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This article develops an intertemporal, discrete-time,
competitive equilibrium version of the arbitrage
pricing theory (APT) and explores the econometric
implications of this model under various restric-
tions on investor preferences and on the dynamic
bebavior of dividends. We describe conditions under
which the econometric techniques typically used for
estimating and testing the APT can be shown to be
consistent with our economic model. We relate our
intertemporal version of the APT to the static APT
and to Merton’s intertemporal capital asset pricing
model.

We develop an intertemporal, discrete-time, competi-
tive equilibrium version of Ross’s arbitrage pricing the-
ory (APT) and discuss the econometric content of this
model under various restrictions on investor prefer-
ences and on the multivariate stochastic process deter-
mining dividends. We also discuss the distinctions
between this model, the static APT, and the intertem-
poral capital asset pricing model (ICAPM) of Merton
(1973).

The key distinction from the static APT is that cor-
porate dividends, rather than equity returns, are assumed
to obey an approximate factor model. The factor model
on equity returns as well as the APT restriction on asset
expected returns is derived endogenously.
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The original arbitrage pricing theory of Ross (1976) is a static asset
pricing theory. This means that one views the pricing equilibrium as occur-
ring only once, followed by a terminal realization of investor wealth. Of
course, the model is usually tested by relying on time-series data—that is,
the observation of the repeated price setting process that occurs in security
markets. The time-series data must be assumed to have various stationarity
properties to render the model estimable. Since the asset pricing model
is static (it has no time dimension), the appropriateness of these stationarity
assumptions cannot be addressed within the pricing model. In this case,
the economic model provides little guidance about the appropriate spec-
ification for the time-series properties of the statistical model.

Lucas (1978) suggests an integrated approach in which the statistical
model used for estimation (a time-stationary relationship) is derived
endogenously in a time-stationary, infinite-horizon asset pricing model.
This approach was extended by Prescott and Mehra (1980), who named
the approach a recursive competitive equilibrium (RCE) approach.

We apply the RCE approach to the APT, using a model that is similar to
the RCE model that Bossaerts and Green (1988) developed in their inter-
temporal extension of the CAPM. We analyze whether the econometric
assumptions needed to estimate the model can be derived endogenously
within the model.

This general version of the intertemporal APT produces the APT pricing
relationship at each point in time, but its time-series properties may not
be consistent with the econometric assumptions generally used to estimate
various versions of the model. Most, if not all, APT empirical tests require
that asset returns obey a strict or approximate factor model with time-
constant betas [e.g., Roll and Ross (1980), Chen (1983), Connor and
Korajczyk (1988), and Lehmann and Modest (1988)]. Many of the econo-
metric procedures used in these empirical tests also require that returns
be intertemporally homoskedastic. The general version of the intertem-
poral APT we present is not necessarily consistent with these econometric
assumptions. Requiring consistency between the pricing model and the
econometric assumptions makes the economic modeling problem more
difficult and the necessary assumptions stricter.

We believe our RCE model is a useful complement to recent empirical
studies that present evidence of time-varying risk premia [e.g., Keim and
Stambaugh (1986); Fama and French (1988); French, Schwert, and Stam-
baugh (1987)]. The concept of time-varying risk premia cannot be properly
explored within a static model such as the CAPM or static APT. Our com-
petitive equilibrium approach has the potential to provide closed-form
derivations of some of the econometric specifications for time-varying pre-
mia that these papers employ. In particular, we describe two special cases
of our model that provide simple closed-form solutions and are consistent
with estimation techniques that assume time-invariant parameters. One of
the special cases predicts time-varying risk premia that behave in a manner
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similar to the premia found by Keim and Stambaugh (1986); Fama and
French (1988); and French, Schwert, and Stambaugh (1987).

In Section 1 we prove the general version of the intertemporal equilib-
rium APT. Two special cases of the model that are consistent with time-
invariant parameters are developed in Section 2. In the first version, the
representative investor has constant absolute-risk aversion while dividends
are given by an approximate factor model and are independently and
identically distributed through time. In the second, the representative
investor has constant relative-risk aversion and the proportional changes
(rather than levels) of dividends are independent and identically distrib-
uted through time. Section 3 describes the econometric distinctions among
three beta pricing models: the static APT, the intertemporal APT, and
Merton’s ICAPM. Section 4 summarizes the article.

An Intertemporal Competitive Equilibrium Version of the APT

In this section we develop an intertemporal extension of the competitive
equilibrium version of the APT presented in Connor (1984). The economy
consists of an infinite number of identical investors.! The investors live
forever and have an additively separable, time-independent von Neumann-—
Morgenstern utility function for the one good produced each period; the
price of this good is normalized to 1 each period. Since all investors are
identical, we act as if there were a single representative investor with time-
separable utility function «(-) and discount factor p.

