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EFFICIENT SEMIPARAMETRIC ESTIMATION OF THE
FAMA–FRENCH MODEL AND EXTENSIONS

BY GREGORY CONNOR, MATTHIAS HAGMANN, AND OLIVER LINTON1

This paper develops a new estimation procedure for characteristic-based factor mod-
els of stock returns. We treat the factor model as a weighted additive nonparamet-
ric regression model, with the factor returns serving as time-varying weights and a set
of univariate nonparametric functions relating security characteristic to the associated
factor betas. We use a time-series and cross-sectional pooled weighted additive non-
parametric regression methodology to simultaneously estimate the factor returns and
characteristic-beta functions. By avoiding the curse of dimensionality, our methodol-
ogy allows for a larger number of factors than existing semiparametric methods. We
apply the technique to the three-factor Fama–French model, Carhart’s four-factor ex-
tension of it that adds a momentum factor, and a five-factor extension that adds an
own-volatility factor. We find that momentum and own-volatility factors are at least as
important, if not more important, than size and value in explaining equity return co-
movements. We test the multifactor beta pricing theory against a general alternative
using a new nonparametric test.

KEYWORDS: Additive models, arbitrage pricing theory, characteristic-based factor
model, kernel estimation, nonparametric regression.

1. INTRODUCTION

INDIVIDUAL STOCK RETURNS have strong common movements, and these
common movements can be related to individual security characteristics such
as market capitalization and book-to-price ratios. Rosenberg (1974) developed
a factor model of stock returns in which the factor betas of stocks are lin-
ear functions of observable security characteristics. Rosenberg’s approach re-
quires the strong assumption of linearity. Fama and French (1993) used portfo-
lio grouping to estimate a characteristic-based factor model without assuming
linearity. They estimated a three-factor model: a market factor, a size factor,
and a value factor. The market factor return is proxied by the excess return to
a value-weighted market index. The size factor return is proxied by the differ-
ence in return between a portfolio of low-capitalization stocks and a portfo-
lio of high-capitalization stocks, adjusted to have roughly equal book-to-price
ratios. The value factor is proxied by the difference in return between a port-
folio of high book-to-price stocks and a portfolio of low book-to-price stocks,
adjusted to have roughly equal capitalization. Using these factor returns, the
factor betas are estimated via time-series regression.

Connor and Linton (2007) used a semiparametric method which combines
elements of the Rosenberg and Fama–French approaches. They described a

1We would like to thank Harold Uhlig, Enno Mammen, and three referees for helpful com-
ments. We also would like to thank the Science Foundation of Ireland (Connor), ESRC (Linton),
and ERC (Linton) for financial support.
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characteristic-based factor model like Rosenberg’s, but replaced Rosenberg’s
assumption that factor betas are linear in the characteristics with an assump-
tion that factor betas are smooth nonlinear functions of the characteristics.
In a model with two characteristics—size and value—plus a market factor,
they formed a grid of equally spaced characteristic pairs. They used multivari-
ate kernel methods to form factor-mimicking portfolios for the characteristic
pairs from each point on the grid. Then they estimated factor returns and fac-
tor betas simultaneously using bilinear regression applied to the set of factor-
mimicking portfolio returns.

A weakness of the Connor–Linton methodology is the reliance on multivari-
ate kernel methods to create factor-mimicking portfolios. These multivariate
kernel methods severely restrict the number of factors which can be estimated
well using their technique, due to the curse of dimensionality (Stone (1980)).
The same problem appears in a different guise in the Fama–French method-
ology. To create their size and value factor returns, Fama and French double-
sort assets into size and value categories. Adding a third characteristic with this
method requires triple sorting and adding a fourth requires quadruple sorting;
as in Connor and Linton, the method quickly becomes unreliable for typical
sample sizes and more than two characteristic-based factors.

In this paper, we develop a new estimation methodology that does not re-
quire any portfolio grouping or multivariate kernels. Instead, we estimate the
factor returns and the characteristic-beta functions using weighted additive
nonparametric regression. This relies on the fact that in each time period,
the characteristic-based factor model proposed in Connor and Linton is a
weighted additive sum of univariate characteristic-based functions. The non-
parametric part of the estimation problem is made univariate by decompos-
ing the full problem into an iterative set of subproblems in each characteris-
tic singly, a standard trick in weighted additive nonparametric regression. We
modify the standard weighted additive nonparametric regression methodology
to account for our model’s feature that the weights vary each time period while
the characteristic-beta functions stay constant. The theoretical basis for our es-
timation method has been developed in a series of papers: Mammen, Linton,
and Nielsen (1999), Linton, Nielsen, and van de Geer (2003), and Linton and
Mammen (2005, 2008). See also Carrasco, Florens, and Renault (2006) for a
review of the theory and a discussion of applications to other areas in eco-
nomics.

Our model falls into the class of semiparametric panel data models for large
cross section and long time series. There has been some work on semiparamet-
ric models for panel data (see, for example, Kyriazidou (1997)), and nonpara-
metric additive models (see, for example, Porter (1996) and, more recently,
Mammen, Støve, and Tjøstheim (2009)). Most of this work is in the context of
short time series. More recently, there has been work on panel data with large
cross-section and time-series dimension, especially in finance, where the data
sets can be large along both dimensions, and in macroeconomics, where there
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are cross-sectional panels of many related series (such as business conditions
survey data) with quite long time-series length. Some recent papers include
Phillips and Moon (1999), Bai and Ng (2002), Bai (2003, 2004), and Pesaran
(2006). These authors addressed a variety of issues including nonstationarity,
estimation of unobserved factors, and model selection. They all worked with
essentially parametric models. Our semiparametric model takes full advantage
of the information provided by large cross-section and time-series dimensions.
We establish pointwise asymptotic normality of the functional components of
our model at what appears to be an optimal rate. We also establish the asymp-
totic normality of our estimated factors. We allow for general temporal and
cross-sectional dependence in the error terms.

Our model allows for any number of factors with no theoretical loss of effi-
ciency, and we exploit this in our application. In addition to the market, size,
and value factors of the standard Fama–French model, we add a momentum
factor, as suggested by Jagadeesh and Titman (1993) and Carhart (1997), and
an own-volatility factor, a choice influenced by the recent work of Goyal and
Santa Clara (2003) and Ang, Hodrick, Xing, and Zhang (2006, 2009). This
reflects the feature that our methodology allows us to estimate a model with
more factors. We find that the two added factors—momentum and volatility—
are as important or more important than size and value in explaining equity
return comovements. Hence, the improved data efficiency of our new method
has real empirical value.

We develop a new nonparametric test for multifactor pricing models as part
of our estimation methodology. To implement the test, we assume that mis-
pricing is a smooth multivariate function of observable security characteristics.
We estimate this mispricing function simultaneously with the factor model of
returns and test whether the mispricing function is the null function. We find
that the five-factor model does a good job of explaining asset return premia;
the α function differs only negligibly from a null function, at least for the four
security characteristics that we consider.

In the working paper version of this paper, we evaluated various time-series
models for the risk factors. We estimated vector autoregressions both for the
levels of the factor returns and the factor returns squared (to explore factor
volatility dynamics).

We proceed as follows: Section 2 presents the model. Section 3 describes
the estimation algorithm in the balanced and unbalanced panel case. Section 4
develops the distribution theory. Section 5 presents an empirical application
to the cross section of monthly U.S. stock returns. Section 6 summarizes the
findings and concludes.

2. THE MODEL

We assume that there is a large number of securities, indexed by i= 1� � � � � n�
Asset excess returns (returns minus the risk-free rate) are observed for a num-
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ber of time periods t = 1� � � � �T . We assume that the following characteristic-
based factor model generates excess returns:

yit = fut +
J∑
j=1

gj(Xji)fjt + εit�(1)

where yit is the excess return to security i at time t, fut and fjt are the factor
returns, gj(Xji) denotes the factor betas,Xji are observable security character-
istics, and εit are the mean-zero asset-specific returns. The factor returns fjt are
linked to the security characteristics by the characteristic-beta functions gj(·),
which map characteristics to the associated factor betas. We assume that each
gj(·) is a smooth time-invariant function of a continuously distributed charac-
teristic j, but we do not assume a particular functional form. This is the same
type of factor model used by Connor and Linton (2007). To simplify the ex-
position, we assume that the characteristics Xji are time invariant. We discuss
later on the case where characteristics are allowed to vary over time. We also
consider the case where some of the characteristics are discrete (like indus-
try membership), in which case it is appropriate to replace the corresponding
unknown function gj by a known linear function of the discrete variable.

The market factor fut captures that part of common return not related to
the security characteristics; all assets have unit beta to this factor. This factor
captures the tendency of all equities to move together, irrespective of their
characteristics. It is a common element in panel data models; see Hsiao (2003,
Section 3.6.2). In applications to returns data, it is convenient to exclude own-
effect intercept terms from (1), since they provide little benefit in terms of
explanatory power and necessitate an additional time-series estimation step;
see Connor and Korajczyk (1988, 1993) and Connor and Linton (2007).

In a straightforward extension of the model, we consider the case in which
the unit constant is replaced with a set of industry-based zero–one dummy vari-
ables, essentially allowing fut to differ across industries. This is done to capture
any industry-specific factors in returns. We also allow for the case where one
or more of the factors is directly observed and need not be estimated.

Note that for fixed t, equation (1) constitutes a weighted additive nonpara-
metric regression model for panel data, where the factor returns fjt are “para-
metric weights” and the characteristic-beta functions gj(·) are univariate non-
parametric functions. Some discussion of additive nonparametric models can
be found in Linton and Nielsen (1995). The situation here is somewhat non-
standard, since the same regression equation (1) holds each time period, with
parametric weights varying each time period and the characteristic-beta func-
tions being time invariant. We extend the weighted nonparametric regression
methodology to account for this feature of time-varying weights in a pooled
time-series, cross-sectional model.
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Our model can be thought of as a special case of the usual statistical factor
model

yit =
J∑
j=1

βijfjt + εit�(2)

where the factor loadings βij are unrestricted (Ross (1976)). Connor and Ko-
racyzk (1993) developed the asymptotic principal component method for esti-
mation of the factors in the case where the cross section is large but the time
series is fixed. Recent work of Bai and Ng (2002) and Bai (2003, 2004) pro-
vided analysis for this method for the case where both n and T are large. Bai
(2003) established pointwise asymptotic normality for estimates of the factors
(at rate

√
n) and the loadings (at rate

√
T ) under weak assumptions regarding

cross-sectional and temporal dependence.2

2.1. Factor Scale Identification Conditions

In the case in which both characteristic-beta functions and factor returns are
estimated from the data, there is an obvious scale indeterminacy in the model.
We make our identifying restrictions on the beta functions rather than on the
factors; in particular, we impose that for each factor, the cross-sectional av-
erage beta equals 0 and the cross-sectional variance of beta equals 1, that is,
E∗gj = 0 and E∗g2

j = 1� where E∗ denotes expectation with respect to some
distribution P∗

j (i.e., E∗gj = ∫
gj(x)dP

∗
j (x)), which could be the objective co-

variate probability distribution or another related distribution. Note that this
does not restrict the return model since the additive semiparametric model (1)
is invariant to this rescaling. The choice of distribution to use in the normal-
ization affects the interpretation of the factors. The condition E∗g2

j = 1 sets
the magnitude of factor return j; the conditions E∗gj = 0 affect the interpre-
tation of the intercept. If we use the population distribution, then E∗gj = 0
means that the intercept can be interpreted as the return to the average asset
in the infinite population of assets; if we use a capitalization-weighted popula-
tion distribution, then E∗gj = 0 means that the intercept can be interpreted as
the return to the capitalization-weighted average asset.

