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Abstract. The present understanding of nonperturbative ground states in the
fractional quantum Hall effect is based on effective theories of the Jain “composite
fermion” excitations. We review the approach based on matrix variables, i.e. D0
branes, originally introduced by Susskind and Polychronakos. We show that the
Maxwell-Chern-Simons matrix gauge theory provides a matrix generalization of the
quantum Hall effect, where the composite-fermion construction naturally follows from
gauge invariance. The matrix ground states obtained by suitable projections of higher
Landau levels are found to be in one-to-one correspondence with the Laughlin and
Jain hierarchical states. The matrix theory possesses a physical limit for commuting
matrices that could be reachable while staying in the same phase.
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1. Introduction

The quantized Hall effect occurs in systems of planar electrons inside layered

semiconductors, that are placed in strong magnetic fields B (∼ 10 Tesla) and very low

temperatures (T ∼ 1mK−1K) [1]. For certain values of the field, the longitudinal Ohmic

current vanishes and the transverse component Rxy of the resistivity (Hall resistivity)

is quantized (Fig.1):

Rxy = σ−1
xy = ν−1 h

e2
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, ...,

Rxx = σxx = 0, (1)

where ν is the “filling fraction”, that can be integer or fractional [2]. The regimes in

which the values of the resistivity are given by (1) are called “plateaux” of the Quantum

Hall effect (QHE). They correspond to very stable gapful ground states with uniform

density ρ = νeB/hc, where the electrons behaves like a fluid with characteristic quantum

effects [1]. The low-energy excitations are local deformations in the density (vortices)

called quasi-holes and quasi-particles; the density waves are also gapful such that the

quantum fluid is incompressible. The integer Hall effect can be described in terms of

free electrons filling up the Landau levels, while the fractional effect requires to consider

interacting electrons.

In 1983, Laughlin proposed a phenomenological theory for the fillings ν = 1/(2k+1),

with k positive integer [3]: he described the incompressible fluid and predicted quasi-

particles with fractional charge that were observed in 1997 [4]. Other filling fractions

not described by Laughlin’s theory are observed experimentally, belonging to the series

ν = n/(2nk ± 1), where n > 1 and k are positive integers [1]. Upon introducing the

idea of “composite fermions” excitations, Jain argued that these fractional quantum

Hall states actually correspond to integer quantum Hall states of composite fermions

[5]. Based on this relation, Jain obtained trial wavefunctions that are confirmed by the

numerical analyses. Moreover, weakly-interacting composite-fermion excitations have

been observed in several experiments [1]. Fradkin and Lopez [6] and others [7] realized

the Jain correspondence in quantum field theory by letting the electrons to interact

with a “statistical” Chern-Simons gauge field. They studied the theory within the

mean field approximation and reproduced the Jain ground states and some of their

phenomenological features.

In this contribution, we review another possible effective theory for the fractional

QHE, that is based on matrix models or, more precisely, on gauge theories of matrices

in (2 + 1) dimensions, that are equivalent to noncommutative gauge theories. This

approach is not yet fully developed, but it presents some interesting features that we

believe are worth discussing.

The presentation is organized as follows: the next section contains a short

introduction to the phenomenology of the integer and fractional QHE. We review the

Laughlin theory [3], the Jain interpretation of the fractional QHE [5] and the field theory

proposed by Fradkin and Lopez [6]. The third section deals with the Chern-Simons
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Figure 1. Diagonal and transverse resistivities in the fractional quantum Hall effect
[5].

matrix model, and reviews the work by Susskind and Polychronakos. Using results

for D0-branes in string theory, Susskind showed that two-dimensional semiclassical

incompressible fluids in strong magnetic field could be described by the noncommutative

Chern-Simons theory [8]. Indeed, the use of noncommuting spatial coordinates, x1, x2,

i.e. [x1, x2] = iθ, implies a generalized uncertainty relation that controls the effective

size of electrons and thus reduces the density of the fluid, leading to ν = 1/(1+Bθ) < 1.

Afterwards, Polychronakos modified the theory to describe a finite droplet of fluid, and

obtained the U(N) matrix gauge theory called Chern-Simons matrix model [9]. From

the quantization of this theory, one finds the important result that the ground states

are exactly given by the Laughlin wave functions [10][11]. However, the Chern-Simons

matrix model does not naturally describe the more general Jain states and the full

quantum theory does not reproduce the electron system of the QHE [12][13].

Section 4 is devoted to our proposal of the Maxwell-Chern-Simons matrix theory

[12]: this is a generalization of Susskind-Polychronakos theory that contains an

additional coupling g ≥ 0 controlling matrix noncommutativity. At g = 0, the theory

corresponds to a matrix generalization of the Landau levels, with an exponentially

growing density of states that is typical of matrix theories. We introduce a set of

projections that not only limit the degeneracy but also uniquely selects ground states
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that are matrix analogs of the expected Laughlin and Jain states (section 5). This

is the most interesting feature of the matrix approach to the QHE, namely that

the phenomenological ground states arise naturally from gauge invariance and the

projections. The same ground states are also found in the semiclassical analysis of the

theory [14]: they correspond to incompressible fluids with piecewise constant density, as

expected [5]. In section 6, we discuss the Maxwell-Chern-Simons matrix theory for g > 0:

in the g =∞ limit, the matrix coordinates commute and the theory describes ordinary

electrons in Landau levels with O(1/r2) interaction, which is a good approximation of

the QHE system [1]. Although the phase diagram (0 < g <∞) of the Maxwell-Chern-

Simons theory is not yet known, we conjecture that the matrix ground states found

at g = 0 have a smooth g → ∞ limit into the phenomenological Laughlin and Jain

states (no phase transition for finite g values) [12]. The proof of this fact would confirm

the physical relevance of the matrix theory approach to the fractional QHE. In the

conclusions (section 7), we discuss some developments of this line of research.

This paper is dedicated to the vivid memory of Alyosha Zamolodchikov.

2. Review of the Fractional Quantum Hall Effect

2.1. Landau levels

Consider planar electrons of mass m and electric charge e in an uniform magnetic field

B (in units ~ = 1, c = 1). The one-particle Hamiltonian is given by:

H = − 1

2m
(∇− ieA)2. (2)

We work in the symmetric gauge for the vector potential, Ai = (B/2)εijx
j, i, j = 1, 2.

The magnetic field introduces a length scale, the so-called magnetic length, ` =
√

2/eB.

The use of holomorphic spatial coordinates z = x1 + ix2 and z = x1 − ix2, is natural in

the QHE [15]. By introducing two commuting sets of harmonic oscillators (∂ = ∂
∂z

and

∂ = ∂
∂z

),

d =
z

2`
+ `∂ , d† =

z

2`
− `∂ ,

[
d, d†

]
= 1,

c =
z

2`
+ `∂ , c† =

z

2`
− `∂ ,

[
c, c†

]
= 1, (3)

the Hamiltonian (2) and the angular momentum can be written as follows:

H = ω (d†d+
1

2
),

J = c†c− d†d, (4)

where ω = eB/m is the cyclotron frequency. Since the operators c and d commute, the

spectrum consists of infinitely degenerate levels (c†c excitations) with energies εn = ωn,

i.e. the Landau levels (d†d ladder). The degenerate states correspond to the semiclassical

cyclotron orbits, that are quantized by the condition that the contained flux is a multiple
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of the quantum unit φ0 = eh/c, i.e. BAj = jφ0, with j the angular momentum

eigenvalue. In the lowest Landau level, the one-particle wave functions take the form:

ϕj(z, z) =
1

`
√
π

1

j!