There exists a countable infinity of corporations in the economy, all of
which are purely equity financed. The per-share dividends of firm 7 at time
t will be denoted %,, where ~ denotes a random variable. The R*-vector
of corporate dividends at time ¢ follows an approximate factor model:

%,=cf,, + Bf, + ¢ (D

where ¢ is an R®-vector proportional to the vector of expected dividends
(conditional on time ¢ — 1 information), f;,—; is a scalar known at time ¢
— 1, Bis an R~ x k-matrix of asset betas, f,is a k-vector stochastic process
with E,_,(f) = 0, and &, is an R®-vector stochastic process with E,_,(¢,) =
0. E,_,(+) denotes expectations conditional on information at time ¢ — 1.
In this section we impose weak assumptions on the stochastic processes
fand e

In the simplest version of the model, f;,—, = 1 for all ¢so that the expected
dividends to the equities are constant through time. However, we also
allow f;,; to be a time trend (deterministic growth) or a stochastic process
(random growth in expected dividends). Note that f,, is known at time
t — 1, and so we can speak of cf;,_, as the expected dividends for time ¢
given the information available at time ¢ — 1.

! Conditions for aggregation are considered in Bossaerts and Green (1987).
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Aportfolio e, is a linear combination of the assets such that the portfolio
payoff a;_,%, has finite second moment. We permit the investor to hold
“limit” portfolios, which are infinite dimensional linear combinations of
the countable set of assets, as in Connor (1984, p. 16).2 The portfolio for
period ¢ is determined at the beginning of the period and, therefore, is
dated at time ¢ — 1.

The market portfolio q is the per-capita supply of the assets. Since no
new shares are issued or redeemed in the economy, q is constant through
time. Let p, denote the R™-vector of asset prices at time ¢, with the price
of the #th firm given by p,.

We utilize the following set of assumptions:

Assumption 1. There exists an infinite-lived representative investor with
a risk-averse von Neumann—-Morgenstern utility function u(-) and time
discount factor p. That is, the investor wishes to maximize expected lifetime
utility

EII:E psu(ét+s):|
s=1
subject to the budget constraint

al_ X, +al_p=a.,p+C
Assumption 2. There exists a countable infinity of purely equity-financed
Jfirms with net per-share dividends given by Equation (1).
Assumption 3.

E_\[e|f]=0

Let B*" denote the n X (k + 1) matrix [B”|c"] where B* and c* denote
the first n rows of B and c. Also, let & denote the first n rows of €, and | |
denote the matrix Ly,-norm.

Assumption 4.
lim,_o | (B*'B*")7|| < o
Assumption 5.

lim,, .o | E—[€7€]| < o0

Assumption 6.
E[(q&)Y =0

2 The space of portfolios is the Hilbert space of linear combinations of x,, 7= 1, 2, ... under the mean-
square norm [a,. || = E-[(ary'x)%).
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Assumption 7.
limsaoo Et—l[psu,(q,XH—s) (‘x~.it+s + ﬁiH—s)] = O for all l= 1: 2) e

Assumptions 1 and 2 were described above. Note that Assumption 2
applies to dividends paid out rather than total profits. Reinvestment of
profits is permitted in the model as long as the cash paid out follows the
assumed factor model. We do not explicitly model the reinvestment deci-
sion and so treat dividends as exogenous.

Assumption 3 states that the idiosyncratic risks are risky in the sense of
Rothschild and Stiglitz (1970). This guarantees that a risk-averse investor
holding a well-diversified portfolio will not want to hold any e risk [see
Connor (1984) for more discussion on this point]. Assumptions 4 and 5
are the fundamental assumptions of an approximate factor model. Assump-
tion 4 guarantees that the factor risks are pervasive in the economy; Assump-
tion 5 guarantees that the idiosyncratic risks can be eliminated from a
portfolio by spreading its weights “‘evenly” across many assets [e.g., see
Chamberlain and Rothschild (1983) and Ingersoll (1984)]. Intuitively,
Assumption 4 means that the factor risks are the economywide sources of
risk and Assumption 5 means that the idiosyncratic risks are the firm- or
industry-specific sources of risk.

Assumption 6 requires that the market portfolio be well-diversified. This
is a key assumption behind the competitive equilibrium version of the
APT. Assumption 7 is a transversality condition that guarantees that no
asset has infinite value to the representative investor.

The following is an intertemporal extension of Connor (1984, theorem
3).

Theorem 1. Given Assumptions 1-7, there exists a unique sequence of
competitive equilibrium prices given by

p. = cm,, + Br,

E, E psu/(q,it+s).f(;t+s—l:|
=1
— — (2)
° u'(q'x,)
E, E psu’(q,i&s)j;ﬁs]
L =1
-

u/(qlxt)

where w,, is a scalar and =, is a k X 1 vector whose jth element is «,,
Proof. See the Appendix. m

We have proved that prices are beta linear: The price of each asset is a
linear multiple of its expected dividend and its sensitivities to the kfactors,
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B,..2 This is the basic prediction of the APT. Note, however, that the “factor
prices” m,, and , need not be constant through time.

