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    Abstract 

 

The work described in this thesis concerns the synthesis of ca. 50 new imidazole-

containing Schiff base ligands, the formation of their Ag(I) complexes and their 

evaluation as agents for inhibiting the growth of the fungal pathogen, Candida albicans. 

The synthesis of some Schiff base ligands proved problematic and the products were 

characterized using standard IR and NMR spectroscopic methods, micro-analysis and, in 

two instances, by X-ray crystallography. Compared to the synthesis of the ligands the 

preparation of the Ag(I) complexes was relatively simple and pure products were isolated 

in moderate to good yields. The Ag(I) complexes were also characterized using standard 

IR and NMR spectroscopic methods, micro-analysis and, in two cases, by mass 

spectrometry. All of the Schiff base ligands and their corresponding Ag(I) complexes 

were tested for their anti-Candida activity. While the metal-free Schiff base ligands were 

essentially inactive, the corresponding Ag(I) complexes showed excellent activity. The 

set of Ag(I) complexes based on the Apim (Apim = 1-(3-aminopropyl)imidazole) Schiff 

base ligands were the most potent. A progressive improvement in activity of the Ag(I) 

complexes was seen on going from Schiff base ligands derived from 1H-imidazole-2-

amine to histamine to Apim, corresponding to the increase in spacer chain length of the 

respective ligand sets. A notable reduction in activity was observed in the Ag(I) 

complexes of di-Schiff base ligands derived from 1,2-diaminoethane, 1,3-

diaminopropane and 1,4-diaminobutane. The extra imine group in the spacer chain may 

have had a negative impact on activity and negate any positive effect due to the 

progressive increase in spacer chain length. The set of Ag(I) complexes containing di-

Schiff base ligands derived from 1,2-, 1,3- and 1,4-phenylenediamine had similar activity 

to those complexes with ligands derived from 1,2-diaminoethane, 1,3-diaminopropane 

and 1,4-diaminobutane. In this instance, the resulting increase in the level of aromaticity 

does not appear to affect the anti-Candida activity. 
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Symbols and Abbreviations 

 

AIDS Acquired Immunodeficiency Syndrome 

AmB   Amphotericin B  

Apim   1-(3-Aminopropyl)imidazole  

ATP              Adenosine triphosphate 

BBB   Blood-brain barrier  

bdoaH2  Benzene-1,2-dioxyacetic acid 

bib    1,3-Bis(4,5-dihydro-1H-imidazole-2-yl)benzene  

1-Bimi   Bis(1H-Imidazole-1-ylmethyl)-1H-imidazole 

2-Bimi   2-(1H-Imidazole-2-ylmethyl)-1H-imidazole 

2-BIM(Me)  1-Methyl-2-(1-methyl-1H-imidazole-2-yl)methane  

bipy   2,2'-Bipyridine  

DCM   Dichloromethane 

CDC    Centre for Disease Control and Prevention 

CHN   % Carbon, hydrogen and nitrogen 

d, m, s, t  Doublet, multiplet, singlet, triplet 

DMSO   Dimethylsulfoxide 

DNA   Deoxyribonucleic acid  

ECG   Elecrocardiogram 

FDA    The U.S. Food and Drug Administration 

fumH2   Fumaric acid 

GSSG    Anti-oxidant molecule glutathione  

HIV Human Immunodeficiency Virus  

Hz   Hertz 

iphaH2   Isophthalic acid  

IR   Infrared 

LFSE   Ligand field stabilization energy 

MgSO4  Magnesium sulphate 

malH2   Malonic acid  

MBS   Metal binding site 

2-mBIM  Bis(2-methyl-1H-imidazole-1-yl)methane 

MeCN   Acetonitrile 
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MIC   Minimium inhibitory concentration  

MIC50 The minimium inhibitory concentration that results in a 50% 

kill 

MIC100 The minimium inhibitory concentration that results in a 100% 

kill  

MM    Minimal medium 

MOF   Metal-organic frameworks 

MRI    Magnetic resonance imaging 

mRNA   Messenger ribonucleic acid 

MRSA   Methicillin-resistant Staphylococcus aureus sp. 

MT   Metallothionins 

NIH U.S. National Institute of Health 

norbH2   cis-5-Norborene-endo-2,3-dicarboxylic acid 

NO2imiH   4(5)-nitroimidazole 

1,10-phen   1,10-Phenanthroline 

1,10-phendio  1,10-Phenanthroline-5,6-dione 

phaH2   Phthalic acid 

RPMI   Roswell Park Memorial Institute 

salH2   Salicylic acid  

sal-imi   Salicylic acid-imidazole Schiff base ligands 

SDA   Sabouraud Dextrose Agar 

SSD   Silver sulfadiazine  

T.B. Tuberculosis 

THF   Tetrahydrofuran 

TSIL Task specific ionic liquids 

URDIP  Unit for Research and Development of Information Products 

India 

VRSA   Vancomycin-resistant Staphylococcus aureus sp. 

ZVED  National Centre for Zoonotic, Vector-Borne, and Enteric 

Diseases 



                            Chapter 1 

 

 1 

Introduction



                            Chapter 1 

 

 2 

1.1 Description of Fungi and Fungal Infections 

 

Fungi
1,2

 are ubiquitous in nature, where they are found free-living on plants, in soil and in 

salt water. They are major plant pathogens and are one of the main causes of crop 

damage and spoilage of foods (Figure 1).
3
  

          

Figure 1 Potato blight caused by Phytophora infestans. 

 

Fungi are very versatile organisms that live in and on animals as part of their natural 

flora, but they can also be the cause of numerous infections. These infections are 

classified as follows: (a) Superficial mycoses: infections that are limited to the outermost 

layers of the skin and hair (Figure 2).
4
 

 

      Figure 2 Superficial fungal infection of the skin. 

 

(b) Cutaneous mycoses: infections that extend deeper into the epidermis as well as   

invasive hair and nail diseases (Figure 3).
4
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Figure 3 Fungal infection of the nail. 

 

(c) Subcutaneous mycoses: infections involving the dermis, subcutaneous tissues, muscle 

and fascia (Figure 4).
4
  

 

Figure 4 Fungal infection of the oral cavity. 

 

(d) Systemic mycoses: infections that originate primarily in the lungs, but may spread to 

many organs (Figure 5).
4 

 

 

 

 

     

                                                 

      Figure 5 Fungal infection of the lung.  

 

Almost all fungal organisms involved in human diseases are free-living, but humans have 

a high level of innate immunity to infection due to innate natural barriers. Most infections 
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are mild and self-limiting. The skin protects us against colonization by fungi that attack 

superficial, cutaneous and subcutaneous layers. Mucosal surfaces protect against 

organisms that attack the pulmonary system, while humoral factor protects against 

systemic infection. Consequently, very few fungi can cause infection in an otherwise 

healthy individual. However, in cases where the immune system has been compromised, 

either by disease or by therapies, fungal infection can become a problem. The emergence 

of new diseases and infections, such as Human Immunodeficiency Virus (HIV), Acquired 

Immunodeficiency Syndrome (AIDS), and the re-emergences of old ones, like 

Tuberculosis (T.B.), have led to an increase in the incidence of fungal infections. Also, 

the emergence of fungi which are resistant to the current prescription drugs is a matter of 

urgent concern, and it is this challenge that is driving the demand for new drugs.  

 

One of the most common fungal species to affect humans is the yeast Candida albicans. 

This yeast is dimorphic, that is to say, it exists as single, oval yeast cells, and reproduces 

by budding (Figure 6). It also has the ability to produce pseudohyphae, where the buds 

elongate forming a structure known as the germ tube. Germ tubes remain attached to each 

other to form root-like rhizoids (Figure 7). Rhizoids can penetrate mucosae and intestinal 

walls causing microscopic holes, which then allow toxins, undigested food, bacteria and 

fungi to enter the blood stream, giving rise to a condition called Leaky Gut Syndrome.
5 

 
Figure 6 Yeast or budding form of           Figure 7 Pseudohyphae, the invasive                              

C. albicans.                    form of C. albicans. 
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C. albicans is found in humans as a normal part of the bowel flora. In a healthy person, 

C. albicans, in their millions, perform many functions inside the digestive tract, one of 

which is to destroy harmful bacteria. Our immune system, together with bacteria, such as 

Lactobacillus acidophilus sp., helps to keep the growth of Candida sp. and other fungal 

cells under control. However, if the immune system is compromised and the numbers of 

“friendly” bacteria are reduced, then an overgrowth of Candida sp. can occur, giving rise 

to a condition known as candidiasis. 

 

1.2 Current Prescription Antifungal Drugs
1,2,5-7,9

 

 

In contrast to anti-bacterial chemotherapy there are relatively few antifungal agents 

available. This is because, up to the 1970’s, fungal infections were less common. This 

was due to either a lack of diagnosis or occurrence, and historically was much less likely 

to cause fatality, at least in the “developed world.” This, coupled with the extreme 

difficulty in developing a drug that is selective against the fungal cells, which are very 

similar to the mammalian cell, has been attributed to the scarcity of prescription 

fungicides.
5b 

 

This thesis concerns itself with the fungal species C. albicans. However, other fungi, 

especially Aspergillus sp., Pseumocystis carinii sp., Cryptococcus neoformans sp. and 

Histoplasma sp., all pose at least the same, if not an even greater risk to human health.  

 

The treatment of candidiasis is dependent on the nature of the infection. Superficial 

mycoses’s, involving skin or cutaneous tissue, requires different treatment regimes from 

systemic mycosis, which involves organ disease. Some of the current prescription drugs, 

such as amphotericin B (AmB),
6
 nystatin and griseofulvin,

7
 also have broad spectrum 

antimicrobial effects (Figure 8). 
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1.2.1 Polyenes 

 

The first of the polyenes, nystatin (Figure 8), was discovered in 1949 by Hazen and 

Brown.
8
 Polyenes are metabolites produced by various species of Streptomyces. The 

compounds are cyclic, macrolide lactones containing a variable number of hydroxyl 

groups and from 2-7 conjugated double bonds. These compounds are classified by their 

degree of unsaturation. The mechanism of their action is thought to be based on their 

ability to bind to sterols in the cytosolic membrane of fungal cells. Although mammalian 

cells also contain the sterol, cholesterol, polyenes tend to preferentially bind to the fungal 

sterol, ergosterol (Figure 9). 

 

Amphotericin B (AmB) 

 

Nystatin 

Figure 8 The polyenes. 
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Amphotericin B (AmB)
6,9

 (Figure 8) is a heptaene macrolide and is one of the few 

polyenes that is clinically useful. The mechanism of action of AmB is complex and not 

totally understood, despite the clinical use of AmB for over 50 years (1956).
10

 Lack of a 

complete understanding of its mechanism of action makes it difficult to modify its 

structure in order to decrease its mammalian cytotoxicity. It has been suggested that 

several molecules of AmB insert into the cytoplasmic membrane of the fungal cell to 

form pores that allow leakage of essential ions from the cytosol and which eventually 

leads to cell death.
6,10 

 

 

AmB-cholesterol channel 

 

AmB-ergosterol channel 

Figure 9 The AmB-cholesterol pore and the AmB-ergosterol pore.
11

 

 



                            Chapter 1 

 

 8 

The proposed molecular simulations of the AmB-cholesterol pore and the AmB-

ergosterol pore are shown in Figure 9. AmB’s nitrogens are shown in blue, and the 

nitrogens of the sterol are shown in yellow.
11

 A seemingly minor difference in the size 

and shape of the two pores has a catastrophic effect on the fungal cell, as the different 

size and shape allows leakage of fungal cell contents. 

 

AmB is insoluble in water at normal pH and is too toxic to be given parenterally. As a 

consequence, it is administered either as a sodium deoxycholate-lipid complex or it is 

encapsulated in liposomes. It can also be given topically. As it is capable of crossing the 

blood-brain barrier it is effective against cryptococcal meningitis. As yet, there are no 

known cases of resistance to AmB. The adverse side-effects of AmB are that it interacts 

with plasma proteins and binds to cholesterol in lipoproteins, which are then deaminated 

in the liver. The consequence is renal toxicity in up to 80% of patients, although most 

recover when the treatment is complete. The spleen, lungs and kidneys may also be 

affected and some impairment of glomerular filtration may remain.  

 

1.2.2 Synthetic Antifungal Agents 

 

5-Flucytosine
9
 (Figure 10) is a fluorinated pyrimidine analogue. It is converted to the 

antimetabolite 5-fluorouracil (5-FU) in fungal cells but, not in mammalian cells. 5-FU 

inhibits the enzyme thymidylate synthetase and so affects DNA replication. 5-Flucytosine 

is used in conjunction with AmB as a treatment for severe systemic fungal infections 

such as cryptococcal meningitis. 5-Flucytosine is not prescribed alone as resistance 

commonly arises during treatment. 
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Figure 10 5-Flucytosine. 

1.2.3 Azoles
3,4,9,11,12 

 

Two clinically useful azole families, the imidazoles and the triazoles, have good 

antimicrobial activity. The most commonly prescribed drugs are fluconazole, 

itraconazole, ketoconazole, miconazole and econazole (Figure 11). The azoles act by 

inhibiting the P450 enzymes (14α-sterol demethylase (CYP51s)) responsible for the 

synthesis of ergosterol, which is the main sterol in the fungal cell membrane. The 

depletion of ergosterol causes a loss in fluidity of the membrane thereby making it brittle. 

The membrane can fracture leading to leakage of cell contents and ultimately to cell 

death. It should be noted that the depletion of the membrane ergosterol reduces the 

number of binding sites available for AmB. As a result, azoles and AmB cannot be used 

together in combination therapy. 

 

Ketoconazole was the first azole that could be given orally to treat systemic fungal 

infections. It is effective against several types of fungi, but it is highly toxic to 

mammalian cells and relapse is common even after seemingly successful treatment. Also, 

it does not reach therapeutic levels in the central nervous system (CNS) unless 

administered in very high doses. The main adverse effect of ketoconazole is liver 

toxicity,
4
 which can be fatal. Organ damage can progress even after the treatment has 

stopped. Ketoconazole can also have adverse reactions with other drugs. The extensive 

use of the azoles has led to the emergence of fungal resistance, with many fungal strains 

now resistant to all azoles.
3
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Ketoconazole    

 

                                     
    

       Clotrimazole     Fluconazole                         Miconazole 

 

  

 

Itraconazole 

 

Figure 11 Some examples of azole antifungal drugs.
4,12 
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Fluconazole, unlike virtually all other commercially available azoles, is essentially water-

soluble and therefore can be given either orally or intravenously. Due to the fact that it 

reaches high concentrations in the CNS and ocular fluids, it is frequently used in the 

treatment of fungal meningitis. Fluconazole can also be used for the treatment of fungal 

infections involving the vagina, mouth, skin tissues and nails. Despite not being a potent 

antifungal, as judged by in-vitro susceptibility tests, it is nevertheless, remarkably 

effective against a variety of mycoses. Fluconazole is not hepatotoxic at normal dosage 

levels and side-effects are usually mild. Rare side-effects are hepatitis and exfoliative 

skin lesions. 

 

1.2.4 Echinocandins 

 

Echinocandins
4,6,7,12

 are synthetically modified, cyclic lipopeptides (Figure 12) and were 

originally derived from fermentation broths of various fungi. They are the first new class 

of antifungal drugs to be introduced in over a decade (licensed in 2002) and are thought 

to exert their antifungal activity by inhibiting the enzyme 1,3-β-glucan synthase. This 

enzyme is needed for the syntheses of 1,3-β-glucan which is required for fungal cell wall 

rigidity and hence structural integrity. Thus, exposure to this class of compound leads to 

catastrophic failure of the fungal cell wall. The adverse side-effects of the echinocandins 

seem to be mild and no appreciable difference in pharmokinetics was observed in patients 

of different age, sex, race or renal impairments.
4,6,7

 It should be noted that the costs of the 

enchinocandins are up to 50 times greater than the current azole prescription drugs.  
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   Anidulafungin 

 

                  
 

       Caspofungin  

 

           
 

          Micafungin 

       Figure 12 Echinocandins.
 4,6,12
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1.2.5 Allylamines 

 

Terbinafine and naftifine
9,12

 (Figure 13) are highly lipophilic, keratinophilic, fungicidal 

compounds which are active against a wide range of skin and nail fungal pathogens. They 

act by inhibiting the enzyme squalene epoxidase, which is involved in the synthesis of 

ergosterol from squalene within the fungal cell membrane. This inhibition leads to an 

accumulation of squalene within the cell, which is toxic to the organism. 

 

N

CH3
CH3

CH3

CH3

 

Terbinafine 

 

N

CH3

 
      Naftifine  

 

Figure 13 Terbinafine and naftifine. 

 

 

1.2.6 Latest Additions to the Arsenal of Antifungal Drugs 

 

There are several antifungal drugs that are either new to the market or in late stage 

clinical trials. They include some new azoles, e.g. Ravuconazole
13 

(Figure 14), a triazole 

structurally related to fluconazole (Figure 11), which showed very promising results in 

clinical trials in a salvage therapy drug trial. Sordarin
14

 (Figure 14) is a natural product 
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obtained from the fungi Sordaria araneosa sp. and acts by inhibiting the elongation step 

of protein synthesis in the target organism.  

 

       

Ravuconazole                            Sordarin 

 

Figure 14 Ravuconazole and sordarin. 

 

 

1.3 Metals in Medicine and Metal-Based Drugs 

 

1.3.1 Elements Essential for Life 

 

Currently, it is believed that there are approximately thirty elements which are essential 

to life.
15

 As might be expected, the elemental components of proteins, carbohydrates and 

bone are required in relatively large amounts, including H, Na, K, Mg, Ca, C, N, O, P, S 

and Cl. Other elements that are integral components of metalloproteins, such as 

haemoglobin and carboxypeptidases, are required in much smaller amounts. These 

include Fe, Zn and Cu. Several other elements are required in trace amounts to maintain a 

normal metabolism, and these are Li, B, F, Si, V, Cr, Mn, Co, Ni, As, Se, Mo, I and W. 

 

Research
15,16

 into the role of metals in cell structure, function and metabolism has shown 

potential for the therapeutic use of metals to treat disorders or promote healthy activity. 

Normal metabolism appears to maintain “free” metal ion concentrations at very low 

levels, with metals being delivered selectively to their sites of activity and extremely tight 
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controls being maintained over their reactivity. Although the roles of most trace metals 

are known, some still remain unclear. The homeostatic control mechanisms for metal ions 

and their transport, the roles of trace elements in inter- and intra-cellular regulation, 

signal transduction and metal responsive transcriptional and translational regulation of 

mRNA are only beginning to be unravelled. The unique properties of metals and metal 

complexes, i.e. redox activity, acidity, electrophilicity, cationic, anionic, radical species, 

magnetic, spectroscopic and radioactivity, offer some tantalizing possibilities for the 

future development of metallopharmaceuticals. 

 

1.3.2 A Brief History of Metals in Medicine with Particular Emphasis on 

Silver 

 

Silver: Chemical symbol Ag, from the Latin, argentum, from the ancient Greek: argyros 

meaning “white”, “shining”. 

 

Early medicine appears to have been largely based on superstition with treatments such 

as an amulet charged with magical powers being commonplace.
17

 A papyrus scroll, the 

Ebers papyrus, believed to date from 1550 B.C., and discovered by the Egyptologist 

Ebers in 1872,
17a

 describes the medicinal use of antimony sulfide, copper acetates, 

sulfates, carbonates and also sodium carbonates. Chinese medics were incorporating gold 

into cures over 4000 years ago and also prized mercury as an elixir. Indian Brahman 

physicians used mercury for skin diseases, smallpox and later for syphilis, a practice that 

continued in favour until the end of the First World War when penicillin was found to be 

more efficacious. Hippocrates, the father of medicine, made use of silver, alum, copper 

and lead derivatives. Galen favoured various copper compounds from Cyprus, and later 

the Greeks and Romans used silver vessels to keep water and other liquids from spoiling. 

Silver has a long traditional in European folklore. It was believed to be an antidote to 

many maladies and monsters. 

 

In the Middle Ages,
17b,c

 the use of silver tableware was thought to protect the wealthy 

from plague, with mortality amongst the rich being recorded as significantly lower than 
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amongst the poor. Children from wealthy families fed with silver cutlery were believed to 

be at an advantage and this gave rise to the adage “born with a silver spoon in his/her 

mouth”. The Imperial Russian army used silver-lined wooden water casks to keep water 

fresh during the Napoleonic wars, a practice that continued to some degree during both 

World Wars. Settlers in Australia and pioneers in America used silver or copper coins 

and sometimes silver tableware in their drinking water vessels and also to keep milk 

fresh.  

 

Raulin
17d

 described the sterilizing effect of silver on water in 1869. In 1884, Crede 

prescribed a silver nitrate solution to protect against gonorreal ophthalmia in neonates, a 

practice that is still in use today. In 1861, Thomas Graham discovered what he called 

“colloidal silver” and by the end of the 1900s the use of silver was widespread. By the 

1940s, there were almost 100 different silver-containing medicinal products on the 

market. Silver lost favour with the discovery of the antibiotic, penicillin, but continued to 

be used in alternative medicine. Despite its lack of favour, some research continued into 

the antimicrobial properties of silver,
18

 and in 1968 this led to the introduction of the first 

new silver product, silver sulfadiazine (SSD) (Figure 15).
19

 Polymeric SSD is a 

combination of a sulfa drug and silver and it has both antibacterial and antifungal 

properties. SSD is prescribed for the prevention and treatment of infection in patients 

with severe burns. Also, around this time, Johnson & Johnson introduced a silver-

impregnated cotton fabric wound dressing for the treatment of burns.
19b

  

 

The cavalier use of antibiotics, including their use as feed additives for growth promotion 

and prophylaxis in agriculture, has led to the emergence of resistant strains of fungi and 

bacteria.
20

 For example, MRSA (methicillin-resistant Staphylococcus aureus sp.) and 

VRSA (vancomycin-resistant Staphylococcus aureus sp.) are resistant to some of the 

most powerful antibiotics available. This resistance has renewed interest in the possible 

use of silver in the battle against antibiotic-resistant, pathogenic microbes. Currently, 

there are a large number of silver-containing products on the market, including silver-

lined catheters, Ag/AgCl disposable ECG electrodes, clean-room paints, wound plasters, 

and even toothbrushes, washing machines, hair dryers, bedding and clothing.
20
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Figure 15 Silver Sulfadiazine (SSD). 

 

A cautionary note
20

 on the widespread use of these “new” antimicrobial silver products is 

the inevitable emergence of silver-resistant bacteria and yeast.
21

 Whilst the exact 

mechanism of microbiological resistance has not yet been elucidated, there is evidence to 

suggest that it is plasmid-mediated and that it is conjugally transferable.
16,21

 There is also 

evidence that an ATP-dependent process controlled by a gene, homologous to the gene 

that confers copper resistance, is involved. The removal of silver ions from the microbial 

cell is mediated by an efflux pump system similar to the copper efflux pump system.
22

 

Although, silver has no known role in the human body, its antimicrobial activity, together 

with its very low toxicity to mammalian cells, makes it an ideal candidate for drug 

research. 

 

1.3.3 Current and Possible Future Metallopharmaceuticals 

 

As is the case with antifungal drugs, there are relatively few metal-based drugs in use, in 

spite of some notable successes, such as the revolutionary cancer drug, cisplatin. This 

may be partly due to perceptions
15

 that there is an increased risk of toxicity with metal-

based drugs or simply that there is relatively limited inorganic expertise within the 
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pharmaceutical industry. As the regulatory and screening processes are the same for both 

metal and non-metal agents, this should not be an issue. Metallopharmaceuticals were 

previously confined to a small number of drugs. These included silver sulfadiazine 

(Figure 15), carboplatin (Figure 16) and cisplatin (Figure 16). The range of metals in use 

in medicine is rapidly expanding. Complexes of some infamous toxic metals, such as 

lead,
15a

 nickel,
15b

 chromium
15c

 and even arsenic,
15d

 are currently either under 

investigation or in clinical trials, despite of the fact that some are also known 

carcinogens. Their toxicity is being exploited as possible anticancer drugs.  

 

     
 

              Cisplatin     Carboplatin 

 

Figure 16 Cisplatin and carboplatin. 

 

Some of the metal-based drugs used in the area of targeted radiotherapy, imaging and 

photodynamic therapy include metals such as Re, Y, In, Lu, and Cu,
 15a

 although the 

drugs of choice in this area are still Te-containing complexes. Gd-complexes
15e,

 are used 

as MRI (magnetic resonance imaging) contrast agents. Some metals, whose roles were 

either unknown or poorly understood, are being developed as both drug and dietary 

supplements, and include complexes containing Cr and V. Some of these Cr and V 

complexes appear to have significant effects on certain metabolic disorders, such as 

diabetes. The FDA (The U.S. Food and Drug Administration) and E.F.S.A (The 

European Food Safety Authority) have approved some vanadium complexes, such as 

vanadium pentoxide and vanadium citrate, as food additives.
23d

 These vanadium 

complexes have shown rapid and sustained correction of hyperglycemia, although they 

are not effective if there is a complete absence of insulin, as they act by enhancing the 
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responsiveness of insulin receptors. Currently, researchers are working on a new 

generation of platinum complexes, and some of these new potential drugs are currently in 

phase 2 clinical trials. The drug trans-platin has been revisited. As the source of trans-

platin’s anticancer potency is also the cause of its toxicity, efforts are now concentrated 

on making it less toxic by decreasing its reactivity while maintaining its anticancer 

potency.
15 

 

 

The success of metallopharmaceuticals drugs, such as cisplatin and SSD, has encouraged 

research into the possible use of other metals in drugs. One such example is ferrocifen, 

the organometallic analogue of the antitumour drug tamoxifen, which has already reached 

the market place.
24

 Similarly, chloroquine-ferrocene,
24b

 the organometallic analogue of 

the anti-malaria drug, chloroquine, has an activity comparable to that of chloroquine 

against non-resistant malaria parasites. The addition of the metal in both of the above 

cases has a positive effect on activity. 

 

1.4 Previous Work in this Research Group 

 

In the search for drugs active against C. albicans, our research group initially focused on 

the diacid, benzene-1,2-dioxyacetic acid (bdoaH2) (Figure 17) and its Co(II), Mn(II) and 

Cu(II) complexes. The diacid ligand and its metal complexes were synthesised and 

screened for activity against three clinical isolates of C. albicans.
25 

 An improvement in 

activity was observed upon metal complexation compared to the metal-free ligand. In the 

case of 1,10-phenanthroline (1,10-phen) (Figure 17) and its metal complexes, this 

improvement in activity was considerable when compared to bdoaH2 and its metal 

complexes. When 1,10-phen and bdoaH2 were both complexed to a metal, there was a 

dramatic increase in activity, with the Mn(II) complex, [Mn(1,10-phen)2(bdoa)]∙H2O, 

being the most active. Interestingly, the related binuclear Cu(II) complex, 

[Cu2(bipy)4(bdoa)]bdoa∙6H2O, which contains 2,2'-bipyridine (bipy) (Figure 17) instead 

of 1,10-phen, was found to be inactive. Furthermore, whereas metal-free 1,10-phen was 

highly cytotoxic towards C. albicans, bipy did not inhibit fungal growth. This latter 
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observation suggested that the increased aromaticity and rigidity of the 1,10-phen ligand, 

compared to bipy, may be important factors in its anti-Candida activity. 

 

     

 

        Benzene-1,2-dioxyacetic acid (bdoaH2
 
)  1,10-Phenanthroline (1,10-phen) 

 

 
 

2,2'-Bipyridine (bipy) 

 

        Figure 17 Benzene-1,2-dioxyacetic acid, 1,10-phenanthroline and 2,2'-bipyridine. 

 

Cu(II) and Mn(II) complexes containing both 1,10-phen and the dianionic ligand, norb
2-

 

(norbH2 = cis-5-norbornene-endo-2,3-dicarboxylic acid), were also tested for their anti-

Candida activity. While both complexes arrested fungal growth, [Mn(1,10-

phen)2(norb)]∙C2H5OH∙H2O was the most active.
26,27

 Cu(II) and Mn(II) complexes 

containing 1,10-phen and salicylic acid (salH2) ligands were also screened,
26,27

 and 

whereas [Cu(1,10-phen)(sal)] was inactive, [Mn(1,10-phen)(sal)2] was found to be a 

potent growth inhibitor. 

 

The unsaturated diacid, fumaric acid (HO2C(CH)2CO2H) (fumH2) (Figure 18), and its 

polymeric Mn(II) complex, [Mn(fum)]n, were reported to have negligible effect on the 

growth of C. albicans.
27a,b

 However, the 1,10-phen complexes, [Mn2(1,10-

phen)2.5(H2O)2](fum)2]∙3H2O and [Mn(1,10-phen)2(CH3COO)2]∙4H2O, were moderately 
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active. Similarly, the inclusion of 1,10-phen into the formulations of simple Mn(II) 

complexes of phthalic acid (phaH2) and isophthalic acid (iphaH2) (Figure 18), to give 

[Mn(1,10-phen)(pha)]∙2H2O, [Mn(1,10-phen)2(pha)(H2O)]∙4H2O and [Mn(1,10-

phen)2(ipha)2]∙4H2O, significantly enhanced their antifungal activity.
27b 

 

Malonic acid (malH2) (Figure 18) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) 

complexes had little activity when screened against C. albicans. However, the Ag(I) 

complex, [Ag2(mal)], was a potent anti-Candida agent, suggesting that the Ag
+
 ion is the 

active species.
27c 

 

      
 

                        Fumaric acid (fumH2)          Malonic acid (malH2)   

           
 

         Phthalic acid (phaH2)      Isophthalic acid (iphaH2) 

 

Figure 18 Fumaric acid (fumH2), malonic acid (malH2), phthalic acid (phaH2) and 

isophthalic acid (iphaH2). 

 

In contrast to the high activity of the metal-free, chelating 1,10-phen ligand, the non-

chelating 1,7- and 4,7-phenanthroline molecules (Figure 19) were found to be inactive 

against Candida in both the metal-free state and as the metal complexes. The anti-

Candida activity of the metal-free 1,10-phen has been attributed to the position of the 
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nitrogens that enables it to chelate a metal ion in situ. It is the resulting 1,10-phen-metal 

complexes that are believed to be the source of its anti-Candida activity.
27c

 

 

    
 

         1,7-Phenanthroline           4,7-Phenanthroline 

 

Figure 19 1,7-Phenanthroline and 4,7-phenanthroline.  

 

 

Work on 1,10-phenanthroline-5,6-dione
28

 (1,10-phendio) (Figure 20) and its Cu(II) and 

Ag(I) metal complexes, [Cu(1,10-phendio)3](ClO4)2∙4H2O and [Ag(1,10-phendio)2]ClO4, 

respectively, showed that both the metal-free 1,10-phendio and the metal complexes are 

potent anti-Candida agents, with the metal complexes showing superior activity. The 

salicylic acid (salH2), 1,10-phendio mixed ligand complexes, [Cu(1,10-

phendio)(sal)]∙1.5H2O and [Ag2(1,10-phendio)(sal)], were found to be more active than 

their 1,10-phen analogues. This suggests that there is an advantageous biochemical role 

for the carbonyl oxygen atoms of the 1,10-phendio molecule in its anti-Candida activity.  

 

 

 

 

Figure 20 1,10-Phenanthroline-5,6-dione (1,10-phendio). 
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The most aggressive anti-Candida Ag(I) complex
29

 was [Ag2(NH3)2(salH)2]. The closely 

related Ag(I) complex, [Ag2(salH)2], was less active, suggesting the involvement of the 

NH3 in the enhancement of the anti-Candida activity of the complex.  

 

Studies into the mode of action of [Mn(1,10-phen)2(mal)]∙2H2O on Candida cells 

suggests that the cells must be metabolically active before the administered metal 

complex can take effect.
27b 

Biochemical analysis of the drug-treated cells suggested that 

apoptosis occurred as a result of oxidative stress, as indicated by the increased levels of 

lipid peroxidation and the elevated amounts of the oxidised form of the anti-oxidant 

molecule glutathione (GSSG). 

 

A recent development in the area of metal-based antifungal drugs has seen the use of 

ligands containing the imidazole moiety (Figure 21).
30,31 

Derivatives of 2-(1H-imidazole-

2-ylmethyl)-1H-imidazole (2-BIM)
30

 (Figure 22) and 2-aminoimidazole with 

salicylaldehyde and N-hydroxyimidazoles have been synthesized and coordinated to  

 

 
 

Figure 21 Imidazole. 

 

 

Cu(II), Zn(II) and Ag(I).
31

 The metal-free ligand, bis(1-methyl-1H-imidazole-2-

yl)methane (2-BIM(Me)), and its metal complexes, [Cu(2-BIM(Me))2](ClO4)2 and [Zn(2-

BIM(Me))2](ClO4)2, were inactive against C. albicans, while the Ag(I) species, [Ag2(2-

BIM(Me))2](ClO4)2, showed moderate activity.
31
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Figure 22 2-(1H-imidazole-2-ylmethyl)-1H-imidazole (2-BIM). 

 

1.5 Silver Coordination Chemistry and Bioinorganic Chemistry 

 

Silver is found in nature both as the pure metal and in mineral form, mainly as argentite 

(Ag2S), and in smaller amounts as horn silver (AgCl) and bromargyrite (AgBr). 

However, the main source of silver are the ores of copper, copper-nickel and lead.
32

 

Silver is a white, lustrous and malleable transition metal with the highest known thermal 

and electrical conductivities. Silver metal is used in the electronic industry, in mirrors and 

for silver plating. Its compounds are used in the photographic industry and, more 

recently, as an antimicrobial additive to clean-room paints, as medical device coatings 

and in antimicrobial medications (see Figure 15).
17,21 

 

Silver exists in the five oxidation states, Ag(0), Ag(I), Ag(II), Ag(III) and the subvalent 

state,
32

 with Ag(I) being the most common.
33,34

 The most common coordination number 

for Ag(I) is two, as in [Ag(NH3)2]
+
, in which the ligands are in a linear configuration. 

Other Ag(I) coordination numbers are also possible, e.g. three-coordinate, as in the 

complex, [AgI(PR3)2], which is trigonal planar; four-coordinate, seen in the complex, 

[Ag(SCN)4]
3-

which is tetrahedral; and as six-coordinate in octahedral, [AgCl6]
5-

. Four-

coordinate Ag(II) complexes, such as AgF2, are usually square planar, but the rarer, six-

coordinate, distorted octahedral geometry is also found e.g. 

[Ag(OSO)][Al{OC(CF3)3}4].
34c

 The four-coordinate, square planar complex anion, 

[AgF4]
-
, contains silver in the Ag(III) oxidation state. 

 

The atomic structure of silver shows that there is a small energy difference between the 

filled d-orbitals and the empty 5s and 5p orbitals, this allows the latter orbitals to 

accommodate additional electrons, leading to subvalent oxidation states. An example of 
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such a subvalent state is seen in Ag5SiO4. Given that the silicate ion formulates as SiO4
4-

, 

the five silver ions together have an overall charge of (Ag5)
4+

 and implying a formal 

oxidation state of +0.8 for each silver.
34

  

 

A metallophilic interaction has been observed amongst the d
10

 monovalent ions of the 

Group 11 elements (Cu, Ag, Au). The term “aurophilicity” refers to the tendency of the 

closed-shell Au(I) ions to aggregate at distances shorter then the sum of the Van der 

Waals radii and with an interaction energy that is comparable in strength to hydrogen 

bonds.
32,33 

 “Argentophilicity” and “cuprophilicity” are analogous phenomena found in 

silver and copper chemistry, respectively. 

 

Because of its d
10

 electronic configuration, silver is at the borderline between the main 

group elements and the transition metals.
35

 Metallic silver (Ag(0)) is relatively 

unreactive, but under certain conditions oxidation to Ag(I)
 
can occur and it is this ion that 

is generally considered to be the bioactive species.
36

 The interplay between Ag(0) and 

Ag(I)
 
can be understood by studying the reduction potential for this couple in water.

32
  

 

Ag
+
  +  e

-
  Ag

0
     E

0 
=  +0.799 V 

 

The value of +0.799 V indicates a relatively strong thermodynamic driving force for the 

reduction of free, uncomplexed Ag(I) ions to the Ag(0) state. However, this reduction 

potential varies considerably depending on the anion that accompanies the Ag(I)
 
 ion and 

also on the type of ligand(s) present. For example, when the Ag(I)
 
ion is ligated with two 

ammonia ligands, the reduction to Ag(0) becomes more difficult and it becomes even less 

feasible when ligated by cyanide.
32

 

 

[Ag(NH3)2]
+ 

 +  e
-
  Ag

0
  +  2NH3     E

0 
 =  0.37 V 

 

  [Ag(CN)2]
-
  +   e

-
   Ag

0      
+  2CN

-
      E

0 
 =  -0.31 V 
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The complexity of silver chemistry can be further illustrated by looking at the    

Ag(I) Ag(0) interconversion. In the presence of thiocarbamide and Fe(III) ions, 

oxidation of Ag(0) occurs, along with subsequent formation of the soluble, 

tris(thiocarbamide)silver(I) complex ion.
32,37 

 

2Ag
0
  +  6SC(NH2)2  +  2Fe

3+
 2[Ag{SC(NH2)2}3]

+
  +  2Fe

2+
 

 

 

In contrast, bacteria, such as Pseudomonas stutzeri, can develop resistance to Ag(I)
 

accumulation by conversion of the Ag
+ 

 ion into reduced, bioinactive Ag(0).
21,38

 A non-

biological example illustrating the reversibility of the Ag(I) Ag(0) system is that of 

phototropic glass.
39

 This material contains an Ag(I) halide salt which darkens on 

exposure to sunlight, as the Ag(I) halide salt acquires enough energy for the reduction of 

Ag(I)
 
to metallic Ag(0). The reduced silver aggregates into tiny particles, scattering the 

light and turning the glass dark. The reaction is reversible upon removal of the light 

source. The redox chemistry of silver has shown that on addition of a macrocyclic, 

cyclam ligand, (L), to an aqueous methanolic solution of AgClO4, Ag(I) has the ability to 

disproportionate into a mixture of Ag(II) and Ag(0).
40 

 

    2Ag
+ 

 +  L  [AgL]
2+  

 + Ag
0 

 

 

This reaction may offer a possible explanation as to how some bacteria, such as 

Pseudomonas stutzeri, can develop resistance to the build up of ionic silver Ag(I), by 

converting Ag(I)
 
to Ag(0). The Ag(I)

 
may be catalytically reduced in the micro-

environment of an existing metallothionein (i.e. proteins that are involved in the 

transport, storage, and detoxification of essential and non-essential trace metals in the 

body).
37,41

 

 

For transition metals, the factors that influence how fast ligands can be exchanged are the 

size and charge of the central metal ion and also its electronic configuration. Ag(I), as a 
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soft Lewis acid, has a low affinity for relatively hard oxygen donors, a high affinity for 

soft S, Se, and P, and a moderate affinity for nitrogen donors.
42 

In experiments on ligand 

exchange reactions, the relative order of Ag(I)
 
bond strengths was found to be as follows: 

Ag-P > Ag-S >> Ag-Cl > Ag-N >> Ag-O.
43

 In addition, the Ag(I) ion, with its d
10

 

electron configuration, has zero ligand field stabilization energy (LFSE), and thus forms 

labile complexes which will allow rapid ligand exchange with a new ligand from within 

the biological environment. Proteins and nucleic acids offer many potential metal-binding 

sites, including sulphur, nitrogen and oxygen.
44

  

 

Silver is associated with an extensive and diverse array of reactions in organic chemistry. 

The Ag(I)
 
ion can act as a σ-Lewis acid and/or a π-Lewis acid, and the applications of 

Ag(I) salts in organic synthesis are mostly driven by this Lewis acidity.
35 

However, in 

several applications it is the insolubility properties of the silver salts, which precipitate as 

reaction products, that are driving the reactions. In many reactions where halogens play a 

key role, silver salts often activate reactions by specifically interacting with the halogen 

atom and forming insoluble silver halides. This is the so-called halogenophilicity of 

Ag(I). This effect has been widely used in organic synthesis, mainly in nucleophilic 

substitution, including glycosylations, in some elimination processes and in processes 

involving organometallics. Complexes containing coordinated Ag(I) have been known to 

act as catalysts for various processes, including carbene-insertion,
45

 hydrogenation,
46

 

oxidation/reduction reactions,
47

 imination,
48

 and hydrogen generation,
49

 to name but a 

few. Metallic silver also exhibits high catalytic activity in a variety of organic π 

conversions, such as olefin oxidation
50

 and the oxidative dehydrogenation of alcohols.
51

 
 

 

1.6 Mechanism of Silver Transport and Bioactivity 

Currently, the indications are that there are no biochemical or physiological roles for 

silver in the human body, even though it is found to interact with several essential 

elements, including zinc and calcium.
52

 Silver is readily inhaled and absorbed from food 

and drink at concentrations consistent with environmental levels. It is commonly found in 

key tissues, such as the liver, kidney, brain and the blood and currently has no known 
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association with disease or disability.
53,54 

However, prolonged exposure to silver at very 

high levels, either occupationally or therapeutically, can lead to argyria or argyrosis, 

conditions where silver is lysosomally sequestered as silver sulfide or silver selenide in 

the liver, kidneys, vascular tissues, connective tissues of the blood-brain barrier (BBB) 

and the skin.
55

 Silver ions bind strongly to sulfhydryl (-SH) moieties in the collagen of 

connective tissues and have been found in close proximity to peripheral nerves but not 

within neurological tissue. Silver ions are also absorbed into soft tissues where it binds to 

cysteine-rich metallothionins (MT). MTs have regulatory and cytoprotective roles
55

 and 

are integral in the metabolism of silver in normal and damaged tissue. MTs may also 

contribute to the action of silver in wound repair.
56

 MTs are present in all living cells and 

have a unique structure which enables them to sequester metals, such as zinc and silver. 