(z
`

)j
e−zz/(2`

2) , d ϕj(z, z) = 0, (5)

i.e. they are holomorphic in z up to an exponential factor. The associated one-particle

densities are indeed peaked at the semiclassical orbits.

On a finite region of area A, the number of degenerate states is equal to the flux

through the system in quantum units, Nφ = BA/φ0. In completely filled Landau levels,

the Hall conductivity is given by σxy = R−1
xy = ν e2/h, where ν = N/Nφ is the filling

fraction, i.e. the number of electrons N divided by the number of available states. Figure

2(a) shows the ν = n case in which n levels are filled with one electron per orbital (the

spin degree of freedom is frozen in the direction of B). The density is uniform and the

electron fluid is incompressible due to the exclusion principle, the gap being given by

ω. Thus the simple theory of free electrons in Landau levels is sufficient to describe

the main physical properties of the integer QHE. (The formation of the plateaux near

integer fillings is explained by the localization of excitations due to disorder) [1].

On the other hand, if there are many empty orbitals like in the case ν = 1/3

(Fig.2(b)), the free-electron states are compressible, in contrast with the experimental

observation: the fractional QHE requires the study of interacting electrons. The

formation of the gap by the Coulomb potential is clearly nonperturbative: one should

try an approach based on ansatzs and effective theories, supplemented by numerical

analyses. It turns out that the ground states are condensates of charges and vortices

which have some analogies with superfluids and confined gauge theories, but are also

specific of the two-dimensional parity breaking setting.

2.2. The Laughlin theory

In a remarkable paper [3], Laughlin proposed a class of trial wave functions given by:

Ψm(z1, z2, ..., zN) =
N∏

i<j=1

(zi − zj)me−
1
2

PN
i |zi|2 , (6)

with N the number of electrons and m an integer parameter. Hereafter we set the

magnetic length ` = 1. The wave functions (6) describe spinless electrons in the lowest

Landau level: m must be odd, m = 2k + 1, for antisymmetry of fermions. In order

to determine the properties of these states, Laughlin used the analogy with a two-

dimensional plasma, as it follows. The determination of the one-particle density can be

reduced to the analysis of the two-dimensional statistical model of charges defined by,

Zplasma = ‖ Ψm ‖2=

∫ N∏
i=1

d2zi e
−βHplasma ,

Hplasma = m
N∑
i=1

| zi |2 −m2

N∑
i<j=1

log | zi − zj |2 . (7)
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Figure 2. Graphical representation of the Landau levels: (a) integer and (b) fractional
filling.

In this equation, Hplasma describes a classical plasma of charges in a uniform background

at temperature β = 1/m. Knowing that this plasma is totally screened for small values

of m, Laughlin could argue that the density is uniform and could calculate the gap of

excitations. For constant density, the parameter m can be readily related to the filling

fraction by ν = 1/m. Note that Laughlin’s wavefunctions vanishes as (zi − zj)m when

any two particles i and j approach each other: namely, the amplitude for nearby particles

is very small and the expectation value of the Coulomb energy is consequently reduced.

This is a rather successful property from the variational point of view, since other wave

functions with same average density do have this feature. Numerical experiments show

that the Laughlin wavefunction is actually very close to the exact ground state for

several short-range repulsive interactions [1][3][16].

Laughlin also proposed the wave functions of the low-energy quasiholes excitations:

they are localized density deformations,

Ψqh = (η; z1, ..., zN) =
N∏
i=1

(η − zi)
N∏

i<j=1

(zi − zj)2k+1e−
1

2`2

P
i|zi|2 , (8)

with η the position of the vortex (Fig.3). To calculate the charge of the quasi-hole, one

can use the plasma analogy (7):

‖ Ψqh ‖2=

∫ N∏
i=1

d2zie
−β(m

P
i|zi|2−m2

P
i<j log|zi−zj |2−m

P
i log|zi−η|). (9)

Comparing (9) with (7), we observe that the electrons feel the presence of a charge 1/m

at the point z = η: thus, the quasi-holes have fractional charge Qqh = e/m [3].
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Figure 3. Schematic plot of the density of the electron fluid in presence of a quasi-hole
at z = η.

In the wave function for two quasi-holes,

Ψ2qh(η1, η2; z1, ..., zN) = (η1 − η2)
1

2k+1

∏
i

(η1 − zi)
∏
i

(η2 − zi)Ψm, (10)

Laughlin introduced the term (η1 − η2) raised to a fractional power, that is necessary

for charge equilibration in the plasma (9); he assumed a holomorphic dependence as for

the electron coordinates [17]. If we rotate one quasi-hole around the other, we obtain:

Ψ2qh((η1 − η2)→ eiπ(η1 − η2)) = ei
π

2k+1 Ψ2qh(η1, η2). (11)

Therefore, the wave function acquires a non-trivial phase under exchanges of excitations:

the quasi-holes have “fractional statistics”, θ
π

= 1
2k+1

. This is a long-range, topological

interaction of vortices, that is allowed in parity breaking two-dimensional systems [17].

The fractional charge and statistics of excitations are confirmed by the effective field

theory descriptions to be discussed later. The fractional charge has been observed in

experiments of quasiparticle tunneling [4]; the fractional statistic has not been detected

directly but there are indirect confirmations [1].

2.3. The Jain interpretation of the fractional quantum Hall effect

In Fig. 1, one finds stable plateaux at other filling fractions that are nicely accounted

by the series ν = n/(2nk ± 1) with n > 1. The phenomenological theory due to Jain

explains them as follows: the argument starts by observing that the inverse filling,

1

ν
=
Nφ

N
= ± 1

n
+ 2k , (12)

is equal the number of fluxes per electron. Imagine that it is possible to bound an even

number of fluxes, i.e. 2k, to each electron, to form a new quasiparticle called “composite

fermion”. (Note that an even number of flux quanta yield an integer Aharonov-Bohm

phase and keeps the fermionic statistics). When 2k fluxes are attached to each electron,

the same number of fluxes are removed from the external magnetic field: therefore, the

filling fraction of the system of composite fermions is given by

1

ν∗
=
NΦ − 2kN

N
=

1

ν
− 2k = ± 1

n
, B? = B− 2k 2πρ0 , (13)



Matrix Effective Theories of the Fractional Quantum Hall effect 8

corresponding to an integer QHE. The reduced magnetic field felt by the new particles

is given by B?. This is indeed observed: many experiments confirm the existence of

weakly interacting excitations feeling the reduced magnetic field, i.e. behaving as Jain’s

composite fermions [1]. The incompressibility of the fractional QHE is explained by

Jain as due to the equivalence between the system of electrons with ν = n/(2nk + 1)

and the integer QHE of composite fermions with ν? = n.

Following the Jain argument, the flux attachment is clear in the form of the Laughlin

wave function (ν? = 1): the factor ΠN
i<j(zi − zj)2k yields Aharonov-Bohm phase of 2k

flux quanta to any electron, and the rest is the wave function of the filled first Landau

level. In the general case of ν = n/(2nk+ 1), the ground state wave functions proposed

by Jain on the basis of his equivalence are:

Ψ2k+ 1
n
(z1, ..., zN) =

N∏
i<j

(zi − zj)2kΨ 1
n
(z1, ..., zN), (14)

with Ψ1/n(z1, ..., zN) being the wave functions with n completely filled levels (Slater

determinants). The Jain wave functions (14) have been confirmed by comparison with

numerical results of exact diagonalization of the Hamiltonian with Coulomb interaction

[5]. The fillings ν = n/(2nk − 1) are also described by (14) with charge-conjugate term

Ψ1/n → Ψ1/n.