In order to render Equation (2) compatible with time-series return data,
we must rewrite the relation in terms of rates of return. Define the R®-
vector £, whose #th element is given by (p,, + x,)/p.—.. In order to perform
this division we must be sure that p, #+ 0 for all 7 and ¢, but this is not a
substantive problem.*

Let a,,; denote a well-diversified portfolio with a/,,c = 0 and ;B = (1,
0,...,0). We will call this portfolio the first factor portfolio since it mimics
the first factor. Similarly, define «,,,, . . . , @, to mimic the factors 2, . . .,
k. Note that a),p, = 7, and a},X, = f,. Define r,,,, ..., 7. as the gross
returns to these portfolios [7,,, = (7, + f,)/7,_,]. Denote the zero-beta
portfolio as a well-diversified portfolio such that agc = 1, 4B = (0, .. .,
0), and the return on this portfolio, 7, as the zero-beta return. Connor
(1984, lemma 3) shows that given Assumptions 2-5, these portfolios exist.
The beta pricing result of Theorem 1 can be restated in rate-of-return form
using these portfolios.

Corollary 1. Given Assumptions 1-7 and the additional assumption that
JSorrs i independent of &, for all s = 0, then

Fo=1f, + B (Fony — Fo) + - + Bi1(Foer — o) + & (3)
ﬂ;‘t = (Bljz: ﬂZjl: S
J=(1,1,1,..)

By, . .
B, = 47 j=1,... ,ki=1,2,...
Cmy, + Bymwy, + -0+ Bymwy,
. €, ,
e’,.':= ad l=1,2,...
CMoymy + ByWyq + o0+ By
E(?itlron rmlt: L] rmlet) = O Z= 17 27 <.

Proof See the Appendix. B

Corollary 1 assumes that the factor risk prices «, are nonzero for all j
and ¢ If =, = 0 for some jand ¢ a minor adjustment must be made to the
definitions of r,,, and 8,°> Equation (3) can be interpreted as a regression

3 B, denotes row 7 of the matrix B, while B, denotes column j.

4The simplest solution is to assume that x, > 0 for all 7 and ¢ which is not inconsistent with our other
assumptions. Alternatively, for assets with p,_, = 0, we can redefine the assets’ payoffs to be their current
payoffs plus the payoff to a unit investment in the zero-beta asset (defined below). The return on the
redefined asset is (p, + x, + 7,)/1.

S1f , = 0, then define 8, = B,/ (o, + Buer + - + Byma), i=1,2, ... and 7, = 7, ~ Ty + fo + Tor
Equation (3) remains unchanged.
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model where the explanatory variables are the excess returns on the &
reference portfolios (excess relative to the zero-beta return).

In our multiperiod model, the zero-beta return differs from the one-
period riskless return. Let r,_, denote the gross return on the one-period
riskless asset, that is, the return from ¢ — 1 to t on a security with a single
certain payoff of 1 at £° We assume that the riskless asset is in zero net
supply. By the same logic used to derive Equation (2), the riskless asset’s
return is given by

. - Wax-)
" pE[w(q'%)
In comparison, note that Equation (2) implies that the price, at  — 1,

of the zero-beta asset is m,,_,. This, in turn, implies that the zero-beta return
is given by

f 5 ~

0t—1 Tor

7'0: = —— + —_—
Mor—1 Tor—1

Next period’s dividend yield on the zero-beta asset is certain, but the capital
gain on this asset is random. In a sense, r,, represents a term structure
factor. If f;, evolves deterministically, then 7, is equal to the return on a
portfolio of discount bonds with payoffs equal to f,4,_, at time £+ 5, s >
0. In the next section we compare 7,, and 4., for two specific cases.

Note that Corollary 1 implies that the & + 1 portfolios 7, pmis - - - 3 Vs
span the mean-variance frontier of the assets described in Equation (1),
since a regression of r;, on the k& + 1 portfolios has an intercept of zero
and k& + 1 betas that sum to unity [see Huberman and Kandel (1987)].
Equivalently, Equation (3) implies that any asset’s return can be con-
structed from a linear combination of these & + 1 portfolios plus a zero-
mean idiosyncratic term €*.

Ohlson and Garman (1980) also investigate the properties of an inter-
temporal APT. They assume that factor risk premia and the riskless return
are constant through time. In our model the premia and riskless rate vary
through time, in general. We give sufficient conditions for constant premia
and riskless return below.

. Two Special Cases

The two pricing models presented in this section are special cases of the
model in Theorem 1. In each, the process determining dividends and the
preferences of the representative investor are restricted. Both models have
asset betas that are constant through time, and in the second model idio-
syncratic returns are homoskedastic.

