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Abstract. We present a number of computational complexity results for
an optical model of computation called the continuous space machine.
We also describe an implementation for an optical computing algorithm
that can be easily defined within the model. Our optical model is de-
signed to model a wide class of optical computers, such as matrix vector
multipliers and pattern recognition architectures. It is known that the
model solves intractable PSPACE problems in polynomial time, and NC
problems in polylogarithmic time. Both of these results use large spatial
resolution (number of pixels). Here we look at what happens when we
have constant spatial resolution. It turns out that we obtain similar re-
sults by exploiting other resources, such as dynamic range and amplitude
resolution. However, with certain other restrictions we essentially have
a sequential device. Thus we are exploring the border between parallel
and sequential computation in optical computing. We describe an optical
architecture for the unordered search problem of finding a one in a list of
zeros. We argue that our algorithm scales well, and is relatively straight-
forward to implement. This problem is easily parallelisable and is from
the class NC. We go on to argue that the optical computing community
should focus their attention on problems within P (and especially NC),
rather than developing systems for tackling intractable problems.

1 Introduction

Over the years, optical computers were designed and built to emulate conven-
tional microprocessors (digital optical computing), and for image processing over
continuous wavefronts (analog optical computing). Here we are interested in the
latter class: optical computers that store data as images. Numerous physical
implementations exist and example applications include fast pattern recognition
and matrix-vector algebra. There have been much resources devoted to designs,
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implementations and algorithms for such optical information processing archi-
tectures (for example see [1, 8, 11, 19, 29] and their references).

We investigate the computational complexity of a model of computation that
is inspired by such optical computers. The model is relatively new and is called
the continuous space machine (CSM). The model was originally proposed by
Naughton [17, 18]. The CSM computes in discrete timesteps over a number of
two-dimensional images of fixed size and arbitrary spatial resolution. The data
and program are stored as images. The (constant time) operations on images in-
clude Fourier transformation, multiplication, addition, thresholding, copying and
scaling. We analyse the model in terms of seven complexity measures inspired
by real-world resources.

For the original [18] CSM definition, it was shown [17] that the CSM can
simulate Turing machines (this was a sequential simulation). A less restricted
CSM definition [20, 35] was shown to be too general for proving reasonable upper
bounds on its computational power [33], so in this paper we mostly focus on
computational complexity results for a restricted CSM called the C2-CSM.

In Section 2 we recall the definition of the model, including a number of
optically-inspired complexity measures [35]. In Section 2.5 we describe a number
of known computational complexity results for the model, including characteri-
sations of PSPACE and NC. These results were shown a few years ago [30, 34]
(later improved [32]), and were the first to prove that optical computers were
capable of solving NP-complete (and other intractable) problems in polynomial
time. Of course, these results make use of exponential space-like resources. In
particular, these algorithms used exponential spatial resolution (number of pix-
els). Since we have a clear model definition, including definitions of relevant
optical resources, it is relatively easy to analyse CSM algorithms to determine
their resource usage. Recently, Shaked et al. [25–27] have designed an optical
system for solving the NP-hard travelling salesman problem in polynomial time.
Their algorithm can be seen as a special case of our results. Interestingly, they
give both implementations and simulations. As we argue below, we believe that
tackling intractable problems is probably not going to really highlight any ad-
vantages of optics over digital electronic systems. As a step in another direction,
we have shown that if we restrict ourselves to using polylogarithmic time, and
polynomial space-like resources, then parallel optical systems can solve exactly
those problems that lie in the (parallel) class NC.

In Section 3 we present a number of new results for our model. In particular
we look at what happens when spatial resolution is constant. Parallel optical
algorithms and experimental setups usually exploit the fact that we can operate
over many pixels in constant time. However, we show that even with a con-
stant number of pixels we can solve problems in (and characterise) presumed
intractable classes such as PSPACE, in polynomial time. In this case we make
exponential usage of other resources, namely amplitude resolution and dynamic
range. We argue that this is an even more unrealistic method of optical com-
puting than using exponential numbers of pixels. We go on to show that if we
disallow image multiplication, restrict to polynomial numbers of pixels and/or
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images, but put no restrictions on the other resources, then in polynomial time
the model characterises P.

