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Fig.2. Topology corresponding to W; in Example 3.
Fig. 3. Topology corresponding to W3 in Example 3.
Fig. 4. The topology corresponding to 1¥3 in Example 3.

which correspond to network topologies depicted in Figs. 2—4, respec-
tively. It can be shown that neither matrix is ergodic. Also note that
there is an isolated node in each graph.

Consider the situation in which the network topology is changing
in a probabilistic fashion as shown in Figs. 2—4 with probabilities p; ,
D2, and p3, respectively. The natural question that arises is under what
conditions synchronization is achieved.

III. PROBABILISTIC SYNCHRONIZATION ALGORITHMS

‘What lies at the heart of the results presented in [4]—[6] and [18]-[24]
is that there is a node that affects all others at regular time intervals.
Therefore, one needs to ensure connectedness of the network on the
average to achieve synchronization. Although a centralized supervisor
could be useful in some network configurations, this strategy might not
be suitable for certain sensor network applications where access to the
base station is always blocked, and hence, the necessity for distributed
synchronization. In the sequel, we propose and study a probabilistic
synchronization algorithm via averaging.

‘We consider a network in which the jth node transmits to the ith one
with some fixed probability A,;. We assume an error-free communica-
tion medium that implies that the probability that the ith node receives
information from the jth one is A;;. In this context, we propose that
each processor updates its value according to (1) where

1
14+ N;(t)’
0, otherwise

if node ¢ gets data from j

and N; () is the number of transmissions that the th node receives at
time ¢. By using (11), we ensure that the received data are added to the
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current value with equal weights, a heuristic that is called arandom walk

on a graph. Given the graph of a fixed network, one could optimize the

mixing factor by appropriately choosing the averaging weights under

certain cases [29]. However, in the absence of centralized information

about the topology of the network coupled with the time-varying nature

of the graph, random walk transitions would be adopted in the sequel.!
The value evolution can be described by (5) where

W(t)eW:{W17W2’._,,WN}7 N:2(712—71).

Each W; is assumed to occur with some probability 1; so that

ZJV:1 p; = 1. For ¢ > 0, define the matrix products X; = H;:o
W (j). The problem under consideration is to determine conditions
to assure almost sure consensus. A random agreement algorithm was
considered in [28] where the authors studied random graphs with
A;j = A > 0, an assumption that ensures that the graph of the network
is complete almost surely. In this sense, the following result provides
not only more relaxed conditions for almost sure consensus, but also
an alternative proof for the result in [28].

Theorem I : The probabilistic algorithm as described earlier achieves
synchronization almost surely if and only if

N
> W
j=1

is ergodic.
The proof of Theorem 1 relies on the following result by Berger [30].
Lemma 2 (Berger [30]): Let (W(5)) be an independent and iden-
tically distributed sequence of n X n transition probability matrices.
Assume that, for some € > 0, Kk = k(€) < oo almost surely, where

k = inf (t>0:m7axmiin(Xt)ij Ze). (12)
Then, X,; converges almost surely to a rank one matrix.

Proof (Theorem 1): Necessity is immediate. For the sufficiency part,
suppose that TV = Z/V:] 1 W is ergodic. We will prove the result
for a scrambling matrix W; if W is not scrambling but ergodic, then
WkU is scrambling for some ky, < n, and hence, similar arguments

could be repeated for Wko . Since each matrix under consideration has
positive diagonals, it is easy to note that the product W, W - - - Wiy is
scrambling as well. Furthermore, from the fact that each matrix W; has
a nonzero probability, it follows that the product W; W, - - - W must
occur infinitely often (although the order of the matrices may differ).
Hence, given € > 0, a finite x in Berger’s theorem (Lemma 2) exists
almost surely, which implies that all products converge to a rank one
matrix. ]

Example 3 (continued): Reconsider the arbitrary topologies in
Example 3. It follows from Theorem 1 that synchronization is achieved
ifp; >0,1=1,2,3.