¢ The one-period riskless return from ¢ — 1 to tis dated ¢ — 1 since the return is observed at 7 — 1.
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We are interested in conditions for constant betas and homoskedasticity
since these conditions are commonly assumed in applications of the APT.
For example, restrictions implied by the asset pricing models on the param-
eters of time-series regressions of asset returns on factor-mimicking port-
folio returns are used to test these models. It is commonly assumed in
empirical work that the betas of these regressions are constant. Conditional
on having the factor-mimicking portfolios, it may be possible to incorporate
time variation of the betas directly into the estimation procedure [e.g.,
Bollerslev, Engle, and Wooldridge (1988)]. A more difficult issue is the
fact that many procedures used to construct factor-mimicking portfolios
(such as factor analysis or principal components) implicitly assume a time-
invariant return-generating process. Since much of the empirical literature
relies on this assumption, it seems important to investigate the types of
economies that might be consistent with constant betas and/or homo-
skedasticity.

In the first model we assume that the representative investor has constant
absolute-risk aversion’ and dividends are independently and identically
distributed through time.

Assumption 8. The representative investor’s utility function is u(C,) =

— (1 )e .

Assumption 9. The stochastic process £, is independently and identically
distributed through time and f,,_, = 1 for all t.

Corollary 2. Given the assumptions of Corollary 1 plus Assumptions 8 and

9, there exists a competitive equilibrium such that Equation (3) bolds with
B, constant through time forj=1, 2, .. ., k.

Proof See the Appendix. ®
Note that the risk premia associated with the factor-mimicking portfolios

are time-varying. That is,

617Et~1(;mjt — P = ¢iju, (qlxt-—l)
e
d Ho p

1
<Ciﬂo + By + -+ Bile”'le)

where u, = E_,[u'(q'%k,)] and u, = E,_l[u'(q’i,)ﬁ,]. Note that, by our i.i.d.
(independently and identically distributed) assumption, p,, &, (= 1, 2,
..., B), and, therefore, ¢, are independent of time. Without loss of gen-

7 Actually, the corollary holds for general utility functions. This can be seen by inserting #'(C,) for exp
(—vC,) in the proof of Corollary 2. This is shown in Bossaerts and Green (1987) and was also suggested
to us by Ravi Jagannathan.
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erality the factors can be defined such that q'B > 0. This implies that g,
< 0 (because of decreasing marginal utility) and that the sign of ¢, is
equal to the sign of B,. The result is intuitive. When current output (q'x,-,)
is high, marginal utility is low, and hence the representative agent requires
less compensation for bearing positive factor j type risk. This result is
consistent with some of the empirical literature on time variation in risk
premia. Note that p,, is a function of q'x,_, through =, and =,_,. High
current output leads to high prices of the assets. Thus, the model predicts
an inverse relation between risk premia and current prices. Keim and
Stambaugh (1986) find such an inverse relation in bond and stock returns.
There is a positive relation between risk premia and dividend yields. This
is consistent with the empirical findings of Fama and French (1988). The
model also leads to some predictions that are not consistent with empirical
evidence. There is strong mean reversion in asset prices, since E[p,.,] (for
s> 0) does not depend on p, (i.e., prices are i.i.d.). While there is evidence
of some mean reversion in stock prices [see Lo and MacKinlay (1988)], it
is a second-order effect. Also, the time-varying risk premia are proportional
to the gross return on a one-period riskless asset, r5_,. In Section 1 we
showed that r,, , = u'(q'x, ,)/pE, [ (q'k)], which is proportional to
u'(q'x,,) under our i.i.d. assumption {since E, ,[«'(q'%k,)] is independent
of tin that case}. This prediction is inconsistent with the evidence in Fama
and Schwert (1977), which indicates an inverse relation between the risk
premium on common stock and short-term Treasury bills.

Thus, this model is one with constant betas and time variation in risk
premia. An additional implication of the model is that the idiosyncratic
variability of asset returns depends on [«'(q'x,_,)]*. That is, if

Et—l[zt’é; | f,] =V,
then
E_ [€& |§)] « [t/ (q'%x, D]V,

Thus, even if the the errors in Equation (1) are temporally homoskedastic
(V, =V, for all »), the errors in Equation (3) are conditionally heteroske-
dastic. Note that the model predicts a positive relationship between time-
varying risk premia and time-varying idiosyncratic variance. This is con-
sistent with the empirical findings of French, Schwert, and Stambaugh
(1987).

Corollary 2 provides an econometrically estimable version of the APT,
but it uses the unattractive assumption that corporate dividends are inter-
temporally independent in their levels. An increase in corporate dividends
this period has no effect on expected future dividends. A more attractive
assumption is intertemporal independence in the rates of change of cor-
porate dividends. The next model leads to i.i.d. rates of change in corporate
dividends and conditional homoskedasticity of idiosyncratic returns.

