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ABSTRACT

Wave Energy Converters (WECs) based on oscillating bodies can
achieve optimal energy absorption under certain conditions associated
with reactive control. These conditions, in general, are not realisable in
practice because non-causal and future values of the excitation force
need to be known. In this paper, an alternative approach is presented,
where the relationship between the optimal velocity and the excitation
force is realised through a simple coefficient of proportionality, thus
removing the problem of non-causality. From theoretical considerations
and numerical simulations over a range of heaving WECs in different
sea conditions, it is shown that such suboptimal and causal approxi-
mation, while significantly reducing the complexity and improving
the robustness of reactive control, allows the achievement of values of
energy capture very close to the ideal optimum.

KEY WORDS: Wave Energy; Reactive Control; Floating Systems
Modelling.

INTRODUCTION

The efficiency of WECs that consist of oscillating systems, can be si-
gnificantly increased through an automatic control that tunes its oscilla-
tions to the incident wave elevation, in such a way to improve the power
transfer from the ocean to the system. The analytical optimal solution
for the maximisation of the energy extraction, requires the system to be
in resonance with the wave force or pressure (Falnes, 2002), and it is
termed reactive control, or complex-conjugate control for its analogy in
electrical systems. Alternative sub-optimal control solutions have also
been proposed, where the limitations imposed by the physics of the sys-
tem (e.g. amplitude of motion or velocity, applicable forces), ignored
by reactive control, are also taken into account. These alternatives in-
clude latching (Babarit and Clement, 2006), where the oscillation in the
system is delayed so to be in phase with the waves excitation and the po-
wer take-off (PTO) is purely passive, Model Predictive Control (MPC)
(Bacelli et al., 2009; Hals et al., 2011), which well handles the use of

constraints, but also constrained analytical solutions (Evans, 1981).
The effectiveness of the different real-time control strategies depends,
among other issues, on the prediction of future wave elevation or wave
excitation force acting on the system at least for a few seconds (Falnes,
2007). Short-term wave forecasting has been studied either with a deter-
ministic approach (Belmont et al., 2006; Tedd and Frigaard, 2007; Van
Den Boom, 2009) and as a purely stochastic univariate time series pro-
blem (Fusco and Ringwood, 2010). In the latter case it is demonstrated
how accurate predictions of the swell can be achieved with autoregres-
sive (AR) models for more than one wave period ahead.
Some control techniques, however, reactive control and MPC in primis,
do not take into account any a priori information about the excitation
force, particularly the fact that the range of frequencies within which
the waves (and their resulting force) are contained is limited. A closer
analysis of reactive control can show that, within this range of frequen-
cies, the non-causal frequency response relating the optimal velocity to
the excitation force is flat. An approximation of such relationship with
a pure constant may therefore be not far from optimal over most sea
conditions, while at the same time would remove the non-causality.
In the remainder of the paper, after a detailed discussion of reactive
control, a methodology to determine a non-causal approximation is
presented. The methodology is based on the reduction of the model
of a WEC to second order. The effectiveness of the sub-optimal and
causal realisation of reactive control is finally compared with the
implementation of the ideal reactive control for a range of WECs
consisting of heaving cylinders, over a variety of sea conditions.

REACTIVE CONTROL

The System

In this study, a floating cylinder constrained to move in the heaving di-
rection is considered, as shown in Fig. 1. The cylinder oscillates as a
result of the excitation force, fex(t), due to the incident waves, and of a
controllable load force, fu(t), produced by a power take-off (PTO) me-
chanism. The dynamics of the oscillation velocity, v(t), are described
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v

Fu(ω) = −K(ω)V (ω)

η Fex(ω)

FIGURE 1 – Floating cylinder constrained to move in the heaving direc-
tion. The PTO force, fu, is assumed to be related to the velocity through
a law of the type in Eq. 6.

by the following integro-differential equation:

mv̇(t) +

∫ t

0

z(τ)v(t− τ)dτ +Ks

∫ t

0

v(τ)dτ +Kfv(t) =

fex(t) + fu(t), (1)

where z(t) is the impulse response modelling the radiation, Ks is the
buoyancy coefficient andKf is a friction coefficient introduced to model
the losses. Eq. 1 is conveniently transformed into the frequency domain:{