A. Convergence Rates

Consider anetwork in which the probability that the ith node receives
information from the jth one is A, ;. In this section, we will investigate
the relation between the convergence rate and the transmission proba-
bilities. Denote N = {1,2,...,n},N; = N— {i}, N;; = N— {4, j};
and Nf-“ s fo) any subsets of N;, and N; ; of cardinality &, respectively.
Taking the expectation of (1) and assuming that TV (t) is independent
of z(t), we have

E[z(t+1)] = E[W()z(t)] = EW()]E[z(t).  (13)

I'The proofs apply with any positive scalings of the transition matrices.

Fig. 5.

Simple network considered in Example 4.

Letz(t) = E[x(t)]and W = E[W (¢)], then the expected convergence
rate of (1) is determined from that of the system

F(t+1)=Wz(t), z(0)==z(0) (14)

where W is to be determined for the scenario under consideration. In
our case, we assume that the ¢th node receives information from the
jth one with probability A;;; therefore, we have the following result.

Theorem 2: The mean convergence rate of (1) can be approximated
by that of (14) where the components of TV are given by

n—1

_ 1
wi=) > [ 2 II -2 a3
k=0 en®) ey, —N(®)
and for i # j
n—2
_ 1
wij = Aij Zmz H Ail H (1 =2Aim).  (16)
k=0 lEN(k) m eN; ; 7N(k)
ij g
Proof: Consider the ith node. w;; may take values 1, 1/2, ..., 1/n

with the probabilities given as follows.

Value for w;; with probability
1 IT a=xm)
m eN;
1/2 ST e I a=»m)
ten)  men; -
tn o SO 2 JI 0=

(n—1)

ZENZ@ -1 m eN; 7N[

Summing all expected values yields (15). w,; can be computed
similarly. |
Given a maximum offset d; between the components of the initial
state vector z(0)
dy = max z;(0) — minz; (0) a7
K3 7
it is important to determine the number of steps k., required to
achieve a desired level of synchronization accuracy €. From Lemma 1,
kmax can be computed as

do
kmax = 10g7—(W) (6)

where W is the expected matrix in Theorem 2. Note that k,, ., obtained
earlier is an upper bound.

Example 4: To illustrate the result in Theorem 2, consider the simple
three-node network in Fig. 5, where the only data communication is
from node 2 to nodes 1 and 3 with probabilities A;» and A3, respec-
tively. In this case the expected matrix can be computed as

- l1—,\12/z Ap/2 0 ]

(18)

W= 0 1 0
0 A3a/2 1—Asp/2

which is ergodic if and only if A;5 > 0 and A3 > 0.
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Theorem 2 delineates the mean convergence rate for general network
topologies. Equations (15) and (16) and the lemma in the Appendix can
be used to determine the convergence rates explicitly in some special
cases.

Corollary 1: (i) For A;; = A, W has one eigenvalue at 1, and n — 1
eigenvalues at

n—2
- 1 n—2\xk Tn k2
k=0

(ii) If, at each instant, only a single node receives information from only
one other with probability 1/2, then W is a doubly stochastic matrix
with one eigenvalue at 1, and (n — 1) eigenvalues at

n—3/2
n—1"

B. Energy Considerations

Energy efficiency is critical in the operation of sensor networks, since
battery life is limited, and sensing, collaboration, computation, and
communication in the nodes all require energy. Incorporating energy
awareness into the nodes by smart very-large-scale integration (VLSI)
designs does not entirely solve the energy problem in sensor networks.
The network as a whole should be energy aware, and in the sequel, we
will examine such tradeoffs for the value synchronization problem by
considering the energy spent only on transmissions (communication).

For the problem in hand, the average amount of communication
from node j to node 7 is A;;. Therefore, the total amount of energy
spent on transmissions is easily computed as

n n
Eaverage = g E )\-7]

i=1 j=1,j#i

19)

A fundamental tradeoff can be observed between the connectivity of
the network (which is determined by how full the matrix W is) and
the convergence speed (related to the second largest eigenvalue of ).
To this end, first consider the two extreme cases: 1) full connectivity
(A;j =1, i # j) in which case we have W = ee’ /n and 2) minimal
connectivity where we assume that each node gets information from
exactly one other node [e.g., Corollary 1(ii)].