We let the dividends to firms follow an i.i.d. approximate factor model
scaled by last period’s per-capita dividends. That is,
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%, = (c + Bf, + £)(q'x,.) 4)

For convenience we assume that q'c = 1, so that the average growth rate
in per-capita consumption is zero. We assume that q'Bf, is bounded above
—1, so that per-capita dividends are never negative {although Equation (4)
does not necessarily preclude negative dividends on individual firms]. Note
that per-capita dividends are intertemporally independent in proportional
changes. This assumed nonstationarity in dividends is consistent with the
evidence reported in Kleidon (1986). We also assume that the represen-
tative investor has constant relative-risk aversion.

Assumption 10. Corporate dividends are given by Equation (4).

Assumption 11. The utility function of the representative investor is u(C,)
= (CI-* — D/N1 — v) withy = 0.

Assumption 12. E,_, [¢5|f,] = V, where V is independent of t.

Corollary 3. Given the assumptions of Corollary 1, with Assumption 2
replaced by Assumption 10, plus Assumptions 11 and 12, there exists a
unique sequence of competitive equilibrium returns given by Equation
(3) where B, is constant through time forj=1, 2, .. ., k, and € is bomo-
skedastic.

Proof See the Appendix. &

In this version of the model the factor risk premia and the one-period
riskless return 7, do not vary through time, so there is no relation between
the risk premia and 7_,. To see that 75—, is constant note that

__uwlg'x,.,)
pE,_ 1[14’ (q’it)]

— (q'xt—l)'“’ ]
p(q’xt—l)—‘yEt——l[l + Q'Bfr]_7

Ve

1
pE,_[1 + q'Bf]~

Thus, given our i.i.d. assumption on f,, the expectation in the denominator
is constant through time. Similar analysis shows that the risk premia are
constant through time. Also, E,_\[#,] = 7a-1.

We have now produced two particular models with time-constant betas;
both involve strong assumptions. It seems appropriate to ask how much
more general 2 model could be and still preserve this property. A key
expression is 7, = (p, + X,)/Pas, defining the time ¢ return of asset 7. The
time ¢ — 1 price of the asset appears in the denominator, whereas the

382


http://rfs.oxfordjournals.org/

Intertemporal APT

numerator includes both the time ¢ dividend of the asset and the time ¢
price change. In any recursive, competitive equilibrium model, both the
numerator and denominator of this expression will be random through
time. Given an exogenously assumed structure of x, and endogenously
determined structure of p, we must define a factor model for these returns
[such as Equation (3)] in which the betas of the assets are constant. In
order for the betas to be constant, the randomness in the numerator and
denominator of the rate-of-return expression must be offsetting. It is this
strict requirement that gives rise to our strong assumptions.

3. A Comparison of Three Beta Pricing Models

In this section we describe the testable content of the intertemporal APT
developed above and compare it to the static APT and the ICAPM.? We
argue that, in principle, these three models are distinct, and we describe
the distinctions between them. We conjecture that in practice it may be
difficult to distinguish them empirically.

The static equilibrium APT and the assumption of constant betas imply
that asset returns have the form

Fo= 1o + B.(E, — t¥py) T & (5)

where 8, = (B, ..., B and r,, = (P . . ., V)’ Subtracting ry_; from
both sides of (5) to give an equation for asset excess returns and also
expressing the mimicking portfolio returns as excess returns gives

R,=B.R,, + % (6)

where R, = r, — ry_, and R,,, = r,,, — 175_,. This key equation of the static
APT is testable by a variety of procedures [see, for example, Connor and
Korajczyk (1988) and Lehmann and Modest (1988)].

There are at least three differences between the static [Equation (5)] and
intertemporal [Equation (3)] versions of the APT. First, the beta coefficients
of the intertemporal version have a time subscript. While the static model
does not preclude time-varying parameters, it also provides no guidance
about the nature of the time variation. In statistical implementations, where
the model must be estimated with time-series data, most analysts implicitly
assume that betas are constant. This implicit assumption may not hold,
however, when the time dimension is included explicitly as we have done.
A second difference between the intertemporal and static versions is that
the intertemporal risk premia may vary through time. Again, since the static
model does not consider the time dimension, it makes no prediction about
the nature of the time variation in risk premia.

The third distinction from the static model is the long-run nature of the
zero-beta asset return 7, relative to the one-period riskless return rp_;. This
induces a restriction on the matrix of factor sensitivities when excess returns

# Constantinides (1989) provides a discussion of relations between the versions of the APT and the ICAPM.
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are calculated relative to the one-period riskless return. To see this, use
R, = r, — rs_, and Equation (3) to express returns in excess of the one-
period risk-free return as

1§n= (For = Ta—1) T Bry (B — 1F) + &, i=1,2,... @)

Let 8%, = (1, B8,..,) and R¥, = ((r,, — rx_,), R,,). We can write Equation
(7) as

ﬁi = ’ﬁt—lﬁfnt + &, (8)

which is similar to the estimable Equation (6) except that the number of
factors has increased from kto & + 1 and the first column of 8% | is equal
to the unit vector + (and we have allowed for time variation in 8¥_,). In
this way, we add a “term structure” factor to the model and produce an
equation similar to the static APT.°