There are four MTs involved in the control of the following three main mammalian cell 

processes: (i) release of mediators, such as hydroxyl radicals and nitric oxide, (ii) 

apoptosis and (iii) binding and exchange of heavy metals, such as zinc, cadmium, copper 

and silver among others.
55,57

 The sequestering of silver in tissues, including those of the 

BBB, mitigates any potentially toxic influence silver may exert on neurological tissue.
58 

It has been suggested that silver should be classed alongside zinc, iron and gold as a 

“choroids plexus toxicant,” i.e. a metal that is sequestered by the tissues but is not 

associated with any pathological change or pathophysiological consequences.
59 

 

The mode of action of silver and its method of transport in the human body has not yet 

been fully elucidated, but then it was only recently that the active transport of Mn(II) was 

reported.
60

 It was not until 1997 that the trans-membrane protein, DCT1, was identified 

as being involved in the transport of Mn(II).
61

 It was also discovered that DCT1 is 

selective for divalent metal ions and was insensitive to the electron configuration of the 

metal ion that it transports. It was suggested that the protein provides a microenvironment 

where the metal charge is balanced by the charge on the protein positioned on or near 

optimum Debye lengths.
62

 Movement of metal ions along the protein is coupled to both 

H
+
 transport and the electrochemical potential across the cell membrane. To what extent,  
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the protein allows the transport of metal-bound ligands is, as yet, unknown. This 

discovery (DCT1), provides an example of a possible entry route into the cell for the 

Ag(II) ions but not to the more common Ag(I) ion.  

Research on the transport of Fe(II) ions has shown that it is influenced by the nature of 

the ligand bound to the metal. When Fe(II) ions are bound to low molecular mass 

hydrophilic ligands the cells do not take them up, but when bound to similar mass 

hydrophobic ligands uptake is consistent with diffusion across the membrane lipid 

bilayer. It is not known if it is the magnitude of the binding constant of the Fe(II) ions to 

the hydrophobic ligand that is actually preventing the trans-membrane protein DCT1 

from actively transporting Fe(II). However, when the Fe(II) is bound to a high molecular 

mass sugar it is transported by endocytosis with the ligand intact. This would suggest that 

there are several possible modes by which Fe(II) may enter the cell, and that these are 

influenced by the ligand bound to the metal and/or the oxidation state of the metal.
63

 

From the point of view of the ligand exchange reactions of Ag(I)
 
complexes, several 

possible mechanisms have been suggested for the bioactivity of the aqueous Ag(I) ion. 

The first mechanism involves the interference of the Ag(I) ion with electron transport, 

particularly the membrane bound monooxygenase system, cytochrome P450, and nitric 

oxide reductase (P450nor), a P450 enzyme involved in denitrification within several 

fungi.
64,65

 The transfer of electrons in the P450 system is not always coupled to a 

substrate. Monooxygenation P450 and its electron transfer proteins may transfer electrons 

to other acceptors, such as O2, or indeed, to a suitable metal. This uncoupling or “leaky 

electron transport” has been observed in mitochondrial and microsomal systems.
66

 The 

second possible mechanism is the binding of the Ag(I) ion to DNA.
66b

 The third 

mechanism is the interaction of Ag(I) ions with the cell membrane’s protein synthesis 

pathways.
64 

These mechanisms also suggest the possibility of having Ag-biomolecular 

targets. The ability of Ag(I) to rapidly exchange its original ligands for new ones (zero 

ligand LFSE) means that Ag(I) can form labile complexes from within the biological 

environment even under the strict physiological constraints. Proteins or nucleic acids 

offer potential metal binding sites, including nitrogen and oxygen donors on the bases, 
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hydroxyl groups on sugars, negatively charged oxygen atoms on the phosphate residues, 

and the sulphur atoms of some amino acids.
64

  

At least three other additional mechanisms for the bioactivity of silver have been 

suggested.
67

 They are: (iv) catalytic oxidation of the silver ions with nascent oxygen, (v) 

reaction with bacterial cell membranes through the attachment of silver ions to surface 

radicals, and (vi) the preferential binding of the silver ions with the cellular DNA, 

preventing it from unwinding, thus inhibiting protein synthesis and replication.
67

 These 

hypotheses are contrary to the first two
 
mechanisms previously outlined,

64
 which require 

silver to be the positive ions reacting with electron-rich O- and S-containing 

biomolecules. If any of the above methods are correct, it would suggest that increasing 

the concentration of administered silver ions should result in a corresponding increase in 

antimicrobial activity. In work carried out on Pseudomonas aeruginosa sp., using a 

“free” silver ion solution, this was found not to be the case.
68

 Chelated Ag(I) was found 

to be more effective by several orders of magnitude than the free silver ions and it has 

been proposed that Ag(I) ions are actively transported intracellularly by the chelating 

ligand(s) in a protected complex and not as a free ion. The complexation of the Ag(I) ion 

prevents its interaction with a host of possible substances in the cell or in the cell 

membranes of the microorganisms, such as oxygen, thiol or other electron-rich centres, 

and thus precluding its biocidal activity. This theory is supported by in vitro experiments 

using isotopically labelled SSD (
110

Ag and 
35

S) on Pseudomonas aeruginosa sp.
68

 The 

experimental results showed that silver was present in the DNA and RNA fraction at 

levels of up to 15%, but only 0.5% in the lipid fraction, with the remainder found in 

proteins and polysaccharides.
68

 Similarly, work on bacterial cultures taken from SSD-

treated burns patients showed that the SSD dissociated, and that it was the Ag(I) ion 

alone that was bound to the various components of the bacterial cell.
69

 When the silver 

was removed from the DNA, by treating the complex with chloride or bromide, 

regeneration occurred and full function was restored.
68,70

 Although  mechanisms (iv) and 

(v) may not be as effective as mechanism (vi), i.e. the prevention of DNA unwinding, it 

seems likely that they work synergically, otherwise the free Ag(I)
 
ion would be much 

more effective when applied on its own.  
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The silver-DNA binding proposal opens up the possible use of silver in the treatment of 

neoplasia, especially for some of the more challenging types (e.g. pancreatic, breast and 

ovarian), since within the intra- and inter-regions of solid tumours the network of 

capillaries are too small for some of the current high molecular weight chemotherapy 

agents to be delivered at therapeutic levels.
64b,71 

Work on simple Ag(I)-imidazole complexes suggested that, despite their insolubility, the 

broad range of bioactivity (bacterial and fungal) of silver is as a result of the Ag(I)-N 

bond in these complexes.
42,43

 A comparative study was also conducted into the activities 

of complexes containing Ag(I)-N bonds, complexes containing Ag(I)-P bonds and those 

containing N-Ag(I)-P bonds.
72

 The simple salt, AgNO3, was also included in the study. 

The Ag-(I)-P complexes and the mixed-ligand N-Ag(I)-P complexes were found to be 

essentially inactive. AgNO3 showed good activity against Gram-negative bacteria (such 

as Escherichia coli) and moderate activity against Gram-positive bacteria (such as 

Streptomyces). However, the Ag(I)-N complexes displayed superior activity and against a 

wider range of bacteria, yeast and moulds. Similar work on thiosalicylate silver(I) 

complexes, which contain Ag(I)-S moieties, showed that these were also quite active but 

were only functional within a narrow range of microbes.
72

 It has been suggested that this 

activity is dependent on the nature of the bonding atom, with superior activity for the 

complexes containing the more weakly bonded Ag(I)-N moiety and to a lesser extent, 

Ag(I)-O, and finally, the least active is the strongly bonded Ag(I)-S moiety. This suggests 

that the more weakly bonded metal-complexes may allow easier ligand exchange with 

biological ligands, thus facilitating the interruption of the fungal cells normal biochemical 

pathways.
73

 

Bacteria resistant to silver have been found, not surprisingly, in hospital burns units and 

also in areas where the clinical use of silver or silver-coated devices, such as catheters, is 

common. Silver-resistant bacteria have also been found in areas associated with the 

mining and industrial use of silver.
70

 A silver-resistant bacterium, recovered from a burn 

unit, lead to the isolation of the genes thought to control resistance to Ag(I). The genes 

were isolated from a bacterial plasmid.
16,21,72

 The gene (silE) determines an extracellular 

metal-binding protein comprising 123 amino acids and which contains ten histidine 
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residues that are implicated in Ag(I) binding. SilE is homologous to the gene responsible 

for copper resistance. The next two genes of the 123 amino acid sequence are the 

histidine-kinase membrane sensor and the aspartyl phosphate transcriptional responder 

and these are similar to the genes that determine cobalt, zinc and cadmium resistance. 

The remaining four genes determine Ag(I) efflux, a cation/proton antiporter and a 

histidine-rich, cation-specific region.
74  

However, studies on metal tolerance and resistance in bacteria, using E. coli as a model,
75

 

found that the gene determining resistance to Cu(I), namely CopA, is a Cu(I)-

translocation P-type ATPase that is involved in Cu(I) export, tolerance and resistance. It 

is an orthologue of the human Menkes and Wilson disease-related protein. P-type 

ATPases belong to a large family of cation-transporting pumps. One subgroup transports 

monovalent and divalent cations of hard Lewis acids, such as H
+
, Na(I), K(I), Mg(II) and 

Ca(II).
76

 The second subgroup are thought to transport divalent soft Lewis acids, such as 

Zn(II), Cd(II) and Pb(II),
77

 and the monovalent soft metal cations such as Ag(I) and 

Cu(I).
78

 The characteristic feature of these proteins is the presence of cysteine motifs, 

which have been termed metal binding sites (MBS).
75

 Although MBS have been shown 

to be capable of binding copper and other soft metals, such Ag(I),
79

 it is not clear if the 

MBS serve as a metal sensor to regulate the pump,
80

 an initial binding site where the ion 

would be transferred later to a translocation domain,
81

 or if it is the site of interaction 

with metal chaperones.
79

 In studies on the role of cysteine in CopA, sequences of CopA 

were altered by site-directed mutagenesis of alanine residues for the cysteine residues.
75

 

Whilst no loss in activity was observed, the exact mode of metal ion specificity, tolerance 

and resistance was not deciphered. It is known that these CopA genes and other gene 

orthologues are widely distributed in nature, being found in animals, bacteria and fungi, 

and they may play a similar role in the development of tolerance and resistance.
75  

The pattern of distribution of these genes may explain how resistance to drugs or metals 

develop in humans, bacteria and fungi. Subtle changes or mutations in the primary 

structures of proteins that determine resistance or tolerance to one metal or drug can 

occur randomly. These minor mutations can confer resistance or tolerance to similar 
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metals or drugs. It has been suggested that this mechanism of resistance allows bacteria 

and fungi to develop multi-drug or indeed multi-metal resistance, simultaneously.  

Of particular concern is the suggestion that microbes, such as MRSA, that are resistant to 

antibiotics, develop resistance to silver much more readily than the non-antibiotic 

resistant microbes and, importantly, that silver-resistant microbe also develop antibiotic 

resistance more readily. This would suggest that once the microbe develops a mechanism 

of resistance it is able to adapt this mechanism rapidly to any further threats.
21b

  

 

1.7 Imidazole Chemistry 

` 

 

As much of the work outlined in this thesis involves the synthesis and coordination 

chemistry of imidazoles, an introduction to the general chemistry of imidazole follows. 

 

Imidazole and imidazolium compounds can be found in biological and chemical systems 

and it is these widespread occurrences that have led to interest in imidazole chemistry. 

Imidazole
31,32,45,46

 (Figures 21, 23) is a cyclic, planar molecule that consists of a five-

membered ring containing three carbons and two nitrogens, with the nitrogens arranged 

in the 1 and 3 positions. The nitrogen in the 1 position is a “pyrrole” type nitrogen and 

the nitrogen in the 3 position is a “pyridine” type nitrogen.
31 

 

The imidazole molecule (Figure 24) exhibits aromaticity associated with its six -

electron system. Each carbon in the ring has a p orbital perpendicular to the ring and the π 

cloud contains three pairs of π electrons. The lone-pair of electrons on N-1 are part of the 

cloud as they are in a p orbital, while the lone-pair on N-3 are not part of the cloud as 

they are in an sp
2
 orbital, perpendicular to the p orbitals, and thus providing a point of 

attack for protons and other electrophiles. 
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Figure 23 Imidazole.
33

 

 

 

The presence of two nitrogens in the ring results in a lowering of the energy levels of the 

-orbital compared to that of benzene or pyridine, which makes electrophilic attack on 

the carbons more difficult than the corresponding pyrrole or furan. On the other hand, the 

inductive, electron-withdrawing effect of nitrogen has a stabilizing effect on negatively 

charged reaction intermediates, such as those occurring during nucleophilic addition-

elimination reaction. 

 

 

 



                            Chapter 1 

 

 35 

 

 

 

Figure 24 Orbital structure of imidazole.
33

 

 

 

The resonance energy of imidazole is 60.9 kJ/mol, which is significantly less than the 

151.2 kJ/mol of benzene. Because the pyridine-like nitrogen’s electrons are not part of 

the -electron cloud, imidazole gets protonated at this N atom in acid solutions. 

Imidazole is amphoteric, which means that it can act as a base and as an acid. As a base, 

the imidazole has a pKa value of 6.8, making it approximately sixty times more basic than 

pyridine. The basic site is N-3. As an acid, imidazole has a pKa value of 14.5, making the 

imidazole less acidic than carboxylic acids, phenols and imides, but more acidic than 

alcohols. The acidic proton is located on N-1. Therefore, imidazole can exist in both the 

protonated and deprotonated forms at the physiological pH of 7.3. In fact, appreciable 

amounts of both protonated and neutral imidazole units are likely to be present. Thus, 

both species can be present at the active site of target enzymes. As both protonated and 

deprotonated imidazoles have two equivalent resonance contributors, the two nitrogens 

become equivalent, as do the hydrogen atoms on the 4 and 5 position (Scheme 1). 
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Scheme 1 

 

Imidazole is very soluble in water which indicates hydrogen-bonding with the solvent, 

and its high boiling point ( ~ 250 
o
C) indicates intermolecular hydrogen-bonding.

31,82,83
 

Imidazole may be substituted at each of the five positions, either individually or at all five 

positions. In cases where both nitrogens have substituents present, the imidazole exists as 

an imidazolium salt, with the delocalized positive charge on the imidazole balanced by a 

negative counter ion. The pyrrole-type hydrogen is the most acidic and therefore must be 

protected before the 2-, 4- and 5-positions can be substituted. N-substituted imidazoles, 

including alkyl-, aryl-, acyl- and vinyl-imidazoles, can be synthesized. In these reactions, 

the imidazole acts as an attacking nucleophile. It is sometimes necessary to convert the 

imidazole to the more reactive anion by deprotonation (Scheme 2), and if regioselectivity 

is also required, a protecting group might be put on the pyrrole nitrogen. In N-protected 

imidazoles deprotonation occurs in the order C-2 > C-5 > C-4. 

 

 

Scheme 2 
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Nucleophilic substitution at imidazole carbons is mainly confined to displacement of 

halogens or sulfo-groups. Electrophilic substitution at the carbons of the imidazole ring is 

largely restricted to nitration, sulfonation and halogenation. Acidic electrophiles tend to 

protonate the imidazole, producing the much less reactive imidazolium salt. Most 

electrophilic reactions occur at the 4-(5) position, rather than the less reactive 2-position. 

Halogenation occurs at all three positions. One of the more common electrophilic 

reactions involves the formation of metallic derivatives. Provided the pyrrole nitrogen is 

protected, the imidazole carbanion can be formed by reaction with a strong base, such as 

a lithium derivative or a Grignard reagent. The carbanion can then react with a variety of 

electrophiles, such as aldehydes, ketones, esters or organic nitriles, which can introduce 

various functional groups. Scheme 3 shows one of the more common methods of mono-

deprotonation, i.e. the reaction of the N-protected imidazole with n-butyl lithium at -78 

o
C in dry THF. If the 2-position is already substituted then lithiation occurs readily at the 

5-position. Di-lithiation will occur at the 2- and 5-positions if two moles of base are used 

with one mole of imidazole substrate. Because the 5-anion is more reactive than the 2-

anion, it is possible to introduce different substituents onto firstly the 5-position and then 

onto the 2-position if sequential reactions are carried out using different electrophiles. 

 

 
 

Scheme 3 
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For imidazole, it is much more difficult to substitute at the 4-position. Lindell
84

 reported 

the synthesis of the imidazole-4-yl anion at room temperature by the addition of ethyl 

magnesium bromide to N-protected 4-iodoimidazoles. These iodoimidazoles were, in 

turn, reacted with a variety of aldehydes and ketones to give carbinols (Scheme 4). 

 

 

 

R
1
 = CPh3, SO2NMe2, SO2(CH2)2SiMe3 

 

Scheme 4 

 

An alternative approach for the preparation of substituted imidazoles is the synthesis of 

the imidazole ring with the substituent already in place. One of the earliest examples of 

the synthesis of imidazoles was in 1858, when Debus
85

 reacted glyxol with formaldehyde 

and ammonia. Modification of the Debus
85

 method was used by Bu and Gunner
86

 in the 

development of thermally stable optical chromophores. A more recent development of 

the Bu and Gunner
86

 method is the microwave-assisted synthesis of substituted 

imidazoles in solvent-free conditions.
87 

 

Histidine residues containing imidazole rings are important ligating centres around the 

catalytic sites of many enzymes, for example, chymotrypsin, trypsin and elastin, where 

the imidazole acts as a proton transfer agent.
31,88

 The nitrogen donor atoms of imidazole 

in the histidyl residue are common binding sites in various metalloenzymes, such as in 

the Zn-containing carbonic anhydrase where the Zn(II) ion is coordinated to three 

imidazoles, and in the enzyme carbonic peptidase where the Zn(II) ion is coordinated to 

two imidazoles. Therefore, ligands containing two or more imidazole moieties might be  
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able to mimic the binding sites of some enzymes. Such examples includes 2-BIM
29

 

(Figure 22) and tris(imidazole-2-yl)carbinol
30 

(Figure 25). 

 

 
 

Figure 25 Tris(imidazole-2-yl)carbinol.  

 

L(-)Histidine (Figure 26) is an essential amino acid for some mammals, such as rats, but  

not for humans. The complexing power of histidine is involved in the transportation of 

oxygen in haemoglobin. The iron atom of the haem group in haemoglobin is linked to the 

protein through the nitrogen of a histidyl group.
88

 

 

    

 

L-Histidine            Histamine 

 

Figure 26 L-Histidine and histamine.  

 

Histamine (Figure 26) is involved in many regulatory responses, such as the control of 

gastric acid in the stomach, with an over-expression resulting in the over-production of 

acid as part of an allergic response. The imidazole-based drug, cimetidine (trade name, 

Tagamet) (Figure 27), acts as an antagonist by blocking the histamine receptor site, thus 
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reducing the production of gastric acid. Histamine is also involved in the inflammatory 

response. The release of histamine triggers both dilation and increased permeability of 

capillaries in the vicinity of the injury, allowing increased blood flow to the site of injury 

and easing the release of leukocytes.
33

 

 

 

Figure 27 Tagamet. 

 

The imidazole ring is also present in the nucleotides adenine and guanine in DNA and 

also in biotin (also known as Co-enzyme R), a member of the B group of vitamins. 

Imidazole-containing compounds can also be found as polymers, and which are used in 

the paint industry as optical brightners.
89

 Current research is focused on the possible use 

of imidazoles as ionic liquids as an alternative to toxic solvents.
90 

Imidazole is also found 

as an entity in natural compounds, such as theophylline (Figure 28),
91

 which is a 

stimulant found in tea and coffee  

 

Figure 28 Theophylline. 
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A large range of pharmaceutical products containing the imidazole moiety have been 

synthesised and include the antifungal azole drugs (Figure 11), anticancer medication, 

mercaptopurine, the antihistamine drug clemizole,
4
 and the antiviral drug vidarabine

4
 

(Figure 29) to name but a few.  

 
 

                    Mercaptopurin 

                    
                 

 

            Clemizole           Vidarabine 

 

                         Figure 29 Mercaptopurin, Clemizole and Vidarabine. 

  

1.8 Aim of the Present Work 

 

Currently, the most widely used antifungal drugs are the imidazole derivatives, such as 

ketoconazole and miconazole. Work previously carried out on Cu(II) metal complexes of 

some of these prescription azoles showed that the metal complexes were more active 

antifungal agents than the metal-free azole drugs.
92

 The enhancing effect of metals, 
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particularly Cu(II) and Ag(I), on the antifungal activity has also been found in studies on 

a number of other drugs.
24-28,30 

 

The aim of the present work was to design and synthesise novel imidazole ligands, 

complex the ligands to Ag(I) and then screen both the ligands and the metal complexes 

for their anti-Candida activity. The objective was to develop new, silver-imidazole 

antifungal drugs, or families of drugs, that would become the next generation in the fight 

against fungal infections. The strategy of developing families of drugs, rather than 

concentrating on a single wonder drug, is that by rotating the drugs a subtle change in the 

structure might halt, or at least slow, the inevitable process of fungal drug resistance. 
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Experimental (part 1) 

Organic synthesis 
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2.0  Chemicals and Instrumentation 

 

Chemicals were purchased from commercial sources and, unless specified, were used 

without further purification. Note: Caution is required when handling perchlorate salts 

as they are extremely reactive and can be explosive under certain conditions.  

 

All ligand synthesis reactions were carried out in solvents that were purified and dried 

before use, using standard literature methods. 

2.1 Instrumentation 

 

Infrared spectra of solids (in a KBr matrix) were recorded in the 3700-370 cm
-1

 region on 

a Nicolet FT-IR Impact 400D infrared spectrometer. 

1
H and 

13
C NMR spectra were run on a Bruker Advance 300 MHz instrument.  

Microanalytical data were provided by the Microanalytical Laboratory, National 

University of Ireland, Cork, Ireland and UCD, National University of Ireland Dublin, 

Belfield, Dublin 4, Ireland. 

X-ray crystallography work was carried out by Prof. Vickie McKee, Chemistry 

Department, Loughborough University, Loughborough, Leicester, LE11 3TU, UK. 

Microtitre plates were read using a Labsystems iEMS Reader MF (absorbance at  = 540 

nm). 

Mass spectrometry work was carried out by Ms. B. Woods N.U.I. Maynooth using an 

Agilent Technologies 6210 Time-of-Flight LC/MS. 
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2.2   Synthesis of starting materials
93-100

 

 

2.2.1  1-H-Imidazol-2-amine hemisulphate (1)
93

 

 

 0.5 H2SO4 

 (1) 

 

o-Methylisourea hemisulphate (88.74 g, 0.72 mol) was weighed into a reaction vessel. 

Under nitrogen, deionised water (150 cm
3
) and 2-amino-acetaldehyde-diethylacetate 

(105.3 g, 1.00 mol) were added and the reaction mixture stirred for 4 h at 50 
o
C. TLC 

monitoring of the reaction showed complete transformation. The reaction mixture was 

then cooled to 20 
o
C and the pH adjusted to 2.5 with concentrated sulphuric acid (7 cm

3
). 

The mixture was then heated to 100 
o
C for 2 h. (TLC monitoring of the reaction showed 

complete transformation). The reaction mixture was cooled to 20 °C and slowly added to 

ice-cold ethanol (3000 cm
3
), over a 1 h period, while maintaining the temperature 

between 0-5 
o
C. The resulting suspension was stirred for an additional 1 h at 0-5 °C. The 

product was filtered off, washed twice with ice-cold ethanol (50 cm
3
) and dried in a 

vacuum drying piston at 40 °C. 

 

Yield:    85.00 g (86%). 

1
H NMR:    (D2O): 6.80 (s, 2H). 

IR (KBr):   3154, 2991, 2750, 1673, 1100, 819 cm
-1

. 
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2.2.2   1-Methyl-1H-imidazole-2-carboxaldehyde
95

 

 

2.2.2.1  1-Methyl-2-hydroxymethyl-1H-imidazole (2)  

 

N N
CH3

OH  

(2) 

 

The following is a modification of the literature method.
5
 1-Methyl-1H-imidazole (20 g, 

24.3 mmol), paraformaldehyde (7.29 g, 24.0 mmol) and toluene (50 cm
3
) were heated in 

a pressure vessel at 110 
o
C for 18 h. The bomb was cooled and allowed to stand for 24 h. 

The resulting transparent crystals were washed with ethyl acetate and ether and then air-

dried. 

 

Yield:     15.8 g (58%). 

Mp:    92-94 
o
C (Lit. 91-92 

o
C).

94
 

1
H NMR:   (ppm d6-DMSO): 3.65 (s, 3H), 4.45 (s, 2H), 5.28 (s,b, 1H), 

6.75 (s, 1H), 7.05 (s, 1H). 

13
C NMR:   (ppm d6-DMSO): 32.7, 55.8, 122.2, 126.4. 

IR (KBr):   3136, 3115, 2827, 2022, 1499, 1360, 1146, 1021, 963, 

746 cm
-1

. 

 

2.2.2.2  1-Methyl-1H-imidazole-2-carboxaldehyde (3)
95 

 

 
 

            (3) 
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1-Methyl-2-hydroxymethylimidazole (2) (10 g, 9.00 mmol) was dissolved in 1,4-dioxane 

(150 cm
3
). Activated manganese dioxide (20 g) was added to the solution and the 

suspension was stirred under reflux for 4 h. The reaction was monitored by TLC (MeOH: 

ethyl acetate: 1:5). The suspension was filtered hot and the MnO2 washed with boiling 

1,4-dioxane. The solvent was removed on a rotary evaporator and the resultant yellow oil 

was distilled on a Kuglrohr apparatus at 78 
o
C. 

 

Yield:     7.50 g (74 %). 

Bp:    85-87 
o
C (Lit. 89-95 

o
C).

94
 

1
H NMR: (ppm d6-DMSO): 3.95 (s, 3H), 7.25 (s, 1H), 7.60 (s, 1H), 

9.69 (s, 1H). 

13
C NMR:   (ppm d6-DMSO): 30.6, 128.5, 130.9, 143.2, 181.8. 

IR (KBr): 3427, 3113, 2959, 2849, 1688, 1513, 1485, 1412, 1385, 

1336, 1293, 1158, 960, 860 cm
-1

. 

 

 

2.2.3  1-Benzyl-1H-imidazole-2-carboxaldehyde (6)
96

 

 

2.2.3.1  1-Benzyl-1H-imidazole (4)  

 

N N

 

      (4) 

 

To a solution of imidazole (60.0 g, 1.00 mol) in ethylene glycol dimethyl ether (300 cm
3
) 

was added sodium methoxide (180 g, of a 30% solution). Benzyl bromide (171.00 g, 1.00 

mol) was then added drop-wise. The solution was stirred and cooled in ice for 1 h. The 

solid was filtered off and washed with ethyl acetate. The filtrate was evaporated under 

reduced pressure. De-ionized water (200 cm
3
) was added to the residue and this was 
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acidified with 6 M HCl (200 cm
3
) and extracted with dichloromethane (4 x 50 cm

3
). The 

pH of the aqueous layer was adjusted to pH 8-9 with saturated Na2CO3 solution and the 

product extracted with DCM. The DCM solution was dried with MgSO4 and the solvent 

was removed under reduced pressure to give an off-white solid. The solid was 

recrystallised from ethyl acetate yielding clear crystals. The product was washed with dry 

ethyl acetate and air dried. 

 

Yield:     77.5 g (77 %). 

Mp:    67-69 
o
C (Lit. 68-70 

o
C).

94
 

1
H NMR: (ppm d6-DMSO): 5.10 (s, 2H), 6.85 (s, 1H), 7.10 (m, 3H), 

7.35 (s, 3H), 7.50 (s, 1H). 

13
C NMR: (ppm d6-DMSO): 52.4, 119.9, 123.3, 127.8, 128.7, 128.9,  

129.2, 136.6. 

IR (KBr): 3461, 3099, 1602, 1562, 1497, 1455, 1278, 1233, 1208, 

1157, 1108, 1073, 1030 cm
-1

. 

 

 

2.2.3.2  1-Benzyl-2-hydroxymethyl-1H-imidazole (6)
96

 

 

N N

OH  

      (5) 

 

1-Benzyl-1H-imidazole (4) (20 g, 0.127 mol) and 37% formaldehyde (50 cm
3
, 0.61 mol) 

were heated in a pressure vessel at 140 
o
C for 18 h. The resulting oil was concentrated on 

a rotary evaporator and then dissolved in DCM. The solution was washed with a 

saturated solution of Na2CO3 (3 x 50 cm
3
), then dried over MgSO4. After filtration the 
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solvent was removed under reduced pressure to yield a golden oil, which was 

recrystallised from ethyl acetate to yield a gold oil which over time yielded a semi-solid. 

 

Yield:     16 g (71 %). 

Mp:    93-95 
o
C (Lit. 94-95 

o
C).

94
 

1
H NMR: (ppm d6-DMSO): 3.31 (s, 2H), 5.05 (s, 2H), 6.85 (s, 1H), 

7.25 (m, 5H), 7.35 (s, 1H). 

13
C NMR: (ppm d6-DMSO): 48.9, 56.1, 121.4, 126.7, 127.0, 127.7, 

127.9, 128.9, 129.5. 

IR (KBr):   3469, 3168, 1690, 1563, 1497, 1454, 1356, 1234, 1208,  

    1159, 1108, 1073 cm
-1

. 

 

 

2.2.3.3  1-Benzyl-1H-imidazole-2-carboxaldehyde (6)
96

 

 

N N

O  

(6) 

 

1-Benzyl-2-hydroxymethyl-1H-imidazole (10.0 g, 5.30 mmol) and selenium dioxide 

(2.60 g, 2.30 mmol) were dissolved in 1,4-dioxane (100 cm
3
). De-ionized water (16.5 

cm
3
) was added and the mixture refluxed for 3 days. The reaction was monitored by TLC 

(MeOH: ethyl acetate 1:5). The suspension was filtered and the solvent removed under 

reduced pressure. The resultant yellow oil was distilled on a Kuglrohr apparatus at 108 

o
C.  

 

Yield:     7.5 g (88 %). 

Bp:    106-107 
o
C (Lit. 109-111 

o
C).

94
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1
H NMR: (ppm d6-DMSO): 5.45 (s, 2H), 6.92 (s, 1H), 7.45 (m, 5H), 

7.90 (s, 1H), 9.70 (s, 1H). 

13
C NMR: (ppm d6-DMSO): 51.8, 122.8, 128.5, 128.6, 128.8, 135.3, 

136.3, 185.8. 

IR (KBr): 3470, 3168, 1659, 1563, 1497, 1455, 1278, 1208, 1157, 

1108, 1030, 977, 845, 798, 713, 664 cm
-1

. 

 

 

2.2.4  4(5)-Methyl-1H-imidazole-5(4)-carboxaldehyde (8)
96-98

 

 

N NH

H3C O

 

            (8) 

 

The pH of a solution of 4-methyl-1H-imidazolemethanol hydrochloride (20 g, 13.40 

mmol) in de-ionized water (50 cm
3
) was adjusted with a saturated solution of Na2CO3 to 

7.0 and the water then removed under reduced pressure. The solid product was extracted 

with ethanol (25 cm
3
 x 4), and the solvent evaporated. Nitric acid (112 cm

3
, d 1.42) was 

added to the resultant yellow crystals. When the brown fumes had cleared, the pH of the 

yellow solution was adjusted to pH 8-9 with a saturated solution of Na2CO3 and allowed 

to stand for 4 h. The resulting yellow crystals were filtered off, washed with cold water 

and dried in vacuo. 

 

Yield:     10.5 g (71 %). 

Mp:    166-169 
o
C (Lit. 168-170 

o
C).

95
 

1
H NMR:   (ppm d6-DMSO): 2.43 (s, 3H), 7.75 (s, 1H), 9.75 (s, 1H). 

13
C NMR:   (ppm d6-DMSO): 11.3, 133.9, 137.6, 140.6, 184.0. 

IR (KBr): 3290, 3040, 2970, 2920, 2860, 1660, 1510, 1350, 1250, 960 

cm
-1

. 
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2.3 Schiff Base Ligands Derived from 1H-Imidazole-2-amine (1)
93-101 

 

 

Prior to its use in Schiff base condensation reactions, the free amine (1) was released 

from the hemisulphate salt using barium hydroxide.  

 

2.3.1 (E)-N-(4-[(1H-Imidazol-2-yl)methyl)benzylidene)]-1H-imidazol-2-

amine (22)  

 

 

(22) 

 

To a solution of 1H-imidazole-2-amine (1.00 g, 1.20 mmol) in a mixture of dry 

methanol:benzene (10:30 cm
3
)

95
 was added 4-(1H-imidazol-1-yl)-benzaldehyde (2.07 g, 

1.20 mmol). Molecular sieve (4A) was added and the mixture was refluxed for 6 h and 

then stirred overnight at room temperature. The reaction was monitored by TLC (MeOH: 

ethyl acetate 1:5). The molecular sieve was removed by filtration and solvent extraction 

of the crude reaction residue with hot ethanol obtained the product. The solvent was 

removed under reduced pressure to yield a brown solid (22). The product (22) was 

washed with cold methanol and air dried. 

 

Yield:     1.75 g (58 %). 

Mp:    Decomposition > 210 
o
C. 

% Found:   C: 66.58, H: 5.63, N: 28.12.  

% Calculated:   C: 66.92, H: 5.21, N: 27.87 (C14H13N5  mol. wt. 251.29). 

1
H NMR: (ppm d6-DMSO): 3.10 (s, 2H), 7.10 (s, 2H), 8.00 (m, 6H), 

8.48 (s, 1H), 9.20 (s, 1H) 11.39 (s, b, 1H). 

13
C NMR:  (ppm d6-DMSO): 50.6, 117.0, 119.7, 120.3, 127.7, 129.7, 

130.2, 135.4, 139.0, 150.5, 158.0. 
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IR (KBr): 3114, 1603, 1578, 1545, 1523, 1489, 1302, 1252, 1179, 

1107, 1054, 961cm
-1

. , 

Solubility:   Hot methanol, sparingly in ethanol, DMSO. 

 

2.3.2 (E)-3-[(1H-Imidazol-2-ylimino)methyl)]phenol (23) 

 

H2O 

(23) 

 

This solid was prepared in a similar way to (22) using 1H-imidazole-2-amine (1) (1.00 g, 

1.20 mmol)
93

 and 3-hydroxybenzaldehyde (1.46 g 1.20 mmol). A yellow/brown solid 

(23) was obtained. 

Yield:     1.28 g (58 %). 

Mp:    Decomposition > 200 
o
C. 

% Found:   C: 59.00, H: 4.97, N: 20.26.  

% Calculated:   C: 58.53, H: 5.40, N: 20.48 (C10H11N3O2, mol. wt. 205.21). 

1
H NMR: (ppm d6-DMSO): 6.95 (m, 1H), 6.85 (s, 1H), 7.53 (m, 4H), 

9.05 (s, 1H) 12.35 (s, b, 1H). 

13
C NMR:  (ppm d6-DMSO): 98.6, 114.1, 119.0, 120.4, 130.0, 137.0, 

151.0, 157.7, 159.4. 

IR (KBr): 3170, 1682, 1603, 1581, 1547, 1455, 1376, 1313, 1283, 

1248, 1169, 1110, 998 cm
-1

.  

Solubility:   Methanol, ethanol, DMSO. 
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2.3.3 (E)-2-[(1H-Imidazol-2-ylimino)methyl)]phenol (24) 
101

 

 

 

 

(24) 

 

This solid was prepared in a similar way to (22) using 1H-imidazole-2-amine (1) (1.00 g, 

1.20 mmol)
31,93,101

 and salicylaldehyde (1.46 g, 1.20 mmol). A yellow/brown solid (24) 

was obtained. 

 

Yield:     1.28 g (58 %). 

Mp:    Decomposition > 180 
o
C. 

% Found:   C: 63.95, H: 5.16, N: 22.62.  

% Calculated:   C: 64.16, H: 4.85, N: 22.45 (C10H9N3O1, mol. wt. 187.2). 

1
H NMR: (ppm d6-DMSO): 7.16 (s, 1H), 7.86 (d, 2H), 8.07 (d, 2H), 

8.39 (s, 1H), 9.19 (s, 1H) 12.29 (s, b, 1H). 

13
C NMR:  (ppm d6-DMSO): 118.0, 120.0, 130.1, 134.0, 135.6, 139.0, 

150.5, 158.0. 

IR (KBr): 3141, 1606, 1574, 1492, 1457 1345, 1272, 1199, 1152, 

1112, 1004, 900 cm
-1

. 

Solubility:   Methanol, ethanol, DMSO. 

 

2.3.4 N-[(E)-1H-Imidazol-2-ylmethylidene]-1H-imidazol-2-amine (25) 
31

 

 

 

(25) 
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This solid was prepared in a similar way to (22) using 1H-imidazole-2-amine (1) (1.00 g, 

1.20 mmol)
93

 and imidazole-2-carboxyaldehyde (1.15 g, 1.20 mmol). A brown solid (25) 

was obtained. 

 

Yield:     1.25 g (65 %). 

Mp:    Decomposition > 180 
o
C. 

% Found:   C: 52.56, H: 4.65, N: 43.90.  

% Calculated:   C: 52.17, H: 4.35, N: 43.45 (C7H7N5, mol. wt. 161.16). 

1
H NMR:   (ppm d6-DMSO): 7.00 (s, 2H), 7.29 (s, 2H), 8.85 (s, 1H), 

    (12.30 (s, b, 2H). 

13
C NMR:    (ppm d6-DMSO): 144.5, 148.9, 150.2. 

IR (KBr):   3144, 1612, 1566, 1431, 1346, 1303, 1112, 998, 849 cm
-1

. 

Solubility:   Methanol, sparingly in ethanol, DMSO. 

Poor solubility of the complex prevented complete 
13

C NMR analysis. 

 

 

2.3.5 N-[(E)-1H-Imidazol-4-ylmethylidene]-1H-imidazol-2-amine (26) 

 

 

(26) 

 

This solid was prepared in a similar way to (22) using 1H-imidazole-2-amine (1) (1.00 g, 

1.20 mmol)
93

 and 4(5)-imidazolecarboxaldehyde (1.32 g, 1.20 mmol). A light brown 

solid (26) was obtained. 

 

Yield:     1.93 g (70 %). 

Mp:    Decomposition > 200 
o
C. 

% Found:   C: 52.55, H: 4.23, N: 43.31.  
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% Calculated:   C: 52.17, H: 4.35, N: 43.45 (C7H7N5, mol. wt. 161.16). 

1
H NMR:   (ppm d6-DMSO): 7.95 (s, 1H), 7.75 (s, 1H), 

    7.85 (m, 2H), 9.00 (s, 1H), 12.00 (s, 2H). 

13
C NMR:    (ppm d6-DMSO): 118.6, 128.2, 138.3, 144.5, 148.9, 150.2. 

IR (KBr): 3140, 2595, 1877, 1610, 1570, 1438, 1341, 1175, 1107, 

850, 798 cm
-1

.  

Solubility:   Methanol, sparingly in ethanol, DMSO. 

 

 

2.3.6 N-[(E)-(5-Methyl-1H-imidazol-4-yl)methylidene]-1H-imidazol-2-amine 

(27) 

 

(27) 

 

This solid was prepared in a similar way to (22) using 1H-imidazole-2-amine (1) (1.00 g, 

1.20 mmol)
93

 and 4-methyl-5-imidazolecarboxaldehyde (1.32 g, 1.20 mmol).
95

 A light 

brown solid (27) was obtained. 

 

Yield:     1.25 g (65 %). 

Mp:    Decomposition > 180 
o
C. 

% Found:   C: 54.60, H: 5.39, N: 40.36.  

% Calculated:   C: 54.85, H: 5.18, N: 39.98 (C8H9N5, mol. wt. 175.19). 

1
H NMR:   (ppm d6-DMSO): 2.45 (s, 3H), 6.95 (s, 2H), 7.65 (s, 1H), 

    9.00 (s, 1H), (11.90 (s,b, 2H). 

13
C NMR:  (ppm d6-DMSO): 33.0, 118.6, 128.0, 137.5, 144.5, 148.4, 

152.0. 

IR (KBr): 3218, 1610, 2662, 1570, 1513, 1443, 1250, 1312, 1261, 

1163, 1073, 945, 869, 810 cm
-1

. 
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Solubility:   Methanol, sparingly in ethanol, DMSO. 

Poor solubility of the complex prevented complete 
13

C NMR analysis. 

 

2.3.7 N-[(E)-(1-Methyl-1H-imidazol-2-yl)methylidene]-1H-imidazol-2-amine 

(28) 

 

 

(28) 

 

This solid was prepared in a similar way to (22) using 1H-imidazole-2-amine (1) (1.00 g, 

1.20 mmol)
93

 and 1-methyl-2-imidazolecarboxaldehyde (1.32 g, 1.20 mmol).
94

 A light 

brown solid (28) was obtained. 

 

Yield:     1.25 g (65 %). 

Mp:    Decomposition > 210 
o
C. 

% Found:   C: 54.62, H: 5.46, N: 40.46.  

% Calculated:   C: 54.85, H: 5.18, N: 39.98 (C8H9N5, mol. wt. 175.19). 

1
H NMR:   (ppm d6-DMSO): 3.45 (s, 3H), 7.15 (s, 2H), 7.45 (s, 2H), 

    9.00 (s, 1H), (11.90 (s, b, 1H). 

13
C NMR:  (ppm d6-DMSO): 35.0, 116.8, 118 5, 133.8, 134.5, 139.3, 

148.4. 

IR (KBr): 3218, 2613, 1610, 1570, 1513, 1443, 1250, 1312, 1261, 

1073, 945, 869, 810, 727, 640 cm
-1

. 

Solubility:   Methanol, sparingly in ethanol, DMSO. 
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2.4. Schiff Base Ligands Derived from Histamine
102,104

 

 

2.4.1 2-([2-(1H-Imidazol-5-yl)ethyl]iminomethyl)phenol (29)
102,104 

 

 

   0.5 H2O  

(29) 

 

To a solution of histamine (0.60 g, 5.4 mmol) in dry methanol:benzene (40 cm
3
, 3:1) was 

added salicylaldehyde (0.66 g, 5.4 mmol). The resulting yellow solution was refluxed for 

4 h and the reaction was monitored by TLC (MeOH: hexane, 1:5). Molecular sieve (4A) 

was added and the reaction stirred overnight at room temperature. The molecular sieve 

was filtered off and the solvent removed under reduced pressure to yield a yellow/brown 

solid (29). The solid was washed with cold, dry ethanol and air-dried. 

 

Yield:    0.9 g (77 %). 

Mp:    Decomposition > 200 
o
C. 

% Found:   C: 64.37, H: 6.28, N: 18.64  

% Calculated:   C: 64.60, H: 6.30, N: 18.76 (C12H14N3O1.5 mol. wt. 224.25). 