This results lead us to suggest of a new direction for optical algorithm design-
ers. Rather than trying to solve intractable problems, perhaps the community
should focus its attention on problems that are known to be easily parallelisable,
for example those in NC. Of course, these problems are polynomial time solv-
able on sequential machines. However, using our NC characterisations one can
see that optics has the potential to solve such problems exponentially faster than
sequential computers. Also, due to relatively low communication costs and high
fan-in, optics has the potential to out-perform parallel digital electronic archi-
tectures. Perhaps such benefits of optics will be seen where very large datasets
and input instances are concerned. We give evidence for this opinion by citing
existing optical algorithms, as well as the following result in this paper.

We design an optoelectronic implementation for the unordered search prob-
lem of finding a single one in a list of zeros. Of course, this problem can be
sequentially solved in n − 1 steps. Our algorithm works in O(log n) time but,
most importantly, we get this low time overhead on an optical set-up that scales
well (uses at most n pixels), and is relatively straightforward to build. As we
discuss in Section 4.1, this problem is contained in some of the lowest classes
within NC.

2 CSM and C2-CSM

We begin by describing the model in its most general sense, this brief overview
is not intended to be complete and more details are to be found in [30].

2.1 CSM

A complex-valued image (or simply, image) is a function f : [0, 1)× [0, 1)→ C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N

+ = {1, 2, 3, . . .}, N = N
+ ∪ {0}, and for a given CSM M

let N be a countable set of images that encode M ’s addresses. An address is an
element of N× N.

Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P, O), where

E : N→ N is the address encoding function,
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a and b, where a 6= b,
I and O are finite sets of input and output addresses, respectively,
P = {(ζ1, p1ξ

, p1η
), . . . , (ζr , prξ

, prη
)} are the r programming symbols ζj and

their addresses where ζj ∈ ({h, v, ∗, ·, +, ρ, st, ld, br, hlt} ∪ N ) ⊂ I.
Each address is an element from {0, . . . , Ξ−1}×{0, . . . , Y−1} where Ξ, Y ∈ N+.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0. We interpret this definition to
mean that M is (initially) defined on a grid of images bounded by the constants Ξ
and Y, in the horizontal and vertical directions respectively. The grid of images
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h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform of i1.
v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.
∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.
··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.
+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper

amplitude threshold images, respectively. Place result at i2.
[ξ′1, ξ

′

2, η
′

1, η
′

2]← [ξ1, ξ2, η1, η2] : copy the rectangle of images whose bottom left-hand
address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′1, η

′

1) and whose
top right-hand address is (ξ′2, η

′

2). See illustration in Figure 3.

Fig. 1. CSM high-level programming language instructions. In these instructions
i, zl, zu ∈ N × N are image addresses and ξ, η ∈ N. The control flow instructions are
described in the main text.

may grow in size as the computation progresses. Address sta is the start location
for the program so the programmer should write the first program instruction
(beginning) at sta. Addresses a and b define special images that are frequently
used by some program instructions.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
located at the lower left-hand corner of the grid. The images have the same
orientation as the grid. For example the value f(0, 0) is located at the lower
left-hand corner of the image f .

In Definition 1 the tuple P specifies the CSM program using programming
symbol images ζj that are from the (low-level) CSM programing language [30,
35]. We refrain from giving a description of this programming language and
instead describe a less cumbersome high-level language [30]. Figure 1 gives the
basic instructions of this high-level language. The copy instruction is illustrated
in Figure 3. There are also if/else and while control flow instructions with
conditions of the form (fψ == fφ) where fψ and fφ are binary symbol images
(see Figures 2(a) and 2(b)).