We can test for the difference between the static and intertemporal ver-
sions of the APT by testing the unit-beta restriction of the intertemporal
model.’ If we use multivariate statistical methods (such as factor analysis
or principal components) to estimate R¥, then we cannot identify the
particular column of 8¥ that has the unit-beta constraint, since the model
is subject to a rotational indeterminacy. Let L denote a (k+ 1) X (k+ 1)
nonsingular matrix. Factor analytic methods cannot distinguish between
the model 8,_,R¥ and the model (8,_,L)(L7'R¥). Allowing for this inde-
terminacy, the restriction placed upon $* is that there exists a (k& + 1)-
vector A such that

B*N =1 )]

Assuming that the betas are time-invariant (as in Corollaries 2 and 3), this
hypothesis can be tested as a nonlinear restriction on the coefficients of a
multivariate regression model. The restriction is nonlinear because X\ is
not known. Partition 8* into 8*!,a (k+ 1) X (k + 1) matrix formed from
the first £ + 1 rows of 8*, and 8*%,a (n — B — 1) x (k+ 1) matrix formed
from the remaining rows. Then Equation (9) implies that 8*2(8**) ¢,,, —
t,—p— = 0.1 If the intertemporal zero-beta return is not observable, the
static and constant-beta versions of the intertemporal APT are only distinct
to the extent that the constraint of Equation (9) is violated [see Connor
and Korajczyk (1988) for an implementation of this test].

Merton’s ICAPM provides an alternative to either version of the APT. We
will rely on a simple discrete-time analog of Merton’s continuous-time
model discussed more fully in Constantinides (1989). Let J, denote the

® Jagannathan and Viswanathan (1988) also analyze term structure effects in linear factor models.

1t is possible in the static APT that the beta matrix could obey the unit-beta restriction. The difference is
that the intertemporal model derives this restriction endogenously. In the static model one would need
to exogenously assume that there exists a factor for which every asset has equal sensitivity.

" "The subscript on the unit vector « denotes the length of the vector.
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derived utility of the representative investor at time ¢, and let J,, denote
his marginal derived utility given a change in time ¢ wealth:

=E su(C,y ) ==L

Je z[g pu( t+s:| Jwe oW,

Assume that we can express [y, as a linear combination of & uncorrelated
state variables: J,, = 2z, + -+ + z,. From a first-order condition of com-
petitive equilibrium at time £ — 1 we have

wW(C.,) = E Uwtil (10)

for every asset return r,. Let r,,, (=1, ..., k) denote a set of portfolio
returns such that r,,, is perfectly negatively correlated with z,. Then it is
easy to show*? that we can write Equation (10) as

;it - 7Ft—1 = 6:‘1:-1(;»11: - ;Ft—l) + e Bilet—l(;mk!_ ;Fhl) + En (11)

where 8., = cov._,(#, 7,)/var,,(%,,) and E[,] = 0.

Our intertemporal APT can be viewed as a special case of this model. It
has & + 1 state variables: the realizations of the kfactors and the realization
of the aggregate dividend. These state variables are spanned by the %factor—
mimicking portfolios and the zero-beta portfolio. [See Constantinides (1989)
for a more general treatment of the ICAPM that allows for time-dependence
in utility and an arbitrary number of state variables.]

Note the similarity between Equation (11) and the APT Equation (3).
The basic difference between the models lies in the definition of the
portfolio returns on the right-hand side of the equations for asset returns.
In the APT, these portfolios mimic the pervasive factors in the covariance
matrix of asset returns. The portfolio returns may be identified by factor-
analytic methods applied to the cross section of asset returns [see, for
example, Roll and Ross (1980), Chen (1983), Connor and Korajczyk (1988),
or Lehmann and Modest (1988)]. In the ICAPM, the portfolio returns mimic
the state variables that index the representative investor’s derived utility
of wealth function. The econometrician must go outside the basic model
to identify the set of state variables and then construct mimicking portfolios
for these state variables.

2 Substituting Jy, = 2, + --- + 2, into Equation (10) and using E[ab] = F[a]E[b] + cov(a, b) gives u'(C.,)
= E_\[r)E\[Ju) + cOV(r, 2, + -+ + z,). Rearranging terms and using cov. (7, 2) = —cove, (7 7 -
[var.,(z,) /var,(r,,;)]* gives

Eci[Fid = Yorr + BartYir T 0 BieaYaer
where
—uw(C)
EiJw)

_ [var.(z) /var,_,(r,,)* =1k

E v

By substitution we get Yoy = #p; and v, = Eoy[7,, — 7). Using these expressions and taking expec-
tations of Equation (11) gives the needed result that £, ,{¢,] = 0.