The Jain scheme also provide excellent approximations for the quasi-holes and

quasi-particles excitations [5]. For instance, a quasi-particle in the origin for the Jain

state with ν = n/(2nk + 1) is given by,

Ψqp; 2k+ 1
n
(z1, ..., zN) =

N∏
i<j

(zi − zj)2kΨqp; 1
n
(z1, ..., zN), (15)

where Ψqp;1/n(z1, ..., zN) corresponds to the wave function of n filled Landau levels and

one electron in the first orbital of the (n + 1)-th Landau level. The corresponding

localized density has an excess of charge at the origin of the droplet.

2.4. Fermion Chern-Simons field theory

Among the effective field theories that have been proposed to describe the fractional

QHE, we recall the theory of non-relativistic fermions coupled to the Abelian Chern-

Simons “statistical” interaction, that has been developed by Fradkin and Lopez [6] and

others [7]. The action can be schematically written:

S =
κ

4π

∫
εµνρaµ∂νaρ +

∫
Jµaµ + Sfermion . (16)

Consider the Gauss law of this theory:

j0(~x) = − κ

2π
B(~x) = − κ

2π
εij∂iaj(~x) , (17)

where B is the “statistical” magnetic field and κ the Chern-Simons coupling constant.

At quantum level, this is an operator constraint which selects the physical space of

states. These are charge-flux composites: every particle with unit electric charge carries
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a magnetic charge equal to 2π/κ. The wave functions for these composite particles

exhibits Aharonov-Bohm effects changing the statistics. Therefore a fermion coupled

to a Chern-Simons gauge field behaves like an anyon with statistical angle θ/π = 1/κ,

measured with respect to the Fermi statistics [6]. If κ = 1/2k, where k is an integer,

then θ/π = 2k and the composite states are still fermions.

A ground state with uniform density 〈j0(z)〉 = ρ̄ implies a constant field:

〈B〉 = −2πρ

κ
= −2k 2πρ0 , 〈E〉 = 0 . (18)

Eq. (18) shows that, within the mean field approximation, the effect of the statistical

gauge field is to change the effective flux experienced by the fermionic excitations. The

effective magnetic field is Beff = B + 〈B〉 = B − 2κ2πρ0, in agreement with Jain’s

argument (13).

The uniform effective magnetic fieldBeff defines a new set of effective Landau levels.

Each level has a degeneracy equal to the total number of effective flux quanta Neff and

the separation between levels is the effective cyclotron frequency ωeff = |Beff |/m.

Similarly, there is an effective cyclotron radius `eff . It is easy to see that the mean-field

approximation (uniform density) (18) is selfconsistent only if the fermions fill exactly

an integer number n of effective Landau levels. This reproduces Jain’s theory: the

fractional QHE is the integer QHE of a system of electrons dressed by an even number

of flux quanta. The allowed filling fractions are those obtained by Jain: ν = n/(2nk±1)

[6]. Further results of this approach are reviewed in [18].

Let us mention for completeness the effective field theory approaches based on

(1 + 1) dimensional conformal field theories. As originally observed by Wen [19], a

droplet of incompressible fluid possess low-energy massless chiral excitations at the edge,

that can be described by conformal field theories with U(1) current, also called chiral

Luttinger liquid theories, and their generalizations. These theories of the QHE have

been extensively developed in the last 20 years and can describe the low-energy physics

occurring in conduction experiments [1] [19] [20]. In this approach, the formation of the

incompressible fluid is assumed and cannot be derived, since the dimensional reduction

is only possible for these specific states; actually, there is a different conformal field

theory for each plateaux, whose form can be inferred by the properties of excitations

and other data. In the following, we deal with (2+1)-dimensional effective theories that

could explain the formation of incompressible ground states.

3. Semiclassical incompressible fluid and noncommutative Chern-Simons

theory

In this section we introduce the effective theories of the fractional QHE based on matrix

degrees of freedom, equivalent to noncommutative field theories. The subject was

initiated by Susskind in 2001, who observed the analogies between the QHE and the

physics of D-branes in string theory [8][21]. We shall find that the matrix d.o.f. have

associated a gauge field and their Gauss law provides another realization of Jain’s flux
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attachment to particles (13). The description of the QHE by matrix theories is far

less developed than the fermion Chern-Simons theory, but there are some nice features

like the explicit relation with wave functions; in our opinion, the matrix theories could

provide another view on the physics of composite fermions.

We start by reviewing Susskind’s work [8], who observed that the semiclassical

limit of noncommutative Chern-Simons field theory could describe incompressible fluids

in high magnetic field with Laughlin’s filling fractions [8]. Consider N first-quantized

electrons with two-dimensional coordinates Xa
α(t), a = 1, 2, α = 1, . . . , N , placed in a

strong magnetic field B, such that their action can be projected to the lowest Landau

level [22],

L =
eB

2

N∑
α=1

εab X
a
α Ẋ

b
α . (19)

We now consider the limit of the particle forming a continuous fluid:

~Xα(t) → ~X(~x, t) , ~X(~x, t = 0) = ~x , (20)

where ~x are the coordinates of an initial, reference configuration of the fluid. The

resulting fluid mechanics is in the Lagrangian formulation, because the field ~X(~x) follows

the motion of the fluid [23]. For incompressible fluids, the constraint of constant density,

ρ( ~X) = ρo, can be written in terms of Poisson brackets {·, ·} of the ~x coordinate as

follows:

ρo = ρ(~x) = ρo

∣∣∣∣∣∂ ~X∂~x
∣∣∣∣∣ =

ρo
2
εab {Xa, Xb} . (21)

This constraint can be added to the Lagrangian by using the Lagrange multiplier A0,

L =
eBρo

2

∫
d2x

[
εab X

a
(
Ẋb − θ{Xb, A0}

)
+ 2θ A0

]
; (22)

in this equation, we introduced the constant θ,

θ =
1

2πρo
, (23)

that will later parameterize the non-commutativity.

The Lagrangian (22) is left invariant by reparametrizations of the ~x variable with

unit Jacobian, the area-preserving diffeomorphism, also called w∞ transformations [15]:

they correspond to changes of the original labels of the fluid at t = 0 (cf. Eq.(20)) [8][23].

The w∞ symmetry can be put into the form of a gauge invariance by introducing the

gauge potential ~A, as follows:

Xa = xa + θ εab Ab(x) , (24)

and by rewriting the Lagrangian (22) in the Chern-Simons form:

L = − k

4π

∫
d2x εµνρ

(
∂µAνAρ +

θ

3
{Aµ, Aν}Aρ

)
, (25)
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where Aµ = (A0, Aa) is the three-dimensional gauge field. The coupling constant k

parameterizes the filling fraction of the semiclassical fluid:

ν(cl) =
2πρo
eB

=
1

eBθ
=

1

k
. (26)

Based on the result (25), Susskind conjectured that the non-commutative (Abelian)

Chern-Simons theory could be the complete theory going beyond the continuous fluid

approximation, i.e. accounting for the granularity of the electrons. Its action is [24]:

LNCCS = − k

4π

∫
d2x εµνρ

(
∂µAν ? Aρ −

2i

3
Aµ ? Aν ? Aρ

)
, (27)

involving the Moyal star product:

(F ? G)(x1, x2) = F (x1, x2)e
iθ
2

(
←−
∂x1

−→
∂x2−
←−
∂x2

−→
∂x1 )G(x1, x2) . (28)

Actually, the two Lagrangians (27) and (25) agree to leading order in θ, i.e. for dense

fluids. In the new Lagrangian (27), the gauge fields with Moyal product have become

Wigner functions (see next section) of the noncommuting operators, x̂1, x̂2, the former

spatial coordinates:

[x̂1, x̂2] = x1 ? x2 − x2 ? x1 = i θ . (29)

The corresponding quantization of the area can be thought of as a discretization of

the fluid (at the classical level), with the minimal area θ allocated to a single electron

(cf.(26)).