The function E is specified by the programmer and is used to map addresses
to image pairs. This enables the programmer to choose her own address encod-
ing scheme. We typically don’t want E to hide complicated behaviour thus the
computational power of this function should be somewhat restricted. Thus we
insist that for a given M there is an address encoding function E : N→ N such
that E is Turing machine decidable, under some reasonable representation of
images as words. For example, we put a restriction of logspace computability on
E in Definition 7 below. Configurations are defined in a straightforward way as
a tuple 〈c, e〉 where c is an address called the control and e represents the grid
contents.

2.2 Complexity measures

Next we define some CSM complexity measures. All resource bounding functions
map from N into N and are assumed to have the usual properties [2].
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(a) (b) (c) (d) (e) (f)

Fig. 2. Representing binary data. The shaded areas denote value 1 and the white areas
denote value 0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or
row) image representation of the word 1011, (d) column image representation of 1011,
(e) 3× 4 matrix image, (f) binary stack image representation of 1101. Dashed lines are
for illustration purposes only.

ξ ξ + 3

η
i

Fig. 3. Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a
single image that is denoted i.

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N×N)→ I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

One can think of spatialRes as a measure of the number of pixels needed
during a computation. In optical image processing terms, and given the fixed
size of our images, spatialRes corresponds to the space-bandwidth product of
a detector or spatial light modulator.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

In optical processing terms dyRange corresponds to the dynamic range of a
signal.
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We also use complexity measures called amplRes, phaseRes and freq [30,
35]. Roughly speaking, the amplRes of a CSM M is the number of discrete,
evenly spaced, amplitude values per unit amplitude of the complex numbers in
the range of M ’s images. The phaseRes of M is the total number (per 2π)
of discrete evenly spaced phase values in the range of M ’s images. freq is a
measure of the optical frequency of M ’s images [35].

Often we wish to make analogies between space on some well-known model
and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

2.3 Representing data as images

There are many ways to represent data as images. Here we mention some data
representations that we have used in previous results. Figures 2(a) and 2(b)
are the binary symbol image representations of 1 and 0 respectively. These im-
ages have an everywhere constant value of 1 and 0 respectively, and both have
spatialRes of 1. The row and column image representations of the word 1011
are respectively given in Figures 2(c) and 2(d). These row and column images
both have spatialRes of 4. In the matrix image representation in Figure 2(e),
the first matrix element is represented at the top left corner and elements are or-
dered in the usual matrix way. This 3×4 matrix image has spatialRes of 12. Fi-
nally, the binary stack image representation, which has exponential spatialRes

of 16, is given in Figure 2(f).
Figure 3 shows how we might form a list image by copying four images to

one in a single timestep. All of the above mentioned images have dyRange,
amplRes, and phaseRes of 1.

2.4 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we defined [30, 33] the C2-CSM, a restricted class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete Fourier transform (DFT) in the
horizontal and vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.
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Let us discuss these restrictions. The restrictions on amplRes and phaseRes

imply that C2-CSM images are of the form f : [0, 1)×[0, 1)→ {0,± 1
2 ,±1,± 3

2 , . . .}.
We have replaced the Fourier transform with the DFT [5], this essentially means
that freq is now solely dependent on spatialRes; hence freq is not an inter-
esting complexity measure for C2-CSMs and we do not analyse C2-CSMs in terms
of freq complexity [30, 33]. Restricting the growth of space is not unique to
our model, such restrictions are to be found elsewhere [10, 21, 22]. The condition
on the address encoding function E amounts to enforcing uniformity (we do not
wish to use E as a powerful oracle).

In this paper we prove results for variants (generalisations and restrictions)
on the C2-CSM model. If we are not stating results for the C2-CSM itself, then
we always specify the exact model that we are using.