ω(m+M∞) +Hr(ω) +
Ks

ω
+Kf

}
V (ω) = Fex(ω)+Fu(ω),

(2)

where the quantities with capital letter, X(ω), denote the Fourier trans-
form of the correspondent time-domain signal or impulse response x(t).
Note that, in going from Eq. 1 to Eq. 2, the Fourier transform of the ra-
diation kernel z(t), namely Z(ω), has been decomposed as:

Z(ω) = B(ω) + ω [Ma(ω) +M∞] = Hr(ω) + ωM∞, (3)

where the real part, B(ω), is the radiation damping, Ma(ω) is the ad-
ded mass and M∞ is the added mass at infinite frequency (Falnes,
2002). Based on Eq. 2, the floating cylinder in heaving mode can be
modelled with a single-input single-output (SISO) transfer function,
H(ω) = 1/Zi(ω), between the input forces (excitation from the waves
and load from the PTO) and the output velocity:

V (ω) =
1

Zi(ω)
[Fex(ω) + Fu(ω)] , (4)

where Zi(ω) is the well-known intrinsic mechanical impedance of the
floating system, described, among others, in (Falnes, 2002):

Zi(ω) = B(ω) +Kf + ω

[
m+M∞ +Ma(ω)− Ks

ω2

]
. (5)

Maximum Wave Energy Absorption: Reactive Control

No specifications about the power take-off (PTO) mechanism that ac-
tually provides the load force, fu(t), is made at this stage. The only
assumption is that it can produce any force calculated by a control law
of the form:

Fu(ω) = −K(ω)V (ω) (6)

Without any other constraint about the system or about the PTO (maxi-
mum amplitude of motion, maximum forces,...), and without any hypo-
thesis about the disturbance, fex(t), the only criterion for the design of
the controller, K(ω), is that it allows maximum energy transfer from
the excitation (disturbance) to the load, or in other words, that the wave
energy absorption is maximised.
The average power absorbed at the load, Pu, is the time integral of the
product of the load force and the system velocity:

Pu = lim
T→∞

1

2T

∫ +T

−T

fu(t)v(t)dt, (7)

Such expression for the average power can more conveniently be ex-
pressed in the frequency domain (Falnes, 2002):

Pu =
1

2π

∫ +∞

0

[Fu(ω)V ∗(ω) + F ∗u (ω)V (ω)] dω, (8)

Maximisation of Eq. 8 with respect to K(ω) provides the optimal
control law producing the ideal load force and system’s velocity so that
maximum wave energy is absorbed by the PTO. It can be shown (Falnes,
2002) that such a maximum is obtained, at any frequency ω, under the
condition:

Pu(ω) = max ⇔ K(ω) = Kopt(ω) = Z∗i (ω), (9)

and this is independent of the frequency distribution of the disturbance,
Fex(ω). The optimal control law, Eq. 9, is termed complex-conjugate
control, as the load impedance required in order to produce the optimal
force is the complex-conjugate of the intrinsic impedance of the system:

Fu,opt(ω) = −Z∗i (ω)V (ω) (10)

An alternative term is reactive control, from the fact that the imaginary
part of the load impedance determines a reactive power and therefore
the necessity to inject power into the system during part of the cycle.
The term reactive control will be adopted throughout this paper.

Real-time Implementation and Causal Approximation

The optimal controller in Eq. 10 is not realisable because it is non-causal
(Falnes, 2002), that is current values of the optimal load force depend
on future values of the velocity. A suboptimal implementation of such
a control law can be realised using predictions of the system’s velo-
city (Korde, 2000), but the problem is complicated by the fact that the
variable to predict, the velocity, is the controlled variable so that fore-
casting and control cannot be dealt with separately.
It would simplify the control design, in the authors opinion, if the control
law were expressed as a function of the excitation force, which is only
related to the undisturbed incident wave field and to the fundamental
properties of the system, which are unaffected by the system’s motion.
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FIGURE 2 – Real-time implementation of reactive control as velocity-
following. In general, the reference generation is non-causal.