3.1. Matrix representation of the noncommutative Chern-Simons theory

Every noncommutative theory is equivalent to a matrix theory, with matrices of infinite

order (N → ∞) [24]; in particular, the noncommutative Chern-Simons theory (27) is

equivalent to the matrix theory [25]:

L =
B

2
Tr [ εij Xi(t) Dt Xj(t) + 2θ A0(t)] , (30)

where now X1(t), X2(t) and A0(t) are N × N matrices (N → ∞) and the covariant

derivative is DtXj = Ẋj − i [A0, Xj] , j = 1, 2.

The proof of the correspondence is simpler if we go from the matrix (30) to the

noncommutative theory (27). Observe that the Gauss law of the Lagrangian (30) implies

the following noncommutative condition on the matrices:

[X1, X2] = iθI, (31)

with I the identity matrix. This algebra only admits ∞-dimensional matrix

representations: consider a particular, “ground state” solution, X = x̂i, and write

the general solutions as follows:

X i = x̂i + θεijAj(x̂
i), (32)

where Ai are N ×N matrices of “fluctuations” (N →∞). Note that these matrices can

be expressed in terms of finite sums of products eipx̂
1
eiqx̂

2
, i.e. they can be thought
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of being functions of x̂i. Replacing (32) in (30) and expressing the derivative as

commutators, [x̂i, f(x̂1, x̂2)] = iθεij∂jf , we find:

L =
B

2
Tr
{
−θȦ1 (x̂1 + θA2) + iA0 [x̂1 + θA2, x̂2 − θA1]

−θȦ2 (x̂2 − θA1)− iA0 [x̂2 − θA1, x̂1 + θA2]
}

+ BθA0

=
Bθ2

2
Tr
(
A1Ȧ2 − Ȧ1A2 + 2A0(∂2A1 − ∂1A2) + 2iA0 [A1, A2]

)
, (33)

or in covariant notation,

L =
Bθ2

2
Tr

[
−εµνρAµ∂νAρ +

2i

3
εµνρAµAνAρ

]
. (34)

In the limit N → ∞ the matrix variables Ai are mapped into smooth functions of

the noncommutative coordinates Ai(x̂j). Also in this limit we can identify, θTr →
1

2π

∫
dx̂1dx̂2, and we obtain the following Lagrangian:

L =
1

4πν

∫
dx̂1dx̂2

(
−εµνρAµ∂νAρ +

2i

3
εµνρAµAνAρ

)
. (35)

In this Lagrangian, the fields Ai still obey the matrix algebra, while in (27) they are

functions. The two formulations are related by expressing matrices as Wigner c-number

functions that obey the Moyal product algebra [15].

Let us recall that any operator F̂ (x̂1, x̂2) in the Weyl ordering : : (most symmetric

in x̂1, x̂2) can be associated to a phase space function F (x1, x2) as follows:

: F̂ (x̂1, x̂2) : =

∫
dx1dx2 F (x1, x2) : δ(x̂1 − x1)δ(x̂2 − x2) :

=

∫
dx1dx2

dα

2π

dβ

2π
F (x1, x2)eiα(x̂1−x1)+iβ(x̂2−x2)

= F (−i ∂
∂α

,−i ∂
∂β

)eiαx̂1+iβx̂2|α=β=0 . (36)

One finds by inspection that the product of two operators F̂ and Ĝ corresponds to

the Moyal product (28) of the corresponding Wigner functions, : F̂ : : Ĝ :=: Ĥ :,

H(x1, x2) = (F ? G)(x1, x2). In particular,∫
dx̂1dx̂2 : F̂ (x̂1, x̂2) : : Ĝ(x̂1, x̂2) : =

∫
dx1dx2(F ? G)(x1, x2) . (37)

Therefore, the matrix Lagrangian (35) becomes the noncommutative Chern-Simons

theory (27) (within the Weyl ordering).

Finally, we recall that another route to obtain the Chern-Simons matrix theory

(30), that emphasizes the discrete particle aspects of the fluid is given by a matrix

regularization proposed by Goldstone and Hoppe [26].

3.2. The Chern-Simons matrix model

The noncommutative Chern-Simons Lagrangian (27) and its matrix model formulation

(30) both imply infinite degrees of freedom: therefore, Susskind’s theory applies to an
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infinite system. Instead, the fractional QHE is a system with a boundary and a finite

number of particles. Polychronakos introduced this feature [9] by modifying Susskind’s

action (30) as follows:

SCSMM =

∫
dt

B

2
Tr
{
εab(Ẋa + i[A0, Xa])Xb + 2θA0 − σX2

a

}
+

∫
dt ψ†(iψ̇ − A0ψ). (38)

Two new terms are present: the first is a quadratic potential that confines the

eigenvalues, i.e. keep the particles localized in the plane, with σ = O(B/N); the

second term is a “boundary” N -dimensional complex vector ψ that transforms in the

fundamental representation of the gauge group U(N). The Gauss law is now given by:

G = −i B[X1, X2] + ψψ† −BθI = 0. (39)

Observe that the trace of (39) implies,

ψ†ψ = NBθ, (40)

that can be realized with N × N dimensional matrices. The action (38) thus defines

the Chern-Simons matrix model, a gauge theory with U(N) symmetry, Xa → UXaU
†,

ψ → Uψ and A0 → UA0U
† − iU dU†

dt
. Under a gauge transformation the action (38) is

not invariant, but it yields a winding number, S → S− iBθ
∫
dtTr

[
U †U̇

]
; this requires

the quantization Bθ = k [27], leading to the Laughlin filling fractions (cf.(26)). Note

that the equation of motion for ψ in the A0 = 0 gauge read, ψ̇ = 0, showing that this is

an auxiliary field with trivial dynamics; it can take the constant value ψ =
√
NBθ | v〉,

with | v〉 a vector of unit length [9].

3.3. Covariant quantization

In the A0 = 0 gauge, the Hamiltonian of the Polychronakos theory (38) corresponds to

(N2 +N) particles in the lowest Landau level with coordinates Xnm and ψn. It can be

shown that, at quantum level, the Gauss law (39) implies gauge invariant states of the

form Ψ(X,ψ) = e−Tr(X̄X)/2−ψ†ψ/2Φ(X,ψ), with Φ(X,ψ) a singlet of the gauge group

U(N) made by polynomials of Xnm and ψn, being of order Nk in ψn due to (40) [10].

A basis of states is given by:

Φ(X,ψ) = Φ{n1
1,...,n

1
N}...Φ{nk1 ,...,nkN} ,

Φ{nj1,...,n
j
N}

= εi1...iN (Xnj1ψ)i1 ...(X
njNψ)iN , 0 ≤ nj1 < nj2 < ... < njN . (41)

These states are eigenstates of the angular momentum J with eigenvalues J = NX ,

where NX is the number of matrices X appearing in Φ(X,ψ). Since the Hamiltonian

of the theory is proportional to the angular momentum, H = (2ω/B) J , the states (41)

are also eigenstates of the Hamiltonian. The ground state of the theory is [10]:

Φk−gs =
[
εi1...iNψi1(Xψ)i2 ...(X

N−1ψ)iN
]k
, (42)
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corresponding to the lowest value of the angular momentum (lower order polynomials

vanish by antisymmetry of the εi1...iN tensor).