2.2. Additive Nonparametric Mispricing Functions

A central concern in the asset pricing literature is the determination of the
expected returns on assets and their relationship to the risk exposures of the
assets. In this subsection, it is important to note that the time t− 1 information

2Bai (2003) assumed that the loadings βij are fixed in repeated samples, but treats fjt as ran-
dom.
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set of investors includes the characteristics X� Taking investors’ expectation of
excess returns yit using (1) gives

E[yit] =E[fut] +
J∑
j=1

gj(Xji)E[fjt]�(3)

which is the standard multifactor asset pricing model: expected excess returns
are linear in factor betas. Hence our model as developed so far imposes the
standard multifactor pricing condition on expected excess returns.

Our methodology provides a new asset pricing test against a general
nonparametric pricing alternative. Fama and French (1993) created factor-
mimicking portfolios from size- and value-sorted portfolios, and then esti-
mated characteristic-related mispricing based on a finer grid of value- and size-
sorted portfolios. This two-stage procedure leaves open the question whether
there is a hidden “identification condition” when using the same characteristics
to create mimicking portfolios and to test for mispricing.

Adapting the Fama–French mispricing test to our additive nonparametric
framework generates an explicit identification condition. The characteristic-
mispricing functions are only identified up to an orthogonality condition rela-
tive to the characteristic-beta functions. This is because the same characteris-
tics are used to identify the factor risk premia and factor model mispricing.

We assume that there are mispricing inefficiencies given by a smooth addi-
tive univariate nonparametric function αj(Xij) using the same characteristics
Xij as in the factor model.3 The return generating process becomes

yit = fut +
J∑
j=1

αj(Xij)+ gj(Xji)fjt + εit �(4)

For the functions αj(Zij) to be identified, we must impose

E[αj(Xij)] = 0�(5)

E[αj(Xij)gj(Xji)] = 0�(6)

The mean-zero condition (5) is standard in additive nonparametric models,
so that the intercept fut can be identified. The condition (6) is necessary for
the risk premia of each factor return to be identified. To see why this is so,
suppose that we relax the identification condition. Then for any constant a, we
can replace αj(Xij) with α∗

j (Xij)= αj(Xij)+ agj(Xji) and f ∗
jt = fjt − a, and the

fit of the model is exactly the same. This indeterminacy is only eliminated by

3It is possible to include additional nonparametric functions based on other observed variates
strictly exogenous relative to yit; this does not require any additional identification conditions
beyond the mean-zero condition.
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imposing (6). The intuition for the condition is clear: mean return which is in
the linear span of the characteristic-beta function must be treated as “factor
risk premia” rather than “mispricing.”

It is interesting to note that an identification condition analogous to (6) is
hidden implicitly in the seminal results of Fama and French (1993). Consider,
for example, their Table 6, which shows the results from time-series regres-
sions of each of a collection of 25 size- and value-sorted portfolio returns on
an intercept, and the three Fama–French factor portfolios RMRF, SMB, and
HML defined in Section 5.4. Letting rh denote the return to the characteristic-
sorted portfolio h for h= 1�25, and letting rRMRF, rSMB, rHML denote the factor
portfolio returns, each time-series regression has the form

rh = αh +βh�RMRFrRMRF +βh�SMBrSMB +βh�HMLrHML + εh�(7)

The hidden identification conditions imposed on αh become clear when we
note that the three-factor portfolio returns are themselves linear combina-
tions of the characteristic-sorted portfolios: rRMRF = ∑25

h=1wh�RMRFrh, rSMB =∑25
h=1wh�SMBrh, and rHML =∑25

h=1wh�HMLrh (see Fama and French (1993) for de-
tails). Substituting into (7), taking weighted sums, imposing that εh are condi-
tionally mean zero, and rearranging gives

25∑
h=1

wh�RMRFαh =
(

1 −
25∑
h=1

wh�RMRFβh�RMRF

)
E[rRMRF]

+
(

25∑
h=1

wh�RMRFβh�SMB

)
E[rSMB]

+
(

25∑
h=1

wh�RMRFβh�HML

)
E[rHML]�

and exactly analogous equations (not shown to preserve space) for∑25
h=1wh�SMBαh and

∑25
h=1wh�HMLαh. To simplify, consider the canonical special

case in which each cross-weighted exposure equals 0 and each direct-weighted
exposure equals 1:

∑25
h=1wh�RMRFβh�RMRF = 1�

∑25
h=1wh�RMRFβh�SMB = 0, and so

on. Then the identification conditions imposed on the α functions simplify to

25∑
h=1

wh�RMRFαh =
25∑
h=1

wh�SMBαh =
25∑
h=1

wh�HMLαh = 0�

3. ESTIMATION STRATEGY

For simplicity of exposition, we focus on the case in which all the factors are
estimated and there are no mispricing functions αj(Zij) included in the factor
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model. Connor and Linton (2007) proposed to estimate the period-by-period
conditional expectation of yit given the characteristics X1i� � � � �XJi at a grid of
points, and then to estimate the factors and the beta functions at the same
grid of points using an iterative algorithm based on bilinear regression. This
approach works well enough when the cross section is very large and when J
is small, like two in their case. However, it is inefficient in general and works
poorly in practice when J is larger than 2. For this reason, we develop an alter-
native estimation strategy that makes efficient use of the restrictions embodied
in (1).

To describe the statistical properties of our estimators, we make some as-
sumptions about the data generating process. For notational convenience, we
treat in detail the case of a fully balanced panel, where the set of assets and the
characteristics of each asset do not vary through time. (In Section 3.2.3 below
we describe the modifications necessary for the case of an unbalanced panel.)

3.1. Identification

We first establish the identification of the quantities of interest through a
population least squares criterion. This is one way to define the quantities f
and g consistent with (1); it has the advantage of usually implying an efficient
estimation procedure under independent and identically distributed (i.i.d.)
normal error terms. The solution to this population problem is characterized
by first-order conditions; to derive estimators, we mimic this population first-
order condition by a sample equivalent. For clarity, we just treat the case where
all the factors are unknown: if some factors are known, then they do not need
to be chosen in the optimization below.

Consider the population criterion

QT(f�g)= 1
T

T∑
t=1

E

[{
yit − fut −

J∑
j=1

gj(Xji)fjt

}2]
�(8)

In this criterion, the expectation is taken over the distribution of returns and
characteristics, treating the factors as fixed parameters that are to be chosen
(we are thinking of the factors as an exogenous stochastic process). Under
some conditions, a limiting (as T → ∞) criterion function Q(f�g) may exist,
but we do not require this. We minimize QT(f�g) with respect to the factors f
(which contain fut and fjt for all j� t) and the functions g= (g1� � � � � gJ) subject
to the identifying restrictions E∗gj = 0 and E∗g2

j = 1.
This minimization problem can be characterized by a set of first-order con-

ditions for f and g. For expositional purposes, we divide the problem in two:
an equation characterizing f given known g and an equation characterizing g
given f .
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3.1.1. The Factor Returns

First we solve for the minimization of (8) over fut and fjt for all j� t given g(·)
is known. Note that if the population of assets is treated as fixed rather than
random, then (8) simply amounts to a collection of unrelated cross-sectional
regression problems, one per time period. In this case, the solution to the min-
imization problem is obviously period-by-period least squares regression. We
now show that this intuition extends to our environment with a random popu-
lation of assets rather than a fixed cross section.

Taking the first derivatives of (8) with respect to fut and fjt , and setting to
zero, the first-order conditions are (for each t = 1� � � � � T )

E

[{
yit − fut −

J∑
j=1

gj(Xji)fjt

}]
= 0�(9)

E

[{
yit − fut −

J∑
k=1

gk(Xki)fkt

}
gj(Xji)

]
= 0� j = 1� � � � � J�(10)

These equations are linear in f given g. This delivers a linear system of
J + 1 equations in J + 1 unknowns for each time period t. Letting ft =
[fut� f1t � � � � � fJt]�, yt = [y1t � � � � � ynt]�, and G(Xi) = [1� g1(X1i)� � � � � gJ(XJi)]�,
we have E[G(Xi)G(Xi)

�]ft =E[G(Xi)yt]. It follows that there is a unique so-
lution given by

ft =E[G(Xi)G(Xi)
�]−1E[G(Xi)yt]�

provided A = E[G(Xi)G(Xi)
�] is nonsingular, which we assume to be the

case.

3.1.2. The Characteristic-Beta Functions

Next we turn to the characterization of g given f . Consider the Gateaux
pointwise derivative of (8) at gj(·) in the direction of the function ψ(·):

∂

∂ε

(
1
T

T∑
t=1

E

[{
yit − fut − {gj(Xji)+ εψ(Xji)}fjt

−
∑
k �=j
gk(Xki)fkt

}2])
ε=0

�



722 G. CONNOR, M. HAGMANN, AND O. LINTON

Takingψ(·) to be the point mass at xj , we obtain a first-order condition defining
the criterion-minimizing function gj(x) at the value xj :

1
T

T∑
t=1

fjtE[yit|Xji = xj] = 1
T

T∑
t=1

fjtfut + gj(xj) 1
T

T∑
t=1

f 2
jt(11)

+ 1
T

T∑
t=1

∑
k �=j
fjtfktE[gk(Xki)|Xji = xj]�

Doing this for each j = 1� � � � � J, we obtain a system of implicit linear equations
for g given f , that is, a system of integral equations (of type 2) in the functional
parameter g; see Mammen, Linton, and Nielsen (1999) and Linton and Mam-
men (2005). We next argue that a unique solution to these equations exists.
Define

mj(xj)=

T∑
t=1

fjtE[(yit − fut)|Xji = xj]
T∑
t=1

f 2
jt

�

Hjk(xj� xk)= pj�k(xj� xk)

pj(xj)pk(xk)
� βjk =

T∑
t=1

fjtfkt

T∑
t=1

f 2
jt

�

where pj�k is the joint density of (Xji�Xki). We drop the dependency on T in
the notation for simplicity. Then for j = 1� � � � � J, we have the system of linear
equations in the space L2(p),

mj = gj +
∑
k �=j
βjkHjgk�(12)

where (Hjgk)(xj)= ∫
Hjk(xj� xk)gk(xk)pk(xk)dxk. In the absence of βjk and

with a different mj , (12) is the system of equations that define the additive
nonparametric regression model (Mammen, Linton, and Nielsen (1999)). We
can write the system of equations (12) as⎛⎜⎜⎝

I β12 H1 · · · β1JH1

β21 H2 I β23 H2 · · ·
���

� � �
βJ1 HJ · · · I

⎞⎟⎟⎠
⎛⎜⎜⎝
g1

g2
���
gJ

⎞⎟⎟⎠= H(β)g=m=

⎛⎜⎜⎝
m1

m2
���
mJ

⎞⎟⎟⎠
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(cf. Hastie and Tibshirani (1990, equations 5.5 and 5.6)). The question is
whether a unique solution to this system of equations exists such that we can
write g= H(β)−1m. The associated system with βij = 1 for all i� j has been well
studied in the literature and the system Hg=m has a unique solution.