1
H NMR: (ppm d6-DMSO): 2.97 (m, 2H), 3.85 (m, 2H), 6.69 (m, 

3H), 7.09 (m, 2H), 7.11 (s, 1H), 7.48 (s, 1H), 11.99 (s, b, 

1H), 13.66(s, b, 1H). 

13
C NMR: (ppm d6-DMSO): 27.7, 31.7, 48.6, 115.4, 115.9, 118.1, 

126.4, 128.0, 128.5, 129.0, 133.6, 157.0.   

IR (KBr): 3406, 2851, 2621, 1633, 1494, 1456, 1279, 1257, 1151, 

964, 824, 756 cm
-1

. 

Solubility:   Soluble in hot water, MeOH, DMSO and hot EtOH. 
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2.4.2 N-[2-(1H-Imidazol-5-yl)ethyl]-N-[(E)-1H-imidazol-2-ylmethylidene] 

amine (30) 

 

 

(30) 

 

This solid was prepared in a similar manner to (29) using histamine (0.60 g, 5.4 mmol) 

and imidazole-2-carboxaldehyde (0.52 g, 5.4 mmol). A yellow solid (30) was obtained. 

 

Yield:    0.84 g (89 %). 

Mp:     158-160 
o
C. 

% Found:   C: 57.43, H: 5.76, N: 36.97  

% Calculated:   C: 57.13, H: 5.86, N: 37.01 (C9H11N5 mol. wt. 189.22). 

1
H NMR:   (ppm d6-DMSO): 2.76 (t, 2H), 3.70 (t, 2H), 7.45 (s, 1H), 

7.52 (s, 1H), 7.57 (s, 2H),  8.20 (s, 1H), 11.81 (s, b, 2H). 

13
C NMR:  (ppm d6-DMSO): 29.7, 59.9, 118.2, 128.3, 133.3, 134.5, 

144.5, 149.0, 152.3. 

IR (KBr): 3113, 2850, 2664, 1649, 1615, 1554, 1449, 1386, 1292, 

1103, 932, 822, 756 cm
-1

. 

Solubility:   Soluble in water, MeOH, DMSO and hot EtOH. 

 

 

2.4.3 N-[2-(1H-Imidazol-4-yl)ethyl]-N-[(E)-(5-methyl-1H-imidazol-4-

yl)methylidene]amine (31) 

 

 

(31) 
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This solid was prepared in a similar manner to (29), using histamine (0.60 g, 5.4 mmol) 

and 4-methyl-5-imidazolecarboxaldehyde (0.60 g, 5.4 mmol). A yellow/tan solid (31) 

was obtained. 

 

Yield:     1.00 g (91%). 

Mp:    178-180 
o
C. 

% Found:   C: 59.35, H: 6.81, N: 34.66. 

% Calculated:   C: 59.10, H: 6.45, N: 34.46 (C10H13N5 mol. wt. 203.24). 

1
H NMR: (ppm d6-DMSO): 2.29 (s, 3H), 2.82 (t, 2H), 3.74 (t, 2H), 

6.78 (s, 1H), 7.52 (s, 1H), 7.58 (s, 1H), 8.22 (s, 1H), 11.90 

(s, b 2H). 

13
C NMR: (ppm d6-DMSO): 32.1, 43.6, 60.6, 125.1, 128.3, 134.4,  

144.7, 150. 

IR (KBr): 3331, 2603, 1626, 1598, 1526, 1438, 1347, 1324, 1237, 

1149, 1090, 958 cm
-1

. 

Solubility:   Soluble in hot water, MeOH, DMSO and hot EtOH. 

 

 

2.4.4 N-[2-(1H-Imidazol-4-yl)ethyl]-N-[(E)-(1-methyl-1H-imidazol-2- 

yl)methylidene]amine (32)
104

 

 

 

(32) 

 

This compound was prepared using a modification of the literature procedure.
104

 The 

solid was synthised in a similar manner to (29) using histamine (0.60 g, 5.4 mmol) and 1-

methyl-2-imidazolecarboxyaldehyde (0.60 g, 5.4 mmol). A yellow/brown solid (32) was 

obtained. 
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Yield:    1.03 g (92%). 

Mp:    Decomposition > 180 
o
C. 

% Found:   C: 59.31, H: 6.76, N: 34.84. 

% Calculated:   C: 59.10, H: 6.45, N: 34.46 (C10H13N5 mol. wt. 203.24). 

1
H NMR: (ppm d6-DMSO): 2.90 (t, 2H), 3.21 (t, 2H), 3.56 (s, 3H), 

6.76 (s, 1H), 7.06 (s, 2H), 7.38 (s, 1H), 7.78 (s, 1H), 11.93 

(s, 1H). 

13
C NMR: (ppm d6-DMSO): 28.1, 31.6, 50.5, 122.9, 125.1, 128.7, 

133.3, 134.5, 137.5, 149.4. 

IR (KBr): 3419, 3305, 3145, 2730, 1611, 1497, 1435, 1318, 1274, 

1136, 922, 846, 807 cm
-1

. 

Solubility:    Soluble in hot water, MeOH, DMSO and hot EtOH. 

 

 

2.4.5 N-[2-(1H-Imidazol-4-yl)ethyl]-N-[(E)-1H-imidazol-5-ylmethylidene] 

 amine (33)  

 

 

(33) 

 

This solid was prepared in a similar manner to (29) using histamine (0.60 g, 5.4 mmol) 

and 4(5)-imidazolecarboxaldehyde (0.52 g, 5.4 mmol). A yellow solid (33) was obtained. 

 

Yield:    0.81 g (80%). 

Mp:    118-120 
o
C. 

% Found:   C: 57.43, H: 6.10, N: 36.89. 

% Calculated:   C: 57.13, H: 5.86, N: 37.01 (C9H11N5 mol. wt. 189.22). 

1
H NMR: (ppm d6-DMSO): 2.87 (t, 2H), 3.80 (t, 2H), 7.36 (s, 1H), 

7.58 (s, 1H), 7.75 (s, 1H), 8.20 (s, 2H), 11.86 (s, b, 2H). 
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13
C NMR: (ppm d6-DMSO): 31.5, 43.9, 55.4, 116.4, 116.5, 128.3,  

131.6, 137.3, 150.5. 

IR (KBr): 3387, 3101, 2892, 2610, 1611, 1573, 1459, 1374, 1354, 

1292, 1260, 1119, 1091, 991, 935 cm
-1

. 

Solubility:    Soluble in hot water, MeOH, DMSO and hot EtOH. 

Poor solubility of the complex prevented complete 
13

C NMR analysis. 

 

 

2.4.6 (E)-N-[((1-Benzyl-1H-imidazol-2-yl)methylene)-2-(1H-imidazol-2-

yl)]ethanamine (34)  

 

 

(34) 

 

This solid was prepared in a similar manner to (29) using histamine (0.87 g, 5.4 mmol) 

and 1-benzylimidazole-2-carboxaldedhyde (0.54 g 5.4 mmol). A yellow oil was obtained, 

which, on standing, the yellow/brown solid (34). 

 

Yield:    1.20 g (80%). 

Mp:     Decomposition ≥ 200 
o
C. 

% Calculated:   C: 68.79, H: 6.13, N: 25.07 (C16H17N5 mol. wt. 279.34). 

% Found:   C: 69.10, H: 6.42, N: 25.30. 

1
H NMR:  (ppm d6-DMSO): 2.63 (t, 2H), 3.83 (t, 2H), 5.48 (s, 2H), 

6.77 (s, 1H), 7.36 (m, 8H), 7.95 (s, 1H), 11.78 (s, b 1H). 

13
C NMR:  (ppm d6-DMSO): 29.7, 32.8, 49.4, 52.0, 117.3, 119.6, 

122.8, 127.4, 127.6, 128.4, 128.7, 129.0, 134.5, 134.8, 

136.3, 147.4. 
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IR (KBr): 3311, 3092, 1629, 1561, 1497, 1457, 1387, 1330, 1230, 

1151, 1106, 1080, 937, 823 cm
-1

. 

Solubility:    Soluble in hot water, MeOH, DMSO and hot EtOH. 

Poor solubility of the complex prevented complete 
13

C NMR analysis. 

 

2.4.7 N-[2-(1H-Imidazol-4-yl)ethyl]-N-(E)-[4-(1H-imidazol-1-

yl)phenyl]methylideneamine (35) 

 

 

(35) 

 

This solid was prepared in a similar manner to (29) using histamine (0.60 g, 5.4 mmol) 

and 4-(1H-imidazol-1-yl)-benzaldehyde (0.93 g, 5.4 mmol). A yellow solid (35) was 

obtained. 

 

Yield:     0.89 g (76%). 

Mp:     148-152 °C. 

% Found:   C: 68.28, H: 5.95, N: 25.20. 

% Calculated:    C: 68.69, H: 6.13, N: 25.07 (C16H17N5 mol. wt. 279.34). 

1
H NMR: (ppm d6-DMSO): 2.91 (t, 2H), 3.87 (t, 2H), 4.71 (s, 2H), 

7.47 (s, 1H), 7.57 (s, 2H), 7.85 (m, 6H), 8.39 (s, 1H), 11.80 

(s, b, 1H). 

13
C NMR:  (ppm d6-DMSO): 28.6, 57.5, 60.3, 117.8, 119.8, 128.3, 

128.6, 129.7, 133.4, 133.5, 134.5, 135.4, 138.3, 159.9. 

IR (KBr): 3407, 2500, 1650, 1607, 1578, 1523, 1479, 1459, 1303, 

1256, 1182, 1112, 1056, 996, 960, 851, 820 cm
-1

.  

Solubility:    Soluble in hot water, MeOH, DMSO and hot EtOH. 

Poor solubility of the complex prevented complete 
13

C NMR analysis. 
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2.5 Schiff Base Ligands Derived from Apim 

 

2.5.1  2-([3-(1H-Imidazol-1-yl)propyl]aminopropyliminomethyl)phenol 

(36)
105 

 

 

 

(36) 

 

To a solution of 1-(3-aminopropyl)imidazole (Apim) (5.00 g, 43.4 mmol) in dry 

methanol (30 cm
3
) was added salicylaldehyde (5.30 g, 43.4 mmol). The resulting yellow 

solution was refluxed for 2 h and then stirred overnight at room temperature. The reaction 

was monitored by TLC (MeOH/hexane, 1:5). The solvent was removed under reduced 

pressure to give a yellow oil, which, on standing, yielded a yellow, crystalline solid (36). 

The solid was recrystallised from benzene, filtered, washed with cold, dry methanol and 

air-dried. 

 

Yield:    9.5 g (96 %). 

Mp:     78-80 
o
C. 

% Found:    C: 68.34, H: 6.23, N: 18.66. 

% Calculated:   C: 68.10, H: 6.59, N: 18.33 (C13H15N3O mol. wt. 229.28). 

1
H NMR: (ppm d6-DMSO), 2.12 (m, 2H), 3.53 (t, 2H), 4.07 (t, 2H), 

6.89 (d, 2H), 7.34 (m, 3H), 7.45 (s, 1H), 7.65 (s, 1H), 8.54 

(s, 1H), 13.35 (s, b, 1H).  

13
C NMR: (ppm d6-DMSO): 31.6, 43.8, 55.4, 115.2, 118.5, 118.7, 

119.0, 128.5, 131.2, 132.0, 137.2, 160.8, 148.3. 

IR (KBr):   3101, 1632, 1608, 1575, 1491, 1275, 1225, 1079, 808 cm
-1

. 

Solubility:   Insoluble in water and soluble in most organic solvents. 

Poor solubility of the complex prevented complete 
13

C NMR analysis. 
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2.5.2 N-[(E)-1H-Imidazol-5-ylmethylidene]-N-[3-(1H-imidazol-1-

yl)propyl]amine (37)  

 

 

(37) 

 

This solid was prepared in a similar manner to (36) using 4(5)-imidazolecarboxaldehyde 

(2.17 g, 22.5 mmol) and Apim (2.60 g, 22.5 mmol), yielding an orange powder. The solid 

(37) was recrystallised from benzene, filtered, washed with cold, dry ethanol and air-

dried. 

 

Yield:    4.1 g (97 %). 

MP:    180-182 
o
C. 

% Found:    C: 58.92, H: 6.28, N: 34.20. 

% Calculated:   C: 59.10, H: 6.45, N: 34.46 (C10H13N5 mol. wt. 203.24). 

1
H NMR: (ppm d6-DMSO): 2.05 (m, 2H), 3.38 (t, 2H), 3.95 (t, 2H), 

6.94 (s, 1H), 7.08 (s, 1H), 7.50 (s, 1H), 7.76 (s, 1H), 8.05 

(s, 1H), 9.60 (s, 1H). 

13
C NMR: (ppm d6-DMSO): 31.6, 43.8, 55.4, 116.4, 118.5, 128.5, 

131.6, 132.3, 137.2. 

IR (KBr): 3137, 3104, 2844, 1646, 1509, 1428, 1219, 1080, 1026, 982 

cm
-1

.  

Solubility:   Insoluble in water and soluble in most organic solvents. 

 

LC/TCOF-MS: (M + H)
+ 

 requires 204.12 g found 204.12 g. 

 (M + Ag)
 +

 requires 310.98 g found 310.00 g. 

Note:  
13

C NMR incomplete. 
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2.5.3 N-[(E)-1H-Imidazol-2-ylmethylidene]-N-[3-(1H-imidazol-1-

yl)propyl]amine (38) 

 

 

(38) 

 

This solid was prepared in a similar manner to (36) using imidazole-2-carboxaldehyde 

(2.17 g, 22.5 mmol) and Apim (2.60 g, 22.5 mmol), yielding a brown oil which, on 

standing, solidified to give an orange/brown solid (38). 

 

Yield:    4.02 g (95%). 

Mp:    45-47 
o
C.  

% Found:    C: 59.07, H: 6.48, N: 34.20.  

% Calculated:   C: 59.10, H: 6.40, N: 34.46 (C10H13N5 mol. wt. 203.24). 

1
H NMR: (ppm d6-DMSO): 2.30 (m, 2H), 3.70 (t, 2H), 4.08 (t, 2H), 

6.85 (s, 1H), 7.15 (s, 3H), 7.70 (s, 1H), 8.10 (s, 1H), 9.40 

(s, b, 1H). 

13
C NMR: (ppm d6-DMSO): 27.8, 34.5, 54.4, 117.4, 122.0, 125.1, 

126.4, 149.9.  

IR (KBr):
 
   3116, 1649, 1509, 1445, 1107, 1081, 762 cm

-1
. 

Solubility:   Insoluble in water and soluble in most organic solvents. 
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2.5.4 3-(1H-Imidazol-1-yl)-N-[(E)-(5-methyl-1H-imidazol-4-yl)methylidene]-

1-propanamine (39) 

 

                      0.5 H2O 

(39) 

 

This solid was prepared in a similar manner to (36) using 4-methyl-5-

imidazolecarboxaldehyde (2.50 g, 22.5 mmol) and Apim (2.60 g, 22.5 mmol), yielding 

orange/yellow oil which, on standing, gave an orange/yellow solid (39). 

 

Yield:    3.8 g (97%).    

MP:    95-96 
o
C. 

% Found:    C: 58.20, H: 6.80, N: 30.76. 

% Calculated:   C: 58.39, H: 7.13, N: 30.95 (C11H16N5O0.5 mol. wt. 226.56). 

1
H NMR: (ppm d6-DMSO): 2.04 (m, 2H), 3.42 (s, 3H), 3.50 (t, 2H), 

4.10 (t, 2H), 6.90 (s, 1H), 7.20 (s, 1H), 7.52 (s, 1H), 7.63 (s, 

1H), 8.23 (s, 1H), 12.17. 

13
C NMR: (ppm d6-DMSO): 28.1, 32.1, 44.0, 57.1, 119.2, 128.5, 

129.8, 131.6, 137.6, 157.2. 

IR (KBr): 3111, 2928, 1645, 1509, 1451, 1394, 1351, 1232, 1109, 

1082, 1033 cm
-1

. 

Solubility:   Insoluble in water and soluble in most organic solvents. 

 

 

LC/TCOF-MS: (M + H)
+ 

 requires 218.13 g found 218.13 g. 

 (M + Ag)
 +

 requires 323.99 g found 324.02 g. 
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2.5.5 3-(1H-Imidazol-1-yl)-N-[(E)-(1-methyl-1H-imidazol-2-yl)methylidene]-

1-propanamine (40) 

 

 

(40) 

 

This solid was prepared in a similar manner to (36) using 1-methyl-2-

imidazolecarboxaldehyde (2.50 g, 22.5 mmol) and Apim (2.60 g, 22.5 mmol). A yellow 

oil was obtained which, on standing, solidified to an orange/brown solid (40). 

 

Yield:    3.68 g (93%). 

Mp:    46-48 
o
C. 

% Found:   C: 60.30, H: 6.55, N, 31.81. 

% Calculated:   C: 60.81, H: 6.96, N: 32.23 (C11H15N5 mol. wt. 217.27). 

1
H NMR: (ppm d6-DMSO): 2.30 (t, 3H),

 
3.45 (m, 2H),

 
3.90 (t, 2H), 

4.1 (t, 2H), 6.85 (s, 1H), 7.0 (s, 1H), 7.2 (s, 1H), 7.3 (s, 

1H), 7.60 (s, 1H), 8.72 (s, 1H).
 

13
C NMR: (ppm d6-DMSO): 28.10, 31.56, 41.79, 55.26, 117.3, 122.9, 

125.1, 125.7, 134.9, 149.8. 

IR (KBr): 3386, 3108, 2944, 2881, 1650, 1509, 1479, 1438, 1372, 

1288, 1230, 1080 cm
-1

. 

Solubility:   Insoluble in water and soluble in most organic solvents. 
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2.6 Schiff Base Ligands Derived from 1,2-Diaminoethane, 1,3-

Diaminopropane and 1,4-Diaminobutane
106-118

 

 

2.6.1  N-[(E)-1H-Imidazol-2-ylmethylidene]-N-(2-[(E)-1H-imidazol-2-

ylmethylidene]aminoethyl)amine (41)
 

 

 

       n = 2 

(41) 

 

To a solution of imidazole-2-carboxaldehyde (1.60 g, 1.66 mmol) in dry methanol (30 

cm
3
) was added molecular sieve (4A) and 1,2-diaminoethane (0.50 g, 0.83 mmol). The 

solution was refluxed for 4 h and then stirred overnight at room temperature. The reaction 

was monitored by TLC (MeOH:ethyl acetate, 1:5). The molecular sieve was filtered off 

and the solvent was removed under reduced pressure yielding an off-white powder. The 

solid (41) was washed with cold, dry methanol and air-dried. 

 

Yield:     1.52 g (84%). 

Mp:    Decomposition > 200 
o
C. 

% Found:   C: 55.73, H: 5.59, N: 38.90. 

% Calculated:   C: 55.54, H: 5.59, N: 38.86 (C10H12N6 mol. wt. 216.24). 

1
H NMR: (ppm d6-DMSO); 3.92 (s, 4H), 7.13 (s, 4H), 8.21 (s, 2H), 

12.67 (s, b, 2H). 

13
C NMR:    (ppm d6-DMSO): 60.6, 119.3, 129.6, 153.3, 

IR (KBr): 3146, 3010, 2901, 2839, 2694, 1650, 1595, 1562, 1456, 

1445, 1393, 1308, 1382, 1561, 1135, 1116, 1028, cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.2. N-[(E)-1H-Imidazol-2-ylmethylidene]-N-(3-[(E)-1H-imidazol-2-  

ylmethylidene]aminopropyl)amine (42)
115 

 

              n = 3 

(42) 

 

This solid was prepared in a similar manner to (41) using imidazole-2-carboxaldehyde 

(1.30 g, 1.35 mmol) and 1,3-diaminopropane (0.50 g, 0.67 mmol). The off-white powder 

(42) was obtained. 

 

Yield:    1.23 g (80%). 

Mp:    Decomposition > 150 
o
C. 

% Found:   C: 57.25, H: 6.32, N: 36.24. 

% Calculated:   C: 57.38, H: 6.13, N: 36.50 (C11H14N6 mol. wt. 230.27). 

1
H NMR: (ppm d6-DMSO): 2.78 (m, 2H), 3.64 (t, 4H), 6.88 (s, 2H), 

7.13 (s, 2H), 8.21 (s, 2H), 11.15 (s, b, 2H). 

13
C NMR:   (ppm d6-DMSO): 26.9, 45.1, 121.1, 144.6, 148.5, 152.3. 

IR (KBr): 3269, 2694, 1651, 1548, 1457, 1448, 1429, 1376, 1313, 

1225, 1147, 1107, 1018, 972, 880, 790, 753 cm
-1

. 

Solubility:   Hot methanol, hot ethanol and hot DMSO. 
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2.6.3 N-[(E)-1H-Imidazol-2-ylmethylidene]-N-(4-[(E)-1H-imidazol-2-

ylmethylidene]aminobutyl)amine (43) 

 

        n = 4  

(43) 

 

This solid was prepared in a similar manner to (41) using imidazole-2-carboxaldehyde 

(1.09 g, 1.14 mmol) and 1,4-diaminobutane (0.50 g, 0.57 mmol). An off-white powder 

(43) was obtained. 

 

Yield:     0.98 g (72%). 

Mp:    Decomposition > 200 
o
C. 

% Found:   C: 59.19, H: 6.57, N: 34.56. 

% Calculated:   C: 59.00, H: 6.60, N: 34.40 (C12H16N6 mol. wt. 244 30). 

1
H NMR: (ppm d6-DMSO): 1.76 (m, 4H), 3.67 (s, 4H), 7.18 (s, 4H), 

8.26 (s, 2H), 12.73 (s, b, 2H). 

13
C NMR:   (ppm d6-DMSO): 28.3, 60.2, 130.0, 144.9, 152.4. 

IR (KBr): 3143, 3014, 2908, 2828, 2610, 1800, 1651, 1597, 1559, 

1445, 1389, 1350, 1304, 1154, 1111, 1041, 998, 910, 806, 

776, 757 cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.4 N-[(E)-(4-Methyl-1H-imidazol-5-yl)methylidene]-N-(2-[(E)-(4-methyl-

1H-imidazol-5-yl)methylidene]aminoethyl)amine (44)
115

 

 

       n = 2 

(44) 

 

This solid was prepared in a similar manner to (41) using 4-methyl-5-

imidazolecarboxaldehyde (1.84 g, 1.66 mmol) and 1,2-diaminoethane (0.50 g, 0.83 

mmol). A peach-coloured powder (44) was obtained. 

 

Yield:    1.72 g (85%). 

Mp:    Decomposition > 240 
o
C. 

% Found:   C: 59.39, H: 6.27, N: 34.36. 

% Calculated:   C: 59.00, H: 6.60, N: 34.40 (C12H16N6 mol. wt. 244 30). 

1
H NMR: (ppm d6-DMSO): 2.27 (s, 6H), 3.74 (s, 4H), 7.53 (s, 2H), 

8.22 (s, 2H), 12.02 (s, b, 2H). 

13
C NMR:   (ppm d6-DMSO): 28.5, 79.1, 128.5, 136.6, 144.8, 150.8. 

IR (KBr): 3133, 2973, 2814, 2624, 1933, 1850, 1669, 1600, 1574, 

1519, 1458, 1387, 1357, 1288, 1266, 1222, 1187, 989 cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.5 N-[(E)-(5-Methyl-1H-imidazol-4-yl)methylidene]-N-(3-[(E)-(5-methyl- 

 1H-imidazol-4-yl)methylidene]aminopropyl)amine (45)
115 

 

 

           n = 3 

(45) 

 

This solid was prepared in a similar manner to (41) using 4-methyl-5-

imidazolecarboxaldehyde (1.48 g, 1.35 mmol) and 1,3-diaminopropane (0.5 g, 0.67 

mmol). A pink powder (45) was obtained. 

 

Yield:    0.93 g (54%). 

Mp:    Decomposition > 240 
o
C. 

% Found:   C: 60.80, H: 6.69, N: 32.38. 

% Calculated:   C: 60.44, H: 7.02, N: 32.53 (C13H18N6 mol. wt. 258.32) 

1
H NMR:  (ppm d6-DMSO): 1.95 (s, 6H), 3.55 (m, 2H), 3.65 (t, 4H), 

7.55 (s, 2H), 8.25 (s, 2H), 12.15 (s, b, 2H). 

13
C NMR: (ppm d6-DMSO): 20.54, 47.7, 54.0, 132.4, 137.4, 154.8. 

IR (KBr): 3051, 2980, 2924, 2833, 2601, 1877, 1646, 1585, 1590, 

1451, 1358, 1308, 1243, 1187, 1103, 964, 844 cm
-1

. 

Solubility:   Hot methanol, hot ethanol and hot DMSO. 
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2.6.6. N-[(E)-(5-Methyl-1H-imidazol-4-yl)methylidene]-N-(4-[(E)-(5-methyl- 

 1H-imidazol-4-yl)methylidene]aminobutyl)amine (46) 

 

       n = 4 

(46) 

 

This solid was prepared in a similar manner to (41) using 4-methyl-5-

imidazolecarboxaldehyde (1.26 g, 1.14 mmol) and 1,4-diaminobutane (0.50 g, 0.57 

mmol). A peach-coloured powder (46) was obtained. 

 

Yield:    1.23 g (80%). 

Mp:    Decomposition > 240 
o
C. 

% Found:   C: 61.54, H: 7.37, N: 30.81. 

% Calculated:   C: 61.74, H: 7.40, N: 30.86 (C14H20N6 mol. wt. 272.35). 

1
H NMR: (ppm d6-DMSO): 2.38 (m, 4H), 3.60 (s, 4H), 3.85 (s, 6H), 

7.53 (s, 2H), 8.25 (s, 2H), 11.85 (s, b, 2H). 

13
C NMR: (ppm d6-DMSO): 26.85, 45.08, 68.48, 139.35, 144.54, 

148.48, 152.3. 

IR (KBr): 3046, 2891, 2854, 2662, 2600, 1857, 1668, 1650, 1578, 

1504, 1452, 1382, 1358, 1306, 1240, 1101, 995, 963 cm
-1

. 

Solubility:   Hot methanol, sparingly in hot ethanol and hot DMSO. 

 

 

 

 

 

 



Chapter 2 

74 

 

 

2.6.7 2-[([(E)-(2-Hydroxyphenyl)methylidene]aminoethyl)imino] 

methylphenol (47)
106,116-118

 

 

    n=2 

(47) 

 

This solid was prepared in a similar manner to (41) using salicylaldehyde (2.03 g, 1.66 

mmol) and 1,2-diaminoethane (0.50 g, 0.83 mmol). A yellow solid (47) was obtained. 

 

Yield:    1.90 g (86%). 

Mp:    112-114 
o
C. 

% Found:   C: 71.52, H: 6.14, N: 10.66. 

% Calculated:   C: 71.62, H: 6.01, N: 10.44 (C16H16N2O2 mol. wt. 268.31). 

1
H NMR: (ppm d6-DMSO): 3.90 (s, 4H), 6.87 (m, 4H), 7.32 (m, 2H), 

7.45 (m, 2H), 8.59 (s, 2H), 13.34 (s, b, 2H). 

13
C NMR: (ppm d6-DMSO): 59.1, 116.8, 118.9, 132.0, 132.7, 160.9, 

163.1, 167.3. 

IR (KBr): 3441, 2931, 2900, 2636, 1636, 1610, 1578, 1449, 1461, 

1419, 1371, 1284, 1200, 1150, 1042, 1021, 981, 858 cm
-1

. 

Solubility:   Methanol, ethanol, ethyl acetate, chloroform, DCM. 
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2.6.8 2-[(3-[(E)-(2-Hydroxyphenyl)methylidene]aminopropyl)imino] 

methylphenol (48)
107,116-118

 

 

          n=3    0.5 H2O 

(48) 

 

This solid was prepared in a similar manner to (41) using salicylaldehyde (1.64 g, 1.35 

mmol) and 1,3-diaminopropane (0.5 g, 0.67 mmol). A yellow powder (48) was obtained. 

 

Yield:    1.63 g (86%). 

Mp:    46-48 
o
C. 

% Found:   C: 70.42, H: 6.63, N: 9.90. 

% Calculated:   C: 70.08, H: 6.55, N: 9.61 (C17H19N2O2.5 mol. wt. 291.34). 

1
H NMR: (ppm d6-DMSO): 2.08 (m, 2H), 3.75 (t, 4H), 6.90 (t, 4H), 

7.75 (m, 4H), 8.55 (m, 2H), 13.50 (s, b, 2H). 

13
C NMR: (ppm d6-DMSO): 31.5, 55.9, 116.4, 118.5, 131.4, 131.6, 

160.6. 

IR (KBr): 3365, 2934, 1638, 1607, 1590, 1500, 1463, 1350, 1311, 

1263, 1158, 1108, 1041, 820 cm
-1

. 

Solubility:   Methanol, ethanol, ethyl acetate, chloroform, DCM. 

Note: incomplete 
13

C NMR data. 
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2.6.9 2-[(4-[(E)-(2-Hydroxyphenyl)methylidene]aminobutyl)imino] 

methylphenol (49)
116-118

 

 

n=4 

(49) 

 

This solid was prepared in a similar manner to (41) using salicylaldehyde (1.38 g, 1.13 

mmol) and 1,4-diaminobutane (0.50 g, 0.57 mmol). A yellow solid (49) was obtained. 

 

Yield:    1.43 g (85%). 

Mp:    84-86 
o
C. 

% Found:   C: 72.81, H: 7.01, N: 9.65. 

% Calculated:   C: 72.95, H: 6.80, N: 9.45 (C18H20N2O2 mol. wt. 296.36). 

1
H NMR:  (ppm d6-DMSO): 1.78 (s, 4H), 3.65 (s, 4H), 6.82 (t 4H), 

7.35 (m, 4H), 8.57 (s, 2H), 13.60 (s, b, 2H). 

13
C NMR: (ppm d6-DMSO): 28.4, 58.2, 116.8, 118.8, 132.6, 154.7, 

155.4, 161.2. 

IR (KBr): 3446, 2946, 2865, 1633, 1608, 1548, 1497, 1456, 1354, 

1285, 1210, 1146, 1052, 1010, 878, 858, 754 cm
-1

. 

Solubility:   Methanol, ethanol, ethyl acetate, chloroform, DCM. 



Chapter 2 

77 

 

2.6.10 N-[(E)-1H-Imidazol-4-ylmethylidene]-N-(2-[(E)-1H-imidazol-4- 

 ylmethylidene]aminoethyl)amine (50) 

 

         n = 2 

(50) 

 

This solid was prepared in a similar manner to (41) using, 4(5)-imidazolecarboxaldehyde 

(1.59 g, 1.66 mmol) and 1,2-diaminoethane (0.50 g, 0.8 mmol). A white powder (50) was 

obtained. 

 

Yield:    1.52 g (85%). 

Mp:    Decomposition > 80 
o
C. 

% Found:   C: 55.82, H: 5.65, N: 38.63. 

% Calculated:   C: 55.54, H: 5.59, N: 38.86 (C10H12N6 mol. wt. 216.24). 

1
H NMR: (ppm d6-DMSO): 3.75 (s, 4H), 7.34 (m, 2H), 7.70 (m, 2H), 

8.19 (s, 2H), 12.47 (s, b, 2H). 

13
C NMR:   (ppm d6-DMSO): 60.1, 122.3, 136.3, 138.0, 157.1, 

IR (KBr): 3441, 3121, 2836, 2601, 1651, 1542, 1514, 1451, 1367, 

1301, 1261, 1175, 1116, 1021, 994, 941 cm
-1

. 

Solubility:   Hot methanol, sparingly in hot ethanol and hot DMSO. 
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2.6.11 N1-[(E)-1H-Imidazol-5-ylmethylidene]-N-3-[(E)-1H-imidazol-5- 

 ylmethylidene]-1,3-propanediamine (51) 

 

          n= 3 

(51) 

 

This solid was prepared in a similar manner to (41) using 4(5)-imidazolecarboxaldehyde 

(1.30 g, 1.13 mmol) and 1,3-diaminopropane (0.5 g, 0.67 mmol). A pale peach-coloured 

powder (51) was obtained. 

 

Yield:    1.28 g (83%). 

Mp:    Decomposition > 160 
o
C. 

% Found:   C: 57.10, H: 6.16, N: 36.29. 

% Calculated:   C: 57.38, H: 6.13, N: 36.50 (C11H14N6 mol. wt. 230.27). 

1
H NMR: (ppm d6-DMSO): 1.74 (m, 2H), 3.54 (t, 4H), 7.45 (s, 2H), 

7.75 (s, 2H), 8.25 (s, 2H), 12.32 (s, b 2H). 

13
C NMR:   (ppm d6-DMSO): 32.1, 58.34, 123.3, 136.5, 137.3, 151.7. 

IR (KBr): 3424, 3119, 2939, 2836, 2604, 1869, 1647, 1548, 1520, 

1460, 1382, 1299, 1176, 1111, 1095 cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.12 N-[(E)-1H-Imidazol-5-ylmethylidene]-5-[(E)-(1H-imidazol-5- 

 ylmethyl)imino]-1-butylamine (52) 

 

          n = 4 

(52) 

 

This solid was prepared in a similar manner to (41) using 4(5)-imidazolecarboxaldehyde 

(1.09 g, 1.13 mmol) and 1,4-diaminobutane (0.50 g, 0.57 mmol). A peach-coloured 

powder (52) was obtained. 

 

Yield:    1.15 g (83%). 

Mp:    Decomposition > 200 
o
C. 

% Found:   C: 59.66, H: 6.19, N: 34.60. 

% Calculated:   C: 59.00, H: 6.60, N: 34.40 (C12H16N6 mol. wt. 244.30). 

1
H NMR: (ppm d6-DMSO): 1.61 (s, 4H), 3.56 (s, 4H), 7.39 (s, 2H), 

7.69 (s, 2H), 8.19 (s, 2H), 12.39 (s, b, 2H). 

13
C NMR:   (ppm d6-DMSO): 28.6, 69.4, 121.9, 136.4, 138.3, 163.1. 

IR (KBr): 3423, 2861, 2596, 1898, 1651, 1566, 1513, 1458, 1377, 

1327, 1289, 1220, 1096, 1062, 998, 923, 860 cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.13 N-[(E)-(1-Methyl-1H-imidazol-2-yl)methylidene]-N-(2-[(E)-(1-methyl- 

 1H-imidazol-2-yl)methylidene]aminoethyl)amine (53)
108-109,114

 

 

        n = 2 

(53) 

 

This solid was prepared in a similar manner to (41) using 1-methyl-2-

imidazolecarboxaldehyde (1.84 g, 1.66 mmol) and 1,2-diaminoethane (0.50 g, 0.83 

mmol). The pale yellow solid (53) was obtained. 

 

Yield:    0.86 g (43%). 

Mp:    100-104 
o
C. 

% Found:   C: 58.91, H: 6.82, N: 34.29. 

% Calculated:   C: 59.00, H: 6.60, N: 34.40 (C12H16N6 mol. wt. 244.30). 

1
H NMR: (ppm d6-DMSO): 2.45 (s, 4H), 3.90 (s, 6H), 7.65 (s, 2H), 

8.05 (s, 2H), 8.40 (s, 2H). 

13
C NMR:   (ppm d6-DMSO): 35.2, 61.5, 125.9, 129.0, 142.7, 154.6. 

IR (KBr): 3367, 3130, 3106, 2850, 1655, 1523, 1479, 1439, 1289, 

1230, 1150, 1086, 1021, 958, 925 cm
-1

. 

Solubility:   Hot methanol and hot DMSO 
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2.6.14 N-[(E)-(1-Methyl-1H-imidazol-2-yl)methylidene]-N-(3-[(E)-(1-methyl- 

 1H-imidazol-2-yl)methylidene]aminopropyl)amine (54)
109,114

 

 

                         n = 3   0.5H2O 

(54) 

 

This solid was prepared in a similar manner to (41) using 1-methyl-2-

imidazolecarboxaldehyde (1.45 g 1.31 mmol) and 1,3-diaminopropane (0.5 g, 0.67 

mmol). A pale yellow solid (54) was obtained. 

 

Yield:    1.12 g (65%). 

Mp:    50-52 
o
C. 

% Found:   C: 58.36, H: 6.78, N: 31.60. 

% Calculated:   C: 58.41, H: 7.18, N: 31.43 (C13H19N6O0.5 mol. wt. 267.30). 

1
H NMR: (ppm d6-DMSO): 2.60 (m, 2H), 3.56 (t, 4H), 3.96 (s, 6H), 

7.08 (s, 2H), 7.35 (s, 2H), 8.36 (s, 2H). 

13
C NMR: (ppm d6-DMSO): 37.6, 55.2, 58.9, 125.9, 128.9, 142.8, 

153.7. 

IR (KBr): 3440, 3262, 3122, 2920, 1652, 1525, 1484, 1443, 1370, 

1293, 1230, 1157, 1094, 1060, 966, 948 cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.15 4-[(E)-2-(1-Methyl-1H-imidazol-2-yl)diazenyl]-N-[(E)-(1-methyl-1H- 

 imidazol-2-yl)methylidene]-1-butanamine (55) 

 

      n = 4 

      (55) 

 

This solid was prepared in a similar manner to (41) using 1-methyl-2-

imidazolecarboxaldehyde (1.26 g, 1.14 mmol) and 1,4-diaminobutane (0.50 g, 0.57 

mmol). An off-white solid (55) was obtained. 

 

Yield:    1.00 g (64%). 

Mp:    74-46 
o
C. 

% Found:   C: 62.00, H: 7.40, N: 30.84. 

% Calculated:   C: 61.74, H: 7.40, N: 30.86 (C14H20N6 mol. wt. 272.35) 

1
H NMR: (ppm d6-DMSO): 2.65 (m, 4H), 3.53 (s, 6H), 3.92 (s, 4H), 

6.98 (s, 2H), 7.18 (s, 2H), 8.25 (s, 2H). 

13
C NMR: (ppm d6-DMSO): 28.6, 55.1, 61.0, 125.8, 128.9, 142.7, 

153.4.  

IR (KBr): 3428, 3095, 2954, 2826, 1651, 1590, 1519, 1475, 1436, 

1364, 1337, 1289, 1146, 1047, 978, 920, 809 cm
-1

. 

Solubility:   Hot methanol and hot DMSO. 
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2.6.16 N-[(E)-(1-Benzyl-1H-imidazol-2-yl)methylidene]-N-(2-[(E)-(1-benzyl- 

 1H-imidazol-2-yl)methylidene]aminoethyl)amine (56) 

 

      n = 2 

      (56) 

 

This solid was prepared in a similar manner to (41) using 1-benzylimidazole-2-

carboxaldehyde (2.66 g, 1.66 mmol) and 1,2-diaminoethane (0.50 g, 0.83 mmol), 

yielding an oil, which, on standing, solidified to a gold-coloured solid (56). 

 

Yield:    2.15 g (73%). 

Mp:    64-68 
o
C. 

% Found:   C: 72.85, H: 6.35, N: 21.25. 

% Calculated:   C: 72.70, H: 6.10, N: 21.21 (C24H24N6 mol. wt. 396.49). 

1
H NMR:  (ppm d6-DMSO): 3.78 (s, 4H), 5.62 (s, 4H), 6.82 (s, 2H), 

7.15 (2H), 7.29 (m, 10H), 8.21 (s, 2H). 

13
C NMR: (ppm d6-DMSO): 48.6, 59.6, 118.7, 120.9, 124.7, 127.3, 

127.5, 128.6, 137.8, 154.2. 

IR (KBr): 3407, 3131, 3088, 2846, 1651, 1497, 1470, 1453, 1440, 

1372, 1328, 1284, 1251, 1163, 1068, 1032, 825 cm
-1

. 

Solubility:   Methanol, ethanol, ethyl acetate, chloroform, DCM. 
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2.6.17 N-[(E)-(1-Benzyl-1H-imidazol-2-yl)methylidene]-N-(3-[(E)-  

(1-benzyl-1H-imidazol-2-yl)methylidene]aminopropyl)amine (57) 

 

       n = 3  

        (57) 

 

This solid was prepared in a similar manner to (41) using 1-benzylimidazole-2-

carboxaldehyde (2.16 g, 1.34 mmol) and 1,3-diaminopropane (0.50 g, 0.67 mmol). This 

yielded a gold-coloured oil, which on standing solidified to a gold-coloured solid (57). 

 

Yield:    2.25 g (80%). 

Mp:    18-20 
o
C. 

% Found:   C: 73.45, H: 6.51, N: 20.69. 

% Calculated:   C: 73.14, H: 6.38, N: 20.47 (C25H26N6 mol. wt. 410.51). 

1
H NMR: (ppm d6-DMSO): 2.55 (d, 4H), 5.30 (d, 4H), 5.75 (s, 2H), 

6.85 (s, 2H), 7.00-7.60 (m, 12H), 8.24 (s, 2H). 

13
C NMR: (ppm d6-DMSO): 31.6, 59.3, 62.7, 121.0, 124.8, 127.4, 

128.4, 129.1, 137.5, 147.6, 153.2. 

IR (KBr): 3394, 2850, 1651, 1497, 1471, 1455, 1360, 1272, 1157, 

1112, 1030, 970 cm
-1

. 

Solubility:   Methanol, ethanol, ethyl acetate, chloroform, DCM. 
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2.6.18 N-[(E)-(1-Benzyl-1H-imidazol-2-yl)methylidene]-N-(4-[(E)-(1-benzyl- 

 1H-imidazol-2-yl)methylidene]aminobutyl)amine (58) 

 

        n = 4 

(58) 

 

This solid was prepared in a similar manner to (41) using 1-benzylimidazole-2-

carboxaldehyde (1.83 g, 1.14 mmol) and 1,4-diaminobutane (0.50 g, 0.57 mmol). The 

gold-coloured oil which, on standing solidified to a gold-coloured solid (58). 

 

Yield:    2.15 g (89%). 

Mp:    78-80 
o
C. 

% Found:   C: 73.20, H: 6.30, N: 20.01. 

% Calculated:   C: 73.56, H: 6.65, N: 19.80 (C26H28N6 mol. wt. 424.54). 

1
H NMR:  (ppm d6-DMSO): 2.45 (t, 4H), 4.50 (t, 4H), 5.68 (s, 4H), 

7.15 (m, 12H), 7.46 (s, 2H), 8.25 (s, 2H). 

13
C NMR: (ppm d6-DMSO): 38.5, 55.7, 65.5, 120.9, 126.6, 127.3, 

128.3, 129.1, 137.6, 147.1, 152.9. 