If we now diagonalize the matrix X by the similarity transformation, X = V −1ΛV ,

with Λ = diag(λ1, . . . , λN), we obtain:

Φk−gs(V
−1ΛV, ψ) = C

∏
1≤n≤m≤N

(λn − λm)k. (43)

The quantity C appears in all the physical states and can be neglected in the present

discussion [11].

Therefore we have obtained the Laughlin wave function as the ground state of the

Chern-Simons theory, with electron coordinates identified with the eigenvalues of X.

This is a very important result of the Chern-Simons matrix theory; that of reproducing

the Laughlin wave function from gauge invariance of the states in presence of the

“background charge” θ. (Note that the filling fraction is ν = 1/(k + 1): the shift from

the classical value (26) is due to a Vandermonde factor coming from the integration

measure [9]).

Let us now discuss the excitations over the ground state (42). In Ref.[10], it was

found the “bosonic” basis of states,

Φ (X,ψ) =
∑
{mk}

Tr (Xm1) · · ·Tr (Xmk) Φk−gs . (44)

for any positive integers {m1, . . . ,mk}. These states have ∆J = r =
∑

kmk. For

r = O(1), their energy given by the boundary potential, ∆E = σ∆J = O(r B/N) is

very small: they are the edge excitations of the droplet of fluid described by conformal

field theories [15][19][20].

The matrix model also possess localized density deformations that are analogues

of the quasi-hole excitations of the Laughlin state. For example, the state Φ{n1,...,nN}

in Eq.(41), with {n1, n2, · · · , nM} = {1, 2, · · · , N}, corresponds to moving one electron

from the interior of the Fermi surface to the edge, causing ∆J = O(N) and thus a finite

gap ∆E = O(B). On the other hand, the quasi-particle excitation cannot be realized in

the Chern-Simons matrix model [9][12][14], because excitations with angular momentum

lower than (42) are zero due to the antisymmetry of the εi1...iN tensor. Similarly, the

Jain states ν = n/(2nk + 1) are not naturally obtained [28].

In conclusion, we have shown that the Chern-Simons matrix model reproduces the

Laughlin wave functions as ground states. Nevertheless, the theory has some drawbacks

[13]: there are no quasi-particle excitations [9], and the Jain states cannot be described

[28]. Moreover, the measure of integration w.r.t. the eigenvalues λi differs from that

of electrons in the lowest Landau level, owing to the noncommutativity of matrices. It

can be shown that the ground state properties of the matrix theory and of the Laughlin

state only agree at long distances [11][29]. Owing to the inherent noncommutativity,

it is also difficult to match matrix observables with electron quantities of the quantum

Hall effect [30].
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3.4. Jain composite fermion transformation

We would like to stress that the Chern-Simon matrix model provides another realization

of the Jain composite-fermion transformation (see section 2.3). For k = 0, the matrix

theory reduced to the eigenvalues λa is equivalent to a system of free fermions in the

lowest Landau level, i.e. to ν∗ = 1 [11][29]. This fermionic picture is a general feature

of one-dimensional matrix models [31].

In the presence of the θ background, the noncommutativity of matrix coordinates

(39) forces the electrons to acquire a finite area of order θ, leading to the (semiclassical)

density ρo = 1/2πθ (23). Using this formula of the density and the quantization of Bθ,

we re-obtain the Jain relation (13) for flux attachment,

Bθ = k ∈ Z → B = k 2πρo . (45)

Given that noncommutativity is expressed by the Gauss law of the matrix theory, we

understand that the mechanism for realizing the Jain transformation is analogous to

that of the Lopez-Fradkin theory (cf. (18), section 2.4), but it is expressed in terms of

different variables. However, the higher Landau levels are not possible in the Chern-

Simons matrix model.

4. Maxwell-Chern-Simons matrix gauge theory

In this section we introduce and analyze the Maxwell-Chern-Simons matrix theory [12]

with the aim of improving the previous matrix theory. The action is,

S =

∫
dt Tr

[
m

2
(Dt Xi)

2 +
B

2
εij Xi Dt Xj +

g

2
[X1, X2]2 + Bθ A0

]
− i

∫
ψ† Dtψ . (46)

It involves the same N × N Hermitean matrices, Xi(t) and A0(t), and the auxiliary

vector ψ(t), but includes two new terms with respect to Polychronakos theory (38): an

additional kinetic term quadratic in time derivatives and a potential V = −gTr [X1, X2]2,

parameterized by the positive coupling constant g. All the terms in the action are fixed

by the gauge principle because they are obtained by dimensional reduction of a gauge

theory. Indeed, the action (46) is the bosonic part of the low-energy effective theory of

a stack of N D0-branes [32] that has been discussed in the literature of string theory

[21]. In particular, D0-branes have been proposed as fundamental degrees of freedom in

string theory [33].

4.1. Low-energy effective action of Dp-branes in string theory

Let us briefly review Witten’s derivation of the effective low-energy action of N Dp-

branes [34]. Consider ten-dimensional Minkowski space, with time x0 and space x1, ..., x9

coordinates, respectively. A p-brane is an object that modifies the boundary conditions
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of open strings: it introduces Dirichlet boundary conditions in (9 − p) directions, as

follows,

Xp+1(σ, t) = .... = X9(σ, t) = 0 (Dirichlet), (47)

∂σX
1(σ, t) = .... = ∂σX

p(σ, t) = 0 (Neumann). (48)

Due to (47), the zero modes Xj with j > p are frozen, and the massless particles are

functions of X1, .., Xp only. The massless bosons Ai(X
s), i, s = 0, ..., p, propagate as

U(1) gauge bosons on the p-brane, while the other components become scalars fields on

the p-brane, φj(X
s), j > p. The vertex operators for insertions of spin-1 fields in string

theory are given by:

VA =

p∑
i=0

Ai(X
s)∂τX

i,

Vφ =
∑
j>p

φj(X
s)∂σX

j. (49)

For φj =constant, the boundary integral of Vφ implies the changeXj → Xj+φj for j > p:

thus the scalars φj, j > p can be interpreted as the coordinates of the p-brane. The

theory on the (p+ 1) dimensional brane world-volume is naturally the ten-dimensional

U(1) supersymmetric gauge theory dimensionally reduced to (p+ 1) dimensions.

Bound states of N parallel Dirichlet p-branes can be described by the low-energy

limit when the branes are nearby. We consider the case of two parallel Dirichlet p-branes,

one at Xj = 0, and one at Xj = aj (j > p). The branes are connected by strings: they

can start and end on the same brane and give a U(1) × U(1) gauge theory (with one

U(1) living one each p-brane), or they can start in the first brane and end in the second

(and viceversa). In this case, the strings have U(1)×U(1) charges. The ground state of

this configuration has an energy T | a |, with T and | a | being the tension and length

of the string, respectively. When | a |→ 0 the charged vector bosons become massless

and the U(1) × U(1) gauge symmetry is enlarged to a U(2) symmetry. In the same

way, N coincident parallel branes yield a U(N) gauge symmetry on the p-brane. The

field content in the effective action is given by the U(N) gauge field Aj(X
s, t), with

s, j = 1, ..., p , and the scalar fields φj(X
s, t), withj > p , in the adjoint representation

of U(N), i.e. they are all N ×N matrices.