In particular, from Eqs. 9∼10, the optimal velocity and the optimal PTO
force can be expressed as:

Vopt(ω) =
1

2B(ω) + 2Kf
Fex(ω) (11)

Fu,opt(ω) = − Z∗i (ω)

2B(ω) + 2Kf
Fex(ω). (12)

Eqs. 11∼12 can both be utilised as reference-generation logic for a state
of the system, velocity or load force, that shall then be imposed through
a lower level feedback control loop (Fusco et al., 2010). The problem
of non-causality would still remain, but the implementation would rely
on the prediction of a quantity, the excitation force, unaffected by the
controller and system dynamics. Prediction and control can be therefore
treated as two separate problems. Note that some wave forecasting algo-
rithms have been shown to provide accurate predictions for more than 1
wave period into the future (Fusco and Ringwood, 2010).
In the present study, reactive control is implemented through calculation
of the optimal velocity from Eq. 11 and through a velocity-following
lower level loop, imposing the desired velocity on the system. The ap-
proach is illustrated in Fig. 2, where C(ω) represents the dynamics of
the power take-off plus the lower level control. As will become clearer
in the following, the choice of Eq. 11, as opposed to Eq. 12, will al-
low for a simpler and more intuitive causal approximation of the control
problem, which is the purpose of this paper.
Central to this study is the non-causal reference-generation logic, that is
the transfer function between the excitation force and the optimal oscil-
lation velocity, defined as:

Hopt(ω) ,
1

2B(ω) + 2Kf
. (13)

In Fig. 3, an example ofHopt(ω) is shown, along with its inverse Fourier
transform hopt(t). Based on properties of the Fourier transform and on
physical properties of the system, as well as on qualitative observation,
as from Fig. 3, a few important considerations on the nature of such a
non-causal transfer function may be drawn:
• Hopt(ω) is real and even (radiation resistance real and even) and does

not introduce any phase shift, which means that the optimal velocity
is always in phase with the excitation force (Falnes, 2002).

• Hopt(ω) has a band-stop like behavior (although being always > 0).
From Eq. 13, it is minimum and quite flat within the frequency-band
where the radiation resistance is significantly different from zero,
while it is maximum and constant for lower and higher frequencies,
the constant being the reciprocal of the friction coefficient Kf .
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FIGURE 3 – Non-causal transfer function between excitation force and
optimal velocity. Example for a heaving cylinder of radius R = 5m,
draught h = 6m and submerged mass M = 3.9× 105Kg.

• The corresponding impulse response hopt(t) is real and even, and
therefore non-causal, as hopt(t) 6= 0 for t < 0. The length of the
time-window over which it is significantly different than zero is in-
versely proportional to the stop-band width ofHopt(ω). In particular,
it would converge to an impulse if the stop-band were infinitely wide
(transfer function constant).

It may be argued that, in practice, if the WEC (cylinder in this case) is
well suited to a certain sea location, most of the incident waves would
be contained in the band of resonance of the device, which corresponds
to the interval of frequencies whereHopt(ω) has minimum value (radia-
tion maximum) and is quite flat. This indicates that in most situations,
the reference-generator in Eq. 11 would work within its stop-band cha-
racteristics, and that a constant approximation of Hopt(ω) could offer a
good approximation of the ideal reactive control condition, while at the
same time removing the complexities involved with the non-causality.
In the following, a methodology to determine such an approximation
is presented, followed by a comparison of the performance of the full
reactive non-causal reactive control against its causal approximation.

2ND-ORDER MODEL REDUCTION AND CAUSAL REAC-
TIVE CONTROL

In this section a methodology for the causal realisation of reactive
control, illustrated in Fig. 2, is presented, where the reference generation
logic of Eq. 11, is approximated with a real constant transfer function,
on the basis of the previous discussion. The approach is based on the
model order reduction of the floating system to 2nd order, which in the
single-body case is able to adequately describe its dynamics. It is then
shown that the transfer function Hopt(ω), as from Eq. 13, reduces to a
real constant which can be used for the required causal approximation
of reactive control.

Model Order Reduction Based on Hankel Singular Values

Given that usually a single-body floating system, like the cylinder in
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FIGURE 4 – Frequency domain identification of the radiation impe-
dance of the heaving cylinder 2 in Table 1, with a 6th-order transfer func-
tion 1, using Matlab toolbox developed by (Perez and Fossen, 2009).