2.5 Some existing C2-CSM complexity results

We have given lower bounds on the computational power of the C2-CSM by
showing that it is at least as powerful as models that verify the parallel compu-
tation thesis [30, 32, 34]. This thesis [7, 9] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [12, 14, 21, 28] for details. Let S(n) be a space bound that is Ω(log n).
The languages accepted by nondeterministic Turing machines in S(n) space are
accepted by C2-CSMs computing in polynomial time O(S2(n)) (see [32] for this
result, which improves on the version in [30, 34]):

Theorem 1. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S2(n)))

For example, polynomial time C2-CSMs accept the PSPACE languages4. Of
course any polynomial time C2-CSM algorithm that we could presently write
to solve PSPACE-complete, or NP-complete, problems would require exponen-
tial space. Theorem 1 is established using an implementation of a well-known
transitive closure algorithm on the C2-CSM. Using this result, we also find that
C2-CSMs that simultaneously use polynomial space and polylogarithmic time

accept the class NC [30, 34].

Corollary 1. NC ⊆ C2-CSM–SPACE, TIME(nO(1), logO(1) n)

We have also given the other of the two inclusions that are necessary in or-
der to verify the parallel computation thesis: C2-CSMs computing in time T (n)
are no more powerful than O(T 2(n)) space bounded deterministic Turing ma-
chines [30, 31].

Theorem 2. C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

Via the proof of Theorem 2, we get another result. C2-CSMs that simultaneously
use polynomial space and polylogarithmic time accept at most NC [30, 31].

4 PSPACE is a well-known class of problems that are solvable by Turing machines that
use space polynomial in input length n. This class contains NP, since a polynomial
space bounded Turing machine can simulate, in turn, each of the exponentially many
possible computation paths of a nondeterministic polynomial time Turing machine.
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Corollary 2. C2-CSM-SPACE, TIME(nO(1), logO(1) n) ⊆ NC

The latter two inclusions are established via C2-CSM simulation by logspace uni-
form circuits of size and depth polynomial in space and time respectively. Thus
C2-CSMs that simultaneously use both polynomial space and polylogarithmic
time characterise NC.

3 Parallel and sequential C2-CSM computation

As we have seen in the previous section, a number of computational complexity
results for the C2-CSM have shown that the model is capable of parallel pro-
cessing in much the same way as models that verify the parallel computation
thesis, and models that are known to characterise the parallel class NC. To date,
these results strongly depended on their use of non-constant spatialRes. The
algorithms exploit the ability of optical computers, and the CSM in particular,
to operate on large numbers of pixels in parallel. But what happens when we do
not have arbitrary numbers of pixels? If allow images to have only a constant
number of pixels then we need to find new CSM algorithms. It turns out that
that such machines characterise PSPACE.

Theorem 3. PSPACE is characterised by C2-CSMs that are restricted to use
polynomial time T = O(nk), spatialRes O(1), grid O(1), and generalised to

use amplRes O(22T

), dyRange O(22T

).

Proof. The PSPACE upper bound comes directly from a minor extension to
the proof of Theorem 2, sketched as follows. The proof of Theorem 2 showed
that C2-CSMs that run in polynomial time T = O(nk), are simulated by cir-
cuits of polynomial depth O(T 2) and size exponential in T , and it remains to
be shown that our amplRes and dyRange generalisations do not affect these
circuit bounds by more than a polynomial factor. In the previous proof [30, 31]
dyRange was O(2T ), in accordance with the usual C2-CSM definition. Thus, in
the circuit simulation, images values x ∈ {1, . . . , O(2T )} ⊆ N were represented
by binary words x̂ of length |x̂| = O(T ). We directly apply the previous con-

struction to represent values x ∈ {1, . . . , O(22T

)} as words of length |x̂| = O(2T ).
Since the circuits are already of size exponential in T , this modification only in-
creases circuit size by a polynomial factor in the existing size. Also, the circuit
simulation algorithms experience at most a polynomial factor increase in their
depth. A similar argument works for amplRes (even though in the previous
proof amplRes was O(1)). Here we are using constant spatialRes and grid

(as opposed to O(2T ) for the previous proof), so circuit size and depth are each
decreased by a polynomial factor in their respective previous values. We omit
the details.