The reduction to (p+ 1) dimensions of the bosonic sector of the theory is obtained

as follows. From the Lagrangian,

LYM = − 1

4g2
Tr (F µνFµν) , (50)

we simplify the commutators in F µν = [Dµ, Dν ] by dimensional reduction and identify

the earlier fields, leading to:

L′YM = − 1

4g2
Tr

(
p∑

r,s=0

F rsFrs −
p∑
s=1

∑
j>p

DsφjD
sφj +

∑
i,j>p

[φi, φj]
2

)
. (51)

In the p = 0 case we have D0-branes, that are nonrelativistic point particle with matrix

variables and one-dimensional gauge symmetry. In (2+1)-dimensions, (51) becomes
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the Maxwell-Chern-Simons theory (46), apart from the Chern-Simons kinetic term: as

shown in Ref.[21], this can be obtained by adding a configuration of higher D-branes

that creates a magnetic field for the D0-branes.

4.2. Covariant quantization of Maxwell-Chern-Simons theory

In this section we quantize the Maxwell-Chern-Simons matrix theory (46) [12][35]. The

canonical momenta are given by the Hermitean matrices:

Πi =
δS

δẊT
i

= DtXi −
B

2
εijXj , (52)

and the vector χ = δS/δψ̇ = −iψ†. The Hamiltonian is:

H = Tr

[
1

2

(
Πi +

B

2
εij Xj

)2

− g

2
[X1, X2]2

]
. (53)

The Gauss law constraint now reads:

G = 0 , G = i [X1,Π1] + i [X2,Π2] − Bθ I + ψ ⊗ ψ† . (54)

As in Chern-Simons theory, G generates U(N) gauge transformations on Xi and ψ at the

quantum level, and requires the physical states to be U(N) singlets. We now quantize all

the 2N2 matrix degrees of freedom X i
ab and later impose the Gauss law as a differential

condition on wave functions. It is useful to introduce holomorphic coordinates:

X = X1 + i X2 , X = X1 − i X2 ,

Π =
1

2
(Π1 − i Π2) , Π =

1

2
(Π1 + i Π2) , (55)

with the bar denoting the Hermitean conjugate of classical matrices, keeping the dagger

for the quantum adjoint.

The Hamiltonian (53) for g = 0 is quadratic and easily solvable: introduce the

matrix,

Aab =
1

2`
Xab + i` Πab , (56)

and its adjoint A†. Owing to the canonical commutators, they obey the algebra of N2

harmonic oscillators:[[
Aab, A

†
cd

]]
= δad δbc , [[Aab, Acd]] = 0 . (57)

In this following, the double brackets describe quantum commutators while the single

ones are kept for the matrix algebra; note also that A† is the adjoint of A both as a

matrix and a quantum operator. The Hamiltonian can be expressed in term of A and

A† as follows:

H = B Tr
(
A† A

)
+

B

2
N2 +

g

8
Tr
[
X̄,X

]2
. (58)

In the term Tr(A†A) =
∑

abA
†
abAba one recognizes N2 copies of the Landau

level Hamiltonian corresponding to N2 two-dimensional “particles” with phase-space
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coordinates, {Πab, Xab} and {Π̄ab, X̄ab}, a, b = 1, . . . , N . The one-particle state are

similarly characterized by another set of independent oscillators corresponding to

angular momentum excitations, that are described by the matrix B = X̄/2` + i` Π

and its adjoint B†, obeying the algebra:[[
Bab, B

†
cd

]]
= δad δbc , [[Bab, Bcd]] = 0 . (59)

The total angular momentum of the N2 “particles” can be written in the U(N) invariant

form,

J =
1

i
Tr
(
X̄Π̄−XΠ

)
= Tr

(
B†B − A†A

)
. (60)

For large values of the magnetic field B, the reduction of the theory (46) to

the lowest Landau is obtained by imposing Aab ≈ 0, ∀a, b: the theory becomes the

previously studied Chern-Simons matrix model (38), because the quadratic kinetic term

vanishes and the potential reduces to a constant due to the Gauss law.

5. Matrix ground states at g = 0

5.1. Jain states by projections

The gauge invariant states can be written,

Ψ = e−Tr(XX)/2−ψψ/2 Φ(X,X,ψ) , (61)

where Φ(X,X,ψ) is again a U(N) singlet made of matrices X, X and Nk components of

the vector ψ. The general solutions (61) are similar to those obtained in Chern-Simons

theory with the difference that now the polynomial part also depends on the X matrices;

for example,

Φ(X,X,ψ) =
(
εi1i2....inψi1(XXψ)i2 ....(XXXXX...ψ)in

)k
. (62)

It is better to express these polynomials in terms of the variables A and B (cf. section

4.2): from the commutation relations (57,59), the energy and momentum eigenstates can

be easily obtained by applying the A†ab (56) and B†ab operators to the empty ground state

Ψo = exp
(
−TrXX/2− ψψ/2

)
. Their energy E = BNA and momentum J = NB −NA

are expressed in terms of the number of A† and B† operators, NA and NB respectively.

The wave functions is rewritten:

Ψ = e−Tr XX/2−ψψ/2 Φ(B,A, ψ) , E = B NA , J = NB −NA , (63)

where B = X−∂/∂X and A = X−∂/∂X commute among themselves, [[Aab, Bcd]] = 0,

and can be treated as c-number matrices. Any polynomial Φ(B,A, ψ) yields an energy

eigenstate and corresponds in general to a sum of terms (62). Let us remark that for

states with constant density, the angular momentum measures the extension of the

“droplet of fluid”, such that we can associate a corresponding filling fraction ν by the

formula,

ν = lim
N→∞

N(N − 1)

2J
. (64)
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Figure 4. Graphical representation of gauge invariant states: (a) general states in
the lowest Landau level (cf. Eq.(41)); (b) and (c), N = 3 examples involving both
matrices, B (thin line) and A (in bold).

The states (63) can be represented graphically as “bushes”, as shown in Fig.4(a).

The matrices Bab (i.e. Xab) are depicted as oriented segments with indices at their ends

and index summation amounts to joining segments into lines, as customary in gauge

theories. The matrices Aab are represented by bold segments. The lines are the “stems”

of the bush ending with one ψa, represented by an open dot, and the epsilon tensor is

the N-vertex located at the root of the bush. Bushes have N stems of different lengths:

n1 < n2 < · · · < nN . The position i` of one B on the `-th stem, 1 ≤ i` ≤ n`, is

called the “height” on the stem. Since two stems cannot be equal, one obtains a kind

of Fermi sea of N “one-particle states” corresponding to the N strands. However, there

are additional degeneracies with respect to an ordinary fermionic system, because in

each stem all possible words of A and B of given length yield independent states (for

large N), owing to matrix noncommutativity, as seen in fig.4(b) and 4(c).

The complete filling of all the available degenerate E > 0 states at g = 0 clearly

gives very dense and inhomogeneous fluids that are incompatible with the physics of

the quantum Hall effect. The matrix degeneracies lead to a density of states that grows

exponentially with the energy; this is a characteristic of string theories that is not

suitable for the Hall effect [33]. On the other hand, for g > 0 the potential Tr[X,X]2 in

the Hamiltonian (58) constraints matrix noncommutativity and eventually eliminates

the degeneracy: at g = ∞, this is not present and the theory can describe a physical

electron system, as shown in section 6.

Given that the g > 0 theory is difficult to solve, in ref. [12] we introduced a set of

projections that limit the matrix degeneracy at g = 0 and are explicitly solvable. These

projections are expressed by the following constraints on the wave function,

(Aab)
m Ψ = 0 −→

(
∂

∂Aab

)m
Φ(A,B, ψ) = 0 , ∀ a, b , (65)
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for a given value of m. The m = 1 case is the lowest Landau level discussed before with

no A dependence, while m taking successive values m = 2, 3, . . . gradually allow larger

A multiplicities and thus matrix degeneracies. Note that in equation (65), each matrix

component Aab is raised to the m-th power, without index summation: the condition is

nevertheless gauge invariant and admits an equivalent manifestly invariant form that is

discussed later.