IR (KBr): 3419, 3112, 2944, 2830, 1654, 1471, 1441, 1295, 1250, 

1030, 979, 920 cm
-1

. 

Solubility:   Methanol, ethanol, ethyl acetate, chloroform, DCM. 
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2.7 Schiff Base Ligands Derived from 1,2-Phenylenediamine, 1,3-

 Phenylenediamine and 1,4-Phenylenediamine
119-121

 

 

 

2.7.1 N-[(E)-1H-Imidazol-2-ylmethylidene]-N-(2-[(E)-1H-imidazol-2- 

 ylmethylidene]aminophenyl)amine (59) 

 

 

 

 

 

              (59) 

 

To a solution of 1,2-phenylenediamine in dry methanol (1.00 g, 0.92 mmol) was added 

imidazole-2-carboxaldehyde (1.77 g, 1.84 mmol) and molecular sieve (4 Å beads) as a 

dehydrating agent. The solution was refluxed for 4 h and then stirred overnight at room 

temperature. The reaction was monitored by TLC (MeOH: ethyl:acetate 1:5). The 

molecular sieve was filtered off and the solvent was removed under reduced pressure to 

yield a pale yellow/green powder. The solid (59) was washed with cold, dry methanol 

and air-dried. 

 

Yield:     2.20 g (97 %). 

Mp:    Decomposition > 210 
o
C. 

% Found:   C: 63.30, H: 4.50, N: 31.45.  

% Calculated:   C: 63.64, H: 4.58, N: 31.80 (C14H12N6 mol. wt. 264.29). 

1
H NMR: (ppm d6-DMSO): 7.16-7.43 (m, 8H), 8.30 (s, 2H), 13.21 (s, 

2H).  

13
C NMR:    (ppm d6-DMSO): 116.3, 122.8, 126.8, 143.9, 145.3, 152.7. 

IR (KBr): 3316, 3115, 3057, 1621, 1591, 1506, 1432, 1318, 1230, 

1185, 1130 cm
-1

. 

Solubility:   Hot DMSO. 
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2.7.2 N-1-[(E)-1H-Imidazol-2-ylmethylidene]-N3-[(E)-1H-imidazol-2- 

 ylmethyliden]1,3-benzenediamine (60) 

 

 

(60) 

 

This solid was prepared in a similar manner to (41) using 1,3-phenylenediamine (1.00 g, 

0.92 mmol) and imidazole-2-carboxaldehyde (1.96 g, 2.04 mmol). An off-white powder 

(60) was obtained. 

 

Yield:     2.08 g (92 %). 

Mp:    Decomposition > 210 
o
C. 

% Found:   C: 63.43, H: 4.48, N: 31.64. 

% Calculated:   C: 63.64, H: 4.58, N: 31.80 (C14H12N6 mol. wt. 264.29). 

1
H NMR: (ppm d6-DMSO): 7.18 (t, 4H), 7.46 (m, 4H), 8.50 (s, 2H), 

12.51 (s, 2H). 

13
C NMR:  (ppm d6-DMSO): 113.6, 119.5, 129.6, 144.6, 147.8, 148.3, 

150.9.  

IR (KBr): 3298, 3093, 1609, 1475, 1424, 1332, 1268, 1200, 1085, 

1008 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO.  

 

2.7.3 N-[(E)-1H-Imidazol-2-ylmethylidene]-N-(4-[(E)-1H-imidazol-2-

ylmethylidene]aminophenyl)amine (61)
120,121

 

 

 

(61) 

 



Chapter 2 

88 

This solid was prepared in a similar manner to (41) using 1,4-phenylenediamine (1.10 g, 

1.02 mmol) and imidazole-2-carboxaldehyde (1.96 g, 2.04 mmol). A pale yellow powder 

(61) was obtained. 

 

Yield:     2.00 g (88 %). 

Mp:    Decomposition > 220 
o
C.  

% Found:   C: 63.44, H: 4.50, N: 31.45.  

% Calculated:   C: 63.64, H: 4.58, N: 31.80 (C14H12N6 mol. wt. 264.29). 

1
H NMR: (ppm d6-DMSO): 7.11 (s, 4H), 7.21 (s, 4H), 8.29 (s, 2H), 

12.95 (s, 2H).  

13
C NMR:  (ppm d6-DMSO): 119.4, 122.4, 145.3, 149.2, 160.3.  

IR (KBr): 3002, 2907, 1618, 1555, 1493, 1440, 1384, 1303, 1206, 

1154, 1113 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO.  

 

 

 

2.7.4 2-[(2-[(E)-(2-Hydroxyphenyl)methylidene]aminophenyl)imino]  

Methylphenol (62) 

 

 

(62) 

 

This solid was prepared in a similar manner to (41) using 1,2-phenylenediamine (1.00 g, 

0.92 mmol) and salicylaldehyde (2.24 g, 1.84 mmol). A yellow/orange powder (62)
120,121 

was obtained. 

 

Yield:     2.75 g (94 %). 



Chapter 2 

89 

Mp:    158-161 
o
C. 

% Found:   C: 75.78, H: 5.05, N: 8.87. 

% Calculated:   C: 75.93, H: 5.10, N: 8.86 (C20H16N2O2 mol. wt. 316.35). 

1
H NMR: (ppm d6-DMSO): 6.78 (m, 2H), 7.25-7.43 (m, 8H), 7.51 (d, 

2H), 8.75 (s, 2H), 12.70 (s, b, 2H).  

13
C NMR:  (ppm d6-DMSO): 117.0, 119.4, 119.8, 120.1, 128.2, 132.8, 

133.8, 149.6, 160.7, 164.4.  

IR (KBr):   3447, 3054, 1613, 1562, 1481, 1449, 1277, 1193 cm
-1

. 

Solubility:   Most organic solvents. 

 

 

2.7.5 2-[(3-[(E)-(2-Hydroxyphenyl)methylidene]aminophenyl)  

imino]methylphenol (63) 

 

 

(63) 

 

This solid was prepared in a similar manner to (41) using 1,3-phenylenediamine (1.00 g, 

0.92 mmol) and salicylaldehyde (2.24 g, 1.84 mmol). An orange powder (63) was 

obtained. 

 

Yield:     2.81 g (96 %). 

Mp:    108-110 
o
C. 

% Found:   C: 75.74, H: 5.34, N: 8.70.  

% Calculated:   C: 75.93, H: 5.10, N: 8.86 (C20H16N2O2 mol. wt. 316.35). 

1
H NMR: (ppm d6-DMSO): 6.98 (m, 4H), 7.36 (m, 4H), 7.53 (m, 

2H), 7.66 (d, 2H), 7.80 (s, 2H), 13.20 (s, b, 2H). 

13
C NMR:  (ppm d6-DMSO): 114.2, 117.0, 119.6, 120.6, 130.7, 132.9, 

133.8, 149.7, 160.7, 164.5.  
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IR (KBr): 3455, 2988, 1622, 1592, 1571, 1498, 1460, 1284, 1197, 

1150 cm
-1

. 

Solubility:   Most organic solvents 

 

 

2.7.6 2-[(4-[(E)-(2-Hydroxyphenyl)methylidene]aminophenyl) imino] 

methylphenol (64) 

 

 

(64) 

 

This solid was prepared in a similar manner to (41) using 1,4-phenylenediamine (1.00 g, 

0.92 mmol) and salicylaldehyde (2.24 g, 1.84 mmol). A dark orange powder (64) was 

obtained. 

 

Yield:     2.60 g (93 %). 

Mp:    210-212 
o
C. 

% Found:   C: 75.78, H: 5.08, N: 8.78.  

% Calculated:   C: 75.93, H: 5.10, N: 8.86 (C20H16N2O2 mol. wt. 316.35). 

1
H NMR: (ppm d6-DMSO): 7.03 (t, 4H), 7.42 (m, 2H), 7.53 (m, 4H), 

7.67 (d, 2H), 9.01 (s, 2H), 13.00 (s, b, 2H). 

13
C NMR:  (ppm d6-DMSO): 117.0, 119.5, 119.7, 122.9, 132.9, 133.7, 

147.0, 160.7, 163.5. 

IR (KBr):   3468, 3053, 1611, 1572, 1493, 1371, 1282, 1189 cm
-1

. 

Solubility:   Most organic solvents. 
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2.7.7 N-[(E)-(5-Methyl-1H-imidazol-4-yl)methylidene]-N-(2-[(E)-(5-methyl- 

 1H-imidazol-4-yl)methylidene]aminophenyl)amine (65) 

 

 

(65) 

 

This solid was prepared in a similar manner to (41) using 1,2-phenylenediamine (1.00 g, 

0.92 mmol) and 4-methyl-5-imidazolecarboxyaldehyde (2.02 g, 1.84 mmol). A pale 

yellow powder (65) was obtained. 

 

Yield:     2.43 g (90 %). 

Mp:    Decomposition > 260 
o
C. 

% Found:   C: 65.51, H: 5.44, N: 28.27. 

% Calculated:   C: 65.74, H: 5.52, N: 28.55 (C16H16N6 mol. wt. 292.34). 

1
H NMR: (ppm d6-DMSO): 3.39 (s, 6H), 7.30 (s, 4H), 7.75 (s, 2H), 

8.55 (s, 2H), 11.60 (s, 2H). 

13
C NMR:  (ppm d6-DMSO): 61.7, 118.5, 120.5, 122.1, 133.8, 134.6, 

147.4, 151.7. 

IR (KBr): 3427, 3040-2654, 1875, 1621, 1577, 1490, 1457, 1393, 

1340, 1252, 1210, 965, 878, 834, 764 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 
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2.7.8 N-[(E)-(4-Methyl-1H-imidazol-5-yl)methylidene]-N-(3-[(E)-(5-methyl- 

 1H-imidazol-4-yl)methylidene]aminophenyl)amine (66) 

 

 

(66) 

 

This solid was prepared in a similar manner to (41) using 1,3-phenylenediamine (1.00 g, 

0.92 mmol) and 4-methyl-5-imidazolecarboxyaldehyde (2.03 g, 1.84 mmol). A white 

powder (66) was obtained. 

 

Yield:     2.55 g (95 %). 

Mp:    Decomposition > 250 
o
C. 

% Found:   C: 65.56, H: 5.69, N: 28.47.  

% Calculated:   C: 65.74, H: 5.52, N: 28.75 (C16H16N6 mol. wt. 292.34). 

1
H NMR: (ppm, d6-DMSO): 3.43 (s, 6H), 7.00 (s, 3H), 7.20 (t, 1H), 

7.75 (s, 2H), 8.48 (s, 2H), 11.81 (s, b, 2H). 

13
C NMR:  (ppm, d6-DMSO): 60.7, 112.4, 119.9, 120.6, 133.5, 135.8, 

143.0, 143.6, 153.8. 

IR (KBr): 3437, 3120, 2981, 2916, 2627, 1846, 1629, 1566, 1475, 

1397, 1352, 1295, 1253, 1182, 1149, 986 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 
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2.7.9 N-[(E)-(4-Methyl-1H-imidazol-5-yl)methylidene]-N-(4-[(E)-(4-methyl- 

 1H-imidazol-5-yl)methylidene]aminophenyl)amine (67) 

 

 

(67) 

 

This solid was prepared in a similar manner to (41) using 1,4-phenylenediamine (1.00 g, 

0.92 mmol) and 4-methyl-5-imidazolecarboxyaldehyde (2.02 g, 1.84 mmol). A pale 

yellow powder (67) was obtained. 

 

Yield:     2.51 g (93 %). 

Mp:    Decomposition > 250 
o
C. 

% Found:   C: 65.56, H: 5.63, N: 28.40.  

% Calculated:   C: 65.74, H: 5.52, N: 28.75 (C16H16N6 mol. wt. 292.34). 

1
H NMR: (ppm, d6-DMSO): 3.41 (s, 6H), 7.15 (s, 2H), 7.45 (s, 2H), 

7.60 (s, 2H), 7.84 (s, 2H).  

13
C NMR:  (ppm, d6-DMSO): 65.4, 117.9, 119.8, 120.7, 135.6, 143.2, 

152.5. 

IR (KBr): 3465, 3096, 3009, 2843, 1605, 1538, 1460, 1396, 1377, 

1348, 1258, 1163 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 
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2.7.10 N-[(E)-1H-Imidazol-4-ylmethylidene]-N-(2-[(E)-1H-imidazol-5- 

 ylmethylidene]aminophenyl)amine (68) 

 

 

(68) 

 

This solid was prepared in a similar manner to (41) using 1,2-phenylenediamine (1.00 g, 

0.92 mmol) and 4(5)-imidazolecarboxyaldehyde (1.78 g, 1.84 mmol). A white powder 

(68) was obtained. 

 

Yield:     2.10 g (86 %). 

Mp:    266-268 
o
C. 

% Found:   C: 63.63, H: 4.47, N: 31.62. 

% Calculated:   C: 63.64, H: 4.58, N: 31.80 (C14H12N6 mol. wt. 264.29). 

1
H NMR: (ppm, d6-DMSO): 6.68 (s, 2H), 7.73 (s, 2H), 7.96 (s, 2H), 

7.37 (s, 2H), 8.69 (s, 2H), 11.82 (s, b, 2H). 

13
C NMR:  (ppm, d6-DMSO): 111.3, 118.5, 122.8, 135.4, 135.9, 136.7, 

163.0. 

IR (KBr): 3120, 3061, 2973, 2815, 2624, 1850, 1612, 1574, 1519, 

1398, 1357, 1288, 1266, 1222, 1188, 1085 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 
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2.7.11 N-[(E)-1H-Imidazol-4-ylmethylidene]-N-(3-[(E)-1H-imidazol-4-

ylmethylidene]aminophenyl)amine (69) 

 

 

(69) 

 

This solid was prepared in a similar manner to (41) using 1,3-phenylenediamine (1.00 g, 

0.92 mmol) and 4(5)-imidazolecarboxyaldehyde (1.78 g, 1.84 mmol). A white powder 

(69), was obtained. 

 

Yield:     2.25 g (92%). 

Mp:    Decomposition > 220 
o
C. 

% Found:   C: 63.98, H: 4.48, N: 31.54. 

% Calculated:   C: 63.62, H: 4.58, N: 31.80 (C14H12N6 mol. wt. 264.29). 

1
H NMR: (ppm, d6-DMSO): 7.08 (m, 4H), 7.43 (s, 3H), 7.75 (s, 1H),  

8.51 (s, 2H), 12.80 (s, b, 2H). 

13
C NMR:  (ppm, d6-DMSO): 112.8, 118.5, 127.4, 128.6, 130.2, 138.7, 

153.2. 

IR (KBr): 3420, 3131, 2830, 2601, 1638, 1590, 1473, 1362, 1173, 

1115, 1000 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 

 

 

2.7.12 N-[(E)-1H-Imidazol-4-ylmethylidene]-N-(4-[(E)-1H-imidazol-4-

ylmethylidene]aminophenyl)amine (70) 

 

 

(70) 
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This solid was prepared in a similar manner to (41) using 1,4-phenylenediamine (1.00 g, 

0.92 mmol) and 4(5)-imidazolecarboxyaldehyde (1.78 g, 1.84 mmol). A yellow powder 

(70) was obtained. 

 

Yield:     2.06 g (84 %). 

Mp:    Decomposition > 260 
o
C. 

% Found:   C: 63.68, H: 4.65, N: 32.07. 

% Calculated:   C: 63.62, H: 4.58, N: 31.80 (C14H12N6 mol. wt. 264.29). 

1
H NMR: (ppm, d6-DMSO): 7.25 (s, 4H), 7.69 (s, 4H), 7.85 (s, 2H), 

8.52 (s, 2H). 

13
C NMR:    (ppm, d6-DMSO): 122.1, 124.2, 138.5, 138.6, 147.0, 149.6. 

IR (KBr): 3442, 3129, 2962, 2851, 2787, 2604, 1624, 1456, 1327, 

1256, 1121 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 

 

 

2.7.13 N-[(E)-(1-Methyl-1H-imidazol-2-yl)methylidene]-N-(2-[(E)-(1-methyl-

1H-imidazol-2-yl)methylidene]aminophenyl)amine (71) 

 

 

 

(71) 

 

This solid was prepared in a similar way to (41) using 1,2-phenylenediamine (1.00 g, 

0.92 mmol) and 1-methyl-2-imidazolecarboxyaldehyde (2.03 g 1.84 mmol). A 

green/brown powder (71) was obtained. 
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Yield:    2.30 g (85%). 

Mp:    Decomposition > 120 
o
C. 

% Found:    C: 65.82, H: 5.85, N: 28.80. 

% Calculated:   C: 65.74, H: 5.52, N: 28.75 (C16H16N6 mol. wt. 292.34). 

1
H NMR: (ppm, d6-DMSO): 4.19 (s, 6H), 6.87 (s, 2H), 7.26 (m, 4H), 

7.59 (m, 2H), 8.70 (s, 2H). 

13
C NMR: (ppm, d6-DMSO): 66.7, 112.5, 118.8, 128.3, 128.8, 135.6, 

143.9, 149.3. 

IR (KBr): 3410, 3151, 2987, 2858, 2639, 1622, 1494, 1376, 1287, 

1182, 1084, 1057 cm
-1

.  

Solubility:   Sparingly in hot methanol, toluene and DMSO. 

 

 

2.7.14 N-[(E)-(1-Methyl-1H-imidazol-2-yl)methylidene]-N-(3-[(E)-(1-methyl-

1H-imidazol-2-yl)methylidene]aminophenyl)amine (72) 

 

 H2O 

     (72) 

 

This solid was prepared in a similar manner to (41) using 1,3-phenylenediamine (1.00 g, 

0.92 mmol) and 1-methyl-2-imidazolecarboxyaldehyde (2.03 g 1.84 mmol). The oil 

which was crystallised from toluene, filtered and washed with cold, dry methanol to give 

a white powder (72). 

 

Yield:     2.25 g (92%). 

Mp:     Decomposition > 250 
o
C. 

% Found:    C: 61.96, H: 5.68, N: 27.38. 

% Calculated:    C: 61.92, H: 5.85, N: 27.08 (C16H18N6O mol. wt. 310.35). 
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1
H NMR:  (ppm, d6-DMSO): 3.95 (s, 6H), 7.00 (m, 4H), 7.29 (s, 4H), 

8.36 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 65.6, 116.9, 117.3, 128.7, 130.1, 130.3, 

149.6, 152.1. 

IR (KBr): 3360, 3111, 1630, 1584, 1520, 1482, 1434, 1369, 1292, 

1157 cm
-1

. 

Solubility:   Sparingly in hot methanol, toluene and DMSO. 

 

 

2.7.15 N-[(E)-(1-Methyl-1H-imidazol-2-yl)methylidene]-N-(4-[(E)-(1-methyl-

1H-imidazol-2-yl)methylidene]aminophenyl)amine (73) 

 

 H2O 

    (73) 

 

This solid was prepared in a similar manner to (41) using 1,4-phenylenediamine (1.00 g, 

0.92 mmol) and 1-methyl-2-imidazolecarboxyaldehyde (2.03 g, 1.84 mmol), yielding a 

yellow/brown oil which was crystallised from toluene to give a very fine yellow/brown 

flaky powder (73), which was washed with cold dry methanol, filtered and air dried.  

 

Yield:     2.25 g (92%). 

Mp:     238-240 
o
C. 

% Found:    C: 61.55, H: 5.47, N: 27.05. 

% Calculated:    C: 61.92, H: 5.85, N: 27.08 (C16H18N6O mol. wt. 310.35). 

1
H NMR: (ppm, d6-DMSO): 4.13 (s, 6H), 7.23 (s, 2H), 7.44 (s, 4H) 

7.51 (s, 2H), 8.60 (s, 2H). 

13
C NMR: (ppm, d6-DMSO): 65.6, 122.9, 126.9, 130.1, 143.1, 149.3, 

151.0. 
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IR (KBr): 3437, 3113, 2950, 1619, 1519, 1470, 1432, 1367, 1287, 1206, 1149 

cm
-1

. 

Solubility:  Sparingly in hot methanol, toluene and DMSO. 

 

 

2.7.16 N-[(E)-(1-Benzyl-1H-imidazol-2-yl)methylidene]-N-(2-[(E)-(1-benzyl-

1H-imidazol-2-yl)methylidene]aminoethyl)amine (74) 

 

 

(74) 

 

This solid was prepared in a similar manner to (41) using 1,2-phenylenediamine (1.00 g, 

0.92 mmol) and 1-benzyl-1H-imidazole-2-carboxaldehyde (2.96 g, 1.84 mmol). A gold 

coloured oil (74) was obtained. 

 

Yield:     1.89g (46 %). 

Bp:     84-86 
o
C. 

% Found:    C: 75.20, H: 5.58, N: 18.80. 

% Calculated:    C: 75.65, H: 5.44, N: 18.91 (C28H24N6 mol. wt. 444.53). 

1
H NMR:  (ppm, d6-DMSO): 4.51 (s, 4H), 6.95 (s, 2H), 7.25 (m, 12 

H), 7.60 (s, 2H), 7.82 (s, 2H), 8.25 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO):  58.4, 118.5, 120.3, 123.8, 125.1, 125.9, 

127.7, 128.8, 134.5, 139.6, 149.6. 

IR (KBr):   3470, 1670, 1497, 1367, 1300, 1269, 1176, 1107 cm
-1

. 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.7.17 N-[(E)-(1-Benzyl-1H-imidazol-2-yl)methylidene]-N-(3-[(E)-(1-benzyl- 

 1H-imidazol-2-yl)methylidene]aminophenyl)amine (75) 

 

 

(75) 

 

This solid was prepared in a similar manner to (41) using 1,3-phenylenediamine (1.00g, 

0.92 mmol) and 1-benzyl-1H-imidazole-2-carboxaldehyde (2.69 g, 1.84 mmol). A 

green/tan powder (75) was obtained. 

 

Yield:     2.25 g (92%). 

Mp:     80-83 
o
C. 

% Found:    C: 75.62, H: 5.51, N: 18.95. 

% Calculated:    C: 75.65, H: 5.44, N: 18.91 (C28H24N6 mol. wt. 444.53). 

1
H NMR:  (ppm, d6-DMSO): 5.25 (m, 6H), 7.90 (m, 8H), 8.15 (m, 

6H), 8.46 (s, 2H), 8.80 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 90.7, 117.8, 119.1, 120.2, 128.2, 130.2, 

131.3, 134.3, 138.7, 139.0, 149.5, 152.2, 158.1. 

IR (KBr):   3370, 1670, 1497, 1456, 1302, 1269, 1109, 1079 cm
-1

. 

Solubility:    MeOH, EtOH, chloroform, benzene, DMSO. 
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2.7.18 N-[(E)-(1-Benzyl-1H-imidazol-2-yl)methylidene]-N-(4-[(E)-(1-benzyl- 

 1H-imidazol-2-yl)methylidene]aminophenyl)amine (76) 

 

 

 

(76) 

 

This solid was prepared in a similar manner to (41) using 1,4-phenylenediamine (1.00 g, 

0.92 mmol) and 1-benzyl-1H-imidazole-2-carboxaldehyde (2.69 g, 1.84 mmol). A tan 

coloured powder (76) was obtained. 

 

Yield:     1.91 g (46%). 

Mp:     78-80 
o
C. 

% Found:    C: 75.91, H: 5.58, N: 18.80. 

% Calculated:    C: 75.65, H: 5.44, N: 18.91 (C28H24N6 mol. wt. 444.53). 

1
H NMR:  (ppm, d6-DMSO): 5.45 (s, 4H), 6.60 (s, 4H), 7.40 (m, 10H), 

7.92 (s, 4H), 9.70 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 79.1, 111.1, 117.7, 120.2, 122.1, 128.3, 

129.4,  135.6, 139.0, 149.2, 151.0. 

IR (KBr): 3434, 3105, 1686, 1620, 1605, 1577, 1520, 1482, 1258, 

1176, 1111 cm
-1

. 

Solubility:    MeOH, EtOH, chloroform, benzene, DMSO. 
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2.8 Experimental (part 2) 

 Synthesis of Ag(I) Complexes 
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2.8 Synthesis of Ag(I) Complexes of the Schiff Base Ligands Derived 

 from 1H-imidazol-2-amine (1) 

 

All preparations were carried out in the absence of light, and the resultant complexes 

stored in the dark. The reacting ratio of silver to ligand was at least 2:1 for Schiff base 

ligands derived from 1H-imidazol-2-amine (1), histamine and Apim and a ratio of 3:1 for 

the ligands derived from 1,2-diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane 

and 1,2-phenylenediamine, 1,3-phenylenediamine and 1,4-phenylenediamine. 

 

2.8.1 [Ag(22)2]ClO4 

 

(22) 

 

To a solution of N-(E)-[4-(1H-imidazol-1-yl)phenyl]methylidene-1H-imidazol-2-amine 

(22) (0.3 g, 1.19 mmol) in methanol (10 cm
3
) was added, drop wise, a solution of AgClO4 

(0.60 g, 2.89 mmol) in methanol (5.0 cm
3
). The solution was stirred for 2 h at room 

temperature. The solvent was reduced by approximately two thirds and the resulting 

suspension was then centrifuged for 10 min at 5000 rpm. The liquid was decanted off and 

the dark-green solid was washed with cold ethanol and suspension centrifuged again. The 

solid was air-dried in the dark at room temperature.  

 

Yield:     0.30 g (71 %). 

% Found:   C: 48.12, H: 3.85, N: 19.23.  

% Calculated: C: 47.37, H: 3.69, N: 19.73 (C28H26N10O4AgCl; mol. wt: 

709.89). 

1
H NMR: (ppm, d6-DMSO): 3.25 (s), 7.28 (s), 7.63 (s), 7.85 (m), 

7.95-8.12 (m), 8.50 (s), 8.65 (s), 9.28 (s). 
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13
C NMR:  (ppm, d6-DMSO): 63.2, 118.4, 121.9, 126.8, 143.9, 145.3, 

152.7. 

IR (KBr): 3425, 3142, 2925, 1650, 1605, 1523, 1491, 1458, 1385, 

1306, 1261, 1121, 833, 757, 624 cm
-1

. 

Solubility:   Hot DMSO.  

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 

 

 

2.8.2 [Ag(23)2]ClO4∙H2O 

 

 

(23) 

 

This brown solid was prepared in a similar manner to [Ag(22)2]ClO4∙ using AgClO4 (1.30 

g, 6.20 mmol) and 3-[(1H-imidazol-2-ylimino)methyl]phenol (23) (0.50 g, 2.70 mmol). 

 

Yield:     0.62 g (76 %). 

% Found:   C: 41.00, H: 3.51, N: 14.59.  

% Calculated: C: 41.29, H: 3.12, N: 14.45 (C20H18O6N6AgCl; mol. wt 

581.71). 

IR (KBr): 3322 (b), 2925, 1670, 1601, 1546, 1463, 1284, 1144-1087, 

941, 760, 637, 626 cm
-1

. 

Solubility:   Hot DMSO.  

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.8.3 [Ag(24)2]ClO4∙2H2O 

 

  

(24) 

 

This brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.24 

g, 6.00 mol) and 2-[(1H-imidazol-2-ylimino)methyl]phenol (24) (0.5 g, 6.00 mmol). 

 

Yield:     1.25 g (68 %). 

% Found:   C: 39.51, H: 3.87, N: 13.96.  

% Calculated: C: 39.01, H: 3.27, N: 13.65 (C20H20N6O8ClAg; mol. wt: 

615.73). 

IR (KBr): 3425, 2924, 1605, 1524, 1385, 1306, 1261, 1121, 1088, 

830, 758, 624 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 

 

 

2.8.4 [Ag(25)]ClO4 

 

 

(25) 
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This green/brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.30 g, 6.28 mmol) and N-[(E)-1H-imidazol-2-ylmethylidene]-1H-imidazol-2-amine 

(25) (0.50 g, 3.14 mmol). 

 

Yield:     0.68 g (60 %). 

% Found:   C: 22.52, H: 2.89, N: 18.80. 

% Calculated: C: 22.69, H: 2.45, N: 18.90 (C7H9 N5O4ClAg; mol. wt: 

370.50).        

1
H NMR: (ppm, d6-DMSO): 6.86, 6.98 (broad), 8.99, 9.69, 11.77, 

13.32. 

13
C NMR:    (ppm, d6-DMSO): 119.0, 127.4, 136.8, 140.0, 149.2, 155.6. 

IR (KBr): 3412 (broad), 2920, 1614, 1561, 1432, 1384, 1369, 1318, 

1282, 1102, 1088, 756, 720, 668, 626, 560 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 

 

 

2.8.5 [Ag(26)]ClO4∙H2O  

 

  

(26) 

 

This green/brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.30 g, 6.28 mmol) and N-[(E)-1H-imidazol-4-ylmethylidene]-1H-imidazol-2-amine 

(26) (0.50 g, 3.14 mmol). 
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Yield:     0.76 g (63 %). 

% Found:   C: 21.94, H: 2.11, N: 17.42.  

% Calculated: C: 21.75, H: 2.35, N: 18.12 (C7H9N5O5AgCl; mol. wt: 

386.5). 

1
H NMR:   (ppm, d6-DMSO):  7.42, 8.27, 8.36, 9.03, 9.80, 13.38. 

13
C NMR:    (ppm, d6-DMSO): 119.5, 127.4, 136.8, 140.0, 149.2, 155.6. 

IR (KBr): 3364, 2925, 1610, 1561, 1529, 1458, 1432, 1374, 1314, 

1120, 1109, 861, 753, 715, 626 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 

 

 

2.8.6 [Ag(27)]ClO4∙H2O 

 

 

(27) 

 

This brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.18 

g, 5.71 mmol) and N-[(E)-(5-methyl-1H-imidazol-4-yl)methylidene]-1H-imidazol-2-

amine (27) (0.50 g, 2.85 mmol). 

 

Yield:     0.58 g (51 %). 

% Found:   C: 23.73, H: 2.30, N: 17.06.  

% Calculated: C: 23.99, H: 2.77, N: 17.49 (C8H11N5O5ClAg; mol. wt: 

400.52). 

1
H NMR: (ppm, d6-DMSO): 2.40 (s, 3H), 7.15 (s, 1H), 7.42 (s, 1H), 

8.18 (s, 1H), 9.05 (s, 1H), 13.20 (s, b, 2H).  
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13
C NMR:  (ppm, d6-DMSO): 29.1, 118.3, 128.4, 131.9, 132.2, 138.9, 

149.3, 154.5. 

IR (KBr): 3270, 2923, 2047, 1610, 1576, 1520, 1477, 1462, 1331, 

1368, 1360, 1258, 1090, 958, 924, 879, 754, 625 cm
-1

. 

Solubility:   Hot DMSO. 

 

 

2.8.7 [Ag(28)]ClO4∙H2O 

 

 

(28) 

 

This light brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.30 g, 6.28 mmol) in MeOH (5.0 cm
3
) and N-[(E)-1H-imidazol-4-ylmethylidene]-1H-

imidazol-2-amine (28) (0.50 g, 2.85 mmol). 

 

Yield:     0.62 g (67 %). 

% Found:   C: 24.21, H: 2.10, N: 18.00.  

% Calculated:   C: 23.99, H: 2.77, N: 17.49 (C8H11N5O5AgCl; mol. wt: 

400.52). 

IR (KBr): 3396, 2925, 1622, 1602, 1571, 1530, 1443, 1373, 1285, 

1107, 1170, 861, 715, 617cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.9 Synthesis of Ag(I) Complexes of the Schiff Base Ligands Derived from  

 Histamine 

 

2.9.1 [Ag(29)]ClO4∙H2O 

 

 

(29) 

 

This yellow/brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.00 g, 4.82 mmol) and 2-([2-(1H-imidazol-5-yl)ethyl]iminomethyl)phenol (29) 

(0.50 g, 2.32 mmol). 

 

Yield:     0.63 g (63 %). 

% Found:   C: 31.99, H: 2.91, N: 8.92.  

% Calculated:   C: 32.71, H: 3.43, N: 9.54 (C12H15N3O6AgCl; mol. wt: 

440.52). 

1
H NMR: (ppm, d6-DMSO): 2.72, 3.01, 5.20, 6.49-7.37, 7.79, 8.43, 

12.60 (broad), 13.28 (broad). 

IR (KBr): 3428, 2962, 2920, 2838, 1631, 1607, 1527, 1559, 1377, 

1095, 917, 820, 761, 625, 536 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 
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2.9.2 [Ag1.5(30)](ClO4)1.5 

 

 

(30) 

 

This cream coloured solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.20 g, 5.79 mmol) and N-[2-(1H-imidazol-5-yl)ethyl]-N-[(E)-1H-imidazol-2-

ylmethylidene]amine (30) (0.50 g, 2.64 mmol). 

 

Yield:     0.95 g (72 %). 

% Found:   C: 21.87, H: 2.29, N: 13.42.  

% Calculated: C: 21.61, H: 2.22, N: 13.99 C9H11N5(AgClO4)1.5, mol. wt: 

500.19). 

1
H NMR: (ppm, d6-DMSO): 2.69, 3.07, 5.33, 7.19 (broad), 7.87, 8.15, 

9.63, 12.82 (broad). 

IR (KBr): 3425, 3275, 2962, 2925, 1639, 1457, 1090, 670, 662, 625, 

544 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 
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2.9.3 [Ag1.5(31)](ClO4)1.5 

 

 

(31) 

 

This cream coloured solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (0.70 g, 3.38 mmol) and N-[2-(1H-imidazol-4-yl)ethyl]-N-[(E)-(5-methyl-1H-

imidazol-4-yl)methylidene]amine (31) (0.50 g, 1.65 mmol). 

 

Yield:     0.75 g (88 %). 

% Found:   C: 22.94, H: 2.56, N: 13.05.  

% Calculated: C: 23.36, H: 2.55, N: 13.62 C10H13N5(O4AgCl)1.5; mol. wt: 

514.22). 

IR (KBr): 3271, 3143, 2921, 1619, 1498, 1464, 1386, 1242, 1093, 

980, 821, 624 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 

 

2.9.4 [Ag1.5(32)](ClO4)1.5∙H2O 

 

 

(32) 
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This cream coloured solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (0.70 g, 3.38 mmol) and N-[2-(1H-imidazol-4-yl)ethyl]-N-[(Z)-(1-methyl-1H-

imidazol-2-yl)methylidene]amine (32) (0.50 g, 1.65 mmol). 

 

Yield:     0.69 g (81 %). 

% Found:   C: 22.62, H: 2.48, N: 12.84.  

% Calculated: C: 22.56, H: 2.84, N: 13.15 (C10H15N5O1(O4AgCl)1.5; mol. 

wt: 534.23). 

1
H NMR:   (ppm, d6-DMSO): 2.10, 3.85, 5.45, 7.10, 7.51, 7.85. 

13
C NMR:  (ppm, d6-DMSO): 30.6, 73.1, 95.6, 117.4, 118.7, 123.0, 

127.2, 137.1, 156.4. 

IR (KBr): 3391, 3263, 1623, 1496, 1446, 1323, 1285, 1095, 952, 900, 

828, 766, 711, 677, 623 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 

 

2.9.5 [Ag1.5(33)](ClO4)1.5 

 

 

(33) 

 

This cream coloured solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.20 g, 5.79 mmol) and N-[2-(1H-imidazol-4-yl)ethyl]-N-[(Z)-1H-imidazol-5-

ylmethylidene]amine (33) (0.50 g, 2.64 mmol).  

 

Yield:     1.62 g (62 %). 

% Found:   C: 21.30, H: 2.20, N: 13.31.  
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% Calculated: C: 22.61, H: 2.22, N: 14.00 C9H11N5(O4AgCl)1.5; mol. wt: 

500.24). 

IR (KBr): 3533, 3349, 3275, 3145, 2922, 1623, 1497, 1463, 1440, 

1385, 1351, 1323, 1247, 1216, 1092, 955, 930, 912, 849, 

807, 660, 624 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 

 

 

2.9.6 [Ag(34)]ClO4∙H2O 

 

 

(34) 

 

This tan/purple solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.20 g, 5.79 mmol) in MeOH (5.0 cm
3
) and N-[(Z)-(1-benzyl-1H-imidazol-2-

yl)methylidene]-2-(1H-imidazol-4-yl)-1-ethanamine (34) (0.50 g, 1.78 mmol). 

 

Yield:     0.64 g (72 %). 

% Found:   C: 38.30, H: 3.20, N: 14.31.  

% Calculated: C: 38.08, H: 3.79, N: 13.88 (C16H19N5O5AgCl; mol. wt: 

504.67). 

IR (KBr): 3391-3287, 2925, 2886, 1588, 1492, 1446, 1385, 1327, 

1261, 1218, 1109, 941, 832, 792, 723, 625 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.9.7 [Ag2(35)](ClO4)2∙H2O 

 

 

(35) 

 

This dark cream/pink solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (0.80 g, 3.86 mmol) and N-[2-(1H-imidazol-4-yl)ethyl]-N-(Z)-[4-(1H-imidazol-

1-yl)phenyl]methylideneamine (35) (0.50 g, 1.88 mmol). 

 

Yield:     0.78 g (43 %). 

% Found:   C: 25.37, H: 2.62, N: 11.06.  

% Calculated: C: 25.81, H: 2.45, N: 10.03 (C15H17N5O9Ag2Cl2; mol. wt: 

697.95). 

IR (KBr): 3335-3275, 2926, 1638, 1607, 1525, 1495, 1452, 1403, 

1308, 1263, 1092, 932, 834, 742, 624 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.10. Synthesis of Ag(I) Complexes of the Schiff Base Ligands Derived From  

 Apim 

 

2.10.1 [Ag(36)2]ClO4∙H2O 

 

 

(36) 

 

This pale yellow solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(0.91 g, 4.40 mmol) and 2-([3-(1H-imidazol-1-yl)propyl]iminomethyl)phenol (36) (0.50 

g, 2.18 mmol). 

 

Yield:     1.05 g (72 %). 

% Found:   C: 46.94, H: 3.93, N: 12.55.  

% Calculated: C: 45.80, H: 4.43, N: 12.32 (C26H30N6O7AgCl; mol. wt: 

681.87). 

1
H NMR: (ppm, d6-DMSO): 2.18 (t, 2H), 3.58 (t, 2H), 4.18 (s, 2H), 

6.18 (m, 2H), 7.15 (s, 1H), 7.25 (m, 1H), 7.85 (m, 1H), 

8.00 (s, 1H), 8.58 (s, 1H). 

13
C NMR:  (ppm, d6-DMSO): 31.3, 54.7, 65.4, 116.4, 118.6, 120.1, 

129.0, 131.6, 132.3, 138.9, 160.4, 166.4. 

IR (KBr): 3436, 3133, 2968, 1633, 1499, 1460, 1278, 1092, 836, 768, 

653, 623 cm
-1

. 

 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.10.2 [Ag(37)]ClO4 

 

 

(37) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.04 

g, 5.01 mmol) and N-[(E)-1H-imidazol-5-ylmethylidene]-N-[3-(1H-imidazol-1-

yl)propyl]amine (37) (0.50 g, 2.46 mmol). 

 

Yield:     0.68 g (67 %). 

% Found:   C: 29.53, H: 3.10, N: 16.89.  

% Calculated: C: 29.35, H: 2.19, N: 17.06 (C10H13N5O4AgCl; mol. wt: 

410.56). 

1
H NMR: (ppm, d6-DMSO): 2.05 (t, 2H), 3.65 (t, 2H), 4.12 (t, 2H), 

7.08 (s, 1H), 7.45 (s, 1H), 7.85 (s, 1H), 7.95 (s, 1H), 8.20 

(s, 1H), 8.50 (s, 1H). 

13
C NMR:  (ppm, d6-DMSO): 32.4, 54.8, 65.5, 118.6, 120.4, 128.9, 

129.2, 136.4, 138.6, 155.2. 

IR (KBr): 3262, 3138, 2916, 1646, 1516, 1482, 1441, 1381, 1288, 

1233, 1144, 1110, 1089, 948, 818, 779, 663, 625 cm
-1

. 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete. 
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2.10.3 [Ag(38)]ClO4 

 

 

(38) 

 

This white solid was prepared in a similar manner to[Ag(22)2]ClO4 using AgClO4 (1.02 

g, 4.90 mmol) and N-[(E)-1H-imidazol-2-ylmethylidene]-N-[3-(1H-imidazol-1-

yl)propyl]amine  (38) (0.50 g, 2.46 mmol). 

 

Yield:     0.65 g (64 %). 

% Found:   C: 29.63, H: 3.14, N: 17.43.  

% Calculated: C: 29.25, H: 3.19, N: 17.06 (C10H13N5O4AgCl; mol. wt: 

410.56). 

1
H NMR: (ppm, d6-DMSO): 2.10 (t, 2H), 3.75 (t, 2H), 3.95 (s, 2H), 

7.10 (s, 2H), 7.32 (s, 1H), 7.45 (s, 1H), 7.65 (s, 1H), 7.82 

(s, 1H). 

13
C NMR:  (ppm, d6-DMSO): 31.9, 52.8, 65.9, 120.5, 126.1, 129.3, 

138.6, 142.8, 150.2. 

IR (KBr): 3260, 3133, 2925, 1645, 1519, 1451, 1238, 1089, 751, 657, 

623 cm
-1

. 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete. 
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2.10.4 [Ag(39)]ClO4 

 

 

(39) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (0.95 

g, 4.60 mmol) and 3-(1H-imidazol-1-yl)-N-[(Z)-(5-methyl-1H-imidazol-4-

yl)methylidene]-1-propanamine (39) (0.50 g, 2.30 mmol). 

 

Yield:     0.65 g (67 %). 

% Found:   C: 31.15, H: 3.58, N: 16.50.  

% Calculated: C: 31.12, H: 3.56, N: 16.49 (C11H15N5O4AgCl; mol. wt: 

424.59). 

1
H NMR: (ppm, d6-DMSO): 2.10 (2H), 2.40 (3H), 3.65 (2H), 4.10 

(2H), 7.10 (s, 1H), 7.40 (s, 1H), 7.92 (s, 1H), 8.05 (s, 1H), 

8.60 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 28.6, 32.5, 54.6, 95.5, 120.1, 129.1, 

132.2, 137.8, 138.6, 154.6. 

IR (KBr): 3254, 3137, 2927, 1643, 1519, 1453, 1368, 1343, 1240, 

1121, 1050, 967, 840, 804, 738, 664, 624 cm
-1

. 