Consider the case J = 2. By substitution, we obtain the equations

(I −β12β21 H1 H2)g1 =m1 +β12 H1m2�(13)

(I −β12β21 H2 H1)g2 =m2 +β21 H2m1�(14)

For a solution to these equations to exist, it suffices that I − β12β21 H1 H2 and
I − β12β21 H2 H1 be invertible. Suppose that the Hilbert–Schmidt condition
holds: ∫

pk�j(x�x
′)2

pj(x)pk(x′)
dxdx′ <∞ for all j�k�(15)

This is satisfied under our Assumption A2 below. Then it holds that the op-
erator norm of the composition of the operators satisfies ‖H1 H2‖ < 1 and
‖H2 H1‖< 1. Then, since

β12β21 =

(
T∑
t=1

f1tf2t

)2

T∑
t=1

f 2
1t

T∑
t=1

f 2
2t

∈ [0�1]�

it follows that ‖β12β21 H1 H2‖< 1 and ‖β12β21 H2 H1‖< 1 so that I − β12β21 ×
H1 H2 and I − β12β21 H2 H1 are invertible and there exists a unique solu-
tion to (13), g1 = (I − β12β21 H1 H2)

−1(m1 + β12 H1m2), and to (14), g2 =
(I −β12β21 H2 H1)

−1(m2 +β21 H2m1).4
We now turn to the full problem where the factors and the characteristic

functions are unknown. In this case, the unrestricted solution to (8) is not
unique and the set of solutions forms a vector space (Breiman and Friedman
(1985)). To proceed, we impose the identification conditions on gj(·). These re-
strictions can be imposed by considering the constrained optimization problem
and manipulating the first-order condition of the associated Lagrangian as in

4Furthermore, we can write

g1 =
∞∑
k=0

(β12β21 H1 H2)
k(m1 +β12 H1m2)�

The sum converges geometrically fast, which suggests that iterative methods (which amount to
taking a finite truncation of the infinite sum) will converge rapidly to the solution and be inde-
pendent of starting values (cf. Hastie and Tibshirani (1990, pp. 118–120)).
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Lewbel and Linton (2007). An equivalent approach is to take any unrestricted
solution f or g and replace gj(xj) by

gj(xj)= gj(xj)− ∫
gj(xj)dP

∗
j (xj)√∫

g2
j (xj)dP

∗
j (xj)

�(16)

where P∗
j is the probability distribution associated with the characteristic j.

3.2. The Estimation Method

Motivated by the above characterization, we next define our estimation
method. The strategy involves solving empirical versions of (9), (10), and (11),
which we do in a sequential manner.

The conditional expectations in (11) are unknown and we replace them by
consistent estimators. We use the boundary adjusted cross-sectional kernel re-
gression estimate. Thus we estimate the conditional expectation E[yit|Xji = x]
by

Ê[yit|Xji = x] =

n∑
i=1

Kh(Xji� x)yit

n∑
i=1

Kh(Xji� x)

�

where for each x in the support of X , Kh(x� y) = Kx
h(x− y) for some kernel

Kx such thatKx
h(u)= h−1Kx(h−1u) andKx

h(u)=Kh(u) for all x in the interior
of the support of Xji� Here Kh(·) = K(·/h)/h and K is a kernel while h is
a bandwidth. We assume that each covariate is supported on [x�x] for some
known x�x and that the covariate density is bounded away from zero on this
support. We need to make a boundary adjustment to the kernel K to ensure
that the bias is the same magnitude everywhere.

3.2.1. Estimation of Factor Returns and Characteristic-Beta Functions

We replace the unknown quantities in A, bt , and equation (11) by esti-
mated values, denoted by carets, and iterate between the factor return f and
characteristic-beta function g(·) estimation problems. The solution for f de-
pends on g(·), and the solution for gj(·) depends both on f and gk(·), k �= j.
We use the Gauss–Seidel iteration to reconcile these component solutions. We
give the estimation algorithm below:

Step 1. Let f̂ [0] and ĝ[0](·) be initial estimates.
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Step 2. Then let, for all x,

ĝ[i+1]
j (x)=

T∑
t=1

f̂ [i]
jt

(
Ê[yit|Xji = x] − f̂ [i]

ut

)
T∑
t=1

f̂ [i]2
jt

(17)

−

T∑
t=1

∑
k>j

f̂ [i]
jt f̂

[i]
kt Ê

[
g[i]
k (Xki)|Xji = x

]
T∑
t=1

f̂ [i]2
jt

−

T∑
t=1

∑
k<j

f̂ [i]
jt f̂

[i]
kt Ê

[
g[i+1]
k (Xki)|Xji = x

]
T∑
t=1

f̂ [i]2
jt

�

ĝ[i+1]
j (x)=

ĝ[i+1]
j (x)−

∫
ĝ[i+1]
j (x)dP∗

j (x)√∫
ĝ[i+1]
j (x)2 dP∗

j (x)

�(18)

Step 3. Then given estimates ĝ[i]
j (Xji) from the previous iteration on g given

f , we compute the least squares regression for each t:

f̂ [i+1]
t =

[
n∑
i=1

Ĝ[i](Xi)Ĝ
[i](Xi)

�
]−1 n∑

i=1

Ĝ[i](Xi)yit�(19)

where Ĝ[i](Xi)= [1� ĝ[i]
1 (X1i)� � � � � ĝ

[i]
J (XJi)]�.

Step 4. Continue until some stopping criterion is met.
The convergence properties of this algorithm are not studied here, but our

discussions above, the arguments of Mammen, Linton, and Nielsen (1999), and
our experience in the application suggests that the method is likely to converge
rapidly. If one has consistent initial starting values, then one can stop after a
finite number of iterations, which is what we do in practice. We turn to this
issue next.
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3.2.2. Initial Consistent Estimators

We describe a general way to obtain consistent starting values. Connor and
Linton (2007) already proposed consistent estimators here, but with subopti-
mal rates of convergence. We propose an alternative method that takes into
account the additive structure and is based on time averaging the data. This
approach has similarities to the averaging method proposed by Pesaran (2006)
except that our averaging is over time rather than cross sectional. In particular,
let {wTt} be some deterministic triangular array with

∑T

t=1wTt ≤w<∞ and let
f Tu =∑T

t=1wTtfut , f Tj =
∑T

t=1wTtfjt . We require that f Tu and f Tj , j = 1� � � � � J,
are nonzero for all T larger than some fixed value (which is consistent with the
factors being random with nonzero population mean). For example,wTt = 1/T
works in the case that the factors do not have mean zero. In other cases, a dif-
ferent weighting sequence is needed, for example, wTt = 1(t = s) works in the
case that fjs �= 0. What happens when either fjt = 0 for all t for some j or
f Tj � 0 is an important issue and we discuss this in footnote 5 below.

Letting yi =
∑T

t=1wTtyit and εi =∑T

t=1wTtεit , where we drop the T subscript
for convenience, we have

yi = f u +
J∑
j=1

gj(Xji)+ εi�(20)

where gj(·) = gj(·)f j . This constitutes an additive nonparametric regression
with components gj that are mean zero, that is, E[gj(Xji)] = 0, j = 1� � � � � J,
and so fit into the framework of Mammen, Linton, and Nielsen (MLN)
(1999). Therefore, we estimate the functions gj(·) by their smooth back-
fitting method using the cross-sectional data set {yi�Xi, i = 1� � � � � n}, or a
subset thereof, and denote these estimates by g̃j(·). Then note that gj(·) =
gj(·)/

√∫
gj(xj)

2 dP∗
j (xj), so a corresponding renormalization of the estimated

gj yields an estimate of gj . The theory of (MLN) (1999) can be directly applied
to g̃j(·), except that the error term εi is Op(δT ), where δ2

T = ∑T

t=1w
2
Tt under

our conditions, which makes the convergence rate of the estimated functions
faster by this magnitude. When wTt = 1/T , the error term εi =Op(T−1/2). De-

note these initial consistent estimators by ĝ[0]
j (xj)= g̃j(xj)/

√∫
g̃j(xj)2 dP∗

j (xj),
j = 1� � � � � J. To estimate the time-series factors ft themselves, we cross section-
ally regress yit on a constant and ĝ[0]

1 (X1i)� � � � � ĝ
[0]
J (XJi) for each time period t;

denote this estimator by f̃t . Let f̂ [0] = f̃ .5

5We discuss here what happens when the condition f Tj �= 0 is violated. Consider the spe-
cial case yit = g(Xi)ft + εit , where ft is random and satisfies Eft = 0. Taking wTt = 1/T , we
obtain yi = g(Xi)f + εi , where, under some further conditions,

√
T × f ⇒ Z for some nor-
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The backfitting algorithm of MLN itself requires starting values. We propose
to use a variant of Rosenberg’s (1974) linear model:

gj(Xji)=Xji�(21)

In this linear case, it is simple to rescale the characteristics so that the iden-
tification constraints hold using (21). We scale the mean and variance of the
characteristics so that E∗[Xji] = 0 and var∗[Xji] = 1 for each j; for each char-
acteristic, this just requires subtracting the weighted cross-sectional mean and
dividing by the weighted cross-sectional standard deviation each time period.
The simple linear model for g(·) gives rise to a linear cross-sectional regression
model to estimate fjt :

yit = fut +
J∑
j=1

Xjifjt + εit �(22)

We begin with ordinary least squares estimation of (22). These estimates of
fut and fjt serve merely as starting values and have no consistency properties.
Connor and Linton (2007) found that this linear model provides quite a rea-
sonable first approximation.

3.2.3. Unbalanced, Time-Varying Panel Data

The notation used so far assumes a fully balanced panel data set. The set
of observed assets is assumed to be constant over time, with each asset having
a fixed vector of characteristic betas. The only time variation in this fully bal-
anced panel comes through the random factor realizations and random asset-
specific returns. In applications, the set of assets must be allowed to vary over
the time sample, since the set of equities with full records over a reasonably
long sample period is a small subset of the full data set. Also, the characteris-
tics of the assets in some cases should be allowed to vary through time. We may
assume that the observations are unbalanced in the sense that in time period t,
we only observe nt firms (for simplicity labelled i= 1� � � � � nt). Also, we assume
that the characteristics are time varying but stationary over time for each i and
are i.i.d. over i. This yields first-order conditions for f and g that are similar to
the balanced case. We give some explicit details.