Yoy =

-1
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Let us summarize the empirical distinction between the APT and the
ICAPM. The beta pricing restrictions [ Equations (11) and (7)] are identical
in these two models. The only econometric distinction between the two
models concerns the method the econometrician uses to identify the appro-
priate mimicking portfolios in Equations (7) or (11). For the APT, these
mimicking portfolios are identified from the approximate factor model
Assumptions 4 and 5 using factor-analytic techniques. The mimicking port-
folios mimic the pervasive factors in asset returns. The ICAPM implies a
different method. The mimicking portfolios are identified by theoretical
criteria (not fully specified in the general form of the model). The mim-
icking portfolio must mimic a set of state variables that index the stochastic
changes in the representative investor’s wealth function. In terms of the
final econometric specification, the difference in the identification of the
mimicking portfolios is the only difference between the two models.

The ICAPM and APT are distinguishable in principle, but perhaps not
in practice. There is certain to be an overlap, if not an identity, between
the mimicking portfolios found by factor-analytic decomposition of asset
returns and those found by exogenous choice of state variables.’® It may
be that the set of state-variable portfolio returns of the ICAPM will be
approximately equal to the factor-mimicking portfolios of the APT—in
which case the APT and ICAPM are empirically indistinguishable. The
static and intertemporal versions of the APT are distinguished by the unit-
beta restriction of the intertemporal model and the time variation of some
parameters in the intertemporal model.

Summary

This article applies the recursive, competitive equilibrium approach of
Lucas (1978) and Prescott and Mehra (1980) to the APT. This approach
requires the development of a competitive equilibrium asset pricing model
that is consistent with the time-series statistical techniques used for esti-
mation. A drawback to this approach is that this type of model usually
requires strong assumptions. An advantage of the approach is that these
assumptions are described explicitly, rather than being implicit in the
empirical implementations of more general theoretical models.

The model incorporates one of the time-series return patterns uncovered
in recent empirical asset pricing studies: the presence of time-varying risk
premia. Although we do not fully explain all the empirically observed
time-series patterns in risk premia, we believe that our approach is a useful
first step toward explaining them within a fully specified, competitive equi-
librium model.

This article is motivated by the desire to apply the recursive, competitive
equilibrium approach to the APT. In fact, the results also give predictions
that make the model distinct from the static APT. In the static APT a one-
period riskless asset serves as the zero-beta asset. In our model the zero-

13 See Shanken (1985) for a discussion of the distinction among APT, equilibrium APT, and multi-beta CAPMs.
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beta asset is a long-lived asset rather than a one-period riskless asset. This
parallels a result by Rubinstein (1981).

While the static APT, intertemporal APT, and ICAPM are, in principle,
distinct, we argue that it may be hard in practice to distinguish them based
on empirical tests. A weakness of all three of these models is that the
ambiguity of the benchmark risk portfolios can lead to “overfitting” of the
model to the data. The APT can be subject to overfitting because the
pervasive factors are identified from asset return data that also are used to
test the model. The ICAPM can be overfitted because one is free to use
whatever state variables satisfy one’s intuition as to “important” parameters
of the representative investor’s wealth function. The economist’s intuition
is likely to reflect, at least in part, his knowledge of the asset return data.

Appendix

Proof of Theorem 1

Our method of deriving asset prices uses standard results for the repre-
sentative investor’s intertemporal maximization problem [for example, see
Harris (1987, pp. 95-97) or Sargent (1987, Chap. 3)]. We use the fact that,
given our exchange economy and positive marginal utility of consumption,
optimal consumption of the representative investor is equal to the aggre-
gate dividend payment. We must show that the investor will choose to
hold the market portfolio given the assumed price sequence. This will be
true if and only if prices at time #satisty the following first-order condition:

pu(q'x) = E,[Z pu (q’i,ﬂ)im]
s=1

Dividing by #'(q'%,) and using the definition of %,,, from Equation (1)
gives

E pu (q’im) :”+S_lj| E,[Z p'u (q/ir+s)i:t+s:|
=1 =1

=cC + B
P u'(q'x,) w (q'x)

s

Er 2 psu’(q,it+s)gt+si|
s=1

+ (AD
u(q'x)

Note that E[,,|f.,] =0 implies E[¢,.,|f..,] = 0, which, along with Assump-
tion 6, implies that the third additive term on the right-hand side of (A1)
is identically zero. Using the definitions of r,, and =, to restate (Al) gives
the result. ®
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Proof of Corollary 1

By definition of return we have r, = (p,, + x,)/p.—,. Using the formula for
competitive equilibrium prices from Theorem 1 and the definition of x,
from Equation (1) gives

— c(mwo + forr) + Bo(mw, + f) + ¢,
CMo—n + B,y

it

Note that, from Equation (2), p, = ¢m,, + B,x, Separating the additive
terms in the expression above we obtain