For the lower bound we use the results of Schönhage [24] and Bertoni et
al. [4] which show that PSPACE is characterised by RAMs augmented with
integer addition, multiplication, and left shift instructions, that run in time that
is polynomial in input length n. We show how to simulate such an augmented
RAM with a C2-CSM that has time overhead that is polynomial in RAM time.
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The numerical value x ∈ N of the binary word in a RAM register is stored as
an image, with a single pixel, of value x. The RAM uses a constant (independent
of input length n) number of registers, and therefore the C2-CSM uses a constant
number of images. The addition and multiplication RAM operations are trivially
simulated in constant time by C2-CSM addition and multiplication instructions.

The RAM shift instruction x ← y takes a register x containing a binary
value and shifts it to the right by an amount stored in another binary register y
(Schönhage defines the shift instruction as ⌊x/2y⌋). In the C2-CSM this can be
simulated (using multiplication and addition) by (x · 1/2y) + (−1 · x′) where x′

is the result of (thresholding and multiplication) ρ(x · 1/2y, 1/2y, 1; x′), and the
value 1/2y is computed by repeated multiplication in O(log y) steps.

The C2-CSM algorithm uses amplRes and dyRange that are exponential
in the space used by the RAM and time polynomial in the time of the RAM.
All other resources are constant. ⊓⊔

So by treating images as registers and generating exponentially large, and ex-
ponentially small, values we can solve seemingly intractable problems. Of course
this kind of CSM is quite unrealistic from the point of view of optical implemen-
tations. In particular, accurate multiplication of such values in optics is difficult
to implement. Some systems have up to a few hundred distinct amplitude lev-
els [8] (for example 8 bits when we have 256× 256 pixels [15], although higher
accuracy is possible when we have a single pixel5). Therefore, one could argue
that this kind of multiplication is quite unrealistic. To restrict the model we could
replace arbitrary multiplication, by multiplication by constants, which can be
easily simulated by a constant number of additions. If we disallow multiplication
in this way, we characterise P.

Theorem 4. C2-CSMs without multiplication, that compute in polynomial time,
polynomial grid O(nk), and spatialRes O(1), characterise P.

Proof (Sketch). For the P lower bound assume that we wish to simulate a deter-
ministic Turing machine with one-way infinite tapes. Each tape is represented
as a row of images, one for each tape cell. We store a pointer to the current
tape head position as an image address. Then it is a straightforward matter to
convert the Turing machine program to CSM program, where a left (right) move
corresponds to decrementing (incrementing) the address pointer. Reading and
writing to the tape is simulated by copying images. CSM branching instructions
simulate branching in the Turing machine program. The CSM runs in time that
is linear in Turing machine time.

For the P upper bound we assume some representation of images as binary
words (such as the representation given above, or in [30, 31]), and apply a simple
inductive argument. The initial configuration of our restricted C2-CSM is en-
coded by a binary word of length polynomial in the input length n. Assume at

5 Inexpensive off-the-shelf single point intensity detectors have intensity resolutions of
at least 24 bits (see, for example, the specifications for silicon-based point detectors
and optical power meters from popular manufacturers such as www.mellesgriot.com,
www.newport.com, and www.thorlabs.com).
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C2-CSM time t that the binary word encoding the configuration is of polynomial
length. For each pixel, addition of two images leads to an increase of at most
one bit per pixel under our representation, and can be simulated in polynomial
time on a Turing machine. The DFT over a finite field is computable in poly-
nomial time and is defined in such a way that it does not increase the number
of pixels in an image. Also, its input and output values are from the same set,
therefore the upper bounds on the other space-like resources are unaffected by
the DFT. Copying (up to) a polynomial number of encoded images can be com-
puted in polynomial time. It is straightforward to simulate complex conjugation
and thresholding in linear time. ⊓⊔

The first proof of universality for the CSM was a simulation of Turing ma-
chines that used space that is exponential in Turing machine space [17]. Specifi-
cally, it used constant grid and exponential spatialRes. The previous theorem
improves the space bound to linear, by using linear grid and only constant
spatialRes.

If we take the previous restricted C2-CSM, and restrict further to allow only
constant grid, but allow ourselves polynomial spatialRes, then we also char-
acterise P.