Regarding starting values, proceed as follows: Perform cross-sectional
smooth backfitting for each time period, renormalize, and then average the

mal random variable Z. Consider the kernel estimator g̃(x) of g(x) based on smoothing yi
against Xi . Then g̃(x)= Zg(x)/

√
T + smaller terms, and so the renormalized estimator ĝ(x)=

g̃(x)/
√∫

g̃(xj)2 dP∗
j (xj) is consistent (up to a random sign). It follows that the estimated factors

from the least squares regression of yit on ĝ(Xi) are also consistent for each t.
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estimates over time. We discuss implementation in more detail in Sections 4
and 5.

Note that instead of averaging the data, one could do period-by-period esti-
mation and then average the estimates obtained for each period. This method
would work in the case where the covariates are time varying or the data are
unbalanced.

4. DISTRIBUTION THEORY

In this section, we provide the distribution theory for our estimates of the
factors and of the characteristic functions based on a finite number of iterations
from the consistent initial values we proposed above, namely ĝj(xj)= ĝ[k]

j (xj)

and f̂t = f̂ [k]
t defined in (18) and (19). Following earlier work, we expect this

limit theory to also well represent what happens for the “iterate to conver-
gence from an arbitrary starting value” method. We also work in the balanced
case. The general approach uses the methods developed in Mammen, Linton,
and Nielsen (1999) and Linton and Mammen (2005) to treat estimators de-
fined as the solutions of type 2 linear integral equations. The novelty here is
due to the weighting by the factors and the fact that we wish to allow both
the cross section and the time dimension to grow. We allow the error terms to
be both temporally and cross-sectional weakly dependent; with regard to the
cross-sectional dependence, we assume that there is a known clustering struc-
ture (Wooldridge (2006)). Specifically, we write εit = ε�mt , with � = 1� � � � �L
and m = 1� � � � �M such that n = L · M ; independence prevails, across clus-
ters, while within clusters, an arbitrary amount of dependence is permitted.
Regarding the asymptotics, we take pathwise limits as L�T → ∞ (and possibly
M → ∞) as described in Phillips and Moon (1999, Definition 2(b)).

Let F b
a be the σ-algebra of events generated by the vector random vari-

able {Ut;a ≤ t ≤ b}. The processes {Ut} is called strongly mixing (Rosenblatt
(1956)) if

sup
1≤t

sup
A∈F t−∞�B∈F ∞

t+k

|Pr(A∩B)− Pr(A)Pr(B)| ≡ α(k)→ 0 as

k→ ∞�

We make the following assumptions.

ASSUMPTIONS A:
A1. We suppose that εit = σt(Xi)ηit with {ηit} independent of {Xi}. Further-

more, for each i, ηit are stationary martingale difference sequences and are ge-
ometrically strongly mixing across t (i.e., αi(k) ≤ cρk for some ρ ∈ (0�1)) with
Eη2

it = 1. The random variables (X�1� � � � �X�M) and (η�1t � � � � �η�Mt) are inde-
pendent and identically distributed across � = 1� � � � �L. Furthermore, for some
κ > 4, E[|ηit |κ]<∞.
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A2. The covariate Xi = (X1i� � � � �XJi)
� has absolutely continuous density p

supported on X = [x�x]J for some −∞ < x < x < ∞. The functions gj(·) to-
gether with the density p(·) are twice continuously differentiable over the interior
of X and are bounded on X . The density function p(x) is strictly positive at each
x ∈ X . Denote by pj(x) the marginal probability density for characteristic j with
support Xj = [x�x]. The matrix E[G(Xi)G(Xi)

�] is strictly positive definite. The
function σ2

t (x)=E[ε2
it|Xi = x] is continuous on X .

A3. For each x ∈ [x�x], the kernel function Kx has support [−1�1], and sat-
isfies

∫
Kx(u)du = 1 and

∫
Kx(u)udu = 0 such that for some constant C ,

supx∈[x�x] |Kx(u) − Kx(v)| ≤ C|u − v| for all u�v ∈ [−1�1]. Define μj(K) =∫
ujK(u)du and ‖K‖2

2 = ∫
K2(u)du. The kernel K is bounded, has compact

support ([−c1� c1], say), is symmetric about zero, and is Lipschitz continuous, that
is, a positive finite constant C2 exists such that |K(u)−K(v)| ≤ C2|u− v|.

A4. In some pathwise fashion, L�T → ∞.
A5. We assume that

∑T

t=1w
2
Tt = δ2

T → 0 as T → ∞. For j = u�1� � � � � J,∑T

t=1wTtfjt → f j > 0 ; for some a > 2, the quantities supT≥1

∑T

t=1 |fjt |a/T <∞.
The quantities Φj = limT→∞ T−1

∑T

t=1 f
2
jt and Ψj(xj) = limT→∞ T−1

∑T

t=1 f
2
jt ×

σ2
jt(xj) exist and Φj > 0.
A6. The bandwidth sequence h(L�T) satisfies h → 0, MThδ2

T → 0, and
nTh2 → ∞ as L�T → ∞.

A7. For j = u�1� � � � � J, there exists ρ′ > 0 such that max1≤t≤T |fjt | =
O((logT)ρ′

).

In A1, we allow a general form of time-series and cross-sectional conditional
heteroskedasticity in the errors εit , and time-series and cross-sectional depen-
dence, although we assume that ηit is a martingale difference sequence, which
seems like a natural assumption to make in this context. Assumption A5 em-
bodies an assumption about the magnitudes of the factors; here we assume
that they behave like the outcome of a stationary process with finite moments
of order a. This could be relaxed to either faster growth in

∑T

t=1 f
2
jt , reflecting

nonstationary factors, or slower growth, reflecting perhaps many zero values
in the factors, but we do not do this here as the data seem to support this as-
sumption. Assumption A7 is needed for the uniform convergence rates below.
This assumption is consistent with the factors being realizations from a station-
ary Gaussian process. Again, this condition could be weakened to allow faster
growth in max1≤t≤T |fjt | at the expense of further restrictions elsewhere.

Define for each j = 1� � � � � J and t = 1� � � � �T ,

Ωj(xj)= Ψj(xj)

pj(xj)Φ
2
j

‖K‖2
2�(23)

Γt = E
[(

1
M

M∑
m=1

σt(X�m)G(X�m)

)(
1
M

M∑
m=1

σt(X�m)G(X�m)
�
)]
�
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Vt�t =E[G(Xi)G(Xi)
�]−1ΓtE[G(Xi)G(Xi)

�]−1�(24)

THEOREM 1: Suppose that Assumptions A1–A6 hold and that Lh4 → 0. Then
for each t,

√
L(f̂t − ft)�⇒N(0� Vt�t)�(25)

Suppose that A1–A7 hold. Then for some ρ > 0,

max
1≤t≤T

|f̂t − ft | =Op
((
L−1/2 + h2

)
(logT)ρ

)
�(26)

Furthermore, a bounded continuous function βj(·) exists such that for each xj ∈
(x�x),

√
nTh(ĝj(xj)− gj(xj)− h2βj(xj))�⇒N(0�Ωj(xj))�(27)

Furthermore, ĝj(xj) and ĝk(xk) are asymptotically independent for any xj and xk.

REMARK 1: The clustering dependence does not affect the rate of conver-
gence of the nonparametric estimates, provided MThδ2

T → 0 (which amounts
to Mh→ 0 when the full sample is used for averaging), and also does not af-
fect the asymptotic variance. However, it does effect the rate of convergence
of the factor estimates and their asymptotic variance matrix. It may be that
ĝj(xj) converges to gj(xj) faster than f̂t converges to ft; this happens when
MTh → ∞. This is because of the extra pooling over time in the specifica-
tion of gj . Note that the asymptotic variance of the characteristic function es-
timates is as if the factors were known. The estimators ĝj(xj) are consistent
at rate (nT)−2/5 provided a bandwidth of order (nT)−1/5 is chosen and under
some restrictions on the rates at which T�L, and M increase. This should be
the optimal rate (Stone (1980)). Note that the asymptotic variance of the fac-
tor estimates is as if the characteristic functions were known and least squares
were applied.

REMARK 2: When εit is i.i.d., the asymptotic variance of ĝj(xj) simplifies
to Ωj(xj) = (σ2

ε/pj(xj)Φj)‖K‖2
2, where σ2

ε = σ2
t (x). We argue that this is a

natural “oracle” bound along the lines of Linton (1997). Suppose that we could
observe the partial residuals Ujit = yit − fut − ∑

k �=j fktgk(Xki). Then we can
compute the pooled regression smoother

ĝoracle
j (x)=

T∑
t=1

n∑
i=1

Kh(Xji� xj)fjtUjit

T∑
t=1

n∑
i=1

Kh(Xji� xj)f
2
jt

�(28)
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which can be interpreted as a local likelihood estimator (Tibshirani (1984)),
for the model yit = fjtgj(Xji) + εit with i.i.d. normal errors. This shares the
asymptotic variance of our estimator and since it uses more information than
we have available, it is comforting that our estimator performs as well. In fact,
one can argue further that the asymptotic variance of the oracle (local likeli-
hood) estimator is the same as the asymptotic variance of the maximum likeli-
hood estimator (MLE) of a correctly specified parametric model at the point
of interest, yit = fjtθ+ εit , where εit is i.i.d. normally distributed, that uses an
equivalent number of observations (Tibshirani (1984, Chap. 5)).

REMARK 3: Standard errors can be obtained in an obvious way by plugging
in estimated quantities. In particular, valid “clustered” standard errors for the
factors can be obtained from the final stage least squares regression of returns
on the characteristic functions (Wooldridge (2006)). We recommend comput-
ing standard errors for ĝj(xj) from

̂Ωj(xj)

nTh
=

T∑
t=1

n∑
i=1

K2
h(Xji� xj)f̂

2
jt ε̂

2
it(

T∑
t=1

n∑
i=1

Kh(Xji� xj)f̂
2
jt

)2 �(29)

where ε̂it = yit − f̂ut − ∑J

j=1 f̂jt ĝj(Xji) are residuals computed from the esti-
mated factors and characteristic functions (see Fan and Yao (1998) for a dis-
cussion of nonparametric standard errors).

REMARK 4: Bandwidth and factor selection can both be handled in the
framework of penalized least squares. We recommend the bandwidth selec-
tion method developed by Mammen and Park (2005); see Connor, Hagmann,
and Linton (2012) for more details.

REMARK 5: The results (25)–(27) follow also for the unbalanced case with
a time-varying covariate with suitable generalizations. The case where the co-
variate process is stationary is particularly simple because then one only needs
to replace n by nt in (25), n by min1≤t≤T nt in (26), and nT by

∑T

t=1 nt in (27).

REMARK 6: An alternative approach to cross-sectional dependence is to
follow Connor and Koraczyk (1993) and assume that some ordering of the
observations exists such that there is strong mixing of ηit across i with some
fairly rapid rate of decay. Robinson (2007) described a more explicit frame-
work through moving average processes. In both cases, the cross-sectional de-
pendence washes out of the distribution for the nonparametric estimates, but
does affect the distribution of the factor estimates. Although it does not affect
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the rate of convergence of the factor estimates (like our clustering assumption
may), it does affects the limiting variance in a complicated way and in a way
that precludes consistent inference without further assumptions.