Fig. 1, has a resonant-like behavior similar to a mechanical oscillator, it
may be argued that its dynamics is dominated by a resonant 2nd order
system (mass-spring-damper mechanical oscillator), to a greater or les-
ser extent, depending on the specific geometry. In order to verify such a
statement it would be convenient to have the system described by clas-
sical state space equations, which allow the isolation of the individual
components of the system’s dynamics.
However, the equation of motion of a heaving floating system, either in
the time domain, Eq. 1, or in the frequency domain, Eq. 2, represents,
in general, a system of infinite order, so that an infinite number of states
would be required. This is due to the fact that, in general, there is no
explicit finite order representation for the radiation force, in particular
for the radiation kernel z(t) or for its Fourier transform Z(ω), that are
determined numerically. Such difficulty is usually overcome by iden-
tifying a finite-order system to model the radiation, a well developed
topic in the area of offshore and marine structures. Most common solu-
tions approach the identification in the time-domain, through the Prony’s
coefficients (Babarit and Clement, 2006) or state space models (Taghi-
pour et al., 2008), or in the frequency domain (Perez and Fossen, 2009,
2008; Taghipour et al., 2008), the latter having been demonstrated to bet-
ter suit the problem (Perez and Fossen, 2008). As an example, consider
Fig. 4, where a 6th-order approximation of the radiation for a heaving
cylinder is compared with the numerical data calculated from the hydro-
dynamic software (WAMIT Inc., 2008). The identification is performed
with a MATLAB toolbox developed by Perez and Fossen (2009). The
identified transfer function accurately fits the numerical data from the
hydrodynamic software and in fact, typically, 2nd to 4th order systems
are documented to provide accurate enough estimates of the radiation
impedance (Perez and Fossen, 2008).
Once a finite-order approximation of the radiation impedance, namely
Ĥr(s), has been identified:

Fr(s) = −Ĥr(s)V (s), (14)

cylinder R [m] h [m] m [Kg] σ2/σ3
1 5 6 2.6× 105 230
2 5 8 3.9× 105 464
3 5 15 1× 106 1336
4 5 20 1.3× 106 3204

TABLE 1 – 2nd order model reduction applied to some floating
cylinders. R is the radius, h is the draught and m is the submer-
ged mass.

the floating system in Eq. 2 can be approximately modelled with the
following SISO finite-order system:

V (s)

Fex(s) + Fu(s)
=

s

s2(m+M∞) + sĤr(s) + sKf +Ks

,H(s),

(15)

where s is the complex frequency in the Laplace domain, s = α + ω.
The input is a superposition of the excitation force from the waves plus
the control force from the PTO, while the output is the system’s velocity.
The finite-order SISO system of Eq. 15 is equivalently described by state
space equations of the type:{

ẋ(t) = Ax(t) +B [fex(t) + fr(t)]

v(t) = Cx(t)
, (16)

where x(t) is a state vector of dimension equal to the order of the trans-
fer function in Eq. 15 (2+ the order of Ĥr(s)), if the state space reali-
sation is minimal. Each component of the state vector x(t) can be as-
sociated with a positive real quantity, called the Hankel singular value,
that quantifies its energy (Chen, 1999), as explained in more detail in
the Appendix. State components with a relatively low Hankel singular
value can then be removed from the system with no or little effect on the
overall dynamics (again refer to the Appendix for the details).
Now, suppose that the order of the system (after identification of the
radiation), that is the dimension of A or the order of H(s), is n, and
that the Hankel singular values are arranged in descending order,
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, each of them associated with a certain state
component of the system. If, from the discussion above, the floating
system is expected to be dominant 2nd order, then the value of the
first two singular values should be much bigger than the value of the
other singular values, or equivalently σ2 >> σ3. In this case, any state
component other than the two associated with the σ1 and σ2 may be
neglected with little effect on the system’s response. As an example,
the model reduction procedure is applied to a range of four floating
cylinders, whose geometries are specified in Table 1. They all have
the same density and radius, but different height. The ratio σ2/σ3,
which determines how well the system is described with a 2nd order
dynamics, is also shown in Table 1. It is clear how this ratio increases
with the increasing height of the cylinder, which means decreasing
bandwidth, although in general it stays quite large (minimum is 98). In
Fig. 5, the frequency response of the 2nd order reduction of cylinder
1, as denoted in Table 1, is shown against the real frequency responses
calculated from the hydrodynamic software.