Theorem 5. CSMs without multiplication, that compute in polynomial time,
polynomial spatialRes O(nk), and grid O(1), characterise P.

Proof (Sketch). Here we are considering a C2-CSM model that is similar to the
model in Theorem 4; we are swapping grid for spatialRes. Hence a very similar
technique can be used to show the P upper bound, so we omit the details.

For the lower bound, we store each one-way, polynomial p(n) length, binary,
Turing machine tape as a binary list image. We store the current tape head
position i ∈ {1, . . . , p(n)} as a binary list image that represents i in binary.
Then, to extract the bit stored at position i, we can use a O(log p(n)) time

binary search algorithm (split tape image in two, if i 6 p(n)/2 then take the left
image, otherwise take the right, let p(n) := p(n)/2 and repeat). This technique,
along with suitable masks, can also be applied to write to the tape. The Turing
machine program is simulated using C2-CSM branching instructions. ⊓⊔

Theorems 4 and 5 give conditions under which our optical model essentially
looses its parallel abilities and acts like a standard sequential Turing machine.

4 Implementation of an unordered search algorithm

We provide a design for an optoelectronic implementation of a binary search
algorithm that can be applied to unordered lists. Consider an unordered list of n
elements. For a given property P , the list could be represented by an n-tuple
of bits, where the bit key for each element denotes whether or not that element
satisfies P . If, for a particular P , only one element in the list satisfies P , the
problem of finding its index becomes one of searching an unordered binary list
for a single 1. The problem is defined formally as follows.
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A

F

B

D

C

Convex lens (12)

OASLM (2)

Laser with spatial filter (3)

Beam splitter (5)

Mirror (6)

On/off control electronics (4)

Single-pixel intensity detector (1)

Light block (2)

Fourier transform (9)

E

Fig. 4. Optical apparatus to perform a binary search for a single 1 in a bitstream
of 0s. The legend explains the optical components and the number of them required.
The labels A-F are explained in the text. OASLM: optically-addressed spatial light
modulator.

Definition 8 (Needle in haystack problem). Let L = {w : w ∈ 0∗10∗}. Let
w ∈ L be written as w = w0w1 . . . wn−1 where wi ∈ {0, 1}. Given such a w,
the needle in haystack problem asks what is the index of the symbol 1 in w. The
solution to the needle in haystack problem for a given w is the index i, expressed
in binary, where wi = 1.

This problem was posed by Grover in [13]. His quantum computer algorithm
requires O(

√
n) comparison operations on average. Bennett et al. [3] have shown

the work of Grover is optimal up to a multiplicative constant, and that in fact
any quantum mechanical system will require Ω(

√
n) comparisons. It is not dif-

ficult to see that algorithms for sequential models of computation require Θ(n)
comparisons in the worst case to solve the problem. We present an algorithm that
requires O(log2 n) comparisons, with a model of computation that has promising
future implementation prospects.

Our search algorithm is quite simple. A single bright point is somewhere in
an otherwise dark image. If we block one half of the image we can tell in a single
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step if the other half contains the bright point or not. This forms the basis of a
binary search algorithm to determine the precise location of the bright point.

Theorem 6 ([35]). There exists a CSM that solves the needle in haystack prob-
lem in Θ(log2 n) comparisons for a list of length n, where n = 2k, k ∈ N, k ≥ 1.

The CSM instance that performs this computation is given elsewhere [35],
as are details of a counter to determine when the computation has finished and
details of how the next most significant bit of the address is built up in an
image at each step. We explain the main loop of the CSM algorithm. The binary
input list w can be represented as a binary list image as illustrated in Fig. 2(c),
or more simply by using a single point of light instead of a vertical stripe to
denote value 1. Therefore, w would be represented by a small bright spot (a
high amplitude peak) in an otherwise black image, where the position of the
peak denotes the location of the 1 in w. During the first iteration of the loop, w
is divided equally into two images (a left-hand image and a right-hand image).
The nonzero peak will be either in the left-hand image or the right-hand image. In
order to determine which image contains the peak in a constant number of steps,
the left-hand image is Fourier transformed, squared, and Fourier transformed
again. This effectively moves the nonzero peak (wherever it was originally) to
the centre of the image, where it can be easily compared to a template (using
a single conditional branching instruction in the CSM). If the left-hand image
contains a nonzero amplitude at its centre, then the left-hand image contained
the peak. In this case, the right-hand image is discarded, and the most significant
bit of the address of 1 in w is 0. Otherwise, the right-hand image contained the
peak, the left-hand image is discarded, and the most significant bit of the address
is 1. For the next iteration, the remainder of the list is divided equally into two
images and the computation proceeds according to this binary search procedure.