When each node transmits to every other node at each instant (full
connectivity), this results in consensus in one step (dead-beat sys-
tem). Clearly, such a strategy requires a maximum amount of energy
Eaverage = n® — n. On the other hand, in the case of minimal connec-
tivity, the energy use is reduced substantially, although it also leads to
slower convergence. For values of A,; = re [0, 1], Fig. 6 clearly de-
picts the tradeoff between the average amount of transmissions [from
(19)] and the magnitude of the second largest eigenvalue of the average
matrix (from Corollary 1) that determines the convergence speed. For
the synchronization problem, it is important to deduce the number of
steps kmax required to achieve a desired degree of synchronization,
which is plotted in Fig. 7 for varying probability of transmission A and
dy /e = 0.001. Not surprisingly, it is seen that synchronization can be
sped up by increasing the transmission rate.

IV. CONCLUDING REMARKS

In this paper, we have studied the convergence properties of dis-
tributed probabilistic synchronization algorithms that can be used for
communication networks. It is important to note the existence of a
node (possibly different over different time intervals) distributing in-
formation to others so that the network could be synchronized. It is
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2nd largest eigenvalue

0 10 20 30 40 50 60 70 80 90
Average number of transmissions

Fig. 6. Energy-convergence tradeoff illustrated for n = 10 nodes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. Number of iterations versus A: Desired accuracy of 0.1 percent for
n = 10 nodes.

in this sense that the proposed probabilistic synchronization algorithm
will find important applications in wireless sensor networks where the
topology is time-varying, and connectivity may not be assured at all
times.

APPENDIX

Lemma 3: Let A =cl + 17%‘ eel be an n x n matrix for some
constant c. Then, its eigenvalues A; and corresponding eigenvectors v;
are

M=1, vi=e l=---=A,=c, Vo,...,v, Le. (20)

Proof: For the first eigenvalue at 1, i.e., A; = 1, we have

(1-¢ 1

Avy = Ae=ce+ ———ee" e=ce+ (1 —c)e = Ajv;.
n
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For the ith eigenvalue, A;, i = 2,...,n, let v; € R" be orthogonal to
e, such that e” v; = 0. Then,

1—c¢ .
Av; = cv; + eeTv,v:cv,v7 1 =2,...,n. ]
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Lo—F FIR Filters for Deterministic
Continuous-Time-State Space Signal Models

Soohee Han and Wook Hyun Kwon

Abstract—In this paper, a new L,—FE performance criterion is intro-
duced, which is represented as a gain between the disturbance during the
recent time interval and the current estimation error. Based on the Lo, -F
performance criterion, the Lo—F finite impulse response (FIR) filter
(LEFF) is proposed for deterministic continuous-time-state space signal
models without requiring the stochastic information such as variances and
means. The LEFF is designed to minimize the maximum value of the L, -FE
performance criterion together with prior constraints such as linearity,
unbiased property in the deterministic sense, and FIR structure, simulta-
neously. Via simulation, the LEFF is compared with other deterministic
infinite impulse response (IIR) filters such as the H, and Ly—-L filters.

Index Terms—Finite impulse response (FIR) structure, L, —F FIR filter
(LEFF), L, -E performance criterion, unbiased property in the determin-
istic sense.

I. INTRODUCTION

Stability, small error, and less sensitivity to signal model uncertain-
ties and disturbances have been considered to be desirable properties
in the filter design.

Filters can be designed for stochastic noises or deterministic distur-
bances. For stochastic observable systems, the unbiased filter means
that, no matter what the real state is, the filter will follow it on the
average. This also means that if there exists no noise in systems and the
initial state is known, the filter will follow the real state exactly. Sim-
ilar to the stochastic case, filters for deterministic systems can adopt
the unbiased property in a deterministic sense. The unbiasedness for
deterministic systems implies that filters are required to be exact to the
real states of systems with zero disturbances. For short, “the unbiased
property” will be used through this paper. The terminology “deadbeat”
was also used in other works instead of “unbiased” [1], [2].

For less sensitivity to signal model uncertainties and disturbances,
finite impulse response (FIR) filters are preferred to infinite impulse
response (IIR) filters in signal processing areas. FIR filters make use
of finite measured inputs and outputs on the most recent time interval
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