 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete. 
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2.10.5 [Ag(40)]ClO4 

 

 

(40) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4, using AgClO4 (0.95 

g, 4.60 mmol) in and 3-(1H-imidazol-1-yl)-N-[(Z)-(1-methyl-1H-imidazol-2-

yl)methylidene]-1-propanamine (40) (0.5 g, 2.30 mmol). 

 

Yield:     0.75 g (73 %). 

% Found:   C: 31.45, H: 3.52, N: 16.34.  

% Calculated: C: 31.12, H: 3.56, N: 16.49 (C11H15N5O4AgCl; mol. wt: 

424.59). 

1
H NMR: (ppm, d6-DMSO): 2.12 (t, 2H), 3.82 (t, 2H), 4.00 (s, 3H), 

4.15 (t, 2H), 7.15 (s, 1H), 7.39 (s, 1H), 7.50 (s, 1H), 7.70 (s, 

1H), 8.00 (s, 1H), 8.76 (s, 1H). 

13
C NMR:  (ppm, d6-DMSO): 31.9, 52.9, 54.8, 56.9, 120.4, 126.1, 

129.2, 129.3, 138.6, 142.8, 150.3. 

IR (KBr): 3441, 3118, 1635, 1516, 1492, 1439, 1382, 1293, 1248, 

1092, 948, 819, 780, 653, 625 cm
-1

. 

 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete. 
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2.11 Synthesis of Ag(I) Complexes of the Schiff Base Ligands Derived 

 from 1,2-Diaminoethane, 1,3-Diaminopropane and 1,4-Diaminobutane  

 

2.11.1 [Ag1.5(41)](ClO4)1.5 

 

NH N

N N

N NH

n

n = 2  

 (41) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.44 

g, 6.94 mmol) and N-[(E)-1H-imidazol-2-ylmethylidene]-N-(2-[(Z)-1H-imidazol-2-

ylmethylidene]aminoethyl)amine (41) (0.50 g, 2.31 mmol). 

 

Yield:     0.96 g (79 %). 

% Found:   C: 22.59, H: 2.17, N: 15.13.  

% Calculated: C: 22.78, H: 2.30, N: 15.93 (C10H12N6(O4AgCl)1.5; mol. wt: 

526.05). 

1
H NMR: (ppm, d6-DMSO): 4.01 (s, 4H), 7.10 (s, 2H), 7.52 (s, 2H), 

8.29 (s, 2H). 

13
C NMR:    (ppm, d6-DMSO): 59.1, 121.3, 129.6, 152.5. 

IR (KBr): 3335, 2928, 1650, 1556, 1447, 1358, 1262, 1092, 9226, 

797, 694, 625 cm
-1

. 

Note:  
1
HNMR incomplete. 

 

Solubility:   Hot DMSO. 

 

 



Chapter 2 

122 

2.11.2 [Ag1.5(42)](ClO4)1.5 

 

NH N

N N

NH N

n

n = 3  

      (42) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.35 

g, 6.51 mmol) and N-[(Z)-1H-imidazol-2-ylmethylidene]-N-(3-[(Z)-1H-imidazol-2-

ylmethylidene]aminopropyl)amine (42) (0.50 g, 2.17 mmol). 

 

Yield:     0.98 g (86 %). 

% Found:   C: 25.01, H: 2.98, N: 16.10.  

% Calculated: C: 24.44, H: 2.61, N: 15.52 (C11H14N6(O4AgCl)1.5; mol. wt: 

541.08). 

IR (KBr): 3473, 2926, 1635, 1439, 1361, 1313, 1091, 948, 787, 622 

cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.11.3 [Ag2(43)](ClO4)2 

 

NH N

N N

NH N

n

n = 4  

             (43) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.27 

g, 6.12 mmol) and N-[(E)-1H-imidazol-2-ylmethylidene]-N-(4-[(E)-1H-imidazol-2-

ylmethylidene] aminobutyl)amine (43) (0.5 g, 2.05 mmol). 

 

Yield:     1.10 g (82 %). 

% Found:   C: 22.13, H: 2.10, N: 12.53.  

% Calculated: C: 21.87, H: 2.45, N: 12.75 (C12H15N6O8Ag2Cl2; mol. wt: 

658.92). 

IR (KBr): 3513, 2927, 2854, 1639, 1442, 1412, 1362, 1315, 1091, 

948, 929, 791, 701, 623 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.11.4 [Ag2(44)](ClO4)2 

 

HN

N

N N

N

NH

n

CH3H3C

n = 2  

 (44) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.27 

g, 6.12 mmol) and N-[(E)-(4-methyl-1H-imidazol-5-yl)methylidene]-N-(2-[(Z)-(4-

methyl-1H-imidazol-5-yl)methylidene]aminoethyl)amine (44) (0.50 g, 2.05 mmol). 

 

Yield:     1.12 g (83 %). 

% Found:   C: 21.21, H: 2.68, N: 13.10.  

% Calculated: C: 21.87, H: 2.45, N: 12.75 (C12H16N6O8Ag2Cl2; mol. wt: 

658.93). 

1
H NMR: (ppm, d6-DMSO): 2.26 (s, 6H), 3.87 (s, 4H), 7.70 (s, 2H), 

8.45 (s, 2H).
 

13
C NMR:    (ppm, d6-DMSO); 28.46, 60.3, 132.2, 136.6, 155.9. 

IR (KBr): 3491, 3276, 3134, 3018, 2920, 1638, 1584, 1513, 1441, 

1357, 1248, 1143, 1116, 1106, 961, 839, 701, 627 cm
-1

. 

Solubility:   Hot DMSO. 

Note:  
1
HNMR incomplete. 
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2.11.5 [Ag2(45)](ClO4)2 

 

HN

N

N N

N

NH

n

CH3H3C

n = 3 

    (45) 

 

This peach solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.20 

g, 5.81 mmol) and N-[(E)-(5-methyl-1H-imidazol-4-yl)methylidene-N-(3-[(Z)-(5-methyl-

1H-imidazol-4-yl)methylidene]aminopropyl)amine (45) (0.5 g, 1.94 mmol). 

 

Yield:     1.00 g (77 %). 

% Found:   C: 23.32, H: 2.54, N: 12.12.  

% Calculated: C: 23.20, H: 2.70, N: 12.49 (C13H18N6O8Ag2Cl2; mol. wt: 

672.96). 

1
H NMR: (ppm, d6-DMSO): 2.00 (s, 2H), 2.33 (s, 6H), 3.55 (s, 4H), 

7.88 (s, 4H), 8.45 (s, 2H).  

13
C NMR:  (ppm, d6-DMSO): 28.6, 33.25, 58.0, 131.9, 132.4, 137.4, 

154.8. 

IR (KBr): 3525, 3249-3136, 2920, 2019, 1643, 1577, 1513, 1439, 

1389, 1367, 1249, 1091, 978, 829, 758, 698, 625 cm
-1

. 

Solubility:   Hot DMSO. 
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2.11.6 [Ag2(46)](ClO4)2 

 

HN

N

N N

N

NH

n

CH3H3C

n = 4 

     (46) 

 

This peach coloured solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.14 g, 5.51 mmol) and N-[(E)-(5-methyl-1H-imidazol-4-yl)methylidene]-N-(4-

[(Z)-(5-methyl-1H-imidazol-4-yl)methylidene]aminobutyl)amine (46) (0.50 g, 1.83 

mmol). 

 

Yield:     1.10 g (88 %). 

% Found:   C: 24.07, H: 2.72, N: 11.83.  

% Calculated: C: 24.48, H: 2.93, N: 12.23 (C14H20N6O8Ag2Cl2; mol. wt: 

686.99). 

1
H NMR: (ppm, d6-DMSO): 2.25 (t, 4H), 2.33 (t, 6H), 3.75 (t, 4H), 

7.70 (s, 2H), 8.45 (s, 2H), 12.75 (s, 1H).  

IR (KBr): 3535, 3239-3136, 2926, 2854, 20.19, 1626, 1513, 1479, 

1441, 1382, 1351, 1313, 1289, 1199, 1101, 975, 822, 743, 

657, 624 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.11.7 [Ag(47)]ClO4 

 

NN

n

HOOH

 n = 2 

 (47) 

 

This dark-green solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.16 g, 5.60 mmol) and 2-[([(Z)-(2-hydroxyphenyl)methylidene]aminomethyl)imino] 

methylphenol (47) (0.50 g, 1.86 mmol). 

 

Yield:     0.65 g (73 %). 

% Found:   C: 39.59, H: 3.48, N: 5.55.  

% Calculated: C: 40.40, H: 3.39, N: 5.89 (C16H16N2O6AgCl; mol. wt: 

475.63). 

1
H NMR: (ppm, d6-DMSO): 3.95 (s, 4H), 6.93 (m, 4H), 7.33 (t, 2H), 

7.45 (d, 2H), 8.61 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO: 58.6, 78.8, 116.4, 118.6, 131.5, 132.4, 

160.5, 166.8. 

IR (KBr): 3501, 3062, 2930, 1646, 1608, 1532, 1479, 1399, 1353, 

1326, 1283, 1203, 1153, 1092, 1022, 1002, 801, 864, 770, 

756, 732, 622 cm
-1

. 

 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.11.8 [Ag(48)]ClO4 

 

NN

n

HOOH

n = 3 

           (48) 

 

This dark-green/brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.10 g, 5.31 mmol) and 2-[(3-[(E)-(2-Hydroxyphenyl)methylidene] 

aminopropyl) imino]methylphenol (48)105,110  (0.50 g, 1.77mmol). 

 

Yield:     0.73 g (84 %). 

% Found:   C: 42.33, H: 3.92, N: 5.35.  

% Calculated: C: 41.68, H: 3.71, N: 5.72 (C17H18N2O6AgCl; mol. wt: 

489.44). 

1
H NMR: (ppm, d6-DMSO): 1.75 (t, 2H), 3.65 (t, 4H), 6.90 (m, 4H), 

7.33 (t, 2H), 7.40 (d, 2H), 8.60 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 31.5, 46.8, 115.7, 116.4, 118.6, 131.6, 

160.6, 166.9. 

IR (KBr): 3365, 2934, 2874, 1638, 1607, 1499, 1463, 1350, 1312, 

1263, 1222, 1159, 1115, 1088, 1058, 1041, 980, 865, 820, 

769, 762, 629, 618 cm
-1

. 

 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.11.9 [Ag2(49)](ClO4)2 

 
NN

n

HOOH

     n = 4 

  (49) 

 

This dark-green solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.05 g, 5.06 mmol) and 2-[(4-[(Z)-(2-hydroxyphenyl)methylidene]aminobutyl)imino] 

methylphenol (49) (0.50 g, 1.69 mmol). 

 

Yield:     0.87 g (73 %). 

% Found:   C: 30.01, H: 3.51, N: 4.10.  

% Calculated: C: 30.48, H: 2.56, N: 3.95 (C18H18N2O10Ag2Cl2; mol. wt: 

708.74). 

1
H NMR: (ppm, d6-DMSO): 1.75 (s, 4H), 3.65 (s, 4H), 6.90 (m, 4H), 

7.33 (t, 2H), 7.40 (d, 2H), 8.60 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 26.9, 56.7, 115.4, 117.4, 130.4, 131.1, 

159.7, 164.7. 

IR (KBr): 3316, 3115-3057, 1621, 1591, 1506, 1432, 1318, 1230, 

1185, 1130, 747, 732 cm
-1

. 

 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.11.10 [Ag(50)]ClO4 

 

      n = 2  

     (50) 

 

This cream solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.44 

g, 6.94 mmol) and N-[(E)-1H-imidazol-4-ylmethylidene]-N-(2-[(Z)-1H-imidazol-4-

ylmethylidene]aminoethyl)amine (50) (0.50 g, 2.31 mmol). 

 

Yield:     0.87 g (89 %). 

% Found:   C: 28.24, H: 3.55, N: 19.36.  

% Calculated: C: 28.36, H: 2.86, N: 19.84 (C10H12N6O4AgCl, mol. wt: 

423.56). 

1
H NMR: (ppm, d6-DMSO): 3.95 (s, 4H), 7.60 (s, 2H), 7.80 (s, 2H), 

8.43 (s, 2H).  

13
C NMR:    (ppm, d6-DMSO): 60.1, 122.3, 136.3, 138.0, 157.1. 

IR (KBr): 3360, 3144, 2923, 2859, 1644, 1507, 1437, 1345, 1303, 

1261, 1230, 1092, 992, 975, 923, 863, 811, 749, 625 cm
-1

. 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete.
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2.11.11 [Ag2(51)](ClO4)2 

 

n = 3 

    (51) 

 

This cream solid was prepared in a similar manner to  [Ag(22)2]ClO4 using AgClO4 (1.35 

g, 6.51 mmol) and N1-[(E)-1H-imidazol-5-ylmethylidene]-N3-[(Z)-1H-imidazol-5-

ylmethylidene]-1,3-propanediamine (51) (0.50 g, 2.17 mmol). 

 

Yield:     1.23 g (88 %). 

% Found:   C: 20.56, H: 2.37, N: 12.56.  

% Calculated: C: 20.49, H: 2.19, N: 13.03 (C11H14N6O8Ag2Cl2; mol. wt: 

644.91). 

1
H NMR: (ppm, d6-DMSO): 1.95 (t, 2H), 3.74 (t, 4H), 7.75 (s, 2H), 

8.05 (s, 2H), 8.40 (s, 2H).  

13
C NMR:    (ppm, d6-DMSO): 33.2, 58.2, 136.38, 155. 

IR (KBr): 3506, 3351, 3138, 2925, 2851, 2017, 1647, 1506, 1435, 

1347, 1300, 1257, 1220, 1142, 1114, 1090, 940, 851, 800, 

637, 626 cm
-1

. 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete. 



Chapter 2 

132 

2.11.12 [Ag2(52)](ClO4)2  

 

n = 4 

                                  (52) 

 

This cream solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.35 

g, 6.13 mmol) and N-[(E)-1H-imidazol-5-ylmethylidene]-5-[(1H-imidazol-5-

ylmethyl)imino]-1-pentanamine (52) (0.50 g, 2.05 mmol). 

 

Yield:     1.22 g (91 %). 

% Found:   C: 21.97, H: 2.55, N: 13.55.  

% Calculated: C: 21.87, H: 2.45, N: 12.75 (C12H16N6O8Ag2Cl2; mol. wt: 

656.73). 

1
H NMR: (ppm, d6-DMSO): 1.63. (4H), 3.50 (4H), 7.70 (s, 2H), 8.05, 

(s, 2H), 8.29 (s, 2H).  

13
C NMR:    (ppm, d6-DMSO): 27.9, 58.6, 121.9, 136.4, 138.3, 155.1. 

IR (KBr): 3333, 3143, 2927, 2855, 2016, 1647, 1551, 1506, 1434, 

1385, 1343, 1301, 1220, 1114, 1142, 1090, 931, 858, 802, 

725, 635, 626 cm
-1

. 

Solubility:   DMSO. 

Note:  
1
HNMR incomplete. 



Chapter 2 

133 

2.11.13 [Ag1.5(53)](ClO4)1.5 

 

n = 2 

                 (53) 

 

This complex was prepared using a modification of the literature method used by Yang et 

al. 
115 

 The white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.27 g, 6.14 mmol) and N-[(E)-(1-methyl-1H-imidazol-2-yl)methylidene]-N-(2-[(Z)-(1-

methyl-1H-imidazol-2-yl)methylidene]aminoethyl)amine (53) (0.50 g, 2.05 mmol). 

 

Yield:     1.05 g (93 %). 

% Found:   C: 25.81, H: 2.71, N: 15.05.  

% Calculated: C: 25.95, H: 2.91, N: 15.13 (C12H16N6O2Ag1.5Cl1.5, mol. 

wt: 555.18). 

1
H NMR: (ppm, d6-DMSO): 2.45 (t. 6H), 3.89 (s, 2H), 3.92 (s, 2H), 

7.00 (s, 2H), 7.75 (s, 2H), 8.25 (s, 2H).  

13
C NMR:    (ppm, d6-DMSO): 32.5, 79.8, 86.1, 128.8, 142.2, 151.9. 

IR (KBr): 3446, 3128, 2923, 2023, 16501533, 1489, 1445, 365, 1288, 

1143, 1109, 1089, 995, 920, 867, 839, 780, 703, 662, 625 

cm
-1

. 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.11.14 [Ag1.5(54)(ClO4)1.5 

 

n = 3 

     (54) 

 

This complex was prepared using a modification of the literature method used by Yang et 

al. 
115 

 The white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.20 g, 5.81 mmol) and N-[(E)-(1-methyl-1H-imidazol-2-yl)methylidene]-N-(3-[(Z)-(1-

methyl-1H-imidazol-2-yl)methylidene]aminopropyl)amine (54) (0.50 g, 1.93 mmol). 

 

Yield:     0.98 g (89 %). 

% Found:   C: 28.10, H: 2.83, N: 15.71.  

% Calculated: C: 27.43, H: 3.19, N: 14.76 (C13H18N6O6Ag1.5Cl1.5, mol. 

wt: 569.11). 

1
H NMR: (ppm, d6-DMSO): 2.00 (2H), 3.80 (4H), 3.92 (6H), 7.25 (s, 

2H), 7.57 (s, 2H), 8.58 (s, 2H).  

13
C NMR:  (ppm, d6-DMSO): 32.3, 32.6, 59.5, 65.7, 129.2, 142.8, 

149.2. 

IR (KBr): 3446, 3128, 2924, 2855, 2023, 1645, 1533, 1489, 1445, 

1371, 1288, 1262, 1229, 1143, 1109, 1089, 1052, 995, 959, 

941, 918, 967, 838, 780, 703, 662, 636, 625 cm
-1

. 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO.  
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2.11.15 [Ag2(55)](ClO4)2 

 

n = 4 

     (55) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.14 

g, 5.51 mmol) and 4-[(E)-2-(1-methyl-1H-imidazol-2-yl)diazenyl]-N-[(E)-(1-methyl-1H-

imidazol-2-yl)methylidene]-1-butanamine (55) (0.50 g, 1.83 mol). 

 

Yield:     0.90 g (72 %).  

% Found:   C: 24.05, H: 2.83, N: 11.64.  

% Calculated: C: 24.48, H: 2.93, N: 12.23 (C14H20N6O8Ag2Cl2; mol. wt: 

686.99). 

1
H NMR: (ppm, d6-DMSO): 1.72 (4H), 3.74 (4H), 3.88 (6H), 7.20 

(2H), 7.58 (2H), 8.65 (2H).  

13
C NMR:  (ppm, d6-DMSO): 26.8, 52.6, 58.0, 125.9, 129.2, 142.7, 

150.2. 

IR (KBr): 3472, 3132, 2940, 2858, 2023, 1641, 1533, 1489, 1444, 

1425, 1368, 1288, 1142, 1114, 1089, 999, 965, 941, 931, 

847, 777, 702, 670, 636, 625 cm
-1

. 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.11.16 [Ag1.5(56)](ClO4)1.5 

 

                      n = 2 

            (56) 

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (0.95 

g, 4.60 mmol) and N-[(E)-(1-benzyl-1H-imidazol-2-yl)methylidene]-N-(2-[(Z)-(1-benzyl-

1H-imidazol-2-yl)methylidene]aminoethyl)amine (56) (0.50 g, 1.47 mmol). 

 

Yield:     0.90 g (87 %). 

% Found:   C: 40.19, H: 3.46, N: 11.51.  

% Calculated: C: 40.76, H: 3.42, N: 11.88 (C24H26N6O6Ag1.5Cl1.5, mol. 

wt: 707.16). 

1
H NMR: (ppm, d6-DMSO): 4.05 (s, 4H), 5.45 (s, 4H), 6.98 (s, 2H), 

7.35 (m, 10H), 7.55 (s, 2H), 8.75 (s, 2H).  

13
C NMR:  (ppm, d6-DMSO): 48.6, 57.0, 125.3, 127.5, 127.6, 128.3, 

128.7, 128.9, 129.5, 136.2, 141.8, 151.6. 

IR (KBr): 3451, 3128, 3064, 3032, 2926, 2356, 2017, 1635, 1526, 

1498, 1478, 1453, 1362, 1280, 1093, 968, 919, 864, 771, 

716, 624 cm
-1

. 

Solubility:   MeOH, EtOH, chloroform, benzene, DMSO. 
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2.11.17 [Ag2(57)](ClO4)2 

 

                n = 3 

 

          (57) 

 

This cream solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (0.76 

g, 3.65 mmol) and N-[(E)-(1-benzyl-1H-imidazol-2-yl)methylidene]-N-(3-[(E)-(1-benzyl-

1H-imidazol-2-yl)methylidene]aminopropyl)amine (57) (0.50 g, 1.23mmol). 

 

Yield:     0.68 g (67 %). 

% Found:   C: 37.73, H: 3.55, N: 10.98.  

% Calculated: C: 36.30, H: 3.41, N: 10.16 (C25H28N6O8Ag2Cl2; mol. wt: 

827.17). 

1
H NMR: (ppm, d6-DMSO): 1.55 (4H), 2.08 (2H), 3.60 (2H), 5.55 

(42H), 7.30 (m, 102H), 7.72 (2H), 8.72 (2H).  

13
C NMR:  (ppm, d6-DMSO): 26.9, 30.7, 48.7, 68.2, 125.2, 127.3, 

127.5, 128.1, 128.9, 129.8, 136.6, 142.3, 150.1. 

IR (KBr): 3316, 3115-3057, 1621, 1591, 1506, 1432, 1318, 1230, 

1185, 1130, 747, 732 cm
-1

. 

Solubility:   DMSO.  

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 
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2.11.18 [Ag2(58)](ClO4)2 

 

n = 4 

 

          (58)  

 

This tan solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (0.73 g, 

3.53 mmol) and N-[(E)-(1-benzyl-1H-imidazol-2-yl)methylidene]-N-(4-[(E)-(1-benzyl-

1H-imidazol-2-yl)methylidene]aminobutyl)amine (58) (0.50 g, 1.18 mmol). 

 

Yield:     0.56 g (56 %). 

% Found:   C: 37.01, H: 3.40, N: 9.84.  

% Calculated: C: 37.21, H: 3.36, N: 10.01 (C26H28N6O8Ag2Cl2; mol. wt: 

839.18). 

1
H NMR: (ppm, d6-DMSO): 2.10 (4H), 3.85 (2H), 5.55 (4H), 7.25 

(m, 14H), 7.68 (2H), 8.65 (2H).  

13
C NMR:  (ppm, d6-DMSO): 30.6, 62.0, 76.6, 118.7, 124.9, 127.2, 

127.5, 127.6, 128.1, 128.9, 129.8, 136.2, 136.6, 142.4, 

148.9. 

IR (KBr): 3394, 3109, 3031, 2937, 2850, 1651, 1606, 1586, 1497, 

1471, 1455, 1439, 1385, 1360, 1273, 1208, 1157, 1112, 

1079, 1031, 969, 928, 878, 758, 740, 718, 658, 624 cm
-1

. 

Solubility:   DMSO.  

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 
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2.12 Synthesis of Ag(I) Complexes of the Schiff Base Ligands Derived from 

1,2-Phenylenediamine, 1,3-Phenylenediamine and 1,4-

Phenylenediamine 

 

2.12.1 [Ag1.5(59)](ClO4)1.5 

 

 

 

(59) 

 

This yellow/green solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.17 g, 5.67 mmol) and N-[(E)-1H-imidazol-2-ylmethylidene]-N-(2-[(E)-1H-

imidazol-2-ylmethylidene]aminophenyl)amine (59) (0.50 g, 1.89 mmol). 

 

Yield:     0.88 g (81 %). 

% Found:   C: 30.07, H: 1.94, N: 13.95. 

% Calculated: C: 29.26, H: 2.02, N: 14.62 (C14H12N6O6Ag1.5Cl1.5, mol. 

wt: 574.56). 

IR (KBr): 3052, 2961, 2880, 2773, 1628, 1523, 1458, 1413, 1394, 

1349, 1320, 1272, 1229, 1202, 1146, 1083, 945, 747, 731, 

626 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.12.2 [Ag(60)]ClO4∙2H2O 

 

  

 

(60) 

 

This yellow solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.17 

g, 5.67 mmol) and N1-[(E)-1H-imidazol-2-ylmethylidene]-N3-[(Z)-1H-imidazol-2-yl-

methylidene-1,3-benzenediamine (60) (0.50 g, 1.89 mmol). 

 

Yield:     0.68 g (71 %). 

% Found:   C: 33.32, H: 2.79, N: 16.01. 

% Calculated: C: 33.12, H: 3.18, N: 16.56 (C14H16N6O6AgCl; mol. wt: 

507.63). 

1
H NMR: (ppm, d6-DMSO): 7.51 (s, 4H), 7.10 (m, 4H), 7.50 (m, 4H), 

8.50 (s, 2H), 13.20 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 106.1, 108.6, 112.6, 112.9, 119.5, 129.6, 

130.1, 144.7, 148.3, 149.6, 150.1, 181.2. 

IR (KBr): 3261, 2923, 1618, 1557, 1493, 1442, 1387, 1207, 1179, 

1114, 1089, 1009, 955, 866, 830, 755, 703, 627 cm
-1

. 

Solubility:   Hot DMSO. 
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2.12.3 [Ag(61)]ClO4 

 

  

 

(61)  

 

This yellow/green solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.17 g, 5.67 mmol) in MeOH (5.0 cm
3
) and N-[(E)-1H-imidazol-2-

ylmethylidene]-N-(4-[(E)-1H-imidazol-2-ylmethylidene]aminophenyl)amine (61) (0.50 

g, 1.89 mmol). 

 

Yield:     0.75 g (84 %). 

% Found:   C: 35.13, H: 2.51, N: 17.37. 

% Calculated: C: 35.65, H: 2.56, N: 17.82 (C14H12N6O4AgCl; mol. wt: 

471.61). 

1
H NMR: (ppm, d6-DMSO): 7.15 (s, 4H), 7.55 (s, 4H), 8.45 (s, 2H), 

13.00 (s, 2H). 

13
C NMR:    (ppm, d6-DMSO): 122.1, 144.5, 145.9, 147.8, 148.1. 

IR (KBr): 3459, 2919, 1625, 1578, 1441, 1387, 1146, 1111, 1089, 

1000, 950, 862, 756, 777, 689, 627 cm
-1

. 

Solubility:   Hot DMSO. 
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2.12.4 [Ag1.5(62)](ClO4)1.5 

 

 

  

  (62) 

 

This tan solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.00 g, 

4.82 mmol) and 2-[(2-[(E)-(2-hydroxyphenyl)methylidene]aminophenyl)imino]methyl 

phenol (62) (0.50 g, 1.58 mmol). 

 

Yield:     0.68 g (70 %). 

% Found:   C: 38.87, H: 2.35, N: 4.36.  

% Calculated: C: 38.30, H: 2.57, N: 4.46 (C20H16N2O8Ag1.5Cl1.5, mol. wt: 

627.25). 

IR (KBr): 3332, 1611, 1571, 1492, 1371, 1282, 1188, 1148, 1109, 

906, 860, 832, 759, 750, 620 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis.  

 

2.12.5 [Ag(63)]ClO4 

 

 

(63) 
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This green/brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.00 g, 4.82 mmol) and 2-[(3-[(E)-(2-hydroxyphenyl)methylidene]aminophenyl)imino] 

methylphenol (63) (0.50 g, 1.58 mmol). 

 

Yield:     0.56 g (68 %). 

% Found:   C: 36.71, H: 2.56, N: 4.15.  

% Calculated: C: 36.01, H: 2.71, N: 4.20 (C20H16N2O6Ag2Cl2; mol. wt: 

666.99). 

1
H NMR: (ppm, d6-DMSO): 7.00 (m, 4H), 7.35-7.61 (m, 6H), 7.65 

(m, 2H), 9.10 (s, 2H).  

13
C NMR:  (ppm, d6-DMSO): 113.8, 116.5, 117.2, 119.2, 120.1, 129.7, 

132.9, 133.4, 149.7, 160.3. 

IR (KBr): 3450, 3064, 1950, 1687, 1621, 1591, 1572, 1496, 1475, 

1413, 1358, 1276, 1197, 1136, 1116, 1032, 983, 955, 891, 

816, 760, 697, 671, 626 cm
-1

. 

Solubility:   Hot DMSO. 

 

 

2.12.6 [Ag(64)]ClO4∙2H2O 

 

 

 

  (64) 

 

This yellow/brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.00 g, 4.82 mmol) and 2-[(4-[(E)-(2-hydroxyphenyl) 

methylidene]aminophenyl)imino]methylphenol (64) (0.50 g, 1.58 mmol). 
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Yield:     0.67 g (76 %). 

% Found:   C: 43.31, H: 3.63, N: 5.56.  

% Calculated: C: 42.92, H: 3.60, N: 5.01 (C20H20N2O8AgCl; mol. wt: 

559.70). 

IR (KBr):   3438, 1612, 1572, 1492, 1283, 1189, 1121, 833, 620 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 

 

 

2.12.7 [Ag1.5(65)](ClO4)1.5 

 

 

 

(65)  

 

This dark-green solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 

(1.06 g, 5.13 mmol) and N-[(Z)-(4-methyl-1H-imidazol-5-yl)methylidene]-N-(2-[(Z)-(4-

methyl-1H-pyrazol-5-yl)methylidene]aminophenyl)amine (65) (0.50 g, 1.71 mmol). 

 

Yield:     0.93 g (90 %). 

% Found:   C: 31.75, H: 2.66, N: 13.39.  

% Calculated:   C: 32.14, H: 2.67, N: 13.92 (C16H16N6O6Ag1.5Cl1.5, 

mol. wt: 603.24). 

1
H NMR: (ppm, d6-DMSO): 2.30 (s, 6H), 7.08 (s, 4H), 8.15 (s, 2H), 

8.75 (s, 2H), 13.00 (s, 2H).  
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13
C NMR:  (ppm, d6-DMSO): 28.84, 122.3, 133.2, 134.9, 138.4, 146.8, 

150.8. 

IR (KBr): 3349, 3139, 1619, 1577, 1492, 1440, 1481, 1343, 1248, 

1210, 1108, 964, 881, 832, 771, 626 cm
-1

. 

Solubility:   Hot DMSO. 

 

 

2.12.8 [Ag1.5(66)](ClO4)1.5 

 

 

 

 (66) 

 

This brown solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.06 

g, 5.13 mmol) and N-[(E)-(4-methyl-1H-imidazol-5-yl)methylidene]-N-(3-[(E)-(5-

methyl-1H-imidazol-4-yl)methylidene]amino-2,4-cyclohexadien-1-yl)amine (66) (0.50 g, 

1.71 mmol). 

 

Yield:     0.89 g (86 %). 

% Found:   C: 31.84, H: 2.68, N: 13.43.  

% Calculated: C: 32.14, H: 2.67, N: 13.92 (C16H16N6O6Ag1.5Cl1.5, mol. 

wt: 603.24). 

1
H NMR: (ppm, d6-DMSO): 2.45 (s), 7.10 (s), 7.10 (m), 7.25 (m), 

8.15 (s), 8.70 (s).  

13
C NMR:  (ppm, d6-DMSO): 28.9, 129.7, 132.9, 135.0, 138.3, 150.5, 

152.4. 
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IR (KBr): 3524, 3262, 3130, 1625, 1576, 1516, 1475, 1435, 1396, 

1370, 1342, 1311, 1253, 1091, 972, 949, 845, 789, 705, 

691, 625 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 

 

2.12.9 [Ag1.5(67)](ClO4)1.5 

 

 

 

(67) 

 

This cream coloured solid was prepared in a similar manner to [Ag(22)2]ClO4 using 

AgClO4 (1.06 g, 5.13 mmol) and N-[(E)-(5-methyl-1H-imidazol-4-yl)methylidene]-N-(4-

[(E)-(5-methyl-1H-imidazol-4-yl)methylidene]aminophenyl)amine (67) (0.50 g, 1.71 

mmol). 

 

Yield:     0.75 g (73 %). 

% Found:   C: 31.25, H: 2.79, N: 13.49.  

% Calculated: C: 32.14, H: 2.67, N: 13.92 (C16H16N6O6Ag1.5Cl1.5, mol. 

wt: 603.24). 

1
H NMR: (ppm, d6-DMSO): 2.28 (s, 6H), 5.20 (s, 2H), 7.15 (m, 2H), 

7.60 (s, 2H), 8.04 (s, 2H).  

13
C NMR:  (ppm, d6-DMSO): 29.2, 70.3, 110.7, 118.6, 122.7, 129.6, 

133.6, 135.9, 136.9, 141.1, 148.5. 
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IR (KBr): 3536, 3287, 3142, 1622, 1534, 1459, 1424, 1340, 1294, 

1246, 1091, 978, 748, 623 cm
-1

. 

Solubility:   Hot DMSO. 

 

2.12.10 [Ag1.5(68)](ClO4)1.5∙3H2O 

 

 

 

  (68)  

 

This white solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.06 

g, 5.11 mmol) and N-[(E)-1H-imidazol-5-ylmethylidene]-N-(2-[(E)-1H-imidazol-5-

ylmethylidene]aminophenyl)amine (68) (0.50 g, 1.17 mmol). 

 

Yield:     0.86 g (84 %). 

% Found:   C: 27.75, H: 2.33, N: 13.94.  

% Calculated: C: 26.97, H: 2.88, N: 13.97 (C14H18N6O9Ag1.5Cl1.5, mol. 

wt: 629.13). 

IR (KBr): 3350, 3143, 2924, 1619, 1504, 1459, 1426, 1348, 1315, 

1292, 1256, 1228, 1090, 932, 807, 750, 656, 625 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented 
1
H NMR and 

13
C NMR analysis. 
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2.12.11 [Ag(69)]ClO4∙H2O 

 

 

 (69) 

 

This cream solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.06 

g, 5.11 mmol) and N-[(E)-1H-imidazol-4-ylmethylidene]-N-(3-[(E)-1H-imidazol-4-

ylmethylidene]aminophenyl)amine (69) (0.50 g, 1.17 mmol). 

 

Yield:     0.45 g (79 %). 

% Found:   C: 34.63, H: 2.33, N: 17.30.  

% Calculated: C: 34.34, H: 2.88, N: 17.16 (C14H14N6O5AgCl; mol. wt: 

489.62). 

1
H NMR:   (ppm, d6-DMSO): 5.75, 7.25, 7.73, 8.70. 

IR (KBr): 3350, 3143, 1620, 1608, 1525, 1495, 1403, 1328, 1260, 

1092, 933, 806, 760, 656, 625 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete
 1

H NMR and 
13

C NMR analysis. 

 

2.12.12 [Ag(70)]ClO4∙H2O 

 

 

 

(70) 



Chapter 2 

149 

This tan solid was prepared in a similar manner to (77Ag) using AgClO4 (1.06 g, 5.11 

mmol) and N-[(E)-1H-imidazol-4-ylmethylidene]-N-(4-[(E)-1H-imidazol-4-

ylmethylidene]aminophenyl)amine (70) (0.50 g, 1.17 mmol). 

 

Yield:     0.50 g (88 %). 

% Found:   C: 34.63, H: 2.33, N: 17.30.  

% Calculated: C: 34.34, H: 2.88, N: 17.16 (C14H14N6O5AgCl; mol. wt: 

488.62). 

1
H NMR: (ppm, d6-DMSO): 7.05 (s, 4H), 8.10 (s, 2H), 8.30 (s, 2H), 

8.78 (s, 2H), 13.25 (s, 2H).  

13
C NMR:    (ppm, d6-DMSO): 122.3, 124.5, 137.1, 139.5, 147.1, 152.3. 

IR (KBr): 3339, 3138, 1622, 1493, 1435, 1418, 1355, 1327, 1305, 

1256, 1205, 1121, 1092, 942, 841, 744, 625 cm
-1

. 

Solubility:   Hot DMSO. 

 

 

2.12.13 [Ag(71)]ClO4∙H2O  

 

 

 

(71) 

 

This tan solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.06 g, 

5.13 mmol) and N-[(E)-(1-methyl-1H-imidazol-2-yl)methylidene]-N-(2-[(E)-(1-methyl-

1H-imidazol-2-yl)methylidene]aminophenyl)amine (71) (0.50 g, 1.71 mmol). 
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Yield:     0.78 g (88 %). 

% Found:   C: 37.62, H: 3.21, N: 16.41.  

% Calculated: C: 37.12, H: 3.50, N: 16.23 (C16H18N6O5AgCl; mol. wt: 

517.67). 

1
H NMR: (ppm, d6-DMSO): 2.28 (s), 4.35 (s), 5.45 (s), 6.13 (s), 6.90 

(s), 7.15 (m), 7.45 (m), 8.50 (s).  

13
C NMR:  (ppm, d6-DMSO): 31.1, 62.0, 110.5, 111.1, 116.1, 118.7, 

122.4, 122.8, 125.3, 128.2, 128.8, 132.0, 135.7, 138.5, 

138.6, 142.2, 143.0, 143.2, 143.9, 144.4, 145.3, 145.6, 

145.8. 

IR (KBr): 3473, 3154, 1615, 1555, 1453, 1405, 1382, 1342, 1315, 

1292, 1209, 1145, 1111, 975, 947, 929, 873, 748, 667, 625 

cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR and 

13
C NMR analysis. 

 

 

2.12.14 [Ag(72)]ClO4∙2H2O 

 

 

 

(72) 

 

This tan solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.06 g, 

5.13 mmol) and N-[(E)-(1-methyl-1H-imidazol-2-yl)methylidene]-N-(3-[(E)-(1-methyl-

1H-imidazol-2-yl)methylidene]aminophenyl)amine (72) (0.50 g, 1.71 mmol). 
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Yield:     0.87 g (95 %). 

% Found:   C: 35.98, H: 3.07, N: 15.78.  

% Calculated: C: 35.87, H: 3.76, N: 15.69 (C16H20N6O6AgCl; mol. wt: 

535.69). 

1
H NMR: (ppm, d6-DMSO): 4.00 (s), 7.10 (m), 7.30 (m), 7.45(s), 

7.73 (m), 8.70 (s).  

13
C NMR:    (ppm, d6-DMSO): 33.5, 127.1, 127.4, 130.3, 143.1, 149.6. 

IR (KBr): 34445, 3127, 1622, 1583, 1530, 1487, 1436, 1356, 1291, 

1205, 1098, 960, 846, 775, 686, 624 cm
-1

. 

Solubility:   Hot DMSO. 

 

Poor solubility of the complex prevented complete 
1
H NMR analysis. 

 

2.12.15 [Ag(73)]ClO4∙H2O 

 

 

 

(73) 

 

This tan solid was prepared in a similar manner to [Ag(22)2]ClO4 using AgClO4 (1.06 g, 

5.13 mmol) and N-[(E)-(1-methyl-1H-imidazol-2-yl)methylidene]-N-(4-[(E)-(1-methyl-

1H-imidazol-2-yl)methylidene]aminophenyl)amine (73) (0.50 g, 1.71 mmol). 

 

Yield:     0.75 g (85 %). 

% Found:   C: 37.49, H: 3.22, N: 16.22.  

% Calculated: C: 37.12, H: 3.50, N: 16.23 (C16H18N6O5AgCl; mol. wt: 

517.67). 
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1
H NMR: (ppm, d6-DMSO): 3.30 (s, 6H), 6.65 (s, 1H), 7.00 (t, 2H), 

7.20 (m, 1H), 8.02 (s, 2H), 8.30 (s, 2H), 8.60 (s, 2H). 

13
C NMR:  (ppm, d6-DMSO): 41.5, 113.7, 119.3, 124.6, 129.9, 136.9, 

139.55, 150.2, 153.2. 

IR (KBr): 3346, 3138, 1651, 1507, 1437, 1305, 1091, 929, 805, 624 

cm
-1

. 

Solubility:   Hot DMSO. 
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2.13 Anti-Candida Testing 

 

2.13.1 Biological Preparations 

2.13.2 Fungal Isolates 

 

Candida albicans ATCC 10231 was obtained from the American Type Culture 

Collection (Manassas, VA, USA). 

2.13.3 Sterilisation 

 

Sterilisation was achieved by autoclaving at 121 
o
C and 100 kPa for 15 minutes. 

Alternatively, solutions that were susceptible to decomposition during autoclaving were 

sterilised by membrane filtration using 0.45 µm Millipore membrane filters. 

 

2.13.4 Cell Density 

 

Cell density was measured using an improved Neubauer haemocytometer. 

 

2.13.5 Minimal Growth Media (MM) 

 

MM was composed of 2% w/v glucose, 0.5% w/v yeast nitrogen base (without amino 

acids or ammonium sulphate) and 0.17% w/v ammonium sulphate. 

 

2.13.6 Commercial Anti-Fungal Agents 

 

Ketoconazole was obtained as a gift from the Biology Department, N.U.I. Maynooth. 
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2.13.7 Fungal Cell Culture Conditions 

 

Cultures were grown on Sabouraud dextrose agar (SDA) plates at 37 
o
C and frozen for 

long term storage. For short-term storage, the temperature was maintained at 4 
o
C. 

Cultures were routinely sub-cultured every 3-6 weeks. Cultures were grown to the 

stationary phase at 37 
o
C and 2000 rpm in minimal medium (MM). 

 

2.14 Susceptibility Testing Methods 

 

2.14.1 Preparation of Complexes for Susceptibility Testing 

 

Solutions of the test complexes were prepared by dissolving the solid complexes (0.02 g) 

in DMSO (1 cm
3
). This solution was made up to 10 cm

3 
with distilled H2O, yielding a 

stock solution of concentration 2000 µg cm
-3

. Doubling dilutions of the stock solution 

were made to yield a series of test solutions ranging in concentration from 20-1.25 µg 

cm
-3

. Further dilutions were made when required. 

 

Note: Solutions in DMSO: The DMSO concentration (%v/v) in the final test solutions 

falls well below the 3% threshold levels i.e. the point at which DMSO itself exhibits a 

negative effect on fungal growth.   

 

2.14.2 Determination of Yeast Cells Minimum Inhibitory Concentrations 

(MIC) 

 

The in vitro anti-Candida activity is expressed as a minimum inhibitory concentration 

(MIC) of drug, expressed as either µg of compound per 1 cm
3
 or mmol of aqueous 

growth medium solution required to totally inhibit the growth of the fungal cells at 37 
o
C. 