A schematic for an optoelectronic implementation is shown in Fig. 4. At the
start of the computation, optically addressed spatial light modulator (OASLM)
A is initialized to display the input list. One half of the input is read out of the
OASLM using illumination B and a beam splitter in standard configuration, and
is transformed by a Fourier lens so that its Fourier transform falls on OASLM C.
The act of detection within C squares the image, and it is read out and Fourier
transformed again using illumination D. A single point detector is centred on the
optical axis – exactly where light would fall if there was a bright spot anywhere
in the left half of the list on OASLM A. If light is detected, light block E is
opened to allow the left half of the list to be copied to the full extent of A,
otherwise illumination F is switched on to allow the right half of the list to be
copied to the full extent of A. The act of detection within A will itself square
the image but this is no concern because it is intended that the list would have
constant phase everywhere. In fact, the response of A could be configured to
nonlinearly transform the intensities in the image, to suppress any background
noise and enhancing the bright spot, thus avoiding the propagation of errors
which is the overriding problem with numerical calculations implemented in
analog optics [16]. The left half of the remainder of the list is now ready to
be Fourier transformed itself onto C, for the next step in the computation. For
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simplicity, at each step we let the next bit of the address to be recorded at the
detector electronics.

To more rigorously verify the operation of the apparatus in Fig. 4 from
an optical engineering standpoint, the following steps in the process are stated
explicitly.
Step 1: Ensure F is off, E closed, B on, D on, C cleared, input displayed on A.
Step 2: (Detector will sense the presence or absence of light.) Put A into write
mode. If light is sensed, record address bit of 0 and open E for an instant,
otherwise record an address bit of 1 and switch F on for an instant. Take A out
of write mode. Clear C.
Step 3: Go to step 2.

All that is required to augment the design is a counter to determine when
to halt (which can also be performed electronically) and a method of initialising
OASLM A with the input (which can be performed by replacing the upper-right
mirror with a beam splitter). This is by no means a definitive implementation of
the operation, but conceptually it is very simple, and as a design it is straightfor-
ward to implement. The most difficult implementation issues concern ensuring
that light close to the centre of A is appropriately partitioned by the pair of
side-by-side Fourier lenses, and ensuring that the feedback paths (the two paths
from A to itself) are not unduly affected by lens abberations. Ultimately, the
spatial resolution of the input images (and so the size of the list inputs) is lim-
ited by the finite aperture size of the lenses. Practically, it would be desirable to
configure both B and D to be pulsed in the same way as F, although this adds
to the control burden. It would be possible to replace the two 4-f feedback paths
with 2-f feedback paths (thereby removing two lenses from each path) if one
took note that the list would be reversed at each alternate step. Further, each
pair of Fourier lenses in the upper feedback arm could be replaced by a single
lens in imaging configuration if one ignores the phase errors – Fourier transform-
ing lenses are used exclusively in this design to ease detailed verification of the
apparatus by the reader. Imaging lenses would also allow reduction in size of
the largest of the mirrors and beamsplitter in the design. Furthermore, passive
beamsplitters and planar mirrors are specified here to maintain the quality of
the optical wavefronts at reasonable notional financial cost; instead employing
active beam splitter technology and curved mirrors would reduce the number of
components further while admitting their own disadvantages. Finally, cylindrical
lenses could be used rather than spherical lenses because Fourier transformation
in one dimension only is required.