REMARK 7—Specification Testing: One can test the underlying specification
in a number of ways. Given our sampling scheme, there are two general re-
strictions on the conditional expectation E[yit|Xi] = mt(Xi): poolability, and
additivity. Baltagi, Hidalgo, and Li (1996) proposed a test of poolability that
can be adapted to our framework. Gozalo and Linton (2001) proposed tests of
additivity in a cross-sectional setting based on comparing restricted with unre-
stricted estimators that work with marginal integration estimators (Linton and
Nielsen (1995)). The working paper version gives more details.

5. EMPIRICAL ANALYSIS

5.1. Data

We follow Fama and French (1993) in the construction of the size and value
characteristics. For each separate 12-month period July–June from 1970 to
2007, we find all securities which have complete Center for Research in Secu-
rity Prices (CRSP) return records over this 12-month period and the previous
12-month period, and have two-digit Standard Industrial Classification code
(from CRSP), market capitalization (from Compustat) and book value (from
Compustat) records for the previous June. Throughout the empirical analysis,
we use returns in excess of the risk-free return, treating the monthly Treasury
bill return from CRSP as the risk-free return. The raw size characteristic each
month equals the logarithm of the previous June’s market value of equity. The
raw value characteristic equals the ratio of the market value of equity to the
book value of equity in the previous June. In addition to the Fama–French size
and value characteristics, we derive from the same return data set a momen-
tum characteristic as in Carhart (1997). This variable is measured as the cumu-
lative 12-month return up to and including the previous month. Finally we add
an own-volatility characteristic, a choice inspired by the recent work of Goyal
and Santa Clara (2003) and Ang et al. (2006, 2009). We define raw volatility
as the standard deviation of the individual security return over 12 months up
to and including the previous month. The characteristics equal the raw char-
acteristics except they are standardized each month to have zero mean and
unit variance. The size and value characteristics are held constant from July to
June, whereas the momentum and own-volatility characteristics change each
month. Table I reports some descriptive statistics for the data: the number of
securities in the annual cross section and the first four cross-sectional moments
of the four characteristics. To save space, the table just shows nine representa-
tive dates (July at 5-year intervals), as well as time-series medians over the full
37 year period, using July data.



E
ST

IM
A

T
IO

N
O

F
T

H
E

FA
M

A
–F

R
E

N
C

H
M

O
D

E
L

733

TABLE I

SAMPLE STATISTICSa OF RAW SECURITY CHARACTERISTICS

Mean Standard Deviation Skewness Excess Kurtosis

Year Firms Size Value Mom Vol Size Value Mom Vol Size Value Mom Vol Size Value Mom Vol

1970 1554 3.71 0.81 −0.44 0.11 1.58 0.51 0.36 0.04 0.34 0.89 −0.12 0.53 −0.39 0.19 −0.26 −0.26
1975 2475 4.01 1.33 0.40 0.17 1.55 0.80 0.36 0.07 0.28 0.89 0.46 0.78 −0.40 0.31 0.24 0.09
1980 2349 4.50 0.93 0.38 0.11 1.74 0.54 0.36 0.05 0.10 0.67 0.49 0.76 −0.35 −0.11 0.23 0.01
1985 4249 3.58 0.73 0.19 0.12 2.06 0.46 0.42 0.06 0.24 0.89 −0.07 0.86 −0.38 0.40 0.31 0.21
1990 4543 3.70 0.80 0.04 0.12 2.21 0.61 0.45 0.07 0.14 1.18 0.14 1.07 −0.32 0.90 0.55 0.60
1995 6037 4.09 0.61 0.18 0.11 1.93 0.40 0.41 0.06 0.29 0.87 0.26 0.96 −0.13 0.23 0.75 0.22
2000 5635 4.68 0.69 0.22 0.18 1.92 0.56 0.74 0.11 0.29 1.03 0.89 1.16 −0.19 0.45 0.66 0.62
2005 4808 5.33 0.50 0.12 0.10 1.99 0.30 0.36 0.06 0.21 0.80 0.02 0.93 −0.19 0.17 0.60 0.20

Med 4518 4.08 0.73 0.17 0.12 1.93 0.48 0.41 0.06 0.21 0.89 0.12 0.92 −0.33 0.33 0.50 0.23
aSome descriptive statistics of the cross-sectional data for July at 5-year intervals: the number of securities the annual cross section and the first four cross-sectional moments

of the four raw characteristics. Separately provided are the time-series medians over the full 42-year period, also using July data.
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Four notes on the interpretation of these characteristics in terms of our
econometric theory are in order.

NOTE 1: We treat all four characteristics as observed without error. Infor-
mally, we think of momentum and own volatility as behaviorally generated
sources of return comovement. Investors observe momentum and own volatil-
ity over the previous 12 months (along with the most recent observations of
size and value), and adjust their portfolio and pricing behavior to account for
the observed values; this in turn accounts (for some unspecified reasons) for
the subsequent return comovements associated with these characteristics. Un-
derstanding more fundamentally the sources of the characteristic-related co-
movements is an important topic which we do not address here.

NOTE 2: The cited references Ang et al. (2006, 2009) and Goyal and Santa
Clara (2003) used idiosyncratic volatility rather than total volatility as a char-
acteristic. From our perspective, total volatility is preferable, since it does not
require a previous estimation step to remove market-related return from each
asset’s total return.

NOTE 3: In our econometric theory, we allow all the characteristics to vary
freely over time. Since size and value change annually, whereas momentum
and own volatility change monthly, another approach would be to modify the
econometric theory to allow some characteristics to change only at a lower
frequency. We do not pursue this alternative approach here.

NOTE 4: In the theoretical development of our estimators, we describe the
cluster-based standard errors for the factor estimates for generality, but in our
application, we impose unit-asset clusters. This is standard practice in the em-
pirical finance literature and is unlikely to have much impact on the results
(particularly since with 1.8 million observations, the standard errors are ex-
tremely small).

A useful descriptive statistic is the correlation matrix of the explanatory vari-
ables. This is complicated in our model by the time-varying nature of the char-
acteristics which serve as our explanatory variables. Figure 1 shows, for each
pair of characteristics, the time-series evolution of the cross-sectional correla-
tion between them, using the cross section each July. It is clear that these cor-
relations are not constant over time. The correlation between size and value
exhibits slow and persistent swings, with a negative average. Size and momen-
tum, on the other hand, are, on average, uncorrelated. Most interesting is the
relationship between own volatility and momentum, taking large swings from
high positive correlation of 0.6 to negative correlation of −0.31. None of the
correlations is large enough in magnitude to be worrisome in terms of accurate
identification of the model.
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FIGURE 1.—Time series plots of cross-sectional correlations between the characteristics. The
time-varying nature of the correlations between security characteristics is depicted by showing
the cross-sectional correlation for each pair of characteristics each July.

5.2. Implementation

In the case of a fully balanced panel, it would be straightforward to estimate
the characteristic-beta function at each data point in the sample. However,
in the presence of time-varying characteristics, this is not feasible since the
number of asset returns (each with a unique vector of characteristics) equals
1,793,844 in our sample. To make the algorithm described in Section 3 com-
putationally feasible, we concentrate estimation of the characteristic functions
on 61 equally spaced grid points between −3 and 3, which corresponds to a
distance of 0.1 between contiguous grid points. We use linear interpolation be-
tween the values at these grid points to compute the characteristic-beta func-
tion at all 1,793,844 sample points. Then we use the full sample of 1,793,844
asset returns and associated factor betas to estimate the factor returns. This
procedure greatly improves the speed of our algorithm while sacrificing little
accuracy, since the characteristic-beta functions are reasonably linear between
these closely spaced grid points.

We chose a Gaussian kernel throughout to nonparametrically estimate the
conditional expectations. The advantage of this kernel is that it is very smooth
and produces nice regular estimates, whereas, say, the Epanechnikov kernel
produces estimates with discontinuities in the second derivatives. We use a
bandwidth of 0.10 throughout, based on a simple Silverman rule.



736 G. CONNOR, M. HAGMANN, AND O. LINTON

5.3. The Characteristic-Beta Functions

Table II shows the estimates of the characteristic-beta functions at a small
selected set of characteristic values and the heteroskedasticity-consistent stan-
dard errors from (29) for each of these estimates. To avoid any spurious non-
linearity results due to smoothing in regions where there are no data, we report
results for each characteristic only over a support ranging from the empirical
2.5% to the 97.5% quantile. The standard errors tend to be somewhat larger
in the tails, where the data are sparser. Given that our procedure is able to use
all 1.8 million return observations to estimate the characteristic-beta functions,
the standard errors are small.

The characteristic-beta functions over all grid points are displayed in Fig-
ure 2. Note that these characteristic-beta functions satisfy the equally weighted
zero-mean/unit variance identification conditions described in Section 3. We
estimate the model with and without industry factors, but find little difference
in the estimated characteristic-beta functions. Except where stated otherwise,
we refer to the model without industry factors in our empirical analysis. The
characteristic-beta functions are monotonically increasing for all four char-
acteristics. Size and value show strongly nonlinear characteristic-beta func-
tions, both with concave shapes. The observed shapes for momentum and own
volatility are closer to linear. Not surprisingly, given 1.8 million observations,
we can reject linearity in all four cases. The economic (as opposed to statisti-
cal) significance of the finding seems strongest for size and value, as illustrated
in Figure 2.

TABLE II

SECURITY CHARACTERISTIC-BETA FUNCTIONS AND STANDARD ERRORS

Size Value Momentum Volatility

Grid Value SE Value SE Value SE Value SE

−2.00 n.c. n.c. n.c. n.c. −2.51 0.03 n.c. n.c.
−1.50 −1.93 0.03 n.c. n.c. −1.44 0.03 n.c. n.c.
−1.00 −0.99 0.03 −1.13 0.05 −0.86 0.03 −1.07 0.03
−0.50 −0.24 0.02 −0.14 0.05 −0.36 0.03 −0.54 0.02

0.00 0.32 0.02 0.39 0.04 0.10 0.03 0.13 0.02
0.50 0.74 0.02 0.66 0.04 0.54 0.03 0.64 0.02
1.00 0.94 0.02 0.91 0.03 0.90 0.02 1.06 0.02
1.50 1.08 0.02 1.15 0.04 1.25 0.02 1.51 0.02
2.00 1.10 0.03 1.44 0.04 1.60 0.03 1.86 0.02
2.50 n.c. n.c. 1.65 0.09 1.96 0.04 2.25 0.04

aThe time-series medians are over the full 44-year period, also using July data, and the heteroskedasticity-
consistent standard errors are given for each of these estimates. Results are reported for each characteristic over
a support ranging from the empirical 2.5% to the 97.5% quantile. n.c. denotes not computed.
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FIGURE 2.—The characteristic-beta functions. The dashed (solid) lines display the estimated
characteristic-beta functions when industry effects are (are not) included in the model estimation
algorithm. The functions are estimated over a grid ranging from the 2.5% to the 97.5% empirical
quantile of the respective security characteristic.