This amount of drug is deemed the MIC100 value i.e. the amount of drug required to 

achieve a 100% growth inhibition of the fungal cells. Prior to MIC testing, cells were 

grown on SDA at 37 
o
C for 24 h. Cell suspensions were prepared in sterile phosphate 
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buffered saline (PBS, pH 7.2) and cells were counted microscopically following dilution 

with PBS. A 96 round-bottomed microtitre plate was inoculated with cells at a density of 

approximately 5 x 10
5
 cells cm

-3
. The drug/cell mixture was incubated for 24 h with 

continuous shaking. Each assay was performed in triplicate and included positive and 

negative controls. Plates were read at an absorbance of λ = 549 nm. 
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3.1    Schiff Base Ligands 

3.1.1 The Formation of Schiff Bases 

The formation of a Schiff base (Scheme 5) is an equilibrium system.
33,94

 The reaction is 

normally conducted under slightly acidic conditions ca. pH 4.5. The reaction begins with a 

nucleophilic attack at the carbonyl carbon of the aldehyde by the lone pair on the N atom of 

the incoming primary amine. A proton is moved from the positively charged nitrogen to the 

negatively charged oxygen producing a neutral carbinolamine. The OH group is then 

protonated by the acid, forming OH2
+
,
 
which is a better leaving group than the OH group. 

This dehydration step leads to the formation of an iminium ion. The next step is the 

deprotonation of the nitrogen of the iminium ion by water and the formation of the final 

product, an imine. As the formation of water is one of the driving forces of the reaction, its 

removal should push the reaction to the right and maximize yields. 

 

   Scheme 5 Mechanism of Schiff base formation. 
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3.2 Aldehydes Used for the Synthesis of Schiff Bases 

The aldehydes used in the current work are shown in Figure 30. With the exception of 1-

benzyl-1H-imidazole-2-carboxaldehyde (6), all are commercially available. However, as the 

aldehydes 1-methyl-1H-imidazole-2-carboxaldehyde (3) and 4-methyl-1H-imidazole-5-

carboxaldehyde (8) are relatively expensive, they were synthesized from inexpensive starting 

materials by literature procedures.
95,96

 

Inversen and Lund
95

 synthesized 1-methyl-1H-imidazole-2-carboxaldehyde (3) by the 

oxidation of the corresponding hydroxymethylimidazole (2) using selenium dioxide. In this 

project, the oxidation was accomplished using manganese dioxide as outlined in Scheme 6. 

The use of MnO2 in 1,4-dioxane as an oxidant reduced the reaction time to ca. 2.5 h 

compared to 11 days using selenium dioxide.
95

 The reaction was carefully monitored to 

prevent decomposition to the starting material, 1-methylimidazole.  

 

 

 

                (2)           (3) 

 

             Scheme 6 Synthesis of 1-methyl-1H-imidazole-2-carboxaldehyde (3). 
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           `                 

1-Methyl-1H-imidazole-2-carboxaldehyde (3)
95

     3-Hydroxybenzaldehyde (10) 

 

                                             

1-Benzyl-1H-imidazole-2-carboxaldehyde (6)
95 

               Salicylaldehyde (11) 

 

                               

4-Methyl-1H-imidazole-5-carboxaldehyde (8)
96

  1H-Imidazole-2-carboxaldehyde (13)  

 

                          

4-(1H-Imidazole-1-yl)-benzaldehyde (9)            1H-Imidazole-5-carboxaldehyde (12)   

   

            Figure 30 Aldehydes used for the synthesis of Schiff bases. 
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1-Benzyl-1H-imidazole-2-carboxaldehyde (6) was synthesized following the procedure of 

Inversen and Lund
 
(Scheme 7).

95 

 

 

             (4)     (5)       (6) 

  Scheme 7 Synthesis of 1-benzyl-1H-imidazole-2-carboxaldehyde (6). 

 

4-Methyl-1H-imidazole-5-carboxaldehyde (8) was synthesized by the oxidation of 4-methyl-

5-hydroxymethylimidazole (7) using nitric acid
96

 (Scheme 8). Carini et al.
97

 and Weinstock 

et al.
98

 used the aldehyde (8) in the synthesis of a number of antagiotensin II antagonists. 

Synthesis of the aldehydes (3), (6) and (8) required elevated temperature and pressure and 

involved autoclave procedures. 

 

N NH N NH

H3C CH2OH H3C O

HNO3

 

               (7)     (8) 

 

                    Scheme 8 Synthesis of 4-methyl-1H-imidazole-5-carboxaldehyde (8). 
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3.3   Schiff Base Ligands Derived from 1H-Imidazole-2-amine (1) 

3.3.1 Synthesis of 1H-Imidazole-2-amine (1)
93

 

 

 

 

                     (1) 

          

                                 Figure 31 1H-Imidazole-2-amine (1).
93

 

 

The heterocyclic compound, 1H-imidazole-2-amine (1)
93

 (Figure 31), is found as a 

component of many pharmacologically active compounds, e.g. the H2-receptor antagonist, 

cephalosporin (Figure 32).
110

 It is also found as a component of some marine compounds, 

such as purealidin D (Figure 32), which is isolated from sea sponges and has been shown to 

have anti-cancer activity.
111,112 

1H-Imidazole-2-amine (1) is also used as the starting material 

in the synthesis of 2-nitroimidazole, known by its trade name, Azomycin, and which is also a 

naturally occurring antibiotic.
113 

          

H
N

N

H
N
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O         
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N

N
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N

O
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SN

S

 

                         Cephalosporin                                Purealidin D 

 

  Figure 32 Pharmacologically active 1H-imidazole-2-amine derivatives. 
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A number of methods have been reported for the preparation of 1H-imidazole-2-amine (1). 

The oldest method was described by Pyman et al.
96

, who used the stannous chloride 

reduction of 2-arylazo-imidazole to synthesize 1H-imidazole-2-amine (1) (Scheme 9). 

Lawson
99,100

 used the condensation reaction of 2-aminoacetaldehyde acetal with cyanamide 

to prepare (1) (Scheme 10).  

 

                                Scheme 9 Synthesis of 1H-imidazole-2-amine (1).
96  

 

 

                                    Scheme 10 Synthesis of 1H-imidazole-2-amine (1).
99,100 

 

However, these two methods gave poor yields and were not suitable for the preparation of the 

large quantities of (1) required for the present study. Weinmamm et al.
93 

prepared a 

hemisulphate salt of (1) in good yield using a modification of the method described by Storey 

et al.
99 

and
 
employing O-methyl-isourea in place of S-methyl-isothiourea (Scheme 11). This 

was the method used in the current work. 
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                        Scheme 11 Synthesis of 1H-imidazole-2-amine (1).
93

 

In the present study, the free amine (1) was released from the hemisulphate salt using barium 

hydroxide.  

 

3.3.2. Synthesis of Schiff Base Ligands Derived from 1H-Imidazole-2-amine (1) 

 

The synthesis of Schiff bases (Scheme 5) can be promoted by the removal of the by-product, 

water, as it is formed. However, Dean-Stark azeotropic distillation proved unsuccessful in the 

synthesis of Schiff bases derived from 1H-imidazole-2-amine (1), due to a lack of solubility 

of the reactants in the solvents normally used for this technique. A solvent system, 

comprising a mixture of dry methanol and benzene, in conjunction with molecular sieves (4 

Å beads) as a dehydrating agent, proved successful. The imine products were obtained by 

solvent extraction of the crude reaction residue with hot ethanol. The unreacted amine 

remained in the residue. On cooling, the Schiff base products precipitated. The Schiff bases 

did not recrystallise properly and so accurate analytical data were not obtained. However, this 

did not prevent the use of these compounds in the synthesis of the metal complexes where 

accurate analytical data were obtained. The Schiff bases derived from 1H-imidazole-2-amine 

(1) are shown in Figure 33.  
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      (22)                      (23) 

 

               

    (24)
31

          (25)
31

    

         

 

                  

     (26)          (27) 

 

 

             (28) 

      Figure 33 Schiff base ligands derived from 1H-imidazole-2-amine (1).  
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As an example, the IR spectrum of the Schiff base (22) derived from 1H-imidazole-2-amine 

(1) is given in Figure 34. The spectrum shows the absence of both the strong C=O stretching 

band of the aldehyde at 1687 cm
-1

 and the amine (N-H bending) band at 1673 cm
-1

, and the 

appearance of the new imine C=N stretching band at 1607 cm
-1

. 

 

    Figure 34 IR spectrum of (22). 

Some general features of the 
1
H NMR (d6-DMSO) spectra of compounds of imidazoles are 

apparent in the spectra of the compounds shown in this thesis. For imidazole, a compound 

unsubstituted at the secondary nitrogen atom, the signal for the NH-proton occurs at ca. 12-

13 ppm. However, this peak is often very broad and may not even be observed, and so is of 

little diagnostic use. The protons at the C-4 and the C-5 in an unsubstituted imidazole become 

equivalent through, rapid tautomerism of the hydrogen between the two nitrogens and a 

singlet of area two results. When the nitrogen is substituted, the 4- and 5-positions are not 

equivalent and separate signals are observed. However, as there is minimal coupling the 

resulting signals appear as singlets.  
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The synthesized Schiff base might result in either the E or Z form due to the stereochemistry 

about the carbon-nitrogen double bond. However, no evidence of more than one form is 

found in the NMR spectra (only one signal is seen for the imine C-H). The E form would be 

more stable on steric grounds and the X-ray crystal structures of ligands (36) and (37) 

(Figures 49-53) show only E stereochemistry. 

The 
1
H NMR spectra of this set of Schiff bases derived from (1) shows the absence of the 

aldehyde proton peak at ca. 10 ppm and the appearance of a new peak at ca. 9 ppm 

representing the imine proton. Two examples of the 
1
H NMR (d6-DMSO) spectra obtained 

for this set of Schiff bases are given in Figures 35 and 36. The residual d6-DMSO peak is at 

ca. 2.5 ppm and the broad peak of water is ca. 3.2 ppm. Solubility of those compounds was 

problematic, hence the 
1
H NMR (d6-DMSO) spectra of this set of ligands were run in dilute 

solution.  

 

                Figure 35 
1
H NMR (d6-DMSO) spectrum of (24). 
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The 
1
H NMR (d6-DMSO) spectrum of compound (24) is shown in Figure 35. The peak at 

9.19 ppm is for the imine proton (Hf), whilst the protons in the 4(5)-position of the imidazole 

are seen as a singlet at 7.16 ppm (Ha) and 8.39 ppm (Hc) separated by the phenol peaks at 

7.86 (Hb) and 8.07 ppm (Hd). The peak representing the OH proton is not seen and may be 

masked by the peak for water at ca. 3.2 ppm or is, as suggested by Govindasamy et al, 

involved in intramolecular hydrogen bonding with the nitrogen of the imine (Figure 37).
101 

 

Figure 36 
1
H NMR (d6-DMSO) spectrum of (26). 

 

 

 

         Figure 37 2-[(1H-Imidazol-2-ylimino)methyl]phenol (24).
31,101
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The 
1
H NMR (d6-DMSO) spectrum of (26) is shown in Figure 36. The imine proton signal is 

seen at 9.05 ppm (Hc), while the signal of the proton in the 2-position of the imidazole is 

seen at 7.92 ppm (Hb) and the signal at 7.81 ppm is due to the proton in the 4(5)-position 

(Ha). The broad peak at 7.03 ppm represents the two protons in the 4(5)-position (Hd). 

Abuskhuna et al.
31

 synthesized compounds (24) and (25) as starting materials in their search 

for novel anti-Candida drugs. This research group further reduced compounds to the 

corresponding amines using sodium cyanoborohydride and subsequently complexed them to 

a range of metals. 

 

3.4 Schiff Base Ligands derived from Histamine 

 

3.4.1 Synthesis of Schiff Base Ligands Derived from Histamine 

In this set of Schiff bases, the histamine molecule (Figure 38) replaced the amine, 1H-

imidazole-2-amine (1). Synthesis of this set of Schiff bases (Figure 39) proved to be less  

 

       

                        Figure 38 Histamine. 

problematic than the previous set synthesized from 1H-imidazole-2-amine (1). The solvent  
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system, comprising of a mixture of dry methanol and benzene, used in conjunction with 

molecular sieves (4 Å beads) as a dehydrating agent was quite successful. Accurate analytical 

data were obtained for this set of Schiff bases and the product yields were between 75-90%.  

The Schiff base (29), which, was synthesized from salicylaldehyde and histamine, has 

previously been used as a model for the study of metalloenzymes, particularly those 

containing iron and vanadium.
102

 However, in these cases the ligand itself was not isolated 

before complexation with the metals.
102,103

 Casella
103

 synthesized and isolated (29) using 

aqueous ethanol. Scarpellini et al.
104

 also synthesized and isolated compound (32), which was 

synthesized from histamine and 1-methyl-2-imidazolecarboxyaldehyde. This group
104

 used 

methanol at 0 
o
C in the synthesis of (32), and a modification of this group’s procedure was 

used in present research project.  

 

A representative example of an IR spectrum of a compound from this set of Schiff bases is 

shown in Figure 40. The IR spectrum of (29) shows the absence of the strong C=O aldehyde 

band at ca. 1666 cm
-1

 and the strong amine band at ca. 3100 cm
-1 

and the appearance of the 

imine band (C=N) at ca. 1633 cm
-1

. The strong OH band of (29) is seen at 3400 cm
-1

, as part 

of the broad overlapping bands of the N-H and C-H stretching vibrations appearing between 

2800 cm
-1

 and 3450 cm
-1

.  
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         (29)
101-103

            (30) 

 

 

      

           (31)                     (32)
104

  

 

 

     

             (33)                 (34)  

 

 

 

                               (35) 

                        Figure 39 Schiff bases derived from histamine. 
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          Figure 40 IR spectrum of compound of (29). 

 

The 
1
H NMR (d6-DMSO) spectra obtained for this set of Schiff bases shows the absence of 

the aldehyde proton peak at ca. 10 ppm and the appearance of a peak at ca. 8.5 ppm 

corresponding to the proton of the imine. Two examples of 
1
H NMR spectra obtained for this 

set of Schiff bases are given in Figures 41 and 42. The 
1
H NMR (d6-DMSO) spectrum of (31) 

is shown in Figure 41.
 
The imine proton (Hc) is seen at 8.21 ppm. The two peaks at 7.57 ppm 

(Hg) and 7.52 ppm (Hb) are the protons in the 2-positions of the imidazoles. The peak at 6.76 

ppm is the proton in the 4(5)-position of the imidazole (Hf). The protons of the methyl group 

are seen at 2.29 ppm (Ha) and the two methylenes of the histamine moiety appear as triplets 

at 2.8 ppm (He) and 3.72 ppm (Hd), respectively.  
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                 Figure 41 
1
H NMR (d6-DMSO) spectrum of (31). 

 

The 
1
H NMR (d6-DMSO) spectrum of compound (30) is shown in Figure 42. The imine peak 

(Hc) is seen at 8.20 ppm, while the peak at 7.56 ppm (Hf) and 6.76 ppm (Hg) are the protons 

in the 2-position and the 4(5)-position of the histamine moiety. The peaks at 7.36 ppm and 

7.51 ppm represent the two protons (Ha) and (Hb) in the 4(5)-position. The methylenes of the 

histamine moiety are seen as triplets at 3.55 ppm (Hd) and 2.70 ppm (He). 
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                                  Figure 42 
1
H NMR (d6-DMSO) spectrum of (30). 

 

Attempts to obtain a single crystal suitable for X-ray crystallographic analysis for this group 

of ligands or their metal complexes proved unsuccessful. Scarpellini et al.
104

 obtained the 

crystal structure of a copper(II) analogue of ligand (32). This copper complex gives an 

indication of the structural characteristics of this ligand group and possible silver 

coordination patterns (discussed later in the thesis). 
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3.5 Synthesis of Schiff Base Ligands Derived from 1-(3-Aminopropyl)imidazole 

(Apim) 

 

This set of Schiff bases were synthesized from the amine, Apim (Figure 43). The Schiff base 

products consist of either two imidazoles or a salicylaldehyde linked by a 5-atom spacer 

chain (Figure 44). The preparation of this set of Schiff bases also proved to be less 

problematic than the set synthesized from 1H-imidazole-2-amine (1). The solvent used was 

dry methanol, in conjunction with molecular sieves (4 Å beads) as a dehydrating agent. 

Accurate analytical data were obtained and product yields were ca. 90%. 

Ouadi et al.,
 
in their search for task specific ionic liquids, synthesized (36) using Schlenk-

tube techniques.
105

 A modification of their synthetic procedure was used in the present study. 

 

 

            

              Figure 43 1-(3-Aminopropyl)imidazole (Apim). 

 

The IR spectra of this set of ligands shows the absence of the strong aldehyde C=O band at 

ca. 1666 cm
-1

, the strong amine band at ca. 3100 cm
-1 

and ca. 1600 cm
-1 

 (N-H bending) and 

the appearance of the imine band (C=N) at ca. 1650 cm
-1

. The IR spectrum of compound (36) 

(Figure 45) shows the strong OH band at 3183 cm
-1

, as part of a broad band comprising the 

N-H and C-H stretching vibrations at between ca 2800 cm
-1 

and ca 3083 cm
-1

. The width of 

this band is due to intramolecular and intermolecular H-bonding. The imine band (C=N) is 

seen at 1649 cm
-1

.  
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105 

     
(36)

105 

 

 

     (37) 

 

              

     (38) 

 

     (39) 

 

 

     (40) 

                                        Figure 44 Schiff bases derived from Apim. 
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          Figure 45 IR spectrum of (36).
105

 

 

The 
1
H NMR (d6-DMSO) spectrum of (39) is shown in Figure 46. The imine peak (Hc) is 

seen at 8.22 ppm, while the peaks at 7.58 ppm (Hb) and 7.63 ppm (Hj) arise from the protons 

in the 2-positions of the imidazoles. The protons in the 4(5)-position of the Apim moiety are 

seen at 7.19 ppm (Hg) and 6.90 ppm (Hi), respectively. The methylenes of the spacer chain 

are seen as triplets at 2.01 ppm (He), 3.42 ppm (Hf) and 4.06 ppm (Hd). The protons of the 

methyl group are seen as a singlet at 2.27 ppm (Ha). 
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   Figure 46 
1
H NMR (d6-DMSO) spectrum of (39). 

 

The 
1
H NMR (d6-DMSO) spectrum of compound (40) is shown in Figure 47. The imine peak 

(Hd) is seen at 8.25 ppm, while the peak at 7.64 ppm (Hj) represents the proton in the 2-

position of the imidazole. The peaks at 7.20 and 7.31 ppm represent the protons in the 4(5)-

position of the aldehyde moiety, (Hb) and (Hc). The peaks representing the proton in the 4- 

and 5-positions of the Apim moiety are seen at 7.04 ppm (Hi) and 6.90 ppm (Hh), 

respectively. The peak at 3.92 ppm represents the methyl group. The methylenes of the 

spacer chain are seen as triplets at 4.05 ppm (He), 3.52 ppm (Hg) and 2.08 ppm (Hf). 
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   Figure 47 
1
H NMR (d6-DMSO) spectrum of (40). 

 

The X-ray crystal structures of (36)
105

 (Figures 48-50) and (37) were obtained (Figures 51-

53). X-ray crystal data tables are given in Appendix 1 and 2. In compound (36) there is 

intermolecular hydrogen bonding between the phenolic protons and the imine nitrogen (N3) 

(Figure 48).
101

 A distance of 2.689-3.397 Å separates the imidazole rings of neighbouring 

molecules. There is intramolecular hydrogen bonding between the centroid of each imidazole 

ring and a hydrogen of the C4 methylene group of the spacer chain of the imidazole. This 

gives an angle of approximately 90
o
 so that the imidazole ring and the phenol ring are almost 

perpendicular. The packing arrangement for (36) is shown in Figure 50. The intermolecular 

hydrogen bonding between the imidazole rings holds the lattice shape. There is no  

stacking, although there is hydrogen bonding between neighbouring imidazole rings. This 
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angle (between the centroid of each imidazole ring and a hydrogen of the C4 methylene 

group of the spacer chain of the imidazole), of approximately 90
o
,
 
has also been found in 

similar structures containing the imidazole moiety.
31

 

 

                 Figure 48 The X-ray crystal structure of (36). 

 

Figure 49 The X-ray crystal structure of (36) showing the intermolecular hydrogen bonding.  
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    Figure 50 Packing diagram for (36). 

 

The X-ray crystal structure for ligand (37) is shown in Figure 51. There is intermolecular 

hydrogen bonding between the centroid of each imidazole ring and a hydrogen of the C6 

methylene group of spacer chain of imidazole. Again this gives an angle of approximately 

90
o
 at the C4- and C5-positions on the chain, so that the imidazole rings are almost 

perpendicular to each other. Hydrogen bonding is also seen between the imine of one ligand 

and the hydrogen on the nitrogen of the imidazole ring of an adjacent ligand. There are also 

hydrogen-bonding interactions between the hydrogen on carbon in the 2-position of the 

imidazole ring and the nitrogen of the imidazole ring of another adjacent ligand (Figure 53). 

Hydrogen bonding interactions are also seen between the hydrogen on N4 of the imidazole 

ring of one ligand and the imine, (N3) and N5 of the imidazole of an adjacent ligand, leading 

to a very regular zigzag pattern (Figure 53).  
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         Figure 51 The X-ray crystal structure of (37). 

 

 

                  Figure 52 Intermolecular hydrogen bonding in (37). 
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Figure 53 Intermolecular hydrogen bonding in (37) and the resultant characteristic zigzag 

pattern. 

 

3.6 Synthesis of Schiff Base Ligands Derived from 1,2-Diaminoethane, 1,3- 

Diaminopropane and 1,4-Diaminobutane 

 

For this set of Schiff bases the diamines, 1,2-diaminoethane, 1,3-diaminopropane and 1,4-

diaminobutane (Figure 54), were used with the selected aldehydes. This provides carbon-

nitrogen spacer chain lengths of 6-8 atoms. The Schiff base products are shown in Figure 55. 

A number of these Schiff base ligands have been previously studied in some depth, because 

of their potential as supramolecular, polydentate building blocks that will self-assemble in 

specific networks.
114

 These compounds have possible applications in microelectronics and 

nonlinear optics. They also have potential as gas storage material because of their porous 

nature.
106

 This set of Schiff bases were synthesized using dry methanol and molecular sieves 

(4Å beads) as a dehydrating agent. Accurate analytical data were obtained and product yields 

were ca. 80%.  
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Figure 54 1,2-Diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane. 

 

Raghu et. al synthesized (47) in dry ethanol, as part of their study of thermoplastic 

polyurethanes.
106 

Ibrahim
 
and Etaiw synthesized (48) in their study of supramolecular silver 

structures,
107 

and LaRonde and Brook
108

 prepared (53) in their study of extra-coordinate 

silicon with C2-symmetric ligands. While they were unsuccessful in their attempt to get a 

crystal structure of the silicon complexes, they were able to obtain a crystal structure of a 

copper complex.
108

 Brook et. al
109

 also synthesized ligand (54) and reduced it to the 

corresponding amine using sodium cyanoborohydride and subsequently prepared a 

copper(II) complex.
109

 Yang et. al
114

 also synthesized the Schiff bases (53) and (54) and then 

complexed them to silver. Dominguez-Vera et. al
115

 synthesized (42) during their study of 

possible new materials. This research group also synthesized compounds (44) and (45). 

Nathan et. al
116

 used the salicylaldehyde compounds (47), (48) and (49) to study the 

geometry of copper(II) complexes with ligands of varying chain lengths. Taylor et al
117

 also 

synthesized the same three compounds ((47), (48), (49)) in their research on the ability of 

ligands to alter the geometry at metal centers during the course of chemical reactions. Cai et 

al
 118

 also synthesized compounds (47), (48) and (49) in their search for novel ionic liquids.
 

The broad diversity of the research interest hints at the potential of these Schiff bases.
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Figure 55 Schiff bases derived from 1,2-diaminoethane, 1,3-diaminopropane and 1,4-

diaminobutane. 
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The IR spectra obtained for this set of Schiff bases shows the absence of the strong C=O 

aldehyde band at ca. 1654 cm
-1

, the strong amine band at ca. 3100 cm
-1 

and ca. 1600 cm
-1 

(N-H bending) and the appearance of the imine band (C=N) at ca. 1650 cm
-1

.
 
 An example of 

an IR spectrum for this set of Schiff bases (41) is shown in Figure 56. The spectrum shows 

the overlapping bands of the N-H and C-H stretching vibrations between 2839 cm
-1

and 3146 

cm
-1

, respectively. The imine (C=N) band is seen at 1651 cm
-1

.
 
 

The 
1
H NMR (d6-DMSO) spectra for this set of Schiff bases shows the absence of the 

aldehyde proton peak at ca.10 ppm and the appearance of a peak at ca. 8.2 ppm 

corresponding to the imine proton. Two examples of 
1
H NMR (d6-DMSO) spectra for this set 

of Schiff bases are given in Figures 57 and 58. 

 

Figure 56 IR spectrum of (41). 

 

The 
1
H NMR (d6-DMSO) spectrum of (49)

116-118
 is shown in Figure 57. The peak for the 

imine proton (Ha) is seen at 8.58 ppm. The multiplets at 7.41 ppm, 7.32 ppm and 6.86 ppm 
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represent the aromatic protons of the phenyl moiety. The methylene groups within the chain 

are seen as triplets at 3.65 ppm (Hf) and 1.72 ppm (He). The peak at 13.62 ppm represents 

the OH protons (Hg). 

 

   Figure 57 
1
H NMR (d6-DMSO) spectrum of (49). 

The 
1
H NMR (d6-DMSO) spectrum of (44)

115
 is shown in Figure 58. The imine peak (Ha) is 

seen at 8.22 ppm. The peak at 7.53 ppm represents the proton in the 2-position (Hc). The 

methylene groups of the spacer chain are seen as a triplet at 3.74 ppm (Hd), and the singlet at 

2.26 ppm (Hb) represents the methyl group in the 4(5)-position of the imidazole. 
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   Figure 58 
1
H NMR (d6-DMSO) spectrum of (44).  

 

3.7 Synthesis of Schiff Base Ligands Derived from 1,2-Phenylenediamine, 1,3- 

Phenylenediamine and 1,4-Phenylenediamine 

 

For this set of Schiff bases the diamines, 1,2-phenylenediamine, 1,3-phenylenediamine and 

1,4-phenylenediamine (Figure 59) were used. The solvent of dry methanol, in conjunction 

with molecular sieves (4 Å beads) as a dehydrating agent was successful. Accurate analytical 

data were obtained for this set of Schiff base products (Figure 60) and product yields were ca. 

90%. Phenylenediamines are used in the in the manufacture of photographic developers and  
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dyestuffs.
119

 The presence of the phenyl group increases the level of aromaticity and -

electron donating capacity in the resulting Schiff base ligands. There are also two imine 

moieties in this set of Schiff base ligands. Mucha et al
 120

 and Singh et al.
121

 synthesized 

compound (62) in their work on hexa-coordinated silicon.  

 

 

                    

 

            1,2-phenylenediamine         1,3-phenylenediamine     1,4-phenylenediamine 

 

Figure 59 1,2-Phenylenediamine, 1,3-phenylenediamine and 1,4-phenylenediamine. 

 

An example of an IR spectrum obtained for this set of Schiff bases (66) is shown in Figure 

61. It shows the absence of the strong C=O aldehyde band at ca. 1667 cm
-1

, the strong amine 

band at ca. 3100 cm
-1 

and ca. 1633 cm
-1 

 (N-H bending) and the appearance of the imine band 

(N=C) at ca. 1629 cm
-1

. The very broad peak at ca. 3000 cm
-1 

is due to intramolecular H-

bonding. 
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        (59)       (60)            (61)
 

                
                                          

 

                     (62)                                                      (63)   

 

         (64) 

                                 

                  (65)           (66) 

 

 

               (67) 

          Figure 60 Schiff base ligands derived from 1,2-, 1,3- and 1,4-phenylenediamine.  
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                (68)            (69) 

 

 

              (70) 

 

                               

                  (71)             (72) 

 

 

                (73) 

 

   Figure 60 (contd.) Schiff base ligands derived from 1,2-, 1,3- and 1,4-phenylenediamine. 



 

  Chapter 3 

 

190 

 

 

 

 

       Figure 61 IR spectrum of (66). 

 

The 
1
H NMR (d6-DMSO) spectrum of (63) is shown in Figure 62. The peak for the imine 

proton is seen at 9.05 ppm (Ha). The peak representing the protons of the two OH groups is 

seen at 13.01 ppm (He), while the peaks of the phenyl rings are seen at 6.96 ppm, 7.39 ppm, 

7.51 ppm and 7.69 ppm.  
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   Figure 62 
1
H NMR (d6-DMSO) spectrum of (63). 

 

The 
1
H NMR (d6-DMSO) spectrum of (66) is shown in Figure 63. The imine peak is seen at 

8.51 ppm (Hc), while the protons in the 2-position (Hb) are seen at 7.70 ppm. The peaks at 

7.40 ppm and 7.03 ppm represent the protons of the aromatic rings. The latter peak at 7.03 

ppm comprises two concurrent peaks, giving an area of 3. The singlet for the methyl group is 

seen at 2.43 ppm. 
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              Figure 63 
1
H NMR (d6-DMSO) spectrum of (66). 

 

3.8 Synthesis of Ag(I) Complexes 

 

Currently, there is renewed interest in the creation of new functional materials and, from this, 

stems an interest in organic-inorganic materials with coordination bonds between metal 

centers and ligand donor atoms. This metal-ligand interaction can provide interesting 

assembly motifs that may be utilized in the creation of novel supramolecular materials. By 

appropriate ligand design and careful choice of the metal center it is possible to exert control  
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over the course of a reaction with a reasonable expectation of the outcome of the material in 

terms of dimensionality and functionility.
122

 Constable et al.
122a

 in their study of silver 

coordinating polymers, used silver(I) because of its variable coordinating numbers and 

geometries. The flexible bonding interactions of silver, such as silver-donor, silver-silver and 

silver-hydrogen, as well as its possible photophysical, electronic and biomedical applications, 

make silver an ideal metal for research.
122

 Papaefstathiou et al. used silver in their studies of 

metal-organic frameworks (MOF) and their possible use as storage facilities because of their 

porous nature, and if functionalized, possible biological/environmental roles.
123 

In the absence of X-ray crystal structural data, the Ag(I) complexes presented in this thesis 

were characterized by microanalysis, IR and, where possible, by NMR spectroscopy. In 

addition, the structural information from a number of known and related imidazole 

complexes was used in deciphering the structures of the present Ag(I) complexes.
31,32,118,124-

127 

The Schiff base ligands presented in this study provide good nitrogen donors and their 

flexible nature, due to the C-N spacer chain, should allow the ligand to bend and rotate when 

coordinating to the metal, so as to conform to the coordinating geometry demands of the 

metal. 

Abuskhuna et al.
31

 reported the X-ray crystal structure of the Ag(I)-2-BIM complex, [Ag2(2-

BIM)2](ClO4)2 (Figure 64), where the 2-BIM ligand has some similarity to ligand (25). The 

complex is centrosymmetric, containing two Ag(2-BIM)
+
 units. The Ag(I) ions are two-

coordinate and have identical atoms in the plane of the chelating ligands. Using the two imine 

N atoms, each 2-BIM ligand bridges a pair of Ag(I) ions. All four N atoms are coplanar and 

the two imidazole groups in each 2-BIM ligand have an angle of 75.52(8)
o
. The two Ag(I) 

ions are only weakly interacting, the distance separating them being 3.2612(4) Å. 
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      (25)                (2-BIM) 

 

 

Figure 64 The X-ray crystal structure of [Ag2(2-BIM)2](ClO4)2 (showing ligand (25) and the 

structurally related (2-BIM)
31 

ligand). 

 

Jin et al.
124

 obtained X-ray crystal structures of Ag(I) complexes of bis(imidazole-1-yl), 

(BIM) and bis(2-methylimidazole-1-yl)methane, (2-mBIM), (Figure 65). This group used  

AgNO2 to synthesise {[Ag(2-m-BIM)2](NO2)2}n (Figure 66) and Ag(SO3CF3) to synthesise 

{[Ag(BIM)SO3CF3]}n (Figure 67). The X-ray crystal structure of {[Ag(2-m-BIM)2](NO2)2}n 

shows that Ag(I) is coordinated to two imidazoles ligands via the imine nitrogens and also to 

an oxygen of the NO2
-
 ion to give a zigzag chain. The N1-Ag(I)-N5 bond distances are 

2.123(8) Å and 2.108(8) Å, respectively. There are also weak Ag-Ag interactions which 

cross-link the chains. The X-ray crystal structure of {[Ag(BIM)SO3CF3]}n shows a similar 

pattern, i.e. the Ag(I) is coordinated to two imidazoles ligands via imine nitrogens in a 

distorted linear geometry. There are also weak Ag-Ag interactions which, again, cross-link 
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the chains. The overall effect is a one-under one-over 3-D super structure that Jin et al called 

a warp-and-woof network (Figure 67).
124 

 

                          

                         (BIM)            (2-m-BIM)
 

 

  Figure 65 (BIM)
 124

 and (2-m-BIM).
124

 

 

 

Figure 66 X-ray crystal structure of [Ag(2-m-BIM)2(NO2)]n
124 

showing the Ag-N and Ag-Ag 

interactions. 
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Figure 67 X-ray crystal structure of {[Ag(2-m-BIM)SO3CF3}n
124

showing the Ag-Ag 

interactions and the cross-linking of the imidazole chains in the complex. 
 

 

In earlier work by our research group on simple Ag(I)-imidazole complexes
125 

(Figures 68, 

70), we obtained an X-ray crystal structure of the Ag(I)-nitroimidazole complex, 

[Ag(NO2imi)2]ClO4·H2O (Figure 68) and the Ag(I)-Apim complex, [Ag(Apim)2]ClO4 (Figure 

69). The X-ray analysis of [Ag(NO2imi)2]ClO4·H2O shows that the Ag(I) ion lies on a center 

of symmetry and the perchlorate anion lies on a mirror plane, thus the asymmetric unit 

comprises half the cation, half the anion and one water molecule. The cations are linked into 

two-dimensional sheets via long Ag-O-N-O-Ag interactions, and these are linked by 

hydrogen-bonding through the water solvate, through intervening layers containing the 

perchlorate anion and water molecule. This gives a zigzag shape similar to that found by Jin 

et al for {[Ag(2-m-BIM)SO3CF3}n (Figure 66).
124 

The X-ray structure of [Ag(Apim)2]ClO4
125

 (Figure 69) shows the Ag(I) to be coordinated to 

two imidazoles units via the imine nitrogen and the pendent amine nitrogen and also to the 

oxygen of the ClO4
-
 ion in a head-to-tail formation to give a zigzag chain which was also 

similar to that found by Jin et al
124

 (Figures 66 and 67). A similar zigzag pattern was also 

found for the Ag(I) complex of 2-methyl-4(5)-nitroimidazole, ([Ag(NO22-Me-

IMI)2]ClO4·H2O), and [Ag(Apim)](ClO4) (Figures 68 and 69).
125

 In [Ag(NO22-Me-imi)2] 
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ClO4·H2O the metal is coordinated head-to-tail via the nitrogens of the imidazoles and also to 

one of the oxygen’s of the NO2 and to two oxygen of the NO2 of an adjacent imidazole, thus 

linking the chains via the oxygens. There are also some N-O interactions, between the 

nitrogen of the imidazole and the ClO4
-
 ions. However, there are no Ag-Ag interactions 

(Figure 69).
124,125

  

 

 

 

 

 

 

 

 

 

 

Figure 68  X-ray crystal structure of [Ag(NO22-Me-IMI)2]ClO4·H2O showing the lattice 

ClO
-
4 interactions to give the zigzag shape.

125
 

 

Cui et al
126

 found a similar zigzag structural geometry in their study of the Ag(I) complex of 

bis(1H-imidazol-1-yl)methane (1-Bimi), (Figures 70, 71). The X-ray crystal structure of the 

polymeric Ag(I) complex of {[Ag(1-Bimi)2](ClO4)]
+
}n, shows that Ag(I) is coordinated to 

two imidazoles units via the imine nitrogens, again, giving a zigzag chain (Figure 71a). In 

this case there are no Ag-Ag interactions.
124

 However,
 
there are interactions between the 

Ag(I) ion of one chain and the nitrogens of the adjacent chain which act to cross-link the 

chains.
126

 In order to achieve these cross-linking interactions the chains are off-set relative to 
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each other so that each Ag(I) is coordinate to the two nitrogens of opposite imidazoles, 

making each Ag(I) ion six-coordinate. The ClO4
-
 anions are not coordinated. The complex 

has a highly ordered, cationic, polymeric superstructure (Figure 71b).
 

 

 

 

 

 

 

 

 

 

       Figure 69 X-ray crystal structure of [Ag(Apim)]ClO4.
125 

 

 

            Figure 70 Bis(1H-imidazol-1-yl)methane (1-Bimi)
126

 

 

A zigzag structural geometry was also seen in the X-ray crystal structure of the metal-free 

ligands (36) and (37) (Figures 50 and 53). This suggests that this may be the energetically or 

the sterically preferred geometry of this type of ligand and possibly its silver complex in the 

solid state. Ibrahim and Etaiw et al 
107

 suggested that the bonding of the ligand to Ag(I) is 

controlled by the chain length, and that a short or a very long spacer chain may inhibit the 
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formation of a supramolecular architecture. These researchers also suggested that the imine 

group may activate the phenol group (also a future of the present research ligands) through 

intermolecular hydrogen bonding. The activated phenol group can then be used in forming 

self-assembled, helicate-type supramolecular complexes,
106

 which is in keeping with the X-

ray crystal structure obtained by Abuskhuna et al.
31

  

 

Figure 71 The X-ray crystal structure of {[Ag(1-Bimi)2](ClO4)]
+
}n showing (a) the Ag-N 

coordination and (b) Ag(I) cross-linking between the chains.
126

  

 

These examples go some way to demonstrate the variable coordination numbers and 

geometries that are possible for silver-imidazole complexes. Given the structural similarity of 

these examples to the ligands presented in this thesis, it is thought that the Ag(I) complexes 

of these ligands may have similar geometries. 
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3.9 Synthesis of the Ag(I) Complexes of the Schiff Base Ligands Derived from 

1H-Imidazole-2-amine (1)  

The seven Schiff base ligands ((22)-(28)) were each reacted with an excess of AgClO4 at 

room temperature to give the respective Ag(I) complexes (Table 1) in moderate yields. The 

complexes were only soluble in hot DMSO and attempts to grow crystals suitable for X-ray 

crystal structure analysis were unsuccessful. Empirical formulae are proposed mainly on the 

basis of microanalytical, IR and NMR spectroscopic data. While three of the complexes were  

Table 1 Ligand structures and empirical formulae of the Ag(I) complexes of Schiff bases 

derived from 1H-Imidazole-2-amine (1). 

Ligand Empirical 

formula 

Ligand Empirical 

formula 

 

(22) 

 

[Ag(22)2]ClO4           

(26) 

 

[Ag(26)]ClO4 

       

(23) 

 

[Ag(23)2]ClO4 
          

(27) 

 

[Ag(27)]ClO4 

           

(24) 

 

[Ag(24)2]ClO4          

(28) 

[Ag(28)]ClO4 

 

           

(25) 

 

[Ag(25)]ClO4 

  

 



 

  Chapter 3 

 

201 

 

formulated on the bases of a 1:2 Ag:ligand ratio, the remainder had a 1:1 Ag:ligand ratio. The 

IR spectra of all the metal complexes show characteristic bands at ca. 1100 and 625 cm
-1

 

associated with the υasymClO4 and υsymClO4 stretching frequencies, respectively, of the 

perchlorate anion.
31

 In addition, the C=N stretching band for the imine functionalities of the 

metal-free Schiff base ligands shift from ca. 1650 cm
-1

 to ca. 1600 cm
-1 

upon complexation to 

the Ag(I) centre. In these spectra, it was impossible to distinguish between the imidazole 

C=N band and the C=N band of the imine function of the spacer chain. Representative IR 

spectra for the metal-free ligand (24) and its Ag(I) complex are shown in Figure 78.  

 

     Figure 78 IR spectra of ligand (24) (red) and [Ag(24)2]ClO4 (blue).    

The only Ag(I) complexes which were sufficiently soluble in d6-DMSO to allow full NMR 

spectral analysis were [Ag(22)2]ClO4, [Ag(25)]ClO4, [Ag(26)]ClO4 and [Ag(27)]ClO4. The 

highly insoluble nature of the Ag(I) complexes suggest that they may have a polymeric 

structure. A comparison of the 
I
H NMR spectra of ligand (26) and its Ag(I) complex, 

[Ag(26)]ClO4 (Figure 79), shows that there is no significant shift for the imine proton of the 

spacer chain of the metal-free ligand (9.00 ppm) compared to the same proton in the Ag(I) 

complex (9.10 ppm). This suggests that the imine N atom in the spacer chain is not involved 
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in coordination to the silver ion. In contrast, a large shift is observed in the positions of the 

signals of the 4(5) protons adjacent to the imine N atoms of the two imidazole rings (7.09 and 

7.81 ppm) upon complexation to the metal ion (7.15 ppm and 7.45 ppm, respectively). This 

downfield shift is indicative of coordination of the imidazole rings to metal centres.
31,125,126

 

The N-H peak of the imidazole, which is barely distinguishable in the spectrum of the metal-

free ligand, is very clearly observed in the spectrum (ca. 13 ppm) of the Ag(I) complex, 

indicating possible coordination of the imidazole ring (via the imine N atom of the ring).  

 

Figure 79 
1
H NMR (d6-DMSO) spectra for ligand (26) and the Ag(I) complex [Ag(26)]ClO4. 
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Figure 80 A possible metal-ligand chelating interaction for complexes [Ag(25)]ClO4. 

In the case of [Ag(26)]ClO4 the ligands could possibly chelate to the metal centre using the 

imine N-atom in the linker chain and the imine N of one of the imidazoles rings as shown in 

Figure 80. However, this possible structure can be ruled out on the basis of the 
1
H NMR 

spectral data, which shows that there is no change in the position of the proton on the imine 

carbon atom of the spacer chain (9.20 ppm for both the metal-free ligand and for the 

complex). The relative insolubility of the complex suggests that it may have a polymeric 

structure, as outlined in Figure 81. In this structure, the Ag(I) ions are ligated by imidazole 

imine N atoms on the adjacent ligands. The poor solubility of [Ag(25)]ClO4 in d6-DMSO 

prevented complete resolution of its 
1
H NMR spectrum (broad signals at the positions quoted 

in the experimental section). It is anticipated that the structure of [Ag(25)]ClO4 is similar to 

that shown for [Ag(26)]ClO4 (Figure 81). 