Reactive Control for a 2nd Order Oscillator

Once a 2nd order model has been identified, the floating system of Eq.
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FIGURE 5 – Comparison of real frequency response H(ω) against
2nd order approximation frequency response, for cylinder 1 of Table 1.

4 is approximated with the following frequency domain model:

V (ω) =
b1(ω)

(ω)2 + a1(ω) + a2
[Fex(ω) + Fu(ω)] (17)

which, in the time domain, using simple properties of the Fourier trans-
form, corresponds to:

M̂v̇(t) + K̂v(t) + K̂s

∫ ∞
0

v(τ)dτ = fex(t) + fu(t), (18)

where:

M̂ =
1

b1
K̂ =

a1
b1

K̂s =
a2
b1
. (19)

The parameters a1, a2, b2 are directly related to the state space matrices
after the 2nd-order model reduction.
Note that the heaving cylinder in water approximately behaves as a
mass-spring-damper mechanical oscillator with of mass M̂ , damper K̂
and spring coefficient K̂s. The fluid memory effect, modelled by the fre-
quency dependance of the radiation, has disappeared and the radiation
impedance has been reduced to a constant. If reactive control is solved
for such a 2nd order system, it is straightforward to show how the opti-
mal conditions in Eq. 11 and Eq. 12 reduce to:

Vopt(ω) =
1

2K̂f

Fex(ω) (20)

Fu,opt(ω) = −

[
1

2
+ ω

M̂

2K̂
− Ks

ω2K̂

]
Fex(ω). (21)

For a 2nd order oscillator, maximum wave energy extraction is realised
if the velocity, Eq. 20, is simply proportional to the excitation force and
if the optimal force, Eq. 21, is related to the excitation force through a
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FIGURE 6 – Velocity-generation law, V (ω)/Fex(ω), for reactive
control calculated for full system and 2nd order approximation model
(constant over frequency). The system is cylinder 2 of Table 1.

classical proportional-derivative-integral (PID) relationship. As mentio-
ned before, the focus in this preliminary study is put on the condition
in Eq. 20, but the PID relationship between the excitation force and the
optimal force would deserve more attention in future studies and could
represent a valid alternative.
For the current study, the implementation of reactive control as a
velocity-following loop (Fig. 2) is perfectly realisable, because the
reference-generation logic needs simply to implement the following
constant transfer function:

Ĥopt(ω) =
1

2K̂
, (22)

as opposed to the non-causal Hopt(ω) of Eq. 13. Such a causal realisa-
tion of reactive control is illustrated in the block diagram of Fig. 7.
More interestingly, the constant 1/2K̂, obtained from the model reduc-
tion and application of reactive control optimal conditions, is an approxi-
mation of the flat part ofHopt(ω) around the resonance frequency of the
device, as shown in Fig. 6. The approximation is close to the real trans-
fer function in the frequency range [0.6, 1.2] rad/s while is quite far
from ideal outside such a range. Ocean waves, however are most likely
to occur within the specified range, for two main reasons:
• The device is most likely designed such that its resonance curve

matches the most common wave spectra at the deployment location.
• Waves at higher frequency than the flat part of Hopt(ω) are filtered

out by the excitation transfer function of the system (Falnes, 2002),
so that the device does not experience significant forces from waves
at high frequencies.

RESULTS

In order to test the effectiveness of the presented causal approximation
of reactive control, which adopts the the constant Ĥopt(ω), as shown
in Fig. 7, this is compared against the full implementation of reactive
control, using the non-causal Hopt(ω), Fig 2, in terms of wave energy
capture efficiency. Such a comparison is carried out for a few different
wave energy converters and over a variety of wave conditions.
The WECs consist of four bottom-referenced heaving cylinders, as in
Fig. 1, with the dimensions specified in Table 1. The sea states consist
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height, Hs, and peak period, Tp, is also indicated. Some spectra
have been amplified for clarity.