The results of ref.[12] were rather interesting: not only the projections (65) allow

homogeneous ground states suitable for describing quantum Hall fluids, but also they

precisely occur in the Jain pattern of filling fractions, ν = m/(mk + 1), and their

derivation repeats step-by step the Jain “composite fermion” construction [5].

Let us recall the main points of the analysis. Consider first the projection (65)

for m = 2 and choose k = 1: the solutions are polynomials that are at most linear in

each component Aab. Let us imagine that one or more A matrices are present at points

on the bush as in Fig.(4). The differential operator (65) acts by sequentially erasing

pairs of bold lines on the bush, each time detaching two strands and leaving four free

extrema with indices fixed to either a or b, with no summation on them. For example,

when acting on a pair of A located on the same stem, it yields a non-vanishing result:

this limits the bushes to have one A per stem at most. The A2 ≈ 0 conditions can be

satisfied if cancellations occur for pairs of A on different stems, as it follows:(
Aba
)2

Φ = · · · + ε...i...j...
(
· · ·Mia Nja · · ·V b W b

)
+ · · · , (a, b fixed).(66)

This expression vanishes for M = N due to the antisymmetry of the epsilon tensor.

The general solution of (65) is given by bushes involving one A per stem at most (max

N matrices in total), with all of them located at the same height on the stems [12]. In

formulas:

Φ{n1,...,n`;p;n`+1,...,nM} = εi1...iN
∏̀
k=1

(
B
nk
ψ
)
ik

N∏
k=`+1

(
B
p
A B

nk
ψ
)
ik
,

0 ≤ n1 < · · · < n` , 0 ≤ n`+1 < · · · < nN . (67)

If the matrices A,B were diagonal, these states would be Slater determinants of

ordinary Landau levels. The matrix states have further degeneracies by commuting

A,B pairs: however, commutations are severely limited in the the solution (67), only

the global p dependence is allowed. This shows how the A2 ≈ 0 projection works in

reducing matrix degeneracies.

The ground state in the A2 ≈ 0 theory with finite-box boundary conditions is the

lowest J states of the form (67): it corresponds to homogeneous filling all the allowed

states in the first and second Landau levels with N/2 “gauge invariant particles” each,

and reads:

Φ1/2, gs = εi1...iN
N/2∏
k=1

(
B
k−1

ψ
)
ik

N/2∏
k=1

(
A B

k−1
ψ
)
iN/2+k

, (68)

with angular momentum J = N(N − 4)/4. This state is non-degenerate due to the

vanishing of the p parameter in (67). It has filling fraction ν∗ = 2, assuming homogeneity



Matrix Effective Theories of the Fractional Quantum Hall effect 21

of its density, to be shown later.

The ground states for k > 1 are products of k bushes: they obey the constraint

A2 ≈ 0 provided that the two derivatives always vanish when distributed over the

bushes. Given one bush of type (68), obeying A2 Φ1/2, gs = 0, one can form the state,

Φk+1/2, gs = Φk−1, gs Φ1/2, gs , (69)

where the other (k − 1) bushes satisfy A Φk−1, gs = 0 and actually are Laughlin’s one

(41). Using (64), the angular momentum of this state corresponds to the filling fraction

1/ν = k + 1/2.

We thus find the important result that the A2 ≈ 0 projected Maxwell-Chern-Simons

theory possesses non-degenerate ground states that are the matrix analogues of the Jain

states obtained by composite-fermion transformation at ν∗ = 2, i.e. 1/ν = 1/ν∗ + k.

The matrix states (69,68) would actually be exactly equal to Jain’s wave functions, if the

A,B matrices were diagonal: the ψ dependence would factorize and the matrix states

reduce to the Slater determinants of the Jain wave functions [5][16] (cf. (14) in section

2.3).

The correspondence extends to the whole Jain series: the other ν∗ = m non-

degenerate ground states are respectively obtained in the theories with Am ≈ 0

projections. They read:

Φk+1/m, gs = Φk−1, gs Φ1/m, gs , (70)

where,

Φ1/m, gs = εi1...iN
N/m∏
k=1

[(
B
k−1

ψ
)
ik

(
A B

k−1
ψ
)
ik+N/m

· · ·
(
A
m−1

B
k−1

ψ
)
ik+(m−1)N/m

]
.(71)

In conclusion, in ref.[12] we found that the ground states of the properly projected

Maxwell-Chern-Simons matrix theory reproduce the Jain pattern of the composite

fermion construction [5]; the matrix states are non-degenerate for specific values of

the density that are controlled by the boundary potential [12]. These results indicate

that the Jain composite fermions have some relations with the D0-brane degrees of

freedom and their underlying gauge invariance. Both of them have been described as

dipoles: according to Jain [5] and Haldane-Pasquier [36], the composite fermion can

be considered as the bound state of an electron and a hole (a vortex in the electron

fluid). On the other side, matrix gauge theories, and the equivalent noncommutative

theories [33], describe D0 branes that are point-like dipoles in the low-energy limit of

string theory.

A final remark on the noncommutative matrix coordinates in the Jain and Laughlin

state: the Gauss law (54) can be rewritten in terms of X,X,A,A as follows:[
X,X

]
+

2

B

[
X,A

]
+

2

B

[
A,X

]
= 2

(
θ − 1

B
ψ ⊗ ψ

)
. (72)

For the Laughlin states in the lowest Landau level, this reduces to coordinates

noncommutativity (39), because A = A = 0; for the Jain states populating higher levels,
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there are other terms contributing to noncommutativity besides the matrix coordinates,

such that higher density values are possible.

5.2. Gauge invariant form of the projections

Although the operators (Aab)
m, m = 1, 2, .., are not explicitly gauge invariant, their

kernel restricted to gauge invariant states yields gauge invariant conditions, as seen in the

previous discussion. Therefore, the projectors should have manifestly gauge invariant

expressions. In Ref. [14], they were found by expressing the conditions Am ≈ 0 in

terms of positive-definite occupation numbers Zab = A†abAab (no sum over a, b), and by

averaging over their gauge orbit. For m = 2, the A2 ≈ 0 constraint was shown to be

equivalent to Qg.i.
2 ≈ 0, with:

Qg.i.
2 ∝ (δki δlj + δkj δli) A†ia′ A

†
ja Aak Aa′l . (73)

Upon commuting the operators to bring summed indices close to each other, we finally

find the manifestly gauge-invariant form (disregarding the normalization):

Qg.i.
2 = Tr

(
A†AA†A

)
+
(
Tr A†A

)2 − (N + 1) Tr
(
A†A

)
. (74)

One can check that the action of the gauge-invariant constraint Qg.i.
2 on bush wave

functions is completely equivalent to that of the gauge-variant condition A2 ≈ 0 [12].

The expressions (73) easily generalizes to higher m values [14].

5.3. Semiclassical solutions at g = 0

In this section we review the semiclassical analysis of the g = 0 Maxwell-Chern-

Simons theory: in Ref. [14], we found the semiclassical states that correspond to

the quantum states with homogeneous filling and composite-fermion structure (70)

of the previous section and some of their quasiparticle excitations. The motivations

for the semiclassical analysis are twofold: on one side, previous experience [9][13][30]

[33][37] with noncommutative field theory has shown that the classical fluid dynamics

incorporates some properties of the full quantum theory. From another side, it is know

that the Laughlin states in the quantum Hall effect are incompressible fluids that become

semiclassical in the thermodynamic limit N →∞ [15].