 

 

     Figure 81 Possible polymeric structure for [Ag(26)]ClO4 (ClO4
- 
ion

 
omitted for clarity). 

In the case of ligands (23) and (24), which contain phenolic moieties, the phenols do not 

seem to depronate upon coordination to the Ag(I) centre as a ClO4
- 

ion is present in the 

formulation of the respective 1:2 Ag:ligand complexes, [Ag(23)2]ClO4  and [Ag(24)2]ClO4. A 
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plausible polymeric structure for [Ag(23)2]ClO4 is shown in Figure 82. This proposed 

structure is very similar to that reported for the closely related, highly insoluble and 

structurally characterised Ag(I) complex, [Ag(sal-imi)2]ClO4.2H2O (Figures 83, 84).
31b

 The 

sal-imi Schiff base ligand is an isomer of ligands (23) and (24). 

 

 

 

                   Figure 82 Possible polymeric structure for [Ag(23)2]ClO4. 

 

 

 

 

 

 

Figure 83 X-ray structure of [Ag(sal-imi)2]ClO42H2O.
31

 

 

 

 

  Figure 83 X-ray crystal structure of [Ag(sal-imi)2]ClO42H2O.
31(b)
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Figure 84 Packing diagram for [Ag(sal-imi)2]ClO42H2O (ClO4
-
 omitted for clarity).

31
 

 

3.10 Synthesis of the Ag(I) Complexes of the Schiff Base Ligands Derived from 

Histamine 

 

The Schiff base ligands containing the histamine moiety, ((29)-(35)), were reacted with an 

excess of AgClO4 at room temperature to give the respective Ag(I) complexes (Table 2) in 

moderate to good yield. Again, these complexes were only soluble in hot DMSO. Three of 

the complexes formulated with a 1:1 Ag:ligand ratio, three had a 1.5:1 ratio and one had a 2:1 
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ratio. IR spectral bands associated with the perchlorate anion and the imine functionalities 

were clearly visible. Representative IR spectra of the metal-free ligand (29) and its Ag(I) 

complex, [Ag(29)]ClO4, are illustrated in Figure 85. Extremely poor solubility in DMSO 

prevented the capture of good quality 
1
H NMR spectra. The insolubility of these complexes, 

coupled with the close structural similarities between these histamine-based Schiff base 

ligands and those derived from imidazole-2-amine, suggests that they are essentially 

isostructural with the polymeric Ag(I) complexes formed by the 1H-imidazole-2-amine (1) 

ligand set. 

 

Table 2 Ligand structures and empirical formulae of the Ag(I) complexes of Schiff bases  

derived from histamine. 

Ligand structure Empirical formula 

 

Ligand structure Empirical formula 

(29) 

 

[Ag(29)]ClO4 
 

(33) 

 

[Ag1.5(33)](ClO4)1.5 

(30) 

 

[Ag1.5(30)](ClO4)1.5 
 

(34) 

 

[Ag(34)]ClO4 

(31) 

 

[Ag1.5(31)](ClO4)1.5  (35) 

 

[Ag2(35)](ClO4)2 

 

(32) 

 

[Ag1.5(32)](ClO4)1.5 
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      Figure 85 IR spectra of ligand (29) (blue) and its Ag(I) complex, [Ag(29)]ClO4 (red). 

 

 

Scarpellini et al.
104

 reported the X-ray crystal structures of mononuclear and binuclear Cu(II) 

complexes of the Schiff base, (32). The complexes formulated as [Cu(32)Cl2] and 

[Cu2(32)2(OH)2](ClO4)2·2H2O and their structures are shown in Figure 86. In both 

complexes, the three imine N atoms (two from the imidazole rings and one from the spacer 

chain) are chelated to the metals and the five-coordinate geometry is completed by two chloro 

or hydroxo ligands. Although these two Cu(II) structures clearly illustrate the flexibility of 

ligand (32) and its ability to chelate to a single metal centre it is not thought that it adopts this 

coordination mode in the Ag(I) complex, [Ag1.5(32)](ClO4)1.5.  
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                                                               [Cu(32)Cl2]               

 

         

      

             [Cu2(32)2(OH)2](ClO4)2·2H2O. 

 

 Figure 86 Structures of [Cu(32)Cl2] and [Cu2(32)2(OH)2](ClO4)2·2H2O.
104

 

 

Shown in Figure 87 are some possible structures for the set of Ag(I) complexes containing 

Schiff base ligands derived from histamine. These structures take into account the polymeric 

nature of the complexes and the various metal:ligand ratios (1:1, 1.5:1 and 2:1). The structure 

for the 1:1 Ag(I):ligand complex, [Ag(34)]ClO4 (Figure 87 (a)), is similar to that given for 

[Ag(2-m-BIM)SO3CF3]n (Figure 67)
 124

 and {[Ag(1-Bimi)2](ClO4)]
+
}n

126
 (Figure 71). The 

proposed structure for the 1.5:1 Ag(I):ligand complex [Ag1.5(30)](ClO4)1.5 is shown in Figure 

87 (b). The proposed structure for the 2:1 Ag(I):ligand complex, [Ag2(35)](ClO4)2 (Figure 87 

(c)), is in accordance with the interwoven ‘‘warp-and-woof” type 2D sheet network found for 

polymeric [Ag(2-m-BIM)SO3CF3]n
124

 (Figure 88). The latter polymer is also cross linked 

through interchain Ag–Ag interactions. 

javascript:void(0)
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(a) Possible structure of the 1:1 Ag:ligand complex [Ag(34)]ClO4 (ClO4
-
 not shown). 

 

    (b) Possible structure of the 1.5:1 Ag:ligand complex [Ag1.5(30)](ClO4)1.5 (ClO4
-
 not 

shown). 

                                   

(c) Possible structure of the 2:1 Ag:ligand complex [Ag2(35)](ClO4)2 (ClO4
-
 not shown). 

 

Figure 87. Possible polymeric structures for (a) 1:1 Ag:ligand complex [Ag(34)]ClO4, (b) 

1.5:1 Ag:ligand complex [Ag1.5(30)](ClO4)1.5 and (c) 2:1 Ag:ligand complex 

[Ag2(35)](ClO4)2. 
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Figure 88 A view of {[Ag(2-m-BIM)SO3CF3}n showing the interwoven ‘‘warp-and-woof” 

like 2D sheet network and inter-chain Ag–Ag interactions.
124 

 

3.11 Synthesis of the Ag(I) Complexes of the Schiff Base Ligands Derived from 

Apim 

 

The Schiff base ligands containing the Apim moiety ((36)-(40)) were reacted with an excess 

of AgClO4 at room temperature to give the respective Ag(I) complexes (Table 3) in high 

yield. Unlike the Ag(I) complexes of the ligands derived from 1H-imidazole-2-amine (1) and 

histamine, the five Ag(I) complexes with ligands based on the Apim moiety were reasonably 

soluble in DMSO. Four of the complexes formulated with a 1:1 Ag:ligand ratio and the 

remaining complex, [Ag(36)2]ClO4, had a 1:2 ratio. 
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Table 3 Ligand structures and empirical formulae of the Ag(I) complexes derived from 

 Apim. 

Ligand structure Empirical 

formula 

Ligand structure Empirical 

formula 

 

(36) 

 

[Ag(36)2]ClO4  

(39) 

  

[Ag(39)]ClO4 

(37) 

  

[Ag(37)]ClO4 
(40) 

  

[Ag(40)]ClO4 

          

(38) 

  

[Ag(38)]ClO4 

  

 

IR spectral bands associated with the perchlorate anion (ca. 1100 and 625 cm
-1

) and the imine 

(ca. 3100 cm
-1

) functionalities were clearly visible. The IR spectra of the metal-free ligand 

(40) and its Ag(I) complex [Ag(40)]ClO4 are shown in Figure 89.  

The 
1
H NMR (d6-DMSO) spectra of ligand (39) and its Ag(I) complex, [Ag(39)]ClO4, are 

shown in Figure 90. The imine peak in the spacer chain of the metal-free ligand is seen at 

8.20 ppm, and is significantly moved in the corresponding Ag(I) complex (8.58 ppm). The 

two coalescing peaks representing the protons in the 2-position of the imidazoles of the 

metal-free ligand, at 7.50 ppm and 7.60 ppm, are shifted downfield and become two sharp 

peaks at 7.80 ppm and 8.20 ppm in the Ag(I) complex. This downfield shift is also seen for 

the two peaks of the protons in the 4(5)-position which are shifted from 6.90 ppm and 7.20 

ppm to 7.10 ppm and 7.40 ppm, respectively. Again, the N-H peak at 13 ppm in the Ag(I) 

complex is sharper and is shifted downfield compared to that of the metal-free ligand (12.20 

ppm).  
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   Figure 89 IR spectra of ligand (40) (blue) and its Ag(I) complex, [Ag(40)]ClO4, (red).    

 

These 
1
H NMR spectra suggests that Ag(I) coordination is at the N atom of the imine of the 

imidazoles, not at the imine N atom of the spacer chain. Such a coordination mode is 

consistent with that found by Jin et al
124

 and Cui et al.
126 

A possible polymeric structure for 

the representative Ag(I) complex, [Ag(37)]ClO4, is given in Figure 91.  
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  Figure 90 
1
H NMR (d6-DMSO) spectra of (39) and its Ag(I) complex, [Ag(39)]ClO4.  

 

 

 

    Figure 91 Proposed polymeric structure of ([Ag(37)]ClO4).  
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2.11.6 [3.12 Synthesis of the Ag(I) Complexes of Schiff Base Ligands Derived 

from 1,2-Diaminoethane, 1,3-Diaminopropane and 1,4-Diaminobutane  

 

The Schiff base ligands, (41)-(58), derived from 1,2-diaminoethane, 1,3-diaminopropane 

and 1,4-diaminobutane, were reacted with an excess of AgClO4 at room temperature to 

give the respective Ag(I) complexes (Table 4) in moderate to good yields. The 

microanalytical data for this set of Ag(I) Schiff base complexes implied a 1:1 Ag(I):ligand 

ratio for three complexes, five others had a 1.5:1 ratio and the remainder formulated with 

a 2:1 ratio. There was no distinctive metal:ligand ratio pattern observed amongst the 

various di-Schiff base ligand subsets. 

 

Table 4 Ligand structures and empirical formulae of the Ag(I) Schiff base complexes 

derived from 1,2-diaminoethane, 1,3 diaminopropane and 1,4-diaminobutane. 

 

Ligand structure Emp. Formula Ligand structure Emp. Formula 

n=2 

(41) 

 

[Ag1.5(41)](ClO4)1.5 n=2 

(50) 

 

[Ag(50)]ClO4 

n=3 

(42) 

 

[Ag1.5(42)](ClO4)1.5 n=3 

(51) 

 

[Ag2(51)](ClO4)2 

n=4 

(43) 

 

[Ag2(43)](ClO4)2 n=4 

(52) 

 

[Ag2(52)](ClO4)2 

Contd. 
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n=2 (44) 

 

[Ag2(44)](ClO4)2 
 

n=2 (53) 

 

[Ag1.5(53)](ClO4)1.5 

 

n=3 (45) 

 

[Ag2(45)](ClO4)2 
 

n=3 (54) 

 

[Ag1.5(54)](ClO4)1.5 

 

n=4 (46) 

 

[Ag2(46)](ClO4)2 
n=4  

(55) 

 

[Ag2(55 )](ClO4)2 

 

n=2 

(47) 

 

[Ag(47)]ClO4 
n=2 

(56) 

 

[Ag1.5(56)](ClO4)1.5 

n=3 

(48) 

 

[Ag(48)]ClO4 
n=3 

(57) 

 

[Ag2(57)](ClO4)2 

n=4 

(49) 

 

[Ag2(49)](ClO4)2 
n=4 

(58) 

 

[Ag2(58)](ClO4)2 

 

 



           Chapter 3 

216 

 

 

The X-ray crystal structures of a number of oligomeric and polymeric Ag(I) helicat 

complexes of ligands (53) and (54) have previously been reported.
114

 The complexes 

formulated as [Ag6(53)5(MeCN)](CF3SO3)6·H2O, [Ag7(53)6](ClO4)7MeCN, 

[Ag2(53)2](NO3)2·0.5H2O, [Ag3(54)2](CF3SO3)3 and {[Ag3(54)2](NO3)3}n, and their 

structures are shown in Figures 92-97, respectively. The authors suggested that the 

metal:ligand ratio and subsequent structural motif was dependent upon the type of 

silver(I) salt employed as a starting material (AgCF3SO3, AgClO4 or AgNO3) and also 

upon the reaction solvent. In complex [Ag6(54)5(MeCN)](CF3SO3)6·H2O (Figure 92), the 

Ag(I):Schiff base ligand ratio is 6:5 and the coordination environments around the metals 

are depicted in Figure 93(a) and (b).  

 

 

 

 

 

Figure 92 Polymeric, hexanuclear helical structure of [Ag6(53)5(MeCN)](CF3SO3)6·H2O 

(CF3SO3
-
 and H2O not shown).

115 
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                                (a)        (b) 

                     

                                  (c)                  (d) 

              

                                   (e)                     (f) 

Figure 93 Structural motifs identified in the Ag(I) complexes of ligands (53) and (54).
115

 

 

In complex [Ag7(53)6](ClO4)7·MeCN (Figure 94), the Ag(I):ligand ratio is 7:6 and the 

coordination environments around the metals are depicted in Figure 93(b) and (c). 

 

Figure 94 X-ray crystal structure showing the perspective view of the heptanuclear 

complex of (53), [Ag7(53)6](ClO4)7MeCN (MeCN and ClO4
-
 not shown).

115 
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For [Ag2(53)2](NO3)2·0.5H2O (Figure 95), the Ag(I):Schiff base ligand ratio is 2:2 and the 

coordination environments around the metals are depicted in Figure 93(b). The double 

helical structure is achieved by intramolecular twisting of the two ligands. In addition, 

there are strong π-π interactions between a pair of imidazole rings from different ligands 

in the helix. Complex [Ag3(54)2](CF3SO3)3 (Figure 96) has a Ag(I):ligand ratio of 3:2 and 

the metal coordination spheres are as shown in Figure 93(d). The two ligands are almost 

planer and are more or less parallel to each other. Again, there are strong π-π interactions 

between a pair of imidazole rings from different ligands in the double helix.  

 

 

Figure 95 X-ray crystal structure of the double helicate complex, 

[Ag2(53)2](NO3)2·0.5H2O (H2O and NO3
-
 not shown).

115 

 

Complex {[Ag3(54)2](NO3)3}n (Figure 97) also has a Ag(I):ligand ratio of 3:2 and the 

metal coordination spheres are shown in Figure 93(d). The metals are arranged in a zigzag 

fashion and are extended into infinite chains through the bridging coordination. The 

imidazoles rings in the chain are also arranged in a staggered fashion and there are no π-π 

interactions between the rings.  
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     Figure 96 X-ray crystal structure of [Ag3(54)2](CF3SO3)3 (CF3SO3
-
 not shown).

115
 

 

 

         Figure 97 X-ray crystal structure of {[Ag3(54)2](NO3)3}n, (NO3
-
 not shown).

115 
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Representative IR spectra for the present alkyldiamino set of Ag(I) complexes are shown 

in Figures 98 and 99. Spectral bands associated with the perchlorate anions (ca. 1100 and 

625 cm
-1

) and the imine functionalities (ca. 1600-1650 cm
-1

) were clearly visible in all of 

the spectra of the metal complexes. The presence of the perchlorate bands in the spectra of 

the Ag(I) complexes of the phenol containing ligands, (47-49), would seem to indicate 

that the phenyl moieties of the ligands are not depronated. These latter three complexes 

are thought to have a polymeric structure similar to those discussed previously (e.g. 

[Ag(23)2]ClO4 and [Ag(24)2]ClO4, see Figure 82). The IR spectra of the metal-free, Schiff 

base ligand (46) and its Ag(I) complex, [Ag2(46)](ClO4)2, and the Schiff base ligand (47) 

and its Ag(I) complex, [Ag(47)]ClO4, are shown in Figures 98 and 99, respectively. 

 

 

 

Figure 98 IR spectra of the metal-free ligand (46) (blue) and its Ag(I) complex, 

[Ag2(46)](ClO4)2 (red).  
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Figure 99 The IR spectra of the metal-free ligand (47) (blue) and its Ag(I) complex, 

[Ag(47)]ClO4 (red).  

 

Representative 
1
H NMR (d6-DMSO) spectra for this set of alkyldiamino Ag(I) complexes 

are shown in Figures 100-102. For ligand (46) and its Ag(I) complex [Ag2(46)](ClO4)2 

(Figure 100) the imine peak of the spacer chain in the metal-free ligand (8.25 ppm) is 

shifted downfield (8.45 ppm) upon complexation to the metal. The peak representing the 

protons in the 2-position of the imidazole rings (7.75 ppm) also experience a very small 

upfield shift (7.70 ppm) upon complexation. 
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Figure 100 
1
H NMR (d6-DMSO) spectra of ligand (46) and its the Ag(I) complex, 

[Ag2(46)](ClO4)2. 

The 
1
H NMR (d6-DMSO) spectra of ligand (53) and its the Ag(I) complex, 

[Ag1.5(53)](ClO4)1.5, are shown in Figure 101. The imine peak of the imidazole ring of the 

ligand (8.35 ppm) is shifted downfield to (8.58 ppm) in the spectrum of the Ag(I) 

complex. The peaks representing the protons in the 4(5)-position of the ligand are shifted 

downfield from 7.00 ppm and 7.27 ppm of the ligand to 7.75 ppm and 8.25 ppm, in the 

Ag(I) complex. The N-CH3 peak of the complex (3.96 ppm) is shifted downfield from that 

of the free ligand (3.90 ppm). The N-CH2 peak of the complex (at 2.45 ppm) is also 

shifted downfield compared to the metal-free ligand (2.00 ppm). 
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Figure 101 
1
H NMR (d6-DMSO) spectra of ligand (53) and its Ag(I) complex, 

[Ag1.5(53)](ClO4)1.5. 

 

The 
1
H NMR (d6-DMSO) spectra of ligand (54) and its the Ag(I) complex, 

[Ag1.5(54)](ClO4)1.5, are shown in Figure 102. The imine peak of the imidazole ring at 

8.36 ppm of the metal-free ligand is shifted downfield to 8.58 ppm in the Ag(I) complex. 

The peaks representing the protons in the 4(5)-position of the metal-free ligand (7.08, 7.35 

ppm) are shifted downfield in the Ag(I) complex (7.25 ppm and 7.55 ppm). The N-CH3 

peak (at 2.04 ppm) is shifted downfield in the complex compared to that of the free ligand 

(2.00 ppm). The N-CH2 peaks of the ligand (2.00 and 3.80 ppm) are shifted downfield in 

the complex (2.04 and 3.96 ppm). 
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Figure 102 
1
H NMR (d6-DMSO) spectra of ligand (54) and its Ag(I) complex, 

[Ag1.5(54)](ClO4)1.5 

The 
1
H NMR data (ppm) obtained for ligand (53) and its Ag(I) complexes,

 

[Ag6(53)5(MeCN)](CF3SO3)6·H2O
115

 (a), [Ag7(53)6](ClO4)7MeCN
115

 (b), 

[Ag2(53)2](NO3)2·0.5 H2O
115

 (c) and [Ag1.5(53)](ClO4)1.5 (d) (present work) are shown in 

Table 5. The literature complexes, (a), (b) and (c), and the metal-free ligand were run as 

solutions in CD3CN. Complex (d) and the metal-free ligand (both from the present study) 

were run as solutions in d6-DMSO. The 
1
H NMR data (ppm) obtained for ligand (54) and 

its Ag(I) complexes, [Ag3(54)2](CF3SO3)3
115

 (a), {[Ag3(54)2](NO3)3}n
115

 (b) and 

[Ag1.5(54)](ClO4)1.5 (c) are shown in
 
Table 6. 
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Table 5 
1
H NMR data (ppm) for ligand (53) and its Ag(I) complexes, 

[Ag6(53)5(MeCN)](CF3SO3)6·H2O
115

 (a), [Ag7(53)6](ClO4)7MeCN
115

 (b), 

[Ag2(53)2](NO3)2·0.5 H2O
115

 (c) and [Ag1.5(53)](ClO4)1.5 (d) (present work).
 

 

 

 

 

Proton 

 

Ligand 

(53)
115

 

 

 

Ag(I) complexes
115

 

(a), (b), (c) 

 

Ligand 

(53) 

 

Ag(I) complex 

(d) 

 

N-CH3 

 

 

3.89 

  

(a) 3.75 

(b) 3.75 

(c) 3.76 

 

3.90 

 

     (d) 4.00 

 

  4,5 H 

 

6.98, 7.04 

 

(a) 6.96, 7.21 

(b) 6.95, 7.21 

(c) 6.96, 7.20, 

 

7.27, 8.25 

 

  (d) 7.75, 8.10 

N=C-H  

(imine of 

the chain) 

 

   8.23 

 

(a) 8.44 

(b) 8.44 

(c) 8.44 

 

  8.25 

 

   (d) 8.40 

 

N-CH2 

  (chain) 

 

  3.88 

 

(a) 4.01 

(b) 3.99 

(c) 3.95 

 

   3.90 

 

    (d) 4.00 
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Table 6 
1
H NMR data (ppm) for ligand (54) and its Ag(I) complexes, 

[Ag3(54)2](CF3SO3)3
115

 (a), {[Ag3(54)2](NO3)3}n
115

 (b) and [Ag1.5(54)](ClO4)1.5 (c) 

(present work). 

 

The 
1
H NMR spectral data shown in Tables 5 and 6 show that when the Schiff base 

ligands (53) and (54) complex to the metal centres a slight, but consistent, shift (ca. 0.13 

ppm) in the position of the imidazole ring N-CH3 protons is observed. From the X-ray 

crystallographic data of the Ag(I) complexes
115

 it is evident that the tertiary N atom of the 

imidazole ring (N-CH3) moiety is not coordinated to a metal centre in the solid state. In 

the present study, similar small shifts in the N-CH3 proton signals are also observed in the  

 

   Proton 

 

Ligand 

   (54)
115

 

 

Ag(I) complexes
115 

(a), (b) 

 

Ligand 

(54) 

 

Ag(I) complex 

(c) 

   

   N-CH3 

 

 

3.95 

 

(a) 3.82 

(b) 3.82 

 

3.96 

 

(c) 3.92 

 

   4,5 H 

 

7.00, 7.29 

 

(a) 7.11, 7.28 

(b) 7.12, 7.26 

 

7.10, 7.39 

 

(c) 7.25, 7.57 

 

N=C-H 

(imine of the 

chain) 

 

8.27 

 

(a) 8.40 

(b) 8.41 

 

8.35 

 

(c) 8.58 

 

N-CH2 

(chain) 

 

2.01, 3.68 

 

(a) 2.06, 3.90 

(b) 2.08, 3.93 

 

2.00, 3.59 

 

(c) 2.00, 3.80 
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spectra of the metal complexes. Likewise, a small shift is seen in the position of the spacer 

chain imine proton (N=CH) signal (ca. 0.11-0.13 ppm
115 

and ca. 0.22-0.32 ppm for the 

present study) upon coordination of the Schiff base ligand to the Ag(I) ion. Therefore, it 

appears that essentially all protons on the ligand undergo shifts upon coordination to the 

metal centre. Thus, even protons which are relatively remote from ligand donor atoms are 

influence by the presence of the Ag(I) ion. 

 

The myriad of structural geometries observed for the previously reported Ag(I) complexes 

described above
115

 clearly illustrate both the wide range of coordination possibilities and 

the flexibility of the di-Schiff base ligands. 

 

 

 

Schiff base ligands derived from 1,2-, 1,3- and 1,4-phenylenediamine ((59)-(73)) were 

reacted with an excess of AgClO4 at room temperature to give the respective Ag(I) 

complexes (Table 7) in moderate to good yield. These complexes were also only soluble 

in hot DMSO. Based on the microanalytical data, complexes containing the 1,2-

phenylenediamine moiety formulated with a 1.5:1 Ag(I):ligand ratio, except in the case of 

ligand (71) (1:1 ratio). Complexes containing either 1,3- or 1,4-phenylenediamine 

moieties had a 1:1 Ag(I):ligand ratio, except in the cases of ligands (66) and (67) (1.5:1 

ratio). 

 

3.13 Synthesis of the Ag(I) Complexes of Schiff Base Ligands Derived from 

1,2-Phenylenediamine, 1,3-Phenylenediamine and 1,4-Phenylenediamine  

Representative examples of IR and 
1
H NMR spectra for this phenylenediamino set of 

Ag(I) complexes are shown in Figure 105 and Figures 106-108, respectively. The 
1
H 

NMR (d6-DMSO) spectra of the metal-free ligand (60) and its Ag(I) complex, 

[Ag(60)]ClO4, are shown in Figure 106. 
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Table 7 Ligand structures and empirical formulae of the Ag(I) complexes derived from 

1,2, 1,3- and 1,4-phenylenediamine. 

Ligand structure Emp. formula Ligand structure Emp. Formula 

 

(59) 

 

[Ag1.5(59)](ClO4)1.5 
 

(68) 

 

[Ag1.5(68)](ClO4)1.5 

 (60) 

 

[Ag(60)]ClO4  (69) 

 

[Ag(69)]ClO4 

 

(61) 

 

    [Ag(61)]ClO4 

 

 (70) 

 

 

[Ag(70)]ClO4 

 

(65) 

 

[Ag1.5(65)](ClO4)1.5 
 

(71) 

 

    [Ag(71)]ClO4 

 (66) 

 

[Ag1.5(66)](ClO4)1.5 

 (72) 

 

[Ag(72)]ClO4 

 

 (67) 

 

[Ag1.5(67)](ClO4)1.5  

 (73) 

 

[Ag(73)]ClO4 

Contd 
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Figure 105 The IR spectra of the metal-free ligand (60) (orange) and its Ag(I) complex, 

[Ag(60)]ClO4 (blue). 

 

Table 7 (contd.) 

 

(53) 

 

[Ag1.5(62)](ClO4)1.5 

 

(63) 

 

[Ag(63)]ClO4 

 

(64) 

 

 

[Ag(64)]ClO4 
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The imine peak of the ligands spacer-chain, which is seen at 8.50 ppm, undergoes a small 

shift upfield to 8.45 ppm for the Ag(I) complex. The peak representing the protons in the 

4(5) positions, which is seen at 7.46 ppm in the metal-free ligand, is shifted to 7.51 ppm 

for the Ag(I) complex. The N-H peak of the imidazole, barely distinguishable in the 

spectrum of the metal-free ligand (ca. 12.5 ppm), is very sharp and shifted downfield to 

13.2 ppm in the Ag(I) complex, indicating possible coordination of the imine N of the 

imidazole. 

 

Figure 106 
1
H NMR (d6-DMSO) spectra of the metal-free ligand (60) and its Ag(I) 

complex, [Ag(60)]ClO4. 
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The 
1
H NMR (d6-DMSO) spectra of the metal-free ligand (65) and the Ag(I) complex, 

[Ag1.5(65)](ClO4)1.5, are shown in Figure 107. The imine peak of the imidazole in the 

metal-free ligand is seen at 8.55 ppm, is shifted downfield to 8.75 ppm in the Ag(I) 

complex. The peak for the protons in the 4(5)-position for the metal-free ligand is seen at 

7.75 ppm, while the corresponding peak of the Ag(I) complex is shifted downfield to 8.10 

ppm. The phenyl peak of the metal-free ligand appears at 7.30 ppm, while in the Ag(I) 

complex it is shifted upfield to 7.10 ppm. The N-H peak of the imidazole is barely 

distinguishable in the spectrum of the metal-free ligand (12.6 ppm). However, the 

corresponding peak in the Ag(I) complex is very sharp and shifted downfield to 13.0 ppm, 

again indicating possible coordination at the imine N of the imidazole. 

 

Figure 107 
1
H NMR (d6-DMSO) spectra of the metal-free ligand (65) and its Ag(I) 

complex, [Ag1.5(65)](ClO4)1.5. 
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The 
1
H NMR (d6-DMSO) spectra of the metal-free ligand (70) and its Ag(I) complex, 

[Ag(70)]ClO4, are shown in Figure 108. The imine peak of the metal-free ligand is seen at 

8.52 ppm, while that of the Ag(I) complex is seen at 8.78 ppm. The peak for the protons 

in the 2-position is seen at 7.85 ppm in the metal-free ligand, while the corresponding 

peak for the Ag(I) complex is shifted upfield to 8.30 ppm. The protons in the 4(5)-

position of the imidazole ring are observed at 7.69 ppm in the metal-free ligand and 8.10 

ppm in the Ag(I) complex. The phenyl protons of the free ligand appear at 7.25 ppm and 

at 7.05 ppm in the Ag(I) complex. The imidazole N-H peak of the metal-free ligand is not 

seen in the spectrum of the free ligand, but appears at 13.25 ppm in the spectrum of the 

Ag(I) complex.  

 

Figure 108 The 
1
H NMR (d6-DMSO) spectra of the metal-free ligand (70) and its Ag(I) 

complex, [Ag(70)]ClO4. 
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From a survey of the literature, this group of phenylenediamine-based Schiff base ligands 

appears to be unique. The closest structural analogue of ligand (60) is the 1,3-bis(4,5-

dihydro-1H-imidazole-2-yl)benzene (bib) ligand, reported by Ren et al.
127

 (Figure 109). 

The major structural differences between (60) and the bib ligand are that the latter does 

not contain any imine moieties in the spacer chain and that the alkene unit of the 

imidazole ring has been reduced. The X-ray crystal structures of two Ag(I) complexes of 

the bib ligand have been reported.
127 

The [2+2] metallocyclic complex, 

{[Ag(bib)](NO3)
.
H2O}n, adopts a cis configuration, leading to a 1D polymeric chain 

(Figure 110). Complex {[Ag2(bib)2(NO2)](NO2)
.
19/8H2O}n adopts a trans configuration, 

resulting in a single strand, polymeric helix (Figure 111). 

 

 

 

   

 

Figure 109 Cis and trans conformations of {[Ag(bib)](NO3)
.
H2O}n, (top) and 

{[Ag2(bib)2(NO2)](NO2)
.
19/8H2O}n (bottom).

127 
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                 Figure 110 X-ray crystal structure of {[Ag(bib)](NO3)
.
H2O}n.

127
 

 

 

 

         Figure 111 X-ray crystal structure of {[Ag2(bib)2(NO2)](NO2)
.
19/8H2O}n.

127
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Although there are obvious structural differences between the present Schiff base ligands 

and the bib ligand, it is reasonable to assume that there are configurational similarities in  

the structures of their Ag(I) complexes. On this premise, possible polymeric cis and trans 

geometries for the representative complex, [Ag(60)]ClO4, are shown in Figures 112 and  

 

 

 

   Figure 112 Possible polymeric, cis structure for the Ag(I) complex, [Ag(60)]ClO4.
  

 

 

 Figure 113 Possible polymeric, trans structure for the Ag(I) complex, [Ag(60)]ClO4. 

 

113, respectively. Microanalytical, IR and NMR data for the Ag(I) complexes of Schiff 

base ligands derived from salicylaldehyde, (62)-(64), indicate that the phenol moieties in 

these ligands are not deprotonated. Thus, the behaviour of these ligands appears to be 

somewhat different to that of the common “salen-type” ligands, as the latter typically  
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deprotonate at the two phenol moieties and have N2O2 coordination.
128

 The highly 

insoluble nature of [Ag1.5(62)](ClO4)1.5, [Ag(63)]ClO4 and [Ag(64)]ClO4 would again 

imply that they have a polymeric structure. Possible structures for the 1:1 Ag:ligand 

complexes, [Ag(63)]ClO4 and [Ag(64)]ClO4, are shown in Figures 114 and 115, 

respectively. There does not appear to be an obvious structure that can be drawn which 

conforms to the 1.5:1 Ag:ligand complex, [Ag1.5(62)](ClO4)1.5. 

 

 

 

       Figure 114 Possible polymeric structure for the Ag(I) Complex, [Ag(63)]ClO4 

 

 

       Figure 115 Possible polymeric structure for the Ag(I) complex, [Ag(64)]ClO4. 

 

 



Chapter 3 

 

237 

 

3.14 Biological Activity 

 

3.14.1 The Fungal Growth Curve 

 

The growth cycle (Figure 116) of the yeast Candida albicans can be divided into four 

phases. The lag phase, which is where the cells are acclimatizing to the new 

environmental conditions and there is no significant increase in cell numbers with 

time. The exponential phase is where maximum population growth occurs as the cells 

double in number every twenty minutes. The stationary phase is where there is no 

further increase in population size (population growth is static) as the available 

nutrients become limited. Finally, the death phase (not shown), where the cell 

population rapidly diminishes as the nutrients are completely exhausted.  

  

 

 

Figure 116 Growth curve (absorbance at  = 540 nm) for C. albicans (death phase 

not included) in the absence of drug (control). 
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3.14.2 Anti-Candida Activity of Imidazole Ligands and their Metal- 

 Complexes 

 

All of the metal-free ligands and their Ag(I) complexes were tested for their anti-

Candida activity in minimal medium (MM). As the metal-free ligands and the Ag(I) 

complexes are essentially insoluble in water, all activity tests were conducted as a 

suspension using a solvent mixture of DMSO and water. While there may be varying 

degrees of solubility for the different sets of complexes, it is difficult to quantify this 

because of the extremely small quantities of samples that were used in this study. In 

all cases, the activity of the complexes was compared to that of a drug-free, positive 

control, where the fungal cells replicated rapidly (maximum growth potential) under 

the test conditions employed. A blank, or negative control (no fungal cells or drugs), 

was also included in each test run. All activity tests were done in triplicate over three 

consecutive days (a total of nine readings). In addition, the anti-fungal prescription 

drug, Ketoconazole, the topical cream, SSD, and a selected number of simple Ag(I) 

salts and previously reported Ag(I) complexes were also screened.  

 

The in vitro, anti-Candida activity of the test compounds is expressed as a minimum 

inhibitory concentration (MIC100) of drug, specified as both µg of compound per 1 

cm
3
 of medium and as an approximated µM concentration, required to totally inhibit 

the growth of the fungal cells at 37 
o
C. MIC50 is the minimum drug concentration for 

50% inhibition of fungal cell growth. In general, the MIC100 is the reference standard 

quoted in this study. The fungal cell growth profiles are shown in Figure 117. Cell 

growth was monitored over a 24 h period at 37 
o
C. Cells subjected to a drug 

concentration that inhibits all growth (MIC100) will exhibit the growth profile 

illustrated by the blue line. Cells subjected to a drug concentration which cause a 50% 

reduction in cell growth (MIC50) will exhibit the growth profile illustrated by the red 

line. Cells unaffected by the administered drug will have the 100% growth profile 

(black line).   
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Figure 117 Growth profiles (absorbance at  = 540 nm) for C. albicans showing the 

expected curve when there is 100% growth (black), 100% inhibition (blue) and 50% 

inhibition (red). 

All of the metal-free ligands synthesised in the present work were found to be essentially 

inactive at a concentration of  50 g cm
-3

. The cut-off test concentration of 50 g cm
-3 

was chosen because above this concentration the drug dose required to maintain 

therapeutic levels would be unrealistically high and would significantly increase the 

likelihood of adverse side-effects.  

The anti-Candida activities of some simple Ag(I) salts, selected Ag(I) complexes, SSD 

and Ketoconazole are given in Table 8. The Ag(I) complexes used in this reference table, 

[Ag(NO2imi)]
125

, [Ag2(SalH)2]
28,29

 and [Ag(Apim)]ClO4,
125

 were chosen as 

representative examples of previous relevant work from within our research group. 
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Table 8 Anti-Candida activity of simple Ag(I) salts, selected Ag(I) complexes, SSD  

and ketoconazole. 

Ag(I) salt/complex/drug MIC100 (g cm
-3

) MIC100 (M) 

AgNO3
125

 0.31 1.82 

AgClO4
125

 0.31 1.49 

[Ag(NO2imi)]
125

 0.62 1.93 

[Ag2(SalH)2]
28,29

 0.31 1.35 

[Ag(Apim)]ClO4
125

 0.62 1.80 

SSD 1.25 3.18 

Ketoconazole 12.5* 23.57 

 

NO2imiH = 4(5)-nitroimidazole 

SalH2 = salicylic acid 

SSD = silver sulfadiazine 

Apim = 1-(3-aminopropy)limidazole  

*MIC50 = 3.12 g cm
-3 

 

The simple Ag(I) salt, AgNO3, is rarely used clinically today in the developed world. 

When used therapeutically, it is administered at extremely low concentrations because of 

its corrosive nature and the cosmetically undesirable side-effect of a long-lasting, dark 

brown stain on the skin when it is exposed to light. 
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The anti-Candida activities of the Ag(I) complexes shown in Table 8 are not significantly 

different from the results obtained for the simple Ag(I) salts. However, the MIC100 value 

for Ketoconazole is relatively high compared to that of the simple Ag(I) salts and the 

Ag(I) complexes. Although it is known that the activity of Ketoconazole is superior in 

vivo than in vitro,
3,4,9,10,12,28,29,125 

 the compound also exhibits a "tailing effect" in vitro i.e. 

it continues to have an inhibitory effect on cell growth even at very low concentrations 

(e.g. it was found to have a MIC50 value of 3.12 g cm
-3 

under the present test 

conditions). It is suggested that this tailing effect may be due to either the insolubility of 

Ketoconazole, which allows for the slow release of the drug, or there may be secondary 

activity due to the compounds metabolites.
3,4,9,10,12 

 SSD also exhibits a similar tailing 

effect.
19,43,64,65,68-70

  In the case of SSD, the insolubility of the complex may allow for a 

slow release of the Ag(I) ions, thus prolonging the therapeutic effect.
19,68-70

 

 

 

3.14.3 Anti-Candida Activity of the Ag(I) Complexes of the Schiff Base 

 Ligands Derived from 1H-imidazole-2-amine (1)  

 

Figure 118 shows the general structural formula for the set of Schiff base ligands derived 

from 1H-imidazole-2-amine (1). 

 

 

 

Figure 118 General structural formula for the Schiff base ligands derived from 1H-

imidazole-2-amine (1). 
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The results of the anti-Candida activity for the Ag(I) complexes of the ligands derived 

from 1H-imidazole-2-amine (1) are shown in Table 9. Although each of the seven Ag(I) 

complexes are more active than Ketoconazole (MIC100 = 23.57 µM), only [Ag(22)2]ClO4 

(MIC100 = 2.22 µM) had superior activity to SSD (MIC100 = 3.18 µM). None of the 

complexes had activity exceeding that of the simple Ag(I) salts, AgNO3 and AgClO4 

(MIC100 = 1.82 and 1.49 µM, respectively). The variation in antifungal activity within the 

group of Ag(I) complexes is also of interest. The activity of [Ag(22)2]ClO4, which 

contains a phenylene moiety within the spacer chain between the two imidazole rings, is 

ca. 2-4 times greater than that of any of the other Ag(I) complexes listed in Table 9. It is 

reasonable to assume that the phenol group renders the complex more lipophilic, thus 

making the passage through the fungal membrane easier. With the exception of 

complexes [Ag(22)2]ClO4 and [Ag(28)]ClO4, complexes having two imidazole moieties 

in the Schiff base ligands (e.g. [Ag(26)]ClO4) were marginally less active than those 

containing one imidazole and one phenol moiety (e.g. [Ag(23)2]ClO4). It is interesting to 

note that complexes [Ag(27)]ClO4 and [Ag(28)]ClO4, which contain isomeric Schiff base 

ligands, had quite different activities. Complex [Ag(28)]ClO4, which has a methyl 

substituent on the imidazole nitrogen (1-position), was twice as potent as [Ag(27)]ClO4, 

which has the methyl substituent on the 4(5)-carbon atom of the imidazole ring. 

Assuming that it is the complex, as a whole, that is bioactive, then it is hard to explain the 

activity difference between the isomers [Ag(27)]ClO4 and [Ag(28)]ClO4, particularly as 

the amine nitrogen is generally regarded as a spectator atom (non-coordinating). In 

contrast to the difference in activity observed between the isomeric pair, [Ag(27)]ClO4 

and [Ag(28)]ClO4, isomers [Ag(23)2]ClO4 and [Ag(24)2]ClO4 displayed similar activities. 

The activities of isomers [Ag(25)]ClO4  and [Ag(26)]ClO4 were also the same. 

The bis-imidazole ligand, 2-BIM
31

 (Figure 22), which contains a single methylene group 

in the spacer chain (no imine moiety), is structurally related to the bis-imidazole Schiff 

base ligand in the Ag(I) complex, [Ag(25)]ClO4. It has been previously reported
31

 that the 

silver(I) complex of 2-BIM, [Ag2(2-BIM)2](ClO4)2 (Figures 64, 65), has a MIC100 value 

of 5-10 g cm
-3

. The lower MIC100 value obtained for [Ag(25)]ClO4 (3.12 g cm
-3

) would 

suggest that the inclusion of an imine moiety in the spacer chain of the ligand, though it 

must be noted that the former contains two Ag(I) ions against the one Ag(I) ion for the 

present complexes. 
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Table 9 Anti-Candida activity of Ag(I) complexes of the Schiff base ligands derived 

from 1H-imidazole-2-amine (1). 

Ligand structure Emp. formula 

 

MIC100 

(g cm
-3

) 

MIC100 

(µM) 

 (22) 

 

[Ag(22)2]ClO4 

 

1.56 

 

2.22 

       (23) 

 

[Ag(23)2]ClO4 

 

3.12 

 

5.36 

           (24) 

 

[Ag(24)2]ClO4 

 

3.12 

 

5.36 

           (25) 

 

[Ag(25)]ClO4 

 

3.12 

 

8.47 

          (26) 

 

[Ag(26)]ClO4 

 

3.12 

 

8.16 

          (27) 

 

[Ag(27)]ClO4 

 

3.12 

 

7.81 

         (28) 

 

[Ag(28)]ClO4 

 

1.56 

 

4.07 
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enhances the antifungal properties of the resulting Ag(I) complex. The improved activity 

of the phenylene-containing complex, [Ag(22)2]CLO4, is consistent with the findings of 

Coyle et al.
25 

who suggested that extending the aromaticity of their ligands enhanced 

lipophilicity and improved the antifungal activity. It was also noted that the present set of 

Ag(I) complexes (with Schiff base ligands derived from 1H-imidazole-2-amine) 

exhibited a tailing effect, with some level of inhibition down to a concentration of 1.56 

g cm
-3 

([Ag(23)2]ClO4, [Ag(24)2]ClO4, [Ag(25)]ClO4, [Ag(26)]ClO4, and [Ag(27)]ClO4). 