4.1 Complexity of the unordered search problem

It is possible to give an AC0 circuit family to solve the Needle in haystack prob-
lem. In fact, is is possible to give constant time CSM, or C2-CSM, algorithms
to solve the problem. However, although fast, we felt than any such CSM al-
gorithm that we could think of was more difficult to implement optically than
the above algorithm. For example, one can consider a CSM algorithm that en-
codes the values 1, . . . n at addresses a1, . . . , an, respectively. Next we assume
an ordering on the n possible inputs that corresponds to the ordering in the
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addressing scheme. Using such an input, the machine would simply branch to
the address at the input’s value, and output the image at the ith address. The
algorithm runs in constant time, linear grid, and all other resources are con-
stant. Although simple to describe, the use of addressing would complicate the
algorithm’s implementation.

5 A new direction for optical algorithm designers?

Nature-inspired systems that apparently solve NP-hard problems in polynomial
time, while using an exponential amount of some other resource(s), have been
around for many years. So the existence of massively parallel optical systems for
NP-hard problems should not really suprise the reader.

One could argue that it is interesting to know the computational abilities,
limitations, and resource trade-offs of such optical architectures, as well as to
find particular (tractable or intractable) problems which are particularly suited
to optical algorithms. However, “algorithms” that use exponential space-like re-
sources (such as number of pixels, number of images, number of amplitude levels,
etc.) are not realistic to implement for large input instances. What happens to
highly parallel optical architectures if add the requirement that the amount of
space-like resources are bounded in some reasonable way? We could, for exam-
ple, stipulate that the optical machine use no more than a polynomially bounded
amount of space-like resources. If the machine runs in polynomial time, then it
is not difficult to see that it characterises P (by characterise we mean that the
model solves exactly those problems in P), for a wide range of reasonable par-
allel and sequential optical models (see Section 3). Many argue that the reason
for using parallel architectures is to speed-up computations. Asking for an ex-
ponential speed-up motivates the complexity class NC. The class NC can be
thought of as those problems in P that can be solved exponentially faster on
parallel computers than on sequential computers. Thus, NC is contained in P
and it is an major open question whether this containment is strict: it is widely
conjectured that this is indeed the case [12].

How does this relate to optics? As discussed in Section 2.5, a wide range
of optical computers that run for at most polylogarithmic time, and use at
most polynomial space-like resources, solve exactly NC [30–32,34]. In effect this
means that we have an algorithmic method (in other words, a compiler) to
convert existing NC algorithms into optical algorithms that use similar amounts
of resources.

From the practical point of view, perhaps we can use these kinds of results to
find problems within NC, where optical architectures can be shown to excel. Ob-
vious examples for which this is already known are matrix-vector multiplication
(which lies in NC2), or Boolean matrix multiplication (which is in NC1).6 An-
other example is the NC1 unordered search problem given in Section 4. Another

6 On a technical note, NC can be defined as ∪∞

k=0NCk, where NCk is the class of
problems solvable on a PRAM that runs for O(log(n))k time and uses polynomial
processors/space, in input length n. Equivalently NCk can be defined as those prob-
lems solvable by circuits of O(log(n))k depth (parallel time), and polynomial size.
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closely related idea is to exploit the potential unbounded fan-in of optics to com-
pute problems in the AC, and TC, (parallel) circuit classes. These are defined
similarly to NC circuits except we allow unbounded fan-in gates, and threshold
gates, respectively. The results of Reif and Tyagi [23], and Caulfield’s observa-
tion on the benefits of unbounded fan-in [6], can be interpreted as exploiting this
important and efficient aspect of optics.

There is scope for further work here, on the continuous space machine in
particular, in order to find exact characterisations, or as close as possible for
NCk for given k. Or even better, to find exact characterisations of the ACk or
TCk classes of problems.

References

1. H. H. Arsenault and Y. Sheng. An Introduction to Optics in Computers, volume
TT8 of Tutorial Texts in Optical Engineering. SPIE Press, Bellingham, Washing-
ton, 1992.
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