of three time series (30 minutes sets sampled at 1.28Hz) of real measu-
rements collected from a data buoy off the north-west coast of Pico is-
land, in the Azores (Esteves et al., 2009; Azevedo and Rodrigues, 2008;
Barrera et al., 2008): (a) a high-energy and low-frequency swell; (b) a
quite low-energy sea state widely spread at high frequencies and (c) a
situation in between. The spectra of these sea states are shown in Fig. 8.
For both the control schemes, the lower-level loop is assumed to be ideal
so that the velocity generated by the reference is perfectly followed by
the WEC. This allows a fair comparison of the two control strategies,
that differ only in the way they generate the reference, one requiring
prediction and another implementing a simple gain. Additionally, in or-
der to maintain the focus of the paper, the excitation force is supposed
to be measurable (in reality an observer based on system’s motion mea-
surements shall be deployed (Bacelli et al., 2009)) and full knowledge
of its future values (for the non-causal control) is assumed.
The performance of the control strategies is measured in terms of the
well known Relative Capture Width (RCW) (Cruz, 2008):

RCW =
Pu

2R · Pwave
, (23)

where Pu is the average power absorbed by the PTO, as from Eq. 7, R
is the radius of the cylinder and Pwave is the wave power per meter of
wavefront. For the ideal non-causal reactive control, the reference ve-
locity (and therefore the performance) is calculated considering a range
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FIGURE 9 – Performance of the causal approximation to reactive
control against non-causal realisation.

of finite future horizon (ideally infinite) for the excitation force, from 0
to 60 seconds. This provides useful information about the forecasting
horizon required to get a certain performance level (Fusco et al., 2010).
As an example, consider Fig. 9, showing the performance of a sample
system, cylinder 2 of Table 1, with the two different control strategies
and in three different wave conditions. It is clear how the performance
of the ideal reactive control improves if more (into the future) informa-
tion about the wave excitation force is taken into account. In order to get
a positive power output (RCW > 0), for all sea states, the excitation
force needs to be predicted more than 35 seconds into the future and the
maximum is approached only if at least 50 seconds of predictions are
available. Note that the required forecasting horizon is strictly connec-
ted to the bandwidth of the system’s radiation and does not depend on
the specific wave system (Fusco et al., 2010). On the other hand, the per-
formance of the causal approximation, obviously, does not improve with
the future horizon considered, as such information is not required in the
calculation of the optimal velocity calculation. The achievable RCW ,
however, is very close to the maximum obtained with the non-causal
control (more than 90%).
Table 2 summarises the results also for the other cylinders. For each sea
state, it is shown the RCW obtained through the causal approximation
along with the forecasting horizon LT required by the ideal reactive
control in order to offer the same performance. The effectiveness of the
simple control strategy presented here is confirmed, where the ideal im-
plementation of reactive control is shown to be able to do better only
if a prediction of the excitation force is available for more than 40, and
in some cases 50 seconds. In some situations, the RCW achieved by
the non-causal control is slightly bigger than the maximum achieved
with the ideal implementation of reactive control, as for example in case
three in Fig. 9. This situation, depicted with an∞ value for LT in Table
2, can be due to two reasons. One reason is that the maximum future ho-
rizon of 60 seconds, considered in the simulations, is not enough. The
second reason is that the calculations are affected by numerical errors, as
reactive control involves the numerical ill-posed inversion of a function
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cylinder Hs ≈ 4.53m Hs ≈ 2.2m Hs ≈ 1m
RCW /LT RCW /LT RCW /LT

1 4.75 / 44s 3.56 /∞ 9.08 /∞
2 4.23 / 48s 2.02 / 49s 5.56 /∞
3 4.63 / 50s 1.95 / 49s 5.60 / 54s
1 4.67 / 57s 1.90 / 41s 5.73 / 58s

TABLE 2 – Performance of causal approximation of reactive
control: RCW is the relative capture width and LT is the fo-
recasting horizon required by the ideal reactive control to obtain
the same RCW .

with significant variations, such as the radiation resistance.
Ultimately, it has been shown how a simple proportional approximation
of the optimal condition in Eq. 11 can provide a very effective method
of calculating the reference velocity to impose on a wave energy
conversion system. With a very little loss in terms of performance, such
an approach completely eliminates the needs to predict the excitation
force. This also means that the control approach is very likely to be
more robust, as it does not have to cope with the inevitable forecasting
errors which will impact the reference velocity. Finally, note, that
the prediction horizons required by the ideal reactive control can be
quite large, more than 40 seconds. Accurate predictions with simple
stochastic models have shown to feasible only for up to 2 wave periods
(Fusco and Ringwood, 2010), which corresponds to 20-30 seconds for
the sea states considered here. This means that the complexity of the
control design, as well as of the instrumentation required, and therefore
the costs required for an implementation of the non-causal reactive
control may not justify the marginal power gain.