5.4. Explanatory Power of Each Factor

Note that at each step of the iterative estimation, the factor returns are the
coefficients from period-by-period unconstrained cross-sectional regression of
returns on the previous iteration’s factor betas. To measure the explanatory
power of the factors, we take the final-step estimates of factor betas and per-
form the set of cross-sectional regressions with all the factors, each factor
singly, and all the factors except each one. Table III shows the time-series av-
erages of uncentered R2 (UR2) statistic in all these cases: all five factors, each

TABLE III

UNCENTERED R2 STATISTICS (UR2)a

Marginal UR2 Statistics When Adding Individual Factors to the Model

Market Size Value Momentum Volatility

Adding first 10.63% 1.20% 3.41% 2.30% 4.17%
Adding last n.m. 0.16% 2.88% 1.29% 2.51%

UR2 With Industry Factors UR2 Without Industry Factors

UR2 21.27% 19.81%

aThe time-series averages of uncentered cross-sectional R2 (UR2) statistics are given as a measure of the ex-
planatory power of the factor model. The upper part of the table shows average UR2 statistics from cross-sectional
regressions of excess returns on each characteristic-beta function singly as well as their marginal contribution given
the other four. The lower part of the table shows the UR2 statistic with all five characteristic beta functions, with and
without industry factors.
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single factor, and each subset of four factors. The market factor is dominant
in terms of explanatory power—a well known result. The own-volatility factor
is the strongest of the characteristic-based factors, followed by value, momen-
tum, and size. The ordering of importance is mostly the same (own volatility
and value switch places) if we consider the marginal contribution of each given
the other four. Table III also shows UR2 when the model is supplemented with
the industry factors; they increase explanatory power by 1�45%.

We test for the statistical significance of each factor by calculating, for each
cross-sectional regression, the t-statistic for each estimated coefficient, based
on Hansen–White heteroskedasticity-consistent standard errors. Then for each
factor, we find the average number of cross-sectional regression t-statistics that
are significant at a 95% confidence level across the 444 time periods. The re-
sulting count statistic has an exact binomial distribution under the null hypoth-
esis that the factor return is zero each period. Table IVa shows the annualized
means and standard deviations of the factor returns, the percentage of signifi-
cant t-statistics for each factor, and the aggregate p-value. All five factors are
highly significant.

Table IVb displays the correlations of the estimated factors, along with the
three Fama–French factors, RMRF, SMB, and HML. RMRF is the Fama–
French market factor that denotes the return to the value-weighted market
index; SMB is the return to a small-capitalization portfolio minus the return
to a large-capitalization portfolio; HML is the return to a high book-to-price
portfolio minus the return to a low book-to-price portfolio, where all returns
are measured as excess to the Treasury bill return. See Fama and French (1993)
for a detailed discussion of their portfolio formation rules. We also include a
momentum factor created by French—the return to a portfolio with high cu-
mulative returns over the past 12 months minus the return to a portfolio with
low cumulative returns over the past 12 months, adjusted to have roughly equal
average capitalization; see French’s website6 for details, where all the Fama–
French data are freely available. Except for size, our factors and the analogous
Fama–French factors are highly correlated. Note that the size characteristic is
defined inversely in the two models, hence the negative correlation between
them. The Fama–French factors are based on capitalization-weighted portfo-
lios, whereas our factors are statistically generated, treating all assets equally.
Since the cross section of securities is dominated, in terms of the number of
securities, by low-capitalization firms, this induces a strong positive correla-
tion between our market factor and the Fama–French size (SMB) factor. Our
volatility factor has strong positive correlation with the market factor (either
version). This corroborates the finding in Ang et al. (2009, Table 10), which
shows high covariance between their idiosyncratic-volatility factor returns and
the Fama–French market factor returns. It also seems theoretically consistent

6See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_mom_factor.
html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_mom_factor.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_mom_factor.html
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TABLE IV

FACTOR RETURN STATISTICS AND COMPARISON TO FAMA–FRENCH FACTOR-MIMICKING PORTFOLIOSa

a. Factor Return Statistics

Market Size Value Momentum Volatility

Annualized mean 11.06% −4.47% 4.22% −1.18% −1.01%
Annualized volatility 19.73% 5.65% 4.29% 6.61% 7.85%
% Periods significantb 93.47% 68.02% 66.22% 59.46% 68.92%
Overall p-value 0.00% 0.00% 0.00% 0.00% 0.00%

b. Empirical Factor Return and Fama–French Return Correlations

Market Size Value Momentum Volatility RMRF SMB HML FF_MOM

Market 1.00 −0.01 −0.16 −0.47 0.78 0.85 0.64 −0.32 −0.21
Size 1.00 −0.59 0.13 −0.04 0.35 −0.32 −0.15 −0.11
Value 1.00 −0.09 −0.25 −0.46 0.06 0.71 −0.07
Momentum 1.00 −0.52 −0.24 −0.23 0.04 0.76
Volatility 1.00 0.62 0.61 −0.49 −0.19
RMRF 1.00 0.27 −0.44 −0.09
SMB 1.00 −0.29 −0.01
HML 1.00 −0.10
FF_MOM 1.00

aTable IVa shows the mean, volatility, and statistical significance of each factor. The statistical significance is calculated as the percentage of significant t-values (95% confidence
level) for each factor by computing for each cross-sectional regression, the t-statistic for each estimated coefficient based on Hansen–White heteroskedasticity-consistent standard
errors. The aggregate p-value is also provided. Table IVb displays the correlations between the estimated factors, along with the three Fama–French factors (RMRF, SMB, and
HML) and a momentum factor FF-MOM created by French. RMRF is the Fama–French market factor that denotes the return to the value-weighted market index minus the
risk-free return; SMB is the return to a small-capitalization portfolio minus the return to a large-capitalization portfolio; HML is the return to a high book-to-price portfolio
minus the return to a low book-to-price portfolio. FF-MOM is the return to a portfolio with high cumulative returns over the past 12 months minus the returns to a portfolio with
low cumulative returns over the past 12 months, adjusted to have roughly equal average capitalization.

bDefined as abs(t-value) > 1.96.
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FIGURE 3.—The characteristic-beta functions estimated on four subperiods. The SP1 line is a
function for the 1970 July–1980 June period and SP2 is for the 1980 July–1990 June period, while
SP3 and SP4 display functions for the 1990 July–2000 June and 2000 July–June 2007 periods, re-
spectively. The functions are estimated over a grid ranging from the 2.5% to the 97.5% empirical
quantile of the respective security characteristic.

with the finding in Ang et al. (2006) that the market factor return is negatively
correlated with changes in VIX, a forward-looking index of market volatility.
Essentially, the positive correlation between the own-volatility factor and mar-
ket factor means that high own-volatility stocks outperform when the overall
market rises and underperform when the overall market falls. There is also a
strong negative correlation between the own-volatility and momentum factor
returns.

Figure 3 shows the characteristic-beta functions reestimated on the four
nonoverlapping 111-month subintervals in the data set. The functions seem
stable over time although we do not attempt a formal test.

5.5. Including a Mispricing Function in Model Estimation

Next we add an additive nonparametric mispricing function (α function) to
the model and reestimate. We use the same set of four characteristics for the
α function as in the factor model and an additive form, so that the α func-
tion is the sum of four component nonparametric functions. The estimated
component α functions can be interpreted as a nonparametric version of the
collection of estimated α coefficients for characteristic-sorted portfolios shown
in Fama and French (1993, e.g., Table 6). Figure 4 shows the results. There is
little evidence against the five-factor asset pricing model: all four mispricing
functions differ only negligibly from zero. As a caveat, one should not casu-
ally examine these graphs looking for an upward or downward linear trend,
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FIGURE 4.—Characteristic-based mispricing functions. The four additive nonparametric char-
acteristic-based mispricing functions are estimated over a grid ranging from the 2.5% to the
97.5% empirical quantile of the respective security characteristic.

and not take the absence of such a trend as empirical confirmation of no mis-
pricing. Since the functions are required to be orthogonal to the estimated
characteristic-exposure functions, all of which have near linear shapes, they
cannot have such a shape. The same caveat applies when examining the panels
of estimated αs in Fama and French (1993, Table 6) since essentially the same
identification condition is imposed implicitly there.

6. SUMMARY AND CONCLUSION

Following the pioneering work of Rosenberg (1974), Fama and French
(1993) and others, characteristic-based factor models have played a leading
role in explaining the comovements of individual equity returns. This paper
applies a new weighted additive nonparametric estimation procedure to es-
timate characteristic-based factor models more data efficiently than existing
nonparametric methods. The methodology we have developed extends exist-
ing results to the large cross section large time-series setting. We obtain a vari-
ety of statistical results that are useful for conducting inference. We think this
methodology can be useful elsewhere.

We estimate a characteristic-based factor model with five factors: a market
factor, size factor, value factor, momentum factor, and own-volatility factor.
Although much of the existing literature has focused on the three-factor Fama–
French model (market, size, and value), we find that the momentum and own-
volatility factors are at least as important, if not more, than, size and value in
explaining return comovements. The univariate functions that map character-
istics to factor betas are monotonic but not linear; the deviation from linearity
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is particularly strong for size and value, and less so for momentum and own
volatility.

Our methodology provides a new nonparametric test of multi-beta asset
pricing theory. We estimate nonparametrically a set of additive mispricing
functions based on the four security characteristics. We show that the estima-
tion problem necessitates that an identification condition be imposed on the
mispricing functions: for each characteristic, the mispricing function must be
orthogonal to the factor exposure function. We show that the same identifica-
tion condition is imposed implicitly in the traditional Fama–French portfolio-
sort-based method. We find little evidence against the five-factor asset pricing
model, but note that the imposition of the identification condition limits the
power of this empirical finding. Since the factor exposure functions tend to be
fairly smooth monotonic functions, a mispricing function is only identified to
the extent that it is orthogonal to that shape.

APPENDIX: PROOF OF RESULTS

Let E� denote expectation conditional on all cluster � information.

PROOF OF THEOREM 1: For simplicity and without loss of generality, we
only take one observation per cluster; specifically, we use the sample {y�mt�X�m,
�= 1� � � � �L, t = 1� � � � � T } for some specificm, = 1, say. Under our conditions,
we have L independent cross-sectional units and T weakly dependent time se-
ries units. Furthermore, ε�m =∑T

t=1wTtε�mt = Op(δT ) under the moment and
mixing conditions we assume. We first establish the expansion for the initial es-
timator ĝ[0]

j (xj). We extend a little the result of Mammen, Linton, and Nielsen
(1999). Specifically, their main result contains a stochastic expansion with an
error of order op(n−2/5), which is suitable for a single cross-section of size n.
The main modification we make is with regard to the magnitude of the error
Δn in their Assumptions A6 and A7, which they take to be op(n−2/5). We note
that

sup
xk∈Sk

∣∣∣∣∫ p̂j�k(xj� xk)

p̂k(xk)
m̂A
j (xj)dxj

∣∣∣∣
= sup

xk∈Sk

∣∣∣∣∣
∫

p̂j�k(xj� xk)

p̂k(xk)p̂j(xj)

1
L

L∑
�=1

Kh(Xj�m�xj)ε�m dxj

∣∣∣∣∣
= sup

xk∈Sk

∣∣∣∣∣ 1
L

L∑
�=1

ε�m

∫
p̂j�k(Xj�m + uh�xk)
p̂k(xk)p̂j(Xj�m + uh) du

∣∣∣∣∣
=OP

(
L−1/2δT

)
�
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because of the properties of the kernel density estimators p̂j and p̂j�k, and
independence across �. A similar result holds for the L2 error magnitude. As
in their A7, the bias term error is op(h2).

Therefore, for any point xj ,

g̃j(xj)− gj(xj)= 1
Lpj(xj)

L∑
�=1

Kh(Xj�m�xj)ε�m + h2βj(xj)(30)

+OP
(
L−1/2δT

)+ op(h2)�

where βj(xj) is a deterministic bounded continuous function. The error in (30)
is uniform over xj . The first leading term in the expansion is Op(L−1/2h−1/2δT ).
It follows that g̃j(xj) is

√
LhδT consistent and asymptotically normal, and

asymptotically independent of g̃k(xk). Then by standard arguments,∫
g̃j(xj)

2 dP∗(xj) = ∫
gj(xj)

2 dP∗(xj) + 2
∫
gj(xj)βj(xj)dP

∗(xj) + op(h
2) +

Op(L
−1/2δT ), so that

ĝ[0]
j (xj)− gj(xj)=

1
Lpj(xj)

L∑
�=1

Kh(Xj�m�xj)ε�m + h2β[0]
j (xj)√∫

gj(xj)
2 dP∗(xj)

+OP
(
L−1/2δT

)+ op(h2)�

where β[0]
j (xj)= βj(xj)− gj(xj)

∫
gj(xj)βj(xj)dP

∗(xj).
The proof of our main result is given in the following lemmas. Lemmas 1

and 2 give the pointwise performance of the initial factor estimator, denoted f̃t ,
while Lemmas 3 and 4 give the uniform (over t) performance of f̃t . Lemmas 5
and 6 give the pointwise expansion of the update g̃[1]

j (xj) of g̃j(xj).
Consider the infeasible estimator f †

t that is the solution of the system of
linear equations A†f †

t = b†
t , where

b†
t = 1

L

L∑
�=1

1
M

M∑
m=1

G(X�m)y�mt�

A† = 1
L

L∑
�=1

1
M

M∑
m=1

G(X�m)G(X�m)
��

This is unique with probability 1.
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LEMMA 1: Under our assumptions, for any t,
√
L(f †

t − ft)�⇒N(0� Vt�t)�

PROOF: We have

√
L(f †

t − ft)= (A†)−1

√
L

n

n∑
i=1

G(Xi)εit = (A†)−1 1√
L

L∑
�=1

ζ�t�

where ζ�t =M−1
∑M

m=1G(X�m)σt(X�m)η�mt satisfies Eζ�t = 0 and

var(ζ�t)= E

[(
1
M

M∑
m=1

G(X�m)σt(X�m)

)

×
(

1
M

M∑
m=1

G(X�m)σt(X�m)

)�]
�

Furthermore, by the independence over �, the central limit theorem (CLT)
applies and 1√

L

∑L

�=1 ζ�t is asymptotically normal. Furthermore,A† =A+op(1)
using a law of large numbers over the independent clusters. The result then
follows by the Slutsky theorem. Note that f †

t and f †
s are correlated through the

error term. Q.E.D.

Now consider the feasible factor estimator based on the initial estimator f̃t =
Ã−1b̃t , where b̃t = n−1

∑n

i=1 G̃(Xi)yit and Ã = n−1
∑n

i=1 G̃(Xi)G̃(Xi)
�, where

G̃(Xi)= [1� g̃1(X1i)� � � � � g̃J(XJi)]�. Actually, this should be ĝ[0]
j in place of g̃j ,

but we ignore the distinction for notational compactness.

LEMMA 2: Under our assumptions, for any t, there is a stochastically bounded
sequence δn�t such that

√
L(f̃t − f †

t − h2δn�t)= op(1)�
PROOF: We use the matrix expansion (I + Δ)−1 = I − Δ + (I + Δ)−1Δ2 to

obtain

f̃t − f †
t = Ã−1b̃t −A†−1b†

t(31)

=A†−1(b̃t − b†
t )−A†−1(Ã−A†)A†−1b†

t

−A†−1(Ã−A†)A†−1(b̃t − b†
t )

+A†−1/2
[
I +A†−1/2(Ã−A†)A†−1/2

]−1

× Ã−1/2(Ã−A†)A†−1(Ã−A†)A†−1b̃t �
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The error ‖f̃t − f †
t ‖ is majorized by the errors ‖b̃t − b†

t ‖ and ‖Ã−A†‖ times
constants due to the invertibility of A†. For example,

‖A†−1(b̃t − b†
t )‖ ≤ λmax(A

†−1)‖b̃t − b†
t ‖

= 1
λmin(A†)

(
J∑
j=0

(b̃jt − b†
jt)

2

)1/2

�

‖A†−1(Ã−A†)A†−1b†
t ‖ ≤ λ1/2

max((Ã−A†)�(Ã−A†))

λ2
min(A

†)
‖b†

t ‖

≤

(
J∑

j�k=0

(Ãjk −A†
jk)

2

)1/2

λ2
min(A

†)
‖b†

t ‖�

where λmax(·) and λmin(·) denote the largest and smallest (respectively) eigen-
values of a square symmetric matrix. Furthermore, λmin(A

†)≥ λmin(A)−op(1),
where, by assumption, λmin(A) > 0. We establish the order in probability of the
terms b̃jt − b†

jt and Ãjk −A†
jk.

Consider the typical element in b̃t − b†
t ,

1
n

n∑
i=1

yit [̃gj(Xji)− gj(Xji)]

= 1
n

n∑
i=1

qit [̃gj(Xji)− gj(Xji)] + 1
n

n∑
i=1

εit [̃gj(Xji)− gj(Xji)]

= Tn1 + Tn2�

where qit = fut +∑J

j=1 gj(Xji)fjt . We consider the term Tn1. From (30), we have

Tn1 = 1
n

n∑
i=1

qit [̃gj(Xji)− gj(Xji)]

= 1
n

n∑
i=1

qit
1

npj(Xji)

n∑
i′=1

Kh(Xji′�Xji)εi′ + h2 1
n

n∑
i=1

qitβn�j(Xji)

+ 1
n

n∑
i=1

qit
1
n

n∑
i′=1

sn(Xi′�xj)εi′ + 1
n

n∑
i=1

qitRnj(Xji)

= Tn11 + Tn12 + Tn13 + Tn14�
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where Rnj is the remainder term in (30). The first term Tn11 is essentially a de-
generate U-statistic across clusters (Powell, Stock, and Stoker (1989)), that is,
Tn11 =∑L

�=1

∑L

�′=1ϕn���′ with ϕn���′ = n−2
∑M

m=1

∑M

m′=1 q�mtKh(Xj�′m′�Xj�m)ε�′m′/

pj(Xj�m). Then E�[ϕn���′ ] = 0. Therefore, we can write Tn11 = ∑L

�=1ϕn��� +∑L

�′=1E�′ [ϕn���′ ] +∑∑
��=�′ϕ̃n���′ , where ϕ̃n���′ = ϕn���′ − E�′ [ϕn���′ ] and, by con-

struction, E�[ϕ̃n���′ ] = E�′ [ϕ̃n���′ ] = 0. By straightforward moment calculations,
it can be shown that

∑L

�=1ϕn��� = Op(n
−3/2h−1δT )= op(L

−1/2). Specifically, we
have

var(ϕn���)= 1
n4
E

[
M∑
m=1

M∑
m′=1

M∑
m′′=1

q�mtq�m′′t

pj(Xj�m)pj(Xj�m′)

×Kh(Xj�m′�Xj�m)Kh(Xj�m′�Xj�m′′)ε2
�m′

]
= O(M3n−4δ2

T )+O(M2h−1n−4δ2
T )+O(Mh−2δ2

Tn
−4)�

and then we use that Mh → 0 to conclude that the third term in the above
display is the largest. Furthermore, we have

E�′ [ϕn���′ ] = M

n2

M∑
m′=1

ε�′m′E�′

[
q�mtKh(Xj�′m′�Xj�m)

pj(Xj�m)

]

� M2

n2

1
M

M∑
m′=1

ε�′m′q�′m′t �

where q�′m′t = E[(fut + ∑J

j′=1 gj′(Xj′�m)fj′t)/pj(Xj�m)|Xj�′m′ ]. It follows that
var(E�′ [ϕn���′ ])=O(n−4M4δ2

T ) and so
∑L

�′=1E�′ [ϕn���′ ] =Op(L−3/2δT ). Further-
more, var(ϕ̃n���′) = O(Mh−2δ2

Tn
−4) so that

∑∑
��=�′ ϕ̃n���′ = Op((L

2Mh−2δ2
T ×

n−4)1/2)= op(L−1/2δT). Furthermore, Tn12 =Op(h2) and Tn13�Tn14 = op(L−1/2 ×
δT ). Therefore, b̃t − b†

t =Op(L−1/2δT )+Op(h2).
Likewise, the typical element in Ã−A† satisfies

1
n

n∑
i=1

[̃gj(Xji)g̃k(Xki)− gj(Xji)gk(Xki)]

=Op(h2)+Op(L−1/2δT )+Op(n−1T−1h−1)�

It follows that provided Lh4 → 0,
√
L(f̃t −f †

t )= op(1). More generally, letting

δn�t = 1
n

n∑
i=1

[
fut +

J∑
j=1

gj(Xji)fjt

]
βn�j(Xji)�
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we have
√
L(f̃t − f †

t − h2δn�t)= op(1). Q.E.D.

We now turn to the uniform over t properties, (26). By the triangle inequal-
ity, max1≤t≤T ‖f̃t − ft‖ ≤ max1≤t≤T ‖f̃t − f †

t ‖+ max1≤t≤T ‖f †
t − ft‖. We first exam-

ine max1≤t≤T ‖f †
t − ft‖.