This would suggest that either solubility or secondary activity due to the drugs 

metabolites might also be factor in the anti-Candida activity.  

 

 

3.14.4 Anti-Candida Activity of the Ag(I) Complexes of the Schiff Base 

Ligands Derived from Histamine 

 

The general formula for the set of Schiff base ligands derived from histamine is shown in 

Figure 119, and the anti-Candida activities are given in Table 10. The complexes are  

 

 

 

Figure 119 General structural formula for the Schiff base ligands derived from histamine. 

4-31 times more active than the previous set whose ligands were derived from 1H-

imidazole-2-amine (1). The most active Ag(I) complex, [Ag2(35)](ClO4)2, was 84 times 

more active than Ketoconazole, 6 times more active than SSD and 11 times more active 

than [Ag(Apim)]ClO4.  
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Table 10 The anti-Candida activities for the Ag(I) complexes of the Schiff base ligands 

derived from histamine. 

Ligand structure Emp. formula MIC100(g cm
-3

) MIC100 (M) 

 

(29) 

 

[Ag(29)]ClO4 

 

0.78 

 

1.85 

 

(30) 

 

[Ag1.5(30)](ClO4)1.5 

 

0.78 

 

1.56 

 

(33) 

 

[Ag1.5(33)](ClO4)1.5 

 

0.35 

 

0.71 

 

(31) 

 

[Ag1.5(31)](ClO4)1.5 

 

0.78 

 

1.51 

 

(32) 

 

[Ag1.5(32)](ClO4)1.5 

 

0.78 

 

1.56 

 

(34) 

 

[Ag(34)]ClO4 

 

0.19 

 

0.39 

(35) 

 

[Ag2(35)](ClO4)2 

 

0.19 

 

0.28 
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Although [Ag(29)]ClO4  was the least active of this set it was still 13 times more active 

than Ketoconazole. Complexes [Ag1.5(33)](ClO4)1.5, [Ag(34)]ClO4 and [Ag2(35)](ClO4)2 

were more active than the simple Ag(I) salts (Table 8). The improved activity of this set 

of complexes, compared to the 1H-imidazole-2-amine (1) complexes, may be attributed 

to the difference in the structures of the Schiff base ligands and the formulation of some 

of the complexes. The ligands derived from histamine have two additional methylene 

units in the spacer chain compared to those originating from 1H-imidazole-2-amine (1). 

Also, the spacer chain is attached to a different carbon atom of the imidazole ring in the 

histamine residues (C-4(5)) and 1H-imidazole-2-amine (1) (C-2) of the respective Schiff 

base ligands. Furthermore, some of the Ag(I) complexes incorporating the histamine 

residue have more silver content (e.g. [Ag1.5(30)](ClO4)1.5, MIC100 = 1.56 M) compared 

to the equivalent complex with the 1H-imidazole-2-amine (1) residue (e.g. [Ag(25)]ClO4, 

MIC100 = 8.47 M). The increase in the length of the spacer chain of the complexes, due 

to the extra methylenes, may increase the flexibility of the complexes, possibly enhancing 

their ability to penetrate into the fungal cell and may also facilitate interactions within the 

fungal cell itself.  

The variation in the antifungal activity within this histamine set of Ag(I) complexes is 

also of interest. Again, the most potent Ag(I) complex was the one containing a 

phenylene moiety in the spacer chain ([Ag2(35)](ClO4)2 MIC100 = 0.28 M). The 

isomeric pair, [Ag1.5(31)](ClO4)1.5 and [Ag1.5(32)](ClO4)1.5, both of which contain a 

methyl group on the imidazole ring, are equally active. This is in contrast to the findings 

for the corresponding isomeric pair, [Ag(27)]ClO4 and [Ag(28)]ClO4, in the previous 1H-

imidazole-2-amine (1) set of complexes (Table 9). The isomeric pair [Ag1.5(30)](ClO4)1.5 

and [Ag1.5(33)](ClO4)1.5 show a significant difference in activity (1.56 M and 0.71 M, 

respectively). Again, this is contrary to the findings for the corresponding isomeric pair, 

[Ag(25)]ClO4 and [Ag(26)]ClO4, from the 1H-imidazole-2-amine (1) set where no real 

difference in activity was found. Whilst [Ag1.5(30)](ClO4)1.5 and [Ag1.5(33)](ClO4)1.5 have 

the same Ag:ligand ratio (1.5:1), the only difference between the complexes lies in the 

position of the attachment of the spacer chain to the imidazole ring. The spacer chain is 

linked to the imidazole carbon at the 2-position in the ligand in [Ag1.5(30)](ClO4)1.5 while 
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it is joined in the 4(5)-position at the ligand of the more potent complex, 

[Ag1.5(33)](ClO4)1.5.  

 

3.14.5 Anti-Candida Activity of the Ag(I) Complexes of the Schiff Base 

Ligands Derived from Apim 

 

The general structural formula for the set of Schiff base ligands derived from Apim is 

shown in Figure 120 and the anti-Candida activities for the Ag(I) complexes are given in 

Table 11.  

 

 

 

Figure 120 The general structural formula for the set of Schiff base ligands derived from 

Apim. 

 

Complex [Ag(36)2]ClO4, which contains only one imidazole residue in its Schiff base 

ligands, was the least active of this set. Whilst the ratio of Ag(I):ligand for [Ag(36)2]ClO4 

is 1:2, the rest of the complexes have a 1:1 Ag(I):ligand ratio. Thus, it may be that it is 

the higher amount of the Ag(I) ion in the latter complexes that is responsible for the 

improved antifungal activity. With the exception of [Ag(36)2]ClO4, the anti-Candida 

activity of this set of Ag(I) complexes was greatly superior to the two previous sets (i.e. 

the Ag(I) complexes of Schiff base ligands derived from 1H-imidazole-2-amine (1) and 

those derived from histamine). The present set of complexes were also significantly more 

potent than the simple Ag(I) salts, the Ag(I) complexes and SSD (Table 8). In addition, 
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Table 11 The anti-Candida activities for the Ag(I) complexes of the Schiff base ligands 

derived from Apim. 

Ligand structure Emp. formula MIC100 

(g cm
-3

) 

MIC100 

(M) 

 

(36) 

 

[Ag(36)2]ClO4 

 

0.31 

 

0.45 

 

(37) 

 

[Ag(37)]ClO4 

 

0.03 

 

0.07 

 

(38) 

 

[Ag(38)]ClO4 

 

0.03 

 

0.07 

 

(39) 

 

[Ag(39)]ClO4 

 

0.03 

 

0.07 

 

(40) 

 

[Ag(40)]ClO4 

 

0.03 

 

0.07 

 

the complexes were up to 340 times more potent than Ketoconazole. The two sets of 

isomers, [Ag(37)]ClO4, [Ag(38)]ClO4 and [Ag(39)]ClO4, [Ag(40)]ClO4, were found to 

have the same anti-Candida activity. The activity of this set of Ag(I) complexes 

containing Schiff base ligands derived from Apim might have been expected to be 
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somewhat similar to the set of Ag(I) complexes with Schiff base ligands derived from 

histamine. Although the structural difference between the two ligand sets would seem 

relatively minor, the extra methylene group in the spacer chain and the point of the 

attachment of the spacer chain to the imidazole ring results in a substantial improvement 

in the anti-Candida activity. One of the nitrogen atoms (N1) of the Apim ring is the point 

of attachment of the spacer chain, as opposed to an imidazole ring carbon atom in both of 

the previous sets (C-2 of 1H-imidazole-2-amine moiety and C-4(5) of the histamine 

moiety). Changing N1 from a secondary to a tertiary amine may be a factor in improving 

the activity of the Ag(I) complexes. However, this argument is somewhat negated by the 

observation that the ligand in [Ag(40)]ClO4 contains two tertiary amine N atoms and the 

ligand in [Ag(38)]ClO4 has one tertiary amine N atom, yet both complexes exhibit the 

same antifungal activity. 

 

3.14.6 Anti-Candida Activities of the Ag(I) Complexes of the Schiff Base Ligands 

Derived from 1,2-Diaminoethane, 1,3-Diaminopropane and 1,4-Diaminobutane  

 

The general structural formula of this set of the Schiff bases is shown in Figure 121 and 

the anti-Candida activities for the Ag(I) complexes are given in Table 12. 

 

 

 

Figure 121 General structural formula of the Schiff base ligands derived from 1,2-

diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane. 
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This set of complexes is divided into sub-sets in accordance with the substituted 

imidazolecarboxaldehydes or the salicylaldehyde which were reacted with the diamines. 

With the exception of [Ag2(51)](ClO4)2 and  [Ag2(52)](ClO4)2 this set of complexes 

showed a significant reduction in activity (2-3 times less active) compared to the Apim 

set (Table 9). It would seem that incorporating a second imine moiety in the spacer chain 

of the ligand is, at least, partially responsible for this decrease in activity. The most active 

complexes were [Ag2(51)](ClO4)2 and [Ag2(52)](ClO4)2, and the least active were in the 

sub-set comprising [Ag1.5(56)](ClO4)1.5, [Ag2(57)](ClO4)2 and [Ag2(58)](ClO4)2. The 

major structural difference between the most active and the least active complexes in the 

set is the presence of the phenyl substituents on the periphery of the Schiff base ligand in 

the latter sub-set. 

 

Table 12 The anti-Candida activities of the Ag(I) complexes of the Schiff base ligands 

derived from 1,2-diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane. 

Ligand structure Emp. formula MIC100 

(g cm
-3

) 

MIC100 

(M) 

n=2 (41) 

 

[Ag1.5(41)](ClO4)1.5 

 

0.15 

 

0.28 

n=3 (42) 

 

[Ag1.5(42)](ClO4)1.5 

 

0.15 

 

0.28 

n=4 (43) 

 

[Ag2(43)](ClO4)2 

 

0.15 

 

0.23 

Contd. 
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n=2 (50) 

 

[Ag(50)]ClO4 

 

0.19 

 

0.45 

n=3 (51) 

 

[Ag2(51)](ClO4)2 

 

0.10 

 

0.16 

n=4 (52) 

 

[Ag2(52)](ClO4)2 

 

0.10 

 

0.15 

 

n=2 

(44) 

 

[Ag2(44)](ClO4)2 

 

0.39 

 

0.59 

n=3 

(45) 

 

[Ag2(45)](ClO4)2 

 

0.39 

 

0.58 

n=4 

(46) 

 

[Ag2(46)](ClO4)2 

 

0.39 

 

0.57 

Contd. 
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n=2 

(53) 

 

[Ag1.5(53)](ClO4)1.5 

 

0.19 

 

0.34 

n=3 

(54) 

 

[Ag1.5(54)](ClO4)1.5 

 

0.19 

 

0.33 

n=4 

(55) 

 

[Ag2(55)](ClO4)2 

 

0.19 

 

0.28 

 

n=2 

(56) 

 

[Ag1.5(56)](ClO4)1.5 

 

0.78 

 

1.10 

n=3 

(57) 

 

[Ag2(57)](ClO4)2 

 

0.78 

 

0.95 

n=4 

(58) 

 

[Ag2(58)](ClO4)2 

 

0.78 

 

1.36 

Contd. 
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n=2 

(47) 

 

[Ag(47)]ClO4 

 

0.19 

 

0.40 

n=3 

(48) 

 

[Ag(48)]ClO4 

 

0.19 

 

0.39 

n=4 

(49) 

 

[Ag2(49)](ClO4)2 

 

0.19 

 

0.27 

 

Within the sub-set comprising complexes [Ag(50)]ClO4, [Ag2(51)](ClO4)2 and 

[Ag2(52)](ClO4)2, complex [Ag(50)]ClO4 is approximately three times less active than 

[Ag2(51)](ClO4)2 and [Ag2(52)](ClO4)2. The major difference between these three 

complexes is that [Ag(50)]ClO4 is formulated as a 1:1 Ag:ligand complex, while 

[Ag2(51)](ClO4)2 and [Ag2(52)](ClO4)2 are 2:1 Ag:ligand complexes. It is plausible that it 

may be the reduced Ag(I) content that is responsible for the corresponding reduction in 

activity. Kamenecka et al.,
128

 in their work on amidines as possible cancer drugs, 

investigated the effect of the imine moiety on the activity of their organic compounds. 

While the imine moiety was clearly needed for potency, it was suggested that its role was 

to provide the appropriate local pKa for the drugs affinity. This would suggest that the 

presence of two imines in the current set of Ag(I) complexes might increase the basicity 

of the complex above the critical physiological level, thus having a negative effect on 

their anti-Candida activity. Thus, any positive effects on activity due to the variation in 

the spacer chain length are mitigated by the negative effect of the increase in ligand 

basicity.  
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3.14.7 Anti-Candida Activity of the Ag(I) Complexes of the Schiff Base Ligands 

Derived from 1,2-, 1,3- and 1,4-Phenylenediamine  

 

The general structural formulae for the set of Schiff base ligands derived from 1,2- 1,3- 

and 1,4-phenylenediamine are shown in Figure 122 and the anti-Candida activities for the 

Ag(I) complexes are given in Table 13. In general, this set of Ag(I) complexes were 

 

                                

 

Figure 122 The general structural formula for the set of Schiff base ligands derived from 

1,2- 1,3- and 1,4-phenylenediamine. 

 

not as active as those originating from histamine, Apim or those derived from 1,2-

diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane. The introduction of an 

aromatic phenylene moiety into the spacer chain, instead of the aliphatic methylenes that 

were used in the previous ligand set, resulted in a general decrease in antifungal activity. 

In addition, it is evident that the structural differences within the spacer chain of this set 

of ligands (1,2-, 1,3- and 1,4-phenylenediamine) does not impact on the antifungal 

activity. Furthermore, activity is unaffected when imidazole end groups are replaced by a 

phenol moiety. 
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Table 13 The anti-Candida activity for the Ag(I) complexes of the Schiff base ligands 

derived from 1,2-, 1,3- and 1,4-phenylenediamine. 

Ligand structure Emp. formula MIC100(g cm
-3

) MIC100(M) 

 

(59) 

 

[Ag1.5(59)](ClO4)1.5 

 

0.78 

 

1.35 

 

(60) 

 

[Ag(60)]ClO4 

 

0.78 

 

1.54 

 

(61) 

 

[Ag(61)]ClO4 

 

0.78 

 

1.66 

 

(68) 

 

[Ag1.5(68)](ClO4)1.5 

 

0. 78 

 

1.30 

 

(69) 

 

[Ag(69)]ClO4 

 

0. 78 

 

1.60 

 

(70) 

 

[Ag(70)]ClO4 

 

0. 78 

 

1.60 
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(65) 

 

[Ag1.5(65)](ClO4)1.5 

 

0. 78 

 

1.29 

 

(66) 

 

[Ag1.5(66)](ClO4)1.5 

 

0. 78 

 

1.29 

 

(67) 

 

[Ag1.5(67)](ClO4)1.5 

 

0. 78 

 

1.29 

 

 

(71) 

 

[Ag(71)]ClO4 

 

0.78 

 

1.51 

 

(72) 

 

[Ag(72)]ClO4 

 

0.78 

 

1.46 

 

(73) 

 

[Ag(73)]ClO4 

 

0.78 

 

1.51 

Contd. 
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(62) 

 

[Ag1.5(62)](ClO4)1.5 

 

0. 78 

 

1.28 

 

(63) 

 

[Ag(63)]ClO4 

 

0. 78 

 

1.50 

 

(64) 

 

[Ag(64)]ClO4 

 

0. 78 

 

1.39 

 

3.15 Summary of Anti-Candida Activity 

 

Of the five sets of Ag(I) complexes screened, the most active was the set containing the 

Schiff base ligands derived from Apim (Table 9). With an average MIC100 value of 0.07 

M this set of Ag(I) complexes ([Ag(37)]ClO4, [Ag(38)]ClO4, [Ag(39)]ClO4 and 

[Ag(40)]ClO4) displayed the highest anti-Candida activity of any of the metal complexes 

reported to date in the literature. It is obvious from these studies that a positive synergism 

exists between the metal and the ligand in the antimicrobial action of the complexes. 

However, detailed mechanistic investigations will be necessary to establish the mode(s) 

of action of the complexes.  
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Conclusions  
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According to Cohen et al.
129

 "the challenges in developing the most effective drugs are, 

“to find the appropriate group, the correct substituents and the correct substitution 

positions in the target molecule". To meet these challenges and to design an effective 

antifungal drug, or family of drugs, the previous knowledge and experience of imidazole 

chemistry within this research group was utilized.
31,55

 Four objectives were set. The ideal 

drug should incorporate (i) a hydrophobic functionality, (ii) a hydrophilic functionality, 

(iii) a metal binding site and (iv) a degree of flexibility. In order to fulfil these 

requirements, a set of imidazolecarboxaldehydes were chosen and reacted with selected 

amines, to give five sets of Schiff base ligand. The position and length of the spacer chain 

linking the two imidazoles moieties or phenol groups was varied, as was the position and 

the substituents on the imidazole ring. The Schiff base ligands were then complexed to 

Ag(I) ions. The resulting complexes contained a hydrophilic group (the imidazole) and a 

flexible hydrophobic linker chain. The Ag(I) metal binding site was provided by the N 

atom of the imine groups on the imidazoles and possibly also the imine N atom of the 

spacer chain. The electron-donating imine group also provided an extra reactive 

functionality (e.g. drug-target site H-bonding). The presence of the imidazole N-H amine 

group is also thought to enhance bioactivity due to its H-bonding abilities and the 

provision of the physiologically appropriate pKa.
129 

The hydrophobic moiety should 

facilitate entry of the drug into the fungal cell by providing greater lipophilicity, which 

may also play an important part in maintaining the drugs at therapeutic dosage levels. 

The linker chain may allow the degree of flexibility needed for the fluid nature of 

protein-drug interactions.
130

  

 

While the synthesis of some of the Schiff base ligands in the present work was 

problematic (due largely to their insolubility) this did not prevent them from complexing 

to Ag(I) ions. The ligands were characterized using standard IR and NMR spectroscopic 

methods, microanalysis and, in some instances, by X-ray crystallography. 
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The synthesized Schiff base ligands might result in either the E or Z forms due to 

stereochemistry about the carbon-nitrogen double bond. However, evidence for more 

than one form was not found in the 
1
H NMR spectra since only one signal is seen for the 

imine N=C-H. The E form would be expected to be more stable on steric grounds. Poor 

solubility did not yield X-ray quality crystals for four of the five ligand sets or for any of 

the Ag(I) complexes. However, X-ray crystal structures were obtained for two of the 

Schiff base ligands derived from the Apim set, confirming the E stereochemistry, and 

consistent with the NMR data. Compared to the synthesis of the ligands, the preparation 

of the Ag(I) complexes was relatively simple and the products were isolated in moderate 

to good yields. The complexes were characterized using standard IR and NMR 

spectroscopic methods, microanalysis and, in two cases, by mass spectrometry.  

 

All of the Schiff base ligands and their corresponding Ag(I) complexes were tested for 

their anti-Candida activity. While all the metal-free ligands were essentially inactive the 

Ag(I) complexes showed excellent antifungal activity. The set of Ag(I) complexes based 

on the Apim Schiff base ligands were the most potent. A progressive improvement in 

activity of the Ag(I) complexes was seen on going from ligands derived from 1H-

imidazole-2-amine (1), to histamine to Apim, corresponding to the increase in spacer-

chain length of the respective ligand sets. However, this pattern was not found in the case 

of the set of Ag(I) complexes of di-Schiff base ligands derived from 1,2-diaminoethane, 

1,3-diaminopropane and 1,4-diaminobutane. A notable reduction in activity was observed 

despite increasing the spacer chain length. It is possible that the extra imine group in the 

spacer chain may have had a negative impact on activity and negated any positive effect 

due to the progressive increase in spacer chain length.  

The set of Ag(I) complexes containing di-Schiff base ligands derived from 1,2-, 1,3- and 

1,4-phenylenediamine had similar activity to those complexes with ligands derived from 

1,2-diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane. In this instance, the 

resulting increase in the level of aromaticity and presumably lipophility, does not appear 

to influence the anti-Candida activity. 
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X-ray crystal data for ligand (36). 

 

Data were collected at 150(2)K on a Bruker SMART 1000 CCD diffractometer. The structure 

was solved by direct methods and refined on F
2
 using all the reflections*. All the non-

hydrogen atoms were refined using anisotropic atomic displacement parameters and 

hydrogen atoms bonded to carbon were inserted at calculated positions using a riding model. 

The hydrogen bonded to O1 was located from difference maps and refined with a fixed 

isotropic atomic displacement parameter. Parameters for data collection and refinement are 

summarised in Table 1.  

 

There is no sign of any obvious  stacking, though there are some interactions between 

neighbouring imidazole rings. These don’t look very strong but may be responsible for the 

observation that the imidazole ring and phenol ring are almost perpendicular. 

 

* G.M. Sheldrick, SHELXTL Version 6.12, Bruker AXS, Madison WI, 2001. 
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 Table 1.  Crystal data and structure refinement for (36). 

 

Identification code  (36). 

Empirical formula  C13 H15 N3 O 

Formula weight  229.28 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 12.3194(11) Å = 90°. 

 b = 5.8438(5) Å = 97.963(2)°. 

 c = 16.3752(15) Å  = 90°. 

Volume 1167.52(18) Å3 

Z 4 

Density (calculated) 1.304 Mg/m3 

Absorption coefficient 0.086 mm-1 

F(000) 488 

Crystal size 0.33 x 0.22 x 0.10 mm3 

Crystal description colourless block  

Theta range for data collection 1.67 to 28.78°. 

Index ranges -16<=h<=15, -7<=k<=7, -21<=l<=21 

Reflections collected 9584 

Independent reflections 2753 [R(int) = 0.0260] 

Completeness to theta = 26.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.844722 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2753 / 0 / 157 

Goodness-of-fit on F2 1.006 

Final R indices [I>2sigma(I)] R1 = 0.0389, wR2 = 0.0975 

R indices (all data) R1 = 0.0613, wR2 = 0.1128 

Largest diff. peak and hole 0.217 and -0.181 e.Å-3 
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Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters 

(Å2x 103). For ligand (36)  U(eq) is defined as one third of  the trace of the orthogonalized 

Uij tensor. 

 

 

 x y z U(eq) 

 

 

C(1) 9043(1) 3109(2) 5559(1) 32(1) 

N(1) 9675(1) 4034(2) 6187(1) 37(1) 

C(2) 10097(1) 2192(3) 6645(1) 34(1) 

C(3) 9716(1) 192(2) 6291(1) 29(1) 

N(2) 9037(1) 801(2) 5592(1) 25(1) 

C(4) 8368(1) -751(2) 5031(1) 30(1) 

C(5) 7438(1) -1794(2) 5430(1) 30(1) 

C(6) 6619(1) -39(2) 5642(1) 28(1) 

N(3) 5682(1) -1188(2) 5920(1) 27(1) 

C(7) 5147(1) -173(2) 6427(1) 25(1) 

C(8) 4174(1) -1216(2) 6686(1) 24(1) 

C(9) 3579(1) -56(2) 7224(1) 29(1) 

C(10) 2635(1) -976(3) 7456(1) 33(1) 

C(11) 2269(1) -3090(3) 7145(1) 33(1) 

C(12) 2845(1) -4293(2) 6618(1) 30(1) 

C(13) 3803(1) -3385(2) 6388(1) 25(1) 

O(1) 4352(1) -4607(2) 5875(1) 33(1) 

_________________________________________________________________
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 Table 3.   Bond lengths [Å] and angles [°] for ligand (36). 

_____________________________________________________  

C(1)-N(1)  1.3172(19) 

C(1)-N(2)  1.3501(17) 

N(1)-C(2)  1.372(2) 

C(2)-C(3)  1.359(2) 

C(3)-N(2)  1.3683(18) 

N(2)-C(4)  1.4609(17) 

C(4)-C(5)  1.5228(18) 

C(5)-C(6)  1.5118(19) 

C(6)-N(3)  1.4613(17) 

N(3)-C(7)  1.2756(16) 

C(7)-C(8)  1.4584(18) 

C(8)-C(9)  1.3972(18) 

C(8)-C(13)  1.4116(18) 

C(9)-C(10)  1.3824(19) 

C(10)-C(11)  1.388(2) 

C(11)-C(12)  1.382(2) 

C(12)-C(13)  1.3929(19) 

C(13)-O(1)  1.3531(16) 

 

N(1)-C(1)-N(2)                     112.66(13)    

C(1)-N(1)-C(2)                     104.04(12) 

C(3)-C(2)-N(1)                     111.08(13) 

C(2)-C(3)-N(2)                     105.57(12) 

C(1)-N(2)-C(3)                     106.65(12) 

C(1)-N(2)-C(4)                     126.95(12) 

C(3)-N(2)-C(4)                     126.22(12) 

N(2)-C(4)-C(5)                     111.77(11) 

C(6)-C(5)-C(4)                     113.13(12) 

N(3)-C(6)-C(5)                     109.95(11) 

C(7)-N(3)-C(6)                     119.42(12) 

 

N(3)-C(7)-C(8)                    120.94(12) 

C(9)-C(8)-C(13)                  118.70(12) 

C(9)-C(8)-C(7)                    120.28(12) 

C(13)-C(8)-C(7)                  121.01(12) 

C(10)-C(9)-C(8)                  121.34(13) 

C(9)-C(10)-C(11)                119.19(13) 

C(12)-C(11)-C(10)              120.93(13) 

C(11)-C(12)-C(13)              120.15(13) 

O(1)-C(13)-C(12)                118.82(12) 

O(1)-C(13)-C(8)                  121.50(12) 

C(12)-C(13)-C(8)                119.67(12) 
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Table 4. Anisotropic displacement parameters  (Å2x 103) for ligand (36). The 

anisotropic 

displacement factor exponent takes the form:  -22[ h2 a*2U11 + ...  + 2 h k a* b* 

U12 ] 

 

 

 

 U11 U22  U33 U23 U13 U12 

 

 

 

C(1) 31(1)  24(1) 41(1)  2(1) 4(1)  2(1) 

N(1) 35(1)  31(1) 46(1)  -7(1) 5(1)  -3(1) 

C(2) 29(1)  43(1) 30(1)  -4(1) 5(1)  -1(1) 

C(3) 27(1)  33(1) 29(1)  5(1) 7(1)  2(1) 

N(2) 23(1)  23(1) 28(1)  0(1) 8(1)  -1(1) 

C(4) 29(1)  31(1) 31(1)  -6(1) 8(1)  -5(1) 

C(5) 27(1)  28(1) 35(1)  -5(1) 8(1)  -5(1) 

C(6) 24(1)  30(1) 30(1)  1(1) 5(1)  -3(1) 

N(3) 24(1)  29(1) 29(1)  -1(1) 4(1)  -1(1) 

C(7) 24(1)  23(1) 26(1)  -1(1) 0(1)  0(1) 

C(8) 22(1)  26(1) 23(1)  2(1) 1(1)  1(1) 

C(9) 28(1)  29(1) 28(1)  -1(1) 1(1)  4(1) 

C(10) 29(1)  41(1) 28(1)  0(1) 7(1)  7(1) 

C(11) 26(1)  41(1) 33(1)  8(1) 7(1)  -1(1) 

C(12) 28(1)  29(1) 32(1)  3(1) 1(1)  -4(1) 

C(13) 25(1)  26(1) 25(1)  2(1) 1(1)  2(1) 

O(1) 33(1)  29(1) 39(1)  -8(1) 11(1)  -4(1) 

_____________________________________________________________________

_____
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Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters 

(Å2x 10 3) 

for ligand (36). 

 

 

 x  y  z  U(eq) 

 

 

  

H(1) 8636 3972 5129 38 

H(2) 10591 2300 7143 41 

H(3) 9885 -1313 6488 35 

H(4A) 8837 -1992 4862 36 

H(4B) 8058 97 4529 36 

H(5A) 7051 -2938 5049 36 

H(5B) 7751 -2603 5940 36 

H(6A) 6972 983 6082 33 

H(6B) 6366 906 5151 33 

H(7) 5386 1283 6640 29 

H(9) 3829 1395 7434 34 

H(10) 2241 -171 7825 39 

H(11) 1614 -3719 7295 39 

H(12) 2587 -5743 6413 36 

H(1O) 4969(15) -3650(30) 5786(11) 50 

_____________________________________________________________________

______
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Table 6.  Torsion angles [°] for ligand (36). 

 

N(2)-C(1)-N(1)-C(2)                0.18(16) 

C(1)-N(1)-C(2)-C(3)               -0.15(16) 

N(1)-C(2)-C(3)-N(2)                0.07(16) 

N(1)-C(1)-N(2)-C(3)               -0.14(16) 

N(1)-C(1)-N(2)-C(4)                175.20(12) 

C(2)-C(3)-N(2)-C(1)                0.04(15) 

C(2)-C(3)-N(2)-C(4)               -175.35(11) 

C(1)-N(2)-C(4)-C(5)               -105.86(15) 

C(3)-N(2)-C(4)-C(5)  68.62(17) 

N(2)-C(4)-C(5)-C(6)  63.96(15) 

C(4)-C(5)-C(6)-N(3)                172.61(11) 

C(5)-C(6)-N(3)-C(7)                151.33(12) 

C(6)-N(3)-C(7)-C(8)                176.83(12) 

N(3)-C(7)-C(8)-C(9)              -178.22(12) 

N(3)-C(7)-C(8)-C(13)              0.60(2) 

C(13)-C(8)-C(9)-C(10)           -1.00(2) 

C(7)-C(8)-C(9)-C(10)              177.86(12) 

C(8)-C(9)-C(10)-C(11)           -0.30(2) 

C(9)-C(10)-C(11)-C(12)          1.00(2) 

C(10)-C(11)-C(12)-C(13)       -0.40(2) 

C(11)-C(12)-C(13)-O(1)         179.75(12) 

C(11)-C(12)-C(13)-C(8)        -0.90(2) 

C(9)-C(8)-C(13)-O(1)            -179.09(12) 

C(7)-C(8)-C(13)-O(1)             2.07(19) 

C(9)-C(8)-C(13)-C(12)           1.60(19) 

C(7)-C(8)-C(13)-C(12)          -177.25(12) 
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Table 7.  Hydrogen bonds for ligand (36) [Å and °]. 

 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

 

 O(1)-H(1O)...N(3) 0.970(19) 1.685(19) 2.5791(15) 151.3(16) 

_____________________________________________________________________ 
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Data were collected at 150(2)K on a Bruker SMART 1000 CCD diffractometer. The structure 

was solved by direct methods and refined on F
2
 using all the reflections*. All the non-

hydrogen atoms were refined using anisotropic atomic displacement parameters and 

hydrogen atoms were inserted at calculated positions using a riding model. Parameters for 

data collection and refinement are summarised in Table 1.  

 

This one is not as advertised and you didn’t tell us what went into the mix, so we have gone 

for total analysis by X-ray. The data are good enough to distinguish C from N, so we believe 

we have the atom types assigned correctly. There is a short imine bond between N3 and C7. 

There is a respectable H-bond from N4 to the imine nitrogen of a neighbouring molecule 

(under ½-x, ½+y, ½-z), and a less convincing one from the same NH to N5 of the same 

neighbour (the DHA angle is a bit low for this one). These interactions link the molecules 

into chains. There is also a C-H
……

N H-bond from C10 to N1 (imidazole lone pair) of a 

second neighbour (under x, y, z+1) – this is longer but that is always true for CH H-bonds – 

and including this interaction gives sheets of molecules in the plane perpendicular to the a 

axis. 

 

* G.M. Sheldrick, SHELXTL Version 6.12, Bruker AXS, Madison WI, 2001. 
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Table 1.  Crystal data and structure refinement for (37). 

 

Identification code                           (37) 

Empirical formula                            C10 H13 N5 

Formula weight                                203.25 

Temperature                                     150(2) K 

Wavelength                                       0.71073 Å 

Crystal system                                  Monoclinic 

Space group                                      P2(1)/n 

Unit cell dimensions          

a = 8.6001(10) Å                              α= 90°. 

b = 10.1425(12) Å                            β= 103.131(2)°. 

c = 12.3976(14) Å                            γ = 90°. 

Volume                                            1053.1(2) Å3 

Z                                                       4 

Density (calculated)                  1.282 Mg/m3 

Absorption coefficient                     0.084 mm-1 

F(000)                                              432 

Crystal size                                      0.37 x 0.17 x 0.0 mm3 

Crystal description                           colourless block  

Theta range for data collection         2.62 to 25.00°. 

Index ranges                                     -10<=h<=10, -12<=k<=11, -14<=l<=14 

Reflections collected                        7349 

Independent reflections                    1848 [R(int) = 0.0267] 

Completeness to theta = 25.00°        99.9 %  

Absorption correction                       Semi-empirical from equivalents 

Max. and min. transmission             1.00000 and 0.843689 

Refinement method                          Full-matrix least-squares on F2 

Data / restraints / parameters            1848 / 0 / 136 

Goodness-of-fit on F2                      1.091 

Final R indices [I>2sigma(I)]           R1 = 0.0359, wR2 = 0.0794 

R indices (all data)                            R1 = 0.0516, wR2 = 0.0885 
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Largest diff. peak and hole                 0.165 and -0.232 e.Å-3 

 

 

 

Table 2.  

 

Atomic coordinates  ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for (37).  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

_________________________________________________________________________ 

           X        y             z U(eq) 

___________________________________________________________________________ 

C(1) 1591 (2)   -316(2)  -3846(1)       27(1) 

C(1) 1591 (2)   -316(2)     -3846(1)       27(1) 

N(1)2077 (2)     497(1)      -4530(1)        31(1) 

C(2) 3700(2)     553(2)      -4141(1)        35(1) 

N(2) 2808(2)     -780(1)      -3051(1)        26(1) 

C(3) 4166(2)      -220(2)      -3238(1)       34(1) 

C(4) 2709(2)     -1672(2)    -2143(1)       34(1) 

C(5) 3042(2)      -985(2)     -1022(1)       33(1) 

C(6) 1804(2)       50(2)        - 943(1)       29(1) 

N(3) 1973(2)       484(1)        202(1)       26(1) 

C(7) 2230(2)       1702(2)       418(1)       25(1) 

C(8) 2356(2)       2243(2)     1515(1)      23(1) 

C(9) 2823(2)       3483(2)      1883(1)       27(1) 

N(4) 2749(2)      3517(1)      2967(1)      27(1) 

C(10) 2236(2)    2321(2)     3213(1)     27(1) 

N(5) 1980(2)      1511(1)     2364(1)     27(1) 

C(6) 1804(2)      50(2)        -943(1)       29(1) 

N(3) 1973(2)      484(1)        202(1)       26(1) 

C(7) 2230(2)       1702(2)       418(1)       25(1) 

C(8) 2356(2)   2243(2)     1515(1)              23(1) 

C(9) 2823(2)  3483(2)      1883(1)       27(1) 
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N(4) 2749(2)  3517(1)                                2967(1)      27(1) 

C(10) 2236(2) 2321(2)                               3213(1)               27(1) 

N(5) 1980(2)   1511(1)                               2364(1)     27(1) 

 

 

 

Table 3.   Bond lengths [Å] and angles [°] for (37). 

_____________________________________________________  

C(1)-N(1)  1.317(2) 

C(1)-N(2)  1.349(2) 

N(1)-C(2)  1.371(2) 

C(2)-C(3)  1.350(2) 

N(2)-C(3)  1.365(2) 

N(2)-C(4)  1.462(2) 

C(4)-C(5)  1.523(2) 

C(5)-C(6)  1.514(2) 

C(6)-N(3)  1.4616(19) 

N(3)-C(7)  1.272(2) 

C(7)-C(8)  1.448(2) 

C(8)-C(9)  1.367(2) 

C(8)-N(5)  1.385(2) 

C(9)-N(4)  1.360(2) 

N(4)-C(10)  1.350(2) 

C(10)-N(5)  1.314(2) 

 

N(1)-C(1)-N(2)                                  112.43(15) 

C(1)-N(1)-C(2)                                  104.25(14) 

C(3)-C(2)-N(1)    110.77(16) 

C(1)-N(2)-C(3)                                  106.40(14) 

C(1)-N(2)-C(4)                                  127.38(14) 

C(3)-N(2)-C(4)                                  126.19(14) 

C(2)-C(3)-N(2)                                 106.14(15) 

N(2)-C(4)-C(5)                                 112.79(14) 
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C(6)-C(5)-C(4)                                            112.80(14) 

N(3)-C(6)-C(5)                                            110.82(13) 

C(7)-N(3)-C(6)                                            118.05(13) 

C(9)-C(8)-N(5)                                            109.95(13) 

C(9)-C(8)-C(7)                                            128.05(14) 

N(5)-C(8)-C(7)                                            122.01(14) 

N(4)-C(9)-C(8)                                            106.10(14) 

C(10)-N(4)-C(9)                                          106.96(13) 

N(5)-C(10)-N(4)                                          112.62(14) 

C(10)-N(5)-C(8)                                          104.37(13) 

 

 

Table 4.   Anisotropic displacement parameters  (Å2x 103) for (37).   

The anisotropic displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k 

a* b* U12 ] 

 

__________________________________________________________________________ 

 U11 U22  U33 U23 U13 U12 

___________________________________________________________________________ 

 

C(1) 28(1)  31(1) 23(1)  -2(1) 5(1)  1(1) 

N(1) 34(1)  35(1) 25(1)  2(1) 7(1)  0(1) 

C(2) 33(1)  42(1) 32(1)  1(1) 12(1)  -3(1) 

N(2) 32(1)  28(1) 19(1)  -2(1) 7(1)  3(1) 

C(3) 25(1)  45(1) 31(1)  -3(1) 5(1)  2(1) 

C(4) 54(1)  26(1) 23(1)  1(1) 10(1)  6(1) 

C(5) 46(1)  31(1) 21(1)  1(1) 7(1)  7(1) 

C(6) 38(1)  29(1) 19(1)  -1(1) 6(1)  1(1) 

N(3) 33(1)  24(1) 21(1)  -1(1) 7(1)  2(1) 

C(7) 30(1)  23(1) 23(1)  5(1) 8(1)  3(1) 

C(8) 27(1)  20(1) 23(1)  3(1) 6(1)  3(1) 

C(9) 34(1)  22(1) 28(1)  1(1) 11(1)  1(1) 
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N(4) 33(1)  20(1) 27(1)  -6(1) 5(1)  -2(1) 

C(10) 37(1)  22(1) 23(1)  0(1) 6(1)  1(1) 

N(5) 37(1)  21(1) 22(1)  0(1) 6(1)  0(1) 

 

 

Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) 

for (37). 

___________________________________________________________________________ 

 x  y  z  U(eq) 

___________________________________________________________________________ 

  

H(1) 505 -550 -3907 33 

H(2) 4402 1065 -4462 42 

H(3) 5226 -348 -2818 41 

H(4A) 3488 -2397 -2118 41 

H(4B) 1629 -2067 -2289 41 

H(5A) 3069 -1652 -435 39 

H(5B) 4106 -563 -888 39 

H(6A) 1930 816 -1411 34 

H(6B) 722 -319 -1223 34 

H(7) 2344 2277 -164 30 

H(9) 3136 4180 1466 33 

H(4) 2989 4191 3421 32 

H(10) 2077 2090 3923 33 
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 Table 6.  Torsion angles [°] for (37). 

________________________________________________________________  

 

N(2)-C(1)-N(1)-C(2) -0.11(18) 

C(1)-N(1)-C(2)-C(3) 0.03(19) 

N(1)-C(1)-N(2)-C(3) 0.15(18) 

N(1)-C(1)-N(2)-C(4)     178.48(14) 

N(1)-C(2)-C(3)-N(2)                 0.1(2) 

C(1)-N(2)-C(3)-C(2)  -0.12(18) 

C(4)-N(2)-C(3)-C(2)     -178.47(15) 

C(1)-N(2)-C(4)-C(5)     -107.99(18) 

C(3)-N(2)-C(4)-C(5) 70.0(2) 

N(2)-C(4)-C(5)-C(6) 64.6(2) 

C(4)-C(5)-C(6)-N(3)      168.12(14) 

 

C(5)-C(6)-N(3)-C(7) 121.28(17) 

C(6)-N(3)-C(7)-C(8) 177.58(14) 

N(3)-C(7)-C(8)-C(9) 170.99(17) 

N(3)-C(7)-C(8)-N(5) -9.4(2) 

N(5)-C(8)-C(9)-N(4) 0.45(18) 

C(7)-C(8)-C(9)-N(4) -179.89(15) 

C(8)-C(9)-N(4)-C(10) -0.45(18) 

C(9)-N(4)-C(10)-N(5) 0.31(19) 

N(4)-C(10)-N(5)-C(8) -0.04(18) 

C(9)-C(8)-N(5)-C(10) -0.26(17) 

C(7)-C(8)-N(5)-C(10) -179.95(15) 
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Table 7.  Hydrogen bonds for (37)  [Å and °]. 

 

___________________________________________________________________________ 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

 

 

 N(4)-H(4)...N(3)#1 0.88 2.15 2.9902(18) 160.4 

 N(4)-H(4)...N(5)#1 0.88 2.55 3.0799(19) 119.6 

 C(10)-H(10)...N(1)#2 0.95 2.51 3.383(2) 153.2 

___________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1/2,y+1/2,-z+1/2    #2 x,y,z+1       

 

 

C(2)-C(3)-N(2) 106.14(15) 

N(2)-C(4)-C(5) 112.79(14) 

C(6)-C(5)-C(4) 112.80(14) 

N(3)-C(6)-C(5) 110.82(13) 

C(7)-N(3)-C(6) 118.05(13) 
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Epilogue 
 

 

 

 

 

 

What lies behind us and what lies before us are tiny matters compared to what lies within us. 

 

Ralph Waldo Emerson 

 

http://www.quotationspage.com/quotes/Ralph_Waldo_Emerson/
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