CONCLUSIONS

This paper introduced a detailed discussion about reactive control, focu-
sed on the non-causal transfer function relating the wave excitation force
to the optimal velocity that a WEC, in one degree of freedom, shall have
in order to achieve maximum energy extraction. Such a transfer func-
tion may be utilised, in a practical implementation of reactive control,
to generate an optimal reference for the velocity which would then be
imposed on the system with a lower level control loop and the power
take-off system. Non-causality, however, implies that future values of
the excitation force need to be predicted, which adds complexity to the
problem and can introduce robustness issues related to inevitable errors
in the predictions.
A closer analysis of the properties and the behavior of such non-causal
transfer function, utilised for the calculation of the optimal velocity, re-
vealed that a simple constant approximation, while removing the non-
causality, could perform very close to optimality in most sea condi-
tions for which the device itself is designed. In order to determine this
constant approximation a methodology based on the 2nd order reduc-
tion of the WEC’s model was also introduced. While the approximation
could be performed in several other ways (e.g. simple numerical fitting
of the optimal curve in the region of interest), the methodology gave this
process a significant physical meaning. In the constant approximation of
the optimal transfer function, the frequency-varying radiation resistance
of the device is replaced by the constant damping coefficient of its do-
minant 2nd order dynamics.
The results showed how the simple proportional law utilised to generate
the reference velocity can perform very much close to the ideal reactive
control. In particular, if one considers the simplicity (no need of a

predictor) and robustness of the method, the control technique can
represent a valid candidate for the control of wave energy conversion.
Further study will need to assess the possibility to extend such simple
techniques to multi-body systems oscillating in more than one degree
of freedom. Also it would be important to determine the performance in
the case of non-linearities, which may appear for large body motions.
In such situations, probably, more than one constant suitable to the
different states of the system may need to be identified and adapted
in real time. Further work will also need to address the design of the
lower-level control loop, which was supposed ideal to maintain the
focus of this paper.
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APPENDIXES

State Space Balanced Realisation and Hankel Singular Va-
lues

Given a state space representation for a linear system:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
, (24)

and a real a non-singular transformation matrix P , the system defined
by the matrices

(
A = PAP−1, B = PB, C = CP−1

)
is equivalent

to the system (A, B, C), that is they have the same set of eigenvalues
and the same input-output transfer function.
For any state space representation as in Eq. 24, the controllability Gra-
mian matrix,Wc, and the observability Gramian matrix,Wo, are defined
such that Chen (1999):

AWc +WcA
T = −BBT (25)

ATWo +WoA = −CTC. (26)

Such matrices, Wc and Wo, are important because their product WcWo

is similar (same determinant and eigenvalues, among other properties)
to the product W cW o corresponding to an equivalent state space repre-
sentation

(
A, B, C

)
. Furthermore, the product WcWo is similar to the

Hankel matrix:

Σ = diag {σ1, σ2, ... σn} , (27)

where n is the dimensionality of the state of the system and the elements
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the Hankel singular values of the system,
which represent a quantification of the energy of each state component
Chen (1999).
A state space realisation of a system, (A, B, C), is balanced when
Wc = Wo = Σ Chen (1999).

Model Reduction Based on Hankel Singular Values

The properties of a balanced state space realisation and the Hankel sin-
gular values can be exploited in order to isolate the dominant dynamics
of a system. If the state space model in Eq. 24 is decomposed as follows:

[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t)

y(t) =
[
C1 C2

] [x1(t)
x2(t)

] , (28)

and the Hankel matrix is accordingly decomposed as:

Σ = diag {Σ1, Σ2} , (29)

then the subsystem (A11, B1, C1) is a good approximation of the origi-
nal system (A, B, C) if the singular values in Σ1 are much bigger than
the singular values in Σ2 .
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