Vi = < G >(1r0, + .f(;t—l) + <pr1 >(7rlt + ﬁt)

i—1 it—1

B,
+ -+ ) (wy + fo) + € (A2)
it—1
Multiplying and dividing the first £ + 1 terms on the right-hand side of
(A2) by 7,1, Tipmny - - - 5 Ty, LESpectively, gives
r o= Cﬂ"or——l("ror + ﬁ)t—l) + Bﬂ7rlt—l<7rlt + f1t>
" Di— Tor—1 D Tye—1
+ o+ By [T + ﬂt + f:!: (A3)
D T pr—1
Note that all these steps apply to portfolios as well as to assets. Using the
definitions of 7, 74 . . . » ¥me and finding their returns from (A3) gives
_7r0t+j(;t—1 _7|'1:+ﬁt _7rkt+.ﬁet
Ot—_’ mli_—_—"'rmkt_———
Tor—1 -1 Tpr—1

Inserting these portfolio returns into the right-hand side of (A3) and apply-
ing the definition of 8, gives

Ciltor
Yy = <_9't_1> Yor ¥ Barma¥me T 0+ BV T (3 (A4)

it—1
Note that from the definition of p, and 8, we have c¢ao/py =1 — By, —
... — B Inserting this in (A4) produces
Fo=To + 6;’1:—1(;”;1: - ;’oz) + ...t ﬁt’lzt—l(;mlet - 701) + ?;l;

Note that the assumptions underlying the factor structure of Equation (1)

and Assumption 3 guarantee that E(&§| 7,1, . . ., me) = 0. The assumption
that f,,., and ¢, are independent for s = 0 also ensures that E(&| 7o, s
L) rmkt) = O u

Proof of Corollary 2
Applying Theorem 1 and Corollary 1 we have

;n - ;or = 6;‘11—1(;";1: - i'o.») + ...t 6i1er—1(’~'mkr - ;o:) + ?i':
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where all terms are defined in Corollary 1. Note that if =,/(¢my, + B.w)
is constant through time, then so is 8, From the definition of m,, 7, in
Theorem 1, and Assumption 8, we have

[ o
E| 2} pe i
| =1
1r =
ot e N
[ oo
E, 2 pre xSt
| s=1
T, =

e~ vIx

Applying the assumption that f,, and £, have time-independent distri-
butions,

_ pevq'Xz E[e—vq’im] _ pevq’Xz E{e—vq’imi"ﬂ]
1—0p ! 1—0p

Tor

Note that the ratio #,/(c¢m, + B,x,) is time-invariant for all 7, j. ®
Proof of Corollary 3
Using Assumption 10, we can write the dividend process as

X, = ch*t—l + Bf;k + e:k* (A5)

where f¥%_, = (q'x,.,), fFf = £,(q'x,_,), and €* = ¢,(q'x,_,). Note that using
(A5) as a version of Equation (1), the dividend process x, satisfies Assump-
tions 1-7. We can, therefore, infer from Theorem 1 that there exists a unique
sequence of competitive equilibrium prices given by p, = ¢, + Bx, where

EI|:2 o°u (q’iﬁs) Or+s— l:l

=1
LY ! = ] ’
° w(q'x,)
and
E,[z psuxq'x,ﬁmﬂ]
s=1
T, =

w(q'x)
Using the assumed form of the utility function and the definitions of
f¥_, and f¥, these become

EI[E Ps(qliﬁ s) - (q'i;+ 5= 1)]

=1

Toe =

(q'x)~
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s=1

(q'x)™

T, =

For any s = 1 we can write q'X,,, = q'X, H (1 + q'Bf,,,). Applying this
z=1

to the expressions for m,, and =, above,

[ o [ s—1 B 4
EL D pla'x) I O + ¢BE.0)| Q+ q'Bf,) —*]
Ls=1 | =1 R
or (q'x,)""
[ oo [ s—1 . Wl"'Y . .
E'LE plgx) I 0 +qBE.)| a+ q’Bfm)"f,ﬂ]
=1 | z=1 _
1l', = 1 _
(q'x)™”

Simplifying these expressions by collecting the (q'x,) terms and using the
fact that f, is i.i.d. through time,

7o, = (q'x) Oy pE[(1 + ¢'BO -1 E(1 + q'B 7]

m.=(q'x) ) plE[(1 + ¢'BD 1B (1 + q'BD 1]

=1
Applying the rules for geometric series to these expressions,
_ pa'x B + q'BD ™)
1 — pE[(1 + q'Bf)'~]

_ pa'x,E[(1 + q'Bf) 1)
T T — pE(1 + q'BDY

Tor

Note that 7, and =, have the same form as they do in Corollary 2—a scalar
function of q'x, common to all the #’s, multiplied by a time-invariant
expression. By the same steps as in Corollary 2 it follows that we can write
returns as

Y = Yo = 6;’](’”":1: — 1) + ot BT — o) + €51
where the g8, terms are time-invariant. Note also that

f?:* - (q,xt—l)fﬁ _ S
Coy— T Bumw,y (q,xr—l)ai 0

* —
€ =

where 8, is a time-invariant scalar. Hence ¢, is conditionally homoskedastic
by Assumption 12. &
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