As we showed in section 5.1, the Jain-like ground states (70) involve higher Landau

levels (A 6= 0) and have filling fractions ν∗ = 2, 3, . . . (cf. (13) in section 2.3). We first

note that these states are characterized by E = O(N) and J = O(N2), thus implying

that the matrix A must have few nonvanishing elements O(1). Indeed, the constraint

Am ≈ 0 can be written in terms of occupation numbers, Zab = AabAab, and limit the

semiclassical values of Aab matrix elements: once summed over each row or column,

they can take the values γ = 0, 1, . . . ,m− 1 [14].

We introduce the constraints of the Gauss law and the projection Am ≈ 0 in the

Hamiltonian with Lagrange multipliers Λ and Γa,Γ
′
b, respectively. Upon variation with
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respect to A,B, we obtain the equations of motion:

i Ȧab = 2Aab − [Λ, A]ab + Aab (Γa + Γ′b) ,

i Ḃ = − [Λ, B] + ω B ,

G =
[
A,A

]
+
[
B,B

]
− k + ψ ⊗ ψ = 0 ,

Za =
∑
b

Aba Aab = γ , γ = 0, 1, . . . ,m− 1 ,

Z ′b =
∑
a

Aba Aab = γ′ , γ′ = 0, 1, . . . ,m− 1 . (75)

The semiclassical ground states correspond to solutions with Ȧ = Ḃ = 0.

Let us first recall the classical ground state with Aab ≈ 0 (lowest Landau level)

found by Polychronakos in the Chern-Simons matrix model [9]: in this case (` = 1),

B = X and ψ are given by,

X̄ =
√
k

N−1∑
n=1

√
n|n〉〈n− 1| , ψ =

√
kN |N − 1〉 . (76)

(denoting |0〉, · · · , |N − 1〉 the basis vectors [14]). The radius-squared matrix coordinate

R2 is diagonal, and given by:

R2 = XX = diag (0, k, 2k, . . . , (N − 1)k) . (77)

From the distribution of the eigenvalues in (77), it is clear that this solution implies

an uniform density. In the large N limit, the filling fraction takes the Laughlin values

ν = 1/k according to the formula (64).

In general, the one-particle density of rotation invariant states in matrix models can

be defined in terms of the gauge invariant eigenvalues of R2, as follows (ρ(r) = ρ(r2)/π):

ρ(r2) =
N−1∑
i=0

δ(r2 − σi), σi ∈ Spec(R2). (78)

For semiclassical fluids, this becomes a piecewise continuous function in the limit

N →∞. A discrete approximation suitable for the continuum limit is [14]:

ρ(r2) =
∑
i

ni
σi+1 − σi

δr2,σi , (79)

involving the Kronecker delta and the ordered set of distinct eigenvalues, σi < σj, i < j,

with multiplicities ni.

From Ref.[9], we also recall the form of the quasi-hole in the origin, in the lowest

Landau level:

X̄ =
√
k

(
√
q | 0〉〈N − 1 | +

N−1∑
n=1

√
n+ q | n〉〈n− 1 |

)
, q > 0, (80)

where q is proportional to the charge of the quasi-hole. The R2 eigenvalues are

correspondingly shifted upward by q, causing a dip at the origin.

The semiclassical ground state solution for A2 ≈ 0, leading to the Jain like ν∗ = 2

ground state is found by a suitable ansatz to the equation of motions (75). After gauge
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Figure 5. Density plots for the matrix ground states with 1/νcl = 1/ν∗ + k, for k = 4
and N = 400: (a) ν∗ = 2 (81); (b) ν∗ = 3; and (c) ν∗ = 4.

choice, they imply that: i) B is again a raising operator as in (76) and ii) A has only

one element 1 in each row and column, i.e. it is a (partial) permutation matrix. Using

these data, the matrix equations can be reduced to a linear system of O(N/2) conditions

leading to the solution (N even):

B =

N/2∑
n=1

√
n(k − 1) | n〉〈n− 1 | +

N−1∑
n=N

2
+1

√
n(k + 1)−N | n〉〈n− 1 | ,

A =

N
2
−1∑

n=0

| n+
N

2
〉〈n | , (81)

with ψ as in (76). In matrix form for N = 4, it reads:

B =


0 0 0 0√
k − 1 0 0 0

0
√

2(k − 1) 0 0

0 0
√

3k − 1 0

 , A =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 . (82)

This solution has same energy E = BN/2 of the quantum state (69) and same angular

momentum J = (k−1/2)N2/2+O(N) to leading order. The matrix R2 = (B+A)(B+A)

contains off-diagonal terms from the mixed products: however, these give subdominant

O(1/
√
N) corrections to the eigenvalues as is clear in a simple two-by-two matrix

example. Thus, Spec(R2) = Spec(BB)(1 +O(1/
√
N)).

In Fig.5 we plot the densities of the ν∗ = 2 ground state (81), and those of the

corresponding ν∗ = 3, 4 states [14], for N = 400: up to finite-N fluctuations, they show
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two-step uniform densities as anticipated. We recall that the same droplet shape is

found for the Jain states (14), before their projection to the lowest Landau level [5].

In Ref.[14] we found a simple argument for the equivalence of the semiclassical

solutions to the matrix wavefunction found in section 5 (cf. (67)). We evaluated their

polynomial parts Φ(A,B, ψ) on the classical solution A,B, e.g. (81), corresponding to

the leading N → ∞ expectation values. We then found that the resulting polynomial

selfconsistently match the single particle occupancies predicted by the classical solution

themselves. These results confirm the validity of the semiclassical approximation for

these matrix ground states.

6. Electrons from D0 branes in the g →∞ limit

6.1. The matrix theory at g =∞

In this section we introduce the potential V = −(g/2)Tr[X1, X2]2 in the Hamiltonian

(53) and perform the g → ∞ limit. At the classical level, the V potential suppresses

the matrix degrees of freedom different from the eigenvalues, and projects them out for

g → ∞. Using the Ginibre decomposition of complex matrices [31]: X = U(Λ + R)U ,

where U is unitary (the gauge degrees of freedom), Λ diagonal (the eigenvalues) and R

complex upper triangular (the additional d.o.f.), we find for N = 2:

V =
g

8
Tr
[
X,X

]2
=
g

4
|r|4 +

g

4
|r (λ1 − λ2) |2 , X =

(
λ1 r

0 λ2

)
. (83)

Thus for large g, the variable r is suppressed. For general N , the potential kills all the

N(N − 1) degrees of freedom contained in the R matrix.

Let us now discuss the Maxwell-Chern-Simons theory in the g = ∞ limit, i.e. for

R = 0: X and X commute among themselves and can be diagonalized by the same

unitary transformation,

X = UΛU , X = UΛU , Λ = diag (λa) ,
[
X,X

]
= 0 . (84)

The g = ∞ theory is analyzed following a different strategy from that of section 4:

we fix gauge invariance, solve the Gauss law at the classical level and then quantize

the remaining variables, which are the complex eigenvalues λa and their conjugate

momenta pa [38][35]. We take the diagonal gauge for the coordinates and decompose

the momenta Π,Π, in diagonal and off-diagonal matrices, respectively called p and Γ:

X = Λ ,Π = p+ Γ ,Π = p+ Γ. The Gauss law constraint (54) can be rewritten:

[X,Π] +
[
X,Π

]
= − i Bθ + i ψ ⊗ ψ ,

(λa − λb) Γab +
(
λa − λb

)
Γab = − i

(
k δab − ψa ψb

)
. (85)

For a = b, this equation implies |ψa|2 = