
Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

G
s

V
a

b

a

A

R

R

1

A

P

M

C

S

1

A
m
r

(

(

(

0
d

 by COREView metadata

 Archive Library
c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

raphical simulation environments for modelling and
imulation of integrative physiology

ioleta Mangourovaa,∗, John Ringwooda, Bruce Van Vlietb

Dept. of Electronic Engineering, NUI Maynooth, Ireland
Biomedical Sciences Division, Memorial University, St. John’s, Newfoundland, Canada

r t i c l e i n f o

rticle history:

eceived 27 April 2009

eceived in revised form

7 April 2010

ccepted 8 May 2010

hysiology

athematical model

omputer model

a b s t r a c t

Guyton’s original integrative physiology model was a milestone in integrative physiology,

combining significant physiological knowledge with an engineering perspective to develop

a computational diagrammatic model. It is still used in research and teaching, with a

small number of variants on the model also in circulation. However, though new research

has added significantly to the knowledge represented by Guyton’s model, and significant

advances have been made in computing and simulation software, an accepted common

platform to integrate this new knowledge has not emerged. This paper discusses the issues

in the selection of a suitable platform, together with a number of current possibilities, and

suggests a graphical computing environment for modelling and simulation. By way of exam-

brought to you, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research
imulation ple, a validated version of Guyton’s 1992 model, implemented in the ubiquitous Simulink

environment, is presented which provides a hierarchical representation amenable to exten-

sion and suitable for teaching and research uses. It is designed to appeal to the biomedical

engineer and physiologist alike.

the associated question as to whether a single computing plat-
form can cater for needs at all levels of detail and timescale.
. Introduction

t the time of its conception (1972), the integrated physiology
odel developed by Guyton [1] was a breakthrough in many

espects:

1) It assembled the available knowledge on the dynamics of
the body’s circulatory components and how they inter-
acted with each other,

2) It presented a diagrammatic form, which allowed the total-
ity of the model to be viewed and interactions examined,
and

3) The model was specified using the basic components of
integrators, summers and (sometimes nonlinear) gains,

the fundamental building blocks of analogue computers,
facilitating computation.

∗ Corresponding author. Tel.: +353 879886557.
E-mail address: violeta.i.mangourova@nuim.ie (V. Mangourova).

169-2607/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights res
oi:10.1016/j.cmpb.2010.05.001
© 2010 Elsevier Ireland Ltd. All rights reserved.

Clearly, the longevity of this model is testament to its
quality and usefulness. Unfortunately, developments in inte-
grative physiological modelling have not kept pace with
further discoveries in physiological science and developments
in computing. In particular, the absence of an agreed comput-
ing platform, which can serve current teaching and research
purposes, and be added to and updated by the physiology
community at large, is disappointing. Recently, a number of
large-scale initiatives have emerged, such as the IUPS (Inter-
national Union of Physiological Sciences) Physiome Project [2],
which attempt to directly address this issue. However, there
is the issue of the universal adoption of a single standard in
a situation where a number of competing standards exist and
Furthermore, in the multi-disciplinary world of physiologi-
cal modelling, where mathematicians, engineers, scientists

erved.

https://core.ac.uk/display/297013528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.cmpb.2010.05.001
mailto:violeta.i.mangourova@nuim.ie
dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

s i n b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304

Fig. 1 – Multiscale modelling hierarchy [15].
296 c o m p u t e r m e t h o d s a n d p r o g r a m

and medical practitioners collaborate, researchers may favour
modelling and computing tools which are prevalent in their
own original discipline area.

This paper looks at the modelling and simulation require-
ments of integrative physiology and the range of tools
available, and under development, which address this issue.
We propose a graphical modelling and simulation environ-
ment as an integrated solution and present a validated
Simulink version of Guyton’s most recent (1992) model [3] as
an example of such a solution, together with a discussion of
outstanding issues which need to be resolved.

2. Physiology modelling and simulation

Traditionally, mathematical models are presented through a
series of equations (algebraic and/or differential), with the
possibility of a block diagram representing the interconnec-
tions of various subsystems. Guyton’s model represents such
a block diagram, where the individual building blocks are
described by particularly simple elements: summers, integra-
tors and (possibly nonlinear) gains. This elementary form was
particularly chosen to suit implementation on an analogue
computer. Various digital computing models have derived
from Guyton’s model, with a variety of characteristics. The
Fortran implementation of Guyton’s model simulated using
MODSIM [4], and based on a difference equation form relying
on forward-difference discretization, is used as a teaching and
research tool [3]. The sequential command form of the code
makes the wider interactions in the model difficult to visu-
alise. Coleman’s extension of Guyton’s work [5] via the QHP
(Quantitative Human Physiology) model was available only in
executable form (for teaching purposes) until recently, when
an eXtensible Markup Language (XML) version of the model
was released [6,7]. This extended model, however, is difficult
to read and visualise, since no diagrammatic form exists.

2.1. Modelling

In order to take a structured approach to the discussion
of modelling and simulation for integrative physiology, one
must question the objective of the modelling and simulation
exercises. In modelling, the following set of objectives are per-
tinent:

• Develop a set of continuous-time equations which repre-
sent the underlying physiological components [8–11],

• Parameterise the equations on experimental data [12], and
• Validate the model on previously unseen data [13].

Regarding the mapping of the physiology to a set of equa-
tions, a variety of levels of granularity and transparency are
possible:

• In relation to transparency, models have the following
forms:

◦ White-box, where each parameter represents a physical

physiological quantity,
◦ Grey-box (and the sub-classes of off-white, smoke-grey,

steel-grey and slate-grey [14]), with various levels of con-
nection to the underlying physiological structure, and
◦ Black-box, where the model simply reproduces the exper-

imental output data, given the same stimulus, but the
internal model structure bears no resemblance to the
physiology.

• A variety of timescales may be encapsulated by a single,
integrated model, and

• A model may be hierarchically built using progressively
larger ‘component’ sizes. See, for example, the hierarchy
suggested by Hunter and Nielsen [15] in Fig. 1.

However, it is reasonably clear that a digital computer
implementation should not necessarily have to go through
the steps required for simulation on analogue computers, but
rather should focus on representations that relate to physical
or intuitive quantities and representational levels that assist
visualisation and ease of use.

A number of formalised modelling methods [16], some of
which have the ability to deal with non-homogeneous systems
(i.e. systems with mixtures of mechanical, flow, and electri-
cal elements), e.g. bond graphs [17,18], are available, which
systematically take the modeller through Step 1 described in
Section 2.2. A variety of system identification routines [12] can
be used to estimate parameter values from experimental data.

2.2. Simulation

Physiological modelling gives us a representation of a real
system, parameterised either in terms of physiological quanti-
ties which are known (constants and variables) or a black-box
model that simply has the capability to produce an ‘output’
signal in response to a stimulus. In order for the representa-
tion to simulate the system, it needs to be implemented on a
computer. Some model forms (e.g. black-box models), which
are built using computers, are easily directly simulated, while
others require inputting to a simulation engine. One can docu-

ment the steps required in simulating a system (physiological
or otherwise) on an analogue computer as:

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

i n b i

(

(

(

•
•

•

r

(
(

m
u
s
i
t
a
t
[

t
d
t
d
s
M
t
A
w
z
o
d
r
[

s
p
r
c
t
d
b

3

C
f
c
d
t
u

c o m p u t e r m e t h o d s a n d p r o g r a m s

1) Model equations are assembled—structure and form,
including interconnections,

2) Model parameters are determined (white, various shades
of grey, black),

3) Model equations are then decomposed into fundamental
components of:

Summation nodes,
Integrators (the fundamental dynamic element in an ana-
logue computer), and
Gains, including nonlinear gain elements.

For simulation on a digital computer, step 3 above is
eplaced by:

4) Model equations are discretized, and
5) Equations are implemented in computer code.

It is clear that the parameterisation of Guyton’s model was
otivated by analogue computer simulation and, while their

se is now virtually redundant, they do not require the extra
tep of choosing a discretization method, as required in a dig-
tal computer simulation. At this stage, it is useful to observe
hat there is no ‘perfect’ form of discretization which preserves
ll the properties of the original continuous-time system (e.g.
ime response, frequency response, etc.) with exact fidelity
19].

Therefore, a model simulated using different discretiza-
ion techniques may produce significantly different responses,
epending on the nature of the system. Certain nonlinear sys-
ems, stiff systems (systems containing both fast and slow
ynamics) and systems containing algebraic loops may all be
ensitive to the simulation engine and/or discretization used.
ost discretization methods are based on numerical integra-

ion techniques (e.g. Euler, Runge-Kutta, methods based on the
dams-Moulton and Adams-Bashford families, etc.) [20–22],
ith some based on frequency response mapping (e.g. pole-

ero mapping) [23]. For example, a Fortran implementation
f Guyton’s model [3] uses a (first order) forward-difference
iscretization method. Other methods produce authentic
esponses for particular inputs, such as impulses, steps, etc.
24].

Therefore, we need to decide what we want to achieve in
imulation [25] and the ability to reproduce the output of a
ublished model [26] may require more than the ability to
ead the set of continuous-time equations using a common
omputer-interpretable standard. One can include the equa-
ions, so long as the simulation metadata is also included, i.e.
iscretization method, word-length, how to deal with alge-
raic loops, etc.

. Modelling and simulation environments

urrently, a wide variety of modelling and simulation plat-
orms exist, many of which suggest to offer the user

ustomisation and facilities specific to certain application
omains. We briefly review the classes of such platforms in
he remainder of this section, with the focus on their possible
se for integrative physiology.
o m e d i c i n e 1 0 2 (2 0 1 1) 295–304 297

3.1. Diagrams and equations

The original (for example, see [27]), and one of the best envi-
ronments for the communication of mathematical models is
using block diagrams and differential or difference equations.
Specification of sets of continuous-time equations (with asso-
ciated block diagrams showing subsystem interconnection)
still dominates the published literature. This form, usually
specified in continuous-time, utilises well-accepted standard
mathematical and block diagram notation, but is not directly
computer readable and is purely for representation purposes,
with no simulation potential or information.

3.2. Markup languages

Markup languages have become popular over the past two
decades in attempting to provide universal specification of
content, for example the HyperText Markup Language (HTML)
in the specification of presentation for web browsers and UML
(the Unified/Universal Modelling Language), which is a stan-
dardised visual specification language for object modelling
in software engineering. More generally, XML (eXtensible
Markup Language) was developed as a framework within
which other ‘MLs’ could be generated for specific purposes,
an example of which includes MathML [28], which is used for
the specification of mathematical expressions and can form
the basis for mathematical model description. MathML has
found currency in the specification of econometric models,
for example in the Journal of Econometrics.

The main advantages of the markup languages is that they
reduce relatively complex content to very simple, but verbose,
ascii form. This guarantees maximum transportability and an
independence from machine-specific implementations. It also
provides some element of ‘future-proofing’, in that the way in
which the ML content is utilised is not specified exactly, so
that future technology can both produce the ML content effi-
ciently and ‘utilise’ it effectively. A number of domain-specific
markup languages have evolved, including:

• The set of markup languages associated with the IUPS Phys-
iome project (see Fig. 2, and also [29]), namely [30]:

◦ ProteinML which can describe pathway models,
◦ CellML [31], which provides a representation of the mathe-

matical relationships of biophysical models at the cell level,
◦ TissueML, which describes models at the tissue level,
◦ FieldML [32], describing spatially and temporally varying

fields (such as electric fields) related to cell structure,
◦ AnatML, which deals with physiology at the organ level, and
◦ PhysioML [33], which addresses the organ system and organ-

ism level.

• CML (Chemical ML) [34], which provides a representation
for managing molecular information, from macromolecular
sequences to inorganic molecules and quantum chemistry.

• SBML (Systems Biology ML) [35], which describes mod-
els of biochemical networks, such as signal transduction,

metabolic pathways and gene regulation, and

• SysML (Systems ML) [36], which caters for ‘systems’
engineering, typically supporting block diagrams of inter-
connected systems.

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

298 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304

sed
Fig. 2 – Spatial (top) and temporal (bottom) scales encompas
markup language (based on [30]).

CellML, promoted by the IUPS Physiome Project [2], is a sub-
set of Content MathML, which is the ‘active’ version of MathML
(the other one is Presentation MathML). CellML has been sug-
gested as a potential solution platform for cell function and
to standardise the interface to other computer programs and
probably represents the most developed of the IUPS Phys-
iome ‘MLs’. A CellML model contains both the essential model
equations, written in ascii/markup, and associated ‘metadata’
which contains [31]:

• The units in which the variables associated with the model
component are measured,

• Author, literature reference, creation date, and
• Biological context.

An element of hierarchy is also provided for in CellML
via the encapsulation and containment grouping relationships.
Simulation tools are available for CellML models, via a CellML
application programming interface (API) [31], and graphi-
cal tools for the development of CellML models are under
development. CML and SBML appear to overlap in scope with
some of the IUPS Physiome ‘MLs’, while PhysioML [33] is
somewhat unique in its ability to control the interface display
and can perform ‘computational steering’, which refers to
the selection of particular variables which can be altered
during computation. However, there is currently no means
to incorporate model descriptions in PhysioML though there
may be an option in the future to achieve this using MathML.
SysML operates at a high (systems) level and customises
UML for systems engineering applications. It allows for
the incorporation of ‘systems-level’ information, including
hardware, software, information, processes, personnel, and
facilities. Virtually all of the ‘MLs’ (including supporting
software, which can include modelling and simulation tools)
are well documented on individual websites, which are easily
accessed using popular search engines.

3.3. Graphical modelling and simulation environments

There is a wide range of graphical modelling and simulation

environments available. In general, they integrate the func-
tions of modelling and simulation, where models are built up
in block diagram form and a simulation engine (with selectable
parameters) can be used to run the model.
by the Human Physiome Project along with corresponding

The range of graphical modelling/simulation environ-
ments includes the following: Modelica/Dymola (The Modelica
Association), Scicos (The Scilab Consortium), Simulink (The
Mathworks Inc.), ExtendSim/Extend 6 (Imagine That Inc.) , 20-
sim (Controllab Products B.V.), Easy5 (Mechanical Dynamics
Inc.), MATRIXx (National Instruments Corporation) and Vis-
Sim (Visual Solutions Inc.). These are all proprietary software
packages, apart from Scicos, while the open-source Mod-
elica [37] modelling environment requires the commercial
Dymola application for simulation. In general, graphical simu-
lation packages offer very fast development times for models,
assisted by libraries of standard blocks and, in many cases
(e.g. Simulink/MATLAB (The Mathworks Inc.), Scicos/Scilab),
an associated macro language parser which allows high-level
calculations. Of the listed packages, Simulink [38] is probably
the most popular, though it has become relatively expensive
and it is unclear whether commercial motives or necessary
technical changes have resulted in compatibility difficulties
between the many releases, which seem to come at an ever
increasing rate. The Scilab/Scicos [39] environment is unlikely
to suffer the same fate, being an open-source platform, but
does not yet offer the same level of functionality as MAT-
LAB/Simulink. Modelica, which is promoted by the non-profit
Modelica Association, has the advantage of being object ori-
ented and can model complex heterogeneous systems. The
most popular simulation engine for Modelica, Dymola is,
however, a commercial product, though other (free) simula-
tion engines, including OpenModelica and Modelicac are also
available. In addition, a Modelica to XML translation is avail-
able [40], which would allow to share the model in a generic
format.

In terms of capability, Simulink performs best with
pure ordinary differential equations (ODEs), with algebraic
equations solved iteratively, which can require excessive
computation (though insertion of small artificial delays can
circumvent this). Modelica/Dymola provides a more natu-
ral way to simulate differential algebraic equations (DAEs)
directly. In terms of model storage, Simulink uses a proprietary
(and quite opaque) format, though translators [41,42] are avail-

able to convert between representations, but these are unlikely
to preserve the full detail of the original model description.

A particularly promising open-source offering under devel-
opment is the ProMoT (Max Planck Institute) (Process

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304 299

Fi
g.

3
–

O
u

r
S

im
u

li
n

k
im

p
le

m
en

ta
ti

on
of

G
u

yt
on

’s
19

92
m

od
el

.

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

s i n b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304

Fig. 4 – First order system with steady-state gain b/a and
300 c o m p u t e r m e t h o d s a n d p r o g r a m

Modelling Tool) environment [43], which can build structured
dynamic simulation models that are based on differential
and algebraic equations. Developed originally for process
engineering, it has been more recently applied to systems biol-
ogy, with library modules available for application domains
such as separation processes, membrane processes, fuel cells,
metabolic cellular processes and signal transduction. Simula-
tion is via the DIVA package, which uses some commercial
libraries for numerical computation, but a further open-
source simulation module (DIANA, Dynamic sImulation And
Numerical Analysis tool) is currently under development. Pro-
MoT uses symbolic reduction for efficient simulation, which
deals effectively with algebraic loops. The scripting language,
Python, is used as a command-line interface, and an interface
is provided to MATLAB, with other interfaces possible using
the SBML standard. Example applications which use ProMoT
include [44,45].

Other graphical modelling/simulation tools, which have
been developed for specific biomedical applications, include
Cytoscape [46], which is an open-source software project
for integrating biomolecular interaction networks with high-
throughput expression data and other molecular states into
a unified conceptual framework. The essential building block
of Cytoscape is the network graph. Finally, SAAM II (Univer-
sity of Washington) [47] is a software environment having
a command-line and graphical interface for tracer and
pharmokinetic studies.

3.4. High-level languages

Following the development of the digital computer,
continuous-time models could be implemented using
high-level programming languages. Following the digital sim-
ulation process outlined in Section 2.2, this requires the user
to ‘manually’ discretize the system and take care of algebraic
loops leading to some individuality in the simulation results.
The resulting high-level code is strictly sequential (with,
of course, provision for looping and branching), making it
rather difficult to interpret from a ‘systems’ perspective. The
exception to such sequential processing is the possibility for
parallel computation. However, the possibility of obtaining
an exact custom map of physiology structure onto parallel
computing hardware would be difficult to achieve and is not
likely to be a cost-effective solution, nor would it provide
significant extra accuracy or intuitive appeal.

High-level languages which have been employed for
dynamic simulation include Basic, Fortan, Pascal, Ada, C, C++,
Java, etc. The main advantage of customised coding using a
high-level language is the speed gain over, say, graphical sim-
ulation environments. This speed advantage has resulted in
the continued popularity for certain computationally inten-
sive application areas, e.g. marine hydrodynamics [48].

4. Guyton’s model in Simulink
When modelling of physiological systems is concerned, the
question of what level to define the model at, always arises.
Models can be defined at a multitude of levels and poten-
tially models at different spatial levels and different levels of
time constant 1/a.

timescale resolution can be integrated. The necessity of such
integrated implementation needs to be assessed taking into
consideration the computational intensity, and purpose of the
model, and the aptness of carrying a large complexity if it is
not necessary.

An example of model implementation at the ‘macro’
(computational physiology [49], systems physiology, organ
systems) level has been shown by Cabrera [50], who looks at
the dynamics of lactate production during exercise. The model
is in a block diagram form and at the ‘Organ systems’ (or inter-
organ) level in Fig. 1.

Guyton’s model implemented in this study in the Simulink
environment is at the ‘Organ systems’ level also and an exam-
ple of the systems and subsystem levels is shown in Fig. 3. The
top level is shown and two subsystem levels, including one at
the lowest first order dynamic level.

The 1972 published version of Guyton’s model has been
implemented by a number of researchers ([51,52]) in the
Simulink format suggested in this study. A 1986 version of
Guyton’s model, which was not published, has also been
implemented by Kofranek et al. [51].

In this present study, the most current version of Guy-
ton’s model from 1992 was implemented in Simulink, using
both model diagrams, similar to those published in 1972,
and Fortran code implementation of the model equations
in discrete-time [3]. Our Simulink version of the model was
implemented in continuous-time, i.e. using continuous-time
integrator blocks, while the discretization method for model
simulation can be chosen from a variety of solvers, with either
a fixed or variable step size. Since the model size, and number
of variables and parameters, has increased immensely since
the first version of the model from 1972, multiple layers of sub-
systems were used. At the lowest level, a first order dynamic
system was implemented as in the original model diagram [1]
with an integrator, a gain and a summer, as in Fig. 4, and was
subsequently ‘masked’ as a transfer function in the s-domain
in the form of:

G(s) = Y(s)
X(s)

= kss

1 + s�
. (1)

This representational form allows an easy deduction of the
system’s steady-state gain kss = b/a and time constant � =
1/a, and is much preferred to the original lower level gain-
summer-integrator implementation. Fig. 5 shows a sample
step response of such a first order system, where kss > 1.

Some issues transpired during the model implementation

and validation. In the Fortran implementation of the model
[3], first order ‘damping dynamics’ were included. These seem
to have been added to avoid numerical instability; however

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i

Fig. 5 – First order system step response with steady-state
g

i
p
i
d
t
i
t
e
t
m
t
d

t
a

A

F
r

ain kss = b/a > 1 and time constant � = 1/a.

t is not completely clear whether these dynamics have any
hysiological function or are simply a feature of the model

mplementation and, in particular, the possibly unsuitable
iscretization method. In addition, most of these discrete-
ime first order dynamic ‘damping’ equations included specific
ntegration step sizes, as expected, while a few of the equa-
ions did not feature these step sizes. A discrete dynamic
quation without an integration step size has no continuous-
ime counterpart and cannot be implemented in our Simulink

odel without making unreasonable assumptions, such as
hat the step size is included in the gain parameter, which
efines the time constant of the system.

An example of a first order damping equation, the calcula-
ion of angiotensin secretion, where a step size is included, is

s follows:

NX1 = ANX1 + ANX − ANX1
ANV ∗ I

(2)

ig. 6 – Comparison between MODSIM and Simulink implement
educed kidney mass and increased salt intake.
o m e d i c i n e 1 0 2 (2 0 1 1) 295–304 301

where ANX refers to the angiotensin secretion, ANX1, actual
ANX after damping, ANV, time constant of angiotensin secre-
tion, and I, the time incrementation step.

Alternatively, an example of a dynamic equation without
the necessary incrementation step size is the damping of renal
peritubular capillary reabsorption (RFAB1):

RFAB = RFAB + RFAB1 − RFAB
RFABDP

(3)

where RFAB refers to RFAB1 after damping, RFAB1, renal
peritubular capillary reabsorption, and RFABDP, RFAB damping
factor.

We can only assume that the step size was incorpo-
rated into the RFABDP time constant parameter. This is a
very poor implementation solution, since the integration step
sizes seem to vary during model simulation, giving somewhat
unpredictable results.

Our Simulink model was validated against the 1992 version
of Guyton’s model, implemented in Fortran and simulated in
the MODSIM environment [3]. A sample ‘reference’ experi-
ment, similar to those described in [1,52], was simulated by
reducing kidney mass to 30% of normal and increasing salt
intake to 9 times normal at the start of the experiment. The
responses of the MODSIM implementation and our Simulink
version of the model are shown in Fig. 6. It is seen that the
Simulink model output is comparable to the MODSIM imple-

mentation, while the small difference in response could be
due to a number of factors, namely the different discretiza-
tion methods used and the issues with damping dynamics,
as explained earlier in the paper. A variable step ode15s

ations of Guyton’s 1992 model for an experiment with

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

s i n
302 c o m p u t e r m e t h o d s a n d p r o g r a m

(stiff/NDF) solver was used for the Simulink model, as the sys-
tem is highly stiff, with time constants varying from a few
seconds to over thirty days. It is possible to use a fixed step
integration method, however due to the stiffness of the sys-
tem simulation can take a very long time to complete, since
the step size must be chosen according to the shortest time
constant.

The Simulink models by Kofranek et al. [51] and especially
the 1989 version, also produce similar results to ours. The
model presented in this work, however, is more recent and
also presents the first order dynamics in transfer function
form, which is more intuitive and gives direct information on
steady-state gain and time constant.

The Simulink implementation of Guyton’s model under
the SAPHIR project [52] differs significantly from the model
presented here. Thomas et al. [52] specified the model in
discrete-time, using discrete-time integration blocks and a for-
ward Euler method. In addition, all subsystems were treated as
‘atomic subunits’, thus all computations within a subsystem
were executed before moving to the next subsystem. Vari-
able integration step sizes were also employed. All of these
described features mimic closely the Fortran implementation
of the model and thus do not provide the desirable properties
of:

• Providing a generic representation of the underlying
continuous-time physiology, and

• Using a numerical integration technique, appropriate for
the stiff system under consideration, which can be applied
consistently across all model subsystems, without recourse
to any custom discretization within the model.

Correctly addressing the above two issues is vital if a
transportable, open-access model is to be developed. Nev-
ertheless, the use of custom discretization can, in some
cases, result in shorter simulation times, but also results in
a model where the model and discretization are inextricably
intertwined.

5. Discussion

The evolution strategy of a state-of-the-art model should be
managed in a ‘community’ way, where the essential objec-
tive of any evolution of the modelling standard is to preserve
the original inter-operability ethos, while taking advantage of
technological developments and addressing perceived weak-
ness in the ‘standard’ as experience with it builds. Ironically,
MATLAB and its Simulink toolbox were built on the original
EISPACK [53] and LINPACK [54] open-source libraries. EISPACK
AND LINPACK, developed as Fortran libraries to implement
eigensystem and linear algebra routines and originating from
the Argonne National Laboratory, aimed to be portable, robust
and reliable. The Numerical Algorithms Group (NAG) then
provided these routines in a commercial package (somewhat
similarly to the way in which Red Hat offer Linux). Currently

MATLAB/Simulink is a commercial product with associated
features and characteristics resulting from predominantly
commercial objectives. New versions do not have backward
compatibility and forward compatibility is not ensured either.
b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304

On the other hand, open-source standards generally preserve
inter-version compatibility as a priority, since they aim to
serve community, rather than commercial, needs.

The benefit of using a well developed commercial tool such
as MATLAB’s Simulink lies in the fast and easy model devel-
opment and validation. Our Simulink model was developed
in a single week, though requiring significantly more time to
‘validate’ it against the 1992 MODSIM Fortran implementa-
tion (mainly due to the custom implementation features in
the Fortran code). This highlights two issues:

(1) The model development time in Simulink can be
extremely fast, once the underlying physiological struc-
ture is known, even when the model is complex, and

(2) Discretization issues can be significant in getting agree-
ment between different implementations of the same
model.

Due to the large number of modelling/simulation environ-
ments, it may be difficult to impose a single standard on all
researchers, who may have very different backgrounds. Sim-
ply using a common interface could be a practical solution
to the problem (e.g. CellML or QHP); however metadata con-
taining information about the numerical integration method
needs to be included.

In summary, three main components are necessary for
successful model development, implementation and improve-
ment:

• A modelling tool—preferably graphical, which allows net-
works or interconnections of subsystems to be built up in a
hierarchical manner,

• Simulation tools, with the ability to simulate ODEs, DAEs
and PDEs and implement a variety of numerical integration
methods, including the efficient solution of stiff systems,
and

• A non-proprietary interface standard, probably XML-based,
which allows models to be readable across a wide variety of
platforms.

6. Conclusions

Over thirty years ago, Dr. Arthur Guyton suggested that cir-
culatory physiology was starting to change into and use the
techniques of engineering science [1] and his model made
large strides towards this change. Unfortunately, his famous
circulatory physiology model has not developed significantly
since 1992 in the practical form of a block diagram of systems
and subsystems. A variety of simulation environments have
been examined in this paper with a view to the mathematical
modelling of large-scale physiological systems; however not
many environments allow the desired visual diagrammatic
representation and speed of implementation.

Some computer implementations of the original 1972 Guy-
ton model exist [52,51], as well as an implementation of a 1986

version of the model [51]; however the Simulink model pre-
sented in this paper is the first implementation of the most
recent 1992 version of the model. If a core model is to be cre-
ated and made available for extension/improvement, it should

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

i n b i

b
t

Q
o
T
a
n
i
c

a
e
m
p
c
E
t
a
o
o
t
f
t
r
c
b

f
i
a
a
c
c
a
i
n
e

m
m

•

•

•

a
s

C

N

r

c o m p u t e r m e t h o d s a n d p r o g r a m s

e the most up to date model recognised by the research and
eaching community.

Guyton’s model has been expanded previously under the
HP project, and with the QHP computer program now being
pen source, the community can, in theory, contribute to it.
his new model, however, is implemented in an XML format
nd is difficult to read. In addition, appropriate structures have
ot been put in place to deal with model additions and a repos-

tory system for alternative model subsystems has not been
reated.

Technical implementation issues also make QHP unsuit-
ble for development as a community project. Differential
quations are implemented using one of three provided
ethods, where the model developer has to nominate a

articular discretization method for each equation. The dis-
retization methods include a first order (forward-difference)
uler method and a stiff system discretization method, while
he third method is undefined. The QHP model is defined in
n XML format, while the model solver can be downloaded
nly in executable form from the QHP website, but details
f its features are not available. QHP could be a good solu-
ion with further development. A graphical environment for
aster development time would be very beneficial while better
ransparency and documentation in relation to the solver is
equired. Finally, a repository system, catering for community
ontributions to the model needs to be created, if it is truly to
e treated as a open-source resource.

For the present, however, Simulink remains one of the
ew viable options for large-scale model visualisation and
mplementation. Both development and validation are fast
nd easily executed with an intuitive graphical environment
nd results display. MATLAB also allows us to emulate the
ontinuous-time nature of physiological systems by using
ontinuous-time dynamic blocks and to select an appropri-
te solver for the system. Nevertheless, compatibility issues
mpinge significantly on the utility of Simulink as a commu-
ity platform on which an integrated physiology model can
volve.

Finally, if a common XML standard is to be agreed upon, as a
odel sharing interchange standard, three important features
ust be complied with:

The model needs to be specified in continuous-time as a
fundamental representation,
Discretization information needs to be included as meta-
data, and
Graphical editing tools, allowing block diagram represen-
tation with hierarchical visualization capabilities must be
available.

These features would ensure the successful reproduction
nd simulation of the model in any chosen environment, given
uitable conversion tools, such as in [40–42].
onflict of interest statement

one declared.
o m e d i c i n e 1 0 2 (2 0 1 1) 295–304 303

Acknowledgements

The authors would like to acknowledge research funding pro-
vided by the Irish Research Council for Science Engineering
and Technology and NUI Maynooth, under the John and Pat
Hume Scholarships programme. The authors would also like
to thank Jean-Pierre Montani for providing the diagrams and
Fortran code of the 1992 version of Guyton’s model.

e f e r e n c e s

[1] A. Guyton, T. Coleman, H. Granger, Circulation: overall
regulation, Annu. Rev. Physiol. 34 (1972) 13–44.

[2] P. Hunter, E. Crampin, P. Nielsen, Bioinformatics, multiscale
modelling and the IUPS Physiome Project, Brief. Bioinform. 9
(4) (2008) 333–343.

[3] J.-P. Montani, Personal communication.
[4] J.-P. Montani, T. Adair, R. Summers, T. Coleman, A. Guyton, A

simulation support system for solving large physiological
models on microcomputers, Int. J. Biomed. Comput. 24
(1989) 41–54.

[5] T. Coleman, J. Randall, HUMAN: a comprehensive
physiological model, Physiol. Teach. 31 (1) (1983) 15–21.

[6] S. Abram, B. Hodnett, R. Summers, T. Coleman, R. Hester,
Quantitative circulatory physiology: an integrative
mathematical model of human physiology for medical
education, Adv. Physiol. Educ. 31 (2007) 202–210.

[7] R.L. Hester, T. Coleman, R. Summers, A multilevel open
source integrative model of human physiology, FASEB J. 22
(2008) 756–758.

[8] A. Garfinkel, A mathematics for physiology, Am. J. Physiol.
Regul. Integr. Comp. Physiol. 245 (1983) R455–R466.

[9] J. Keener, J. Sneyd, L. Sirovich, S. Wiggins, L. Kadanoff, J.
Marsden, Mathematical Physiology, Springer Verlag, 1998.

[10] E. Carson, C. Cobelli, Modelling Methodology for Physiology
and Medicine, Academic Press, 2000.

[11] J. Ottesen, M. Olufsen, J. Larsen, Applied Mathematical
Models in Human Physiology, SIAM, 2004.

[12] L. Ljung, System Identification: Theory for the User, 2nd ed.,
Prentice-Hall, 1999.

[13] C. Cobelli, E.R. Carson, L. Finkelstein, M.S. Leaning,
Validation of simple and complex models in physiology and
medicine, Am. J. Physiol. Regul. Integr. Comp. Physiol. 246 (2)
(1984) R259–R266.

[14] L. Ljung, Perspectives on system identification, in: M. Chung,
P. Misra (Eds.), Milestone Reports and Selected Survey
Papers, Seoul, 2008, pp. 47–59.

[15] P. Hunter, P. Nielsen, A strategy for integrative
computational physiology, Physiology 20 (2005) 316–325.

[16] L. Ljung, T. Glad, Modeling of Dynamic Systems,
Prentice-Hall, 1994.

[17] P. Gawthrop, G. Bevan, Bond-graph modeling, IEEE Control
Syst. Mag. 27 (2) (2007) 24–45.

[18] V. Le Rolle, A. Hernandez, P. Richard, J. Buisson, G. Carrault,
A bond graph model of the cardiovascular system, Acta
Biotheor. 53 (2005) 295–312.

[19] U. Ascher, L. Petzold, Computer Methods For Ordinary
Differential Equations And Differential-algebraic Equations,
SIAM, 1998.

[20] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential

Equations I: Nonstiff Problems, Springer Verlag, 1993.

[21] E. Hairer, G. Wanner, Solving Ordinary Differential Equations
II: Stiff and Differential-algebraic Problems, Springer Verlag,
1996.

dx.doi.org/10.1016/j.cmpb.2010.05.001

Journal Identification = COMM Article Identification = 3062 Date: May 3, 2011 Time: 1:49 pm

s i n

Lecture Notes in Computer Science, vol. 6, Springer Verlag,
304 c o m p u t e r m e t h o d s a n d p r o g r a m

[22] C.V.L.C. Molar, Nineteen dubious ways to compute the
exponential of a matrix, twenty five years later, SIAM Rev. 45
(2003) 3–49.

[23] N. Hori, R.J. Cormier, K. Kanai, Matched pole-zero
discrete-time models, IEE Proc. Control Theor. Appl. (Part D)
139 (3) (1992) 273–278.

[24] N. Hori, A. Mori, P. Nikiforuk, A new perspective for
discrete-time models of a continuous-time system, IEEE
Trans. Autom. Control 37 (7) (1992) 1013–1017.

[25] F. Yates, Validation of simple and complex models in
physiology and medicine, Am. J. Physiol. Regul. Integr.
Comp. Physiol. 234 (5) (1978) R159–R160.

[26] C. Lloyd, M. Halstead, P. Nielsen, CellML: its future, present
and past, Prog. Biophys. Mol. Biol. 85 (2004) 433–450.

[27] F.S. Grodins, Integrative cardiovascular physiology: a
mathematical synthesis of cardiac and blood vessel
hemodynamics, Q. Rev. Biol. 34 (2) (1959) 93–116.

[28] K. Foster, Math on the Internet, IEEE Spect. 36 (4) (1999)
36–40.

[29] P. Khodade, S. Malhotra, N. Kumar, M. Iyengar, N.
Balkrishnan, N. Chandra, Cytoview: development of a cell
modelling framework, J. Biosci. 32 (5) (2007) 965–977.

[30] P. Hunter, P. Robbins, D. Noble, The IUPS human physiome
project, Eur. J. Physiol. 445 (2002) 1–9.

[31] A. Cuellar, C. Lloyd, P. Nielsen, D. Bullivant, D. Nickerson, P.
Hunter, An overview of CellML 1.1, a biological model
description language, Simulation 79 (12) (2003) 740–747.

[32] D. Chang, N. Lovell, S. Dokos, Field Markup Language:
Biological field representation in XML, in: Proceedings of the
29th International IEEE Conference on Engineering in
Biology and Medicine, Lyon, 2007, pp. 402–405.

[33] R. Ward, L. Pouchard, J. Nutaro, Integrative computational
frameworks for multiscale digital human modeling and
simulation, in: Proceedings of the International Conference
on Comp. Science (ICCS 2006), Springer Verlag, 2006, pp.
814–821.

[34] P. Murray-Rust, H. Rzepa, Chemical markup, XML, and the
World Wide Web. 4. CML Schema, J. Chem. Inf. Comput. Sci.
43 (3) (2003) 757–772.

[35] M. Hucka, The Systems Biology Markup Language (SBML): a
medium for representation and exchange of biochemical
network models, Bioinformatics 19 (2003) 524–531.

[36] C. Bock, SysML and UML 2 support for activity modeling,
Syst. Eng. 9 (2) (2006) 160–186.

[37] J. Larsson, A framework for implementation-independent
simulation models, Simulation 82 (9) (2006) 563–579.

[38] M. Nuruzzaman, Modeling and Simulation in Simulink for
Engineers and Scientists, AuthorHouse, 2005.

[39] S. Campbell, J.-P. Chancelier, R. Nikoukhah, Modeling and

Simulation in Scilab/Scicos, Springer Verlag, 2006.

[40] A. Pop, P. Fritzson, ModelicaXML: A Modelica XML
Representation with Applications, in: Proceedings of the 3rd
International Modelica Conference, 2003, pp. 419–430.
b i o m e d i c i n e 1 0 2 (2 0 1 1) 295–304

[41] M. Dempsey, Automatic translation of Simulink models into
Modelica using Simelica and the AdvancedBlocks library, in:
Proceedings of the 3rd International Modelica Conference,
Linköping, 2003, pp. 115–124.

[42] R. Hornych, M. Hurák, Sebek, MathML in Polynomial toolbox
for Matlab, in: Proceedings of the International Symposium
on Computer-Aided Control System Design, Glasgow, 2002,
pp. 284–286.

[43] F. Tränkle, A. Gerstlauer, M. Zeitz, E. Gilles, ProMoT/Diva: a
prototype of a process modeling and simulation
environment, in: Proceedings of the 2nd IMACS Symposium
on Math. Modelling (MATHMOD), Vienna, 1999, pp. 341–346.

[44] K.K. Bettenbrock, S. Fischer, A. Kremling, K. Jahreis, T. Sauter,
E. Gilles, A quantitative approach to catabolite repression in
Escherichia coli, J. Biol. Chem. 281 (5) (2006) 2578–2584.

[45] R. Waschler, O. Angeles-Palacios, M. Ginkel, A. Kienle,
Object-oriented modelling of large-scale chemical
engineering processes with ProMoT, Math. Comput. Model.
Dynam. Syst. 12 (1) (2006) 5–18.

[46] P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang, D.
Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape:, A
software environment for integrated models of biomolecular
interaction networks, Genome Res. 13 (2003) 2498–2504.

[47] P. Barrett, B. Bell, C. Cobelli, H. Golde, A. Schumitzky, P.
Vicini, D. Foster, SAAM II: simulation, analysis, and
modeling software for tracer and pharmacokinetic studies,
Metabolism 47 (4) (1998) 484–492.

[48] A. Clement, Using differential properties of the green
function in seakeeping computational codes, in:
Proceedings of the 7th International Conference on Numer.
Ship Hydrod., Vol. 6, 1999, pp. 1–15.

[49] E. Crampin, M. Halstead, P. Hunter, P. Nielsen, D. Noble, N.
Smith, M. Tawhai, Computational physiology and the
physiome project, Exp. Physiol. 89 (1) (2004) 1–26.

[50] M. Cabrera, G. Saidel, S. Kalhan, Lactate metabolism during
exercise: analysis by an integrative systems model, Am. J.
Physiol. Regul. Integr. Comp. Physiol. 277 (1999) R1522–1536.

[51] J. Kofranek, J. Rusz, S. Matousek, Guyton’s diagram brought
to life - from graphic chart to simulation model for teaching
physiology, in: Proceedings of the 15th Annual Conference
on Tech. Comp., Prague, 2007.

[52] S. Thomas, P. Baconnier, J. Fontecave, J.-P. Francoise, F.
Guillaud, P. Hannaert, A. Hernandez, V. Le Rolle, P. Maziere, F.
Tahi, R. White, SAPHIR: a physiome core model of body fluid
homeostasis and blood pressure regulation, Phil. Trans. R.
Soc. A 366 (2008) 3175–3197.

[53] B. Smith, J. Boyle, J. Dongarra, B. Garbow, Y. Ikebe, V. Klema,
C. Moler, Matrix Eigensystem Routines, EISPACK Guide,
1976.
[54] J.J. Dongarra, J.R. Bunch, G.B. Moler, G.W. Stewart, LINPACK

Users’ Guide, SIAM, 1979.

dx.doi.org/10.1016/j.cmpb.2010.05.001

	Graphical simulation environments for modelling and simulation of integrative physiology
	Introduction
	Physiology modelling and simulation
	Modelling
	Simulation

	Modelling and simulation environments
	Diagrams and equations
	Markup languages
	Graphical modelling and simulation environments
	High-level languages

	Guyton’s model in Simulink
	Discussion
	Conclusions
	Conflict of interest statement
	Acknowledgements
	References