LEMMA 3: Under our assumptions,

max
1≤t≤T

‖f †
t − ft‖ =Op

(
L−1/2(logT)ρ

)
�

PROOF: By extending the argument of Lemma 1, there is a finite constant C
such that

max
1≤t≤T

‖f †
t − ft‖ ≤ (C + op(1)) max

j=u�1�����J
max
1≤t≤T

∣∣∣∣∣1n
n∑
i=1

εitgj(Xji)

∣∣∣∣∣
with gu = 1. Since J is finite, it suffices to show that for each j,

max
1≤t≤T

∣∣∣∣∣1n
n∑
i=1

εitgj(Xji)

∣∣∣∣∣= max
1≤t≤T

∣∣∣∣∣ 1
L

L∑
�=1

ε�
j�t

∣∣∣∣∣=Op(L−1/2(logT)ρ
)

(32)

for some ρ > 0, where ε�
j�t =M−1

∑M

m=1 ε�mtgj(Xj�m).
Let ε+

j�t = ε�
j�t1(|ε�

j�t | ≤ (LT)1/κ) − E[ε�
j�t1(|ε�

j�t | ≤ (LT)1/κ)]. Then 1 −
Pr[|ε�

j�t| ≤ (LT)1/κ for 1 ≤ t ≤ T and 1 ≤ � ≤ L] ≤ LT Pr[|ε�
j�t | > (LT)1/κ] ≤

E[|ε�
j�t |κ1(|ε�

j�t | > (LT)1/κ)] → 0. We now apply the Bonferroni and ex-
ponential inequalities to max1≤t≤T | 1

L

∑L

�=1 ε
+
j�t |. In particular, letting τ2

LT =
inf1≤t≤T var[∑L

�=1 ε
+
j�t], we have

Pr

[
max
1≤t≤T

∣∣∣∣∣
L∑
�=1

ε+
j�t

∣∣∣∣∣>KL1/2

]
≤

T∑
t=1

Pr

[∣∣∣∣∣
L∑
�=1

ε+
j�t

∣∣∣∣∣>KL1/2

]

≤ 2T exp
(

− LK2

2τ2
LT + 2(LT)1/κL1/2K/3

)
�

By taking K = (logT)ρ, the right-hand side is o(1) provided κ > 4. Q.E.D.

LEMMA 4: Under our assumptions,

max
1≤t≤T

‖f̃t − f †
t ‖ =Op

(
L−1/2δT (logT)ρ

)+Op(h2(logT)ρ′)�
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PROOF: As before, we apply the triangle inequality again to each term in
(31). We have max1≤t≤T ‖b†

t ‖ = Op((logT)ρ′), so it suffices to bound the terms
max1≤t≤T |̃bjt − b†

jt | and max1≤t≤T |Ãjk −A†
jk|. We just show that

max
1≤t≤T

∣∣∣∣∣ 1
L

L∑
�=1

1
M

M∑
m=1

[
fut +

J∑
j=1

gj(Xj�m)fjt

]
[̃gj(Xj�m)− gj(Xj�m)]

∣∣∣∣∣(33)

=Op
(
L−1/2(logT)ρ

)+Op(h2(logT)ρ′)�

max
1≤t≤T

∣∣∣∣∣ 1
L

L∑
�=1

1
M

M∑
m=1

ε�mt [̃gj(Xj�m)− gj(Xj�m)]
∣∣∣∣∣=Op(L−1/2(logT)ρ

)
�(34)

This uses the same type of techniques as above. In particular, we have

max
1≤t≤T

∣∣∣∣∣h2 1
L

L∑
�=1

1
M

M∑
m=1

[
fut +

J∑
j=1

gj(Xj�m)fjt

]
βj(Xj�m)

∣∣∣∣∣
≤ h2

(
max
1≤t≤T

|fut | 1
L

L∑
�=1

1
M

M∑
m=1

|βj(Xj�m)|

+
J∑
j=1

max
1≤t≤T

|fjt | 1
L

L∑
�=1

1
M

M∑
m=1

|gj(Xj�m)‖βj(Xj�m)|
)

=Op(h2(logT)ρ
′
)�

Furthermore,

max
1≤t≤T

∣∣∣∣∣ 1
L

L∑
�=1

1
M

M∑
m=1

ε�m

[
fut +

J∑
j′=1

E[gj′(Xj′�m)|Xj�m]fj′t
]∣∣∣∣∣

=Op
(
L−1/2δT (logT)ρ

′)
�

In conclusion we have shown max1≤t≤T ‖f̃t − ft‖ = Op((L
−1/2δT (logT)ρ) +

Op(h
2(logT)ρ′

). Q.E.D.
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Finally, we establish the asymptotic distribution of ĝj(xj)� Consider the one-
step estimator

ĝ[1]
j (xj)=

T∑
t=1

f̃jt

[̂
λ1t(j� xj)− f̃ut −

∑
k �=j
f̃kt λ̃2(j�k�xj)

]
T∑
t=1

f̃ 2
jt

�

λ̂1t(j� xj)=

n∑
i=1

Kh(Xji� xj)yit

n∑
i=1

Kh(Xji� xj)

�

λ̃2(j�k�xj)=

n∑
i=1

Kh(Xji� xj)g̃k(Xki)

n∑
i=1

Kh(Xji� xj)

�

Define the infeasible estimator

g̃[1]
j (xj)=

T∑
t=1

fjt

[̂
λ1t(j� xj)− fut −

∑
k �=j
fkt λ̃2(j�k�xj)

]
T∑
t=1

f 2
jt

�

LEMMA 5: Under our assumptions,

ĝ[1]
j (xj)− gj(xj)= g̃[1]

j (xj)− gj(xj)+Op
(
L−1/2δT

)+Op(h2)�

PROOF: We expand ĝ[1]
j (xj) about g̃[1]

j (xj) in a Taylor expansion in f̃jt − fjt

and g̃k(Xki) − gk(Xki) and obtain many terms. A typical term is
∑T

t=1(f̃jt −
fjt)fjtgj(xj)/

∑T

t=1 f
2
jt . Then

1
T

T∑
t=1

(f̃jt − fjt)fjt = 1
T

T∑
t=1

(f̃jt − f †
jt)fjt +

1
T

T∑
t=1

(f †
jt − fjt)fjt�(35)

where T−1
∑T

t=1(f
†
jt − fjt)fjt = (A†)−1T−1

∑T

t=1 fjtn
−1
∑n

i=1G(Xi)εit =
Op(L

−1/2T−1/2). The expansion for T−1
∑T

t=1(f̃jt − f †
jt)fjt is more complicated,
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but one obtains terms like

1
T

T∑
t=1

fjt
1
n

n∑
i=1

yit [̃gj(Xji)− gj(Xji)]

= 1
T

T∑
t=1

fjt
1
n

n∑
i=1

εit [̃gj(Xji)− gj(Xji)]

+ 1
T

T∑
t=1

fjt
1
n

n∑
i=1

[
fut +

J∑
j=1

gj(Xji)fjt

]
[̃gj(Xji)− gj(Xji)]�

The double averaging makes the leading stochastic terms Op(L−1/2T−1/2) the
bias terms are always Op(h2), and we cannot eliminate the remainder term of
Op(L

−1/2δT ). Q.E.D.

Define

Ũn1j = 1
pj(xj)

1
n

n∑
i=1

Kh(Xji� xj)̃εji� ε̃ji =
∑T

t=1 fjtεit∑T

t=1 f
2
jt

�(36)

LEMMA 6: Under our assumptions,

g̃[1]
j (xj)− gj(xj)= Ũn1j +Op(h2)+ op

(
n−1/2T−1/2h−1/2

)
�

√
nThŨn1j �⇒N(0�Ωj(xj))�

PROOF: The term Ũn1j is a sum of independent random variables, and is
Op(n

−1/2h−1/2T−1/2) with mean zero and variance as stated in Theorem 1.
Specifically, write

1
n

n∑
i=1

Kh(Xji� xj)̃εji = 1
L

L∑
�=1

ξj�� ξj� = 1
M

M∑
m=1

Kh(Xj�m�xj)̃εj�m

with ξj� independent across �. We have

var(ξj�)= 1
M2

M∑
m=1

E[Kh(Xj�m�xj)
2ε̃2
j�m]

+ 1
M2

M∑
m=1

M∑
m=1

m �=m′

E[Kh(Xj�m�xj)Kh(Xj�m′�xj)̃εj�mε̃j�m′ ]
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= 1
M
E[Kh(Xj�m�xj)

2ε̃2
j�m]

+ M(M − 1)
M2

E[Kh(Xj�m�xj)Kh(Xj�m′�xj)̃εj�mε̃j�m′ ]�

Note that E[̃εj�m|Xj�m = xj] = 0 and

var[̃εj�m|Xj�m = xj] =

T∑
t=1

f 2
jtσ

2
jt(xj)(

T∑
t=1

f 2
jt

)2 ≤ C

T

for some C <∞ for large enough T . Therefore, var(ξj�) = O(M−1T−1h−1)+
O(T−1). Since we assumed thatMh→ 0, it is the first term that dominates and
Ũn1j = Op(L

−1/2M−1/2T−1/2h−1/2). Furthermore, we can apply the Lindeberg’s
CLT for independent random variables. The quantities Ũn1j(xj) and Ũn1k(xk)
are asymptotically independent by standard arguments for kernels.

Consider

T∑
t=1

fjt

[̂
λ1t(j� xj)− fut −

∑
k �=j
fkt λ̃2(j�k�xj)

]
T∑
t=1

f 2
jt

− gj(xj)

= 1
T∑
t=1

f 2
jt

T∑
t=1

fjt

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

Kh(Xji� xj)[yit − fut −
∑
k �=j
fkt g̃k(Xki)]

n∑
i=1

Kh(Xji� xj)

− fjtgj(xj)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= 1
T∑
t=1

f 2
jt

T∑
t=1

fjt

n∑
i=1

Kh(Xji� xj)εit

n∑
i=1

Kh(Xji� xj)
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+ 1
T∑
t=1

f 2
jt

T∑
t=1

fjt

n∑
i=1

Kh(Xji� xj)[gj(Xji)− gj(xj)]
n∑
i=1

Kh(Xji� xj)

− 1
T∑
t=1

f 2
jt

T∑
t=1

fjt

n∑
i=1

Kh(Xji� xj)
∑
k �=j
fkt [̃gk(Xki)− gk(Xki)]

n∑
i=1

Kh(Xji� xj)

=Unj1 +Unj2 +Unj3�

By the same arguments as above, p̂j(xj) = n−1
∑n

i=1Kh(Xji� xj) = pj(xj) +
O(h2)+Op(L−1/2)+Op(n−1/2h−1/2)� Therefore,

Unj1 = 1
n

n∑
i=1

Kh(Xji� xj)̃εji
1

pj(xj)(1 + op(1)) �

The term Unj2 is a bias term of order h2. The term Unj3 can be shown to be
Op(h

2)+ op(n−1/2T−1/2h−1/2). Q.E.D.

Now define f̂ [1]
t as in (19). Using the above expansion it can be shown that the

results of Lemmas 2 and 4 continue to hold with f̂ [1]
t replacing f̃t with a differ-

ence sequence δn�t . Then we can show that the conclusion of Lemmas 5 and 6
continue to hold with ĝ[2]

j replacing ĝ[1]
j . This process can be continued for any

finite number of iterations; see Linton, Nielsen, and Van der Geer (2003). The
only thing that changes in the expansions is the bias function, although it can
still be approximated by some bounded continuous function. If the initial esti-
mator has a slower initial rate, then more iterations are needed to guarantee
the same result. Q.E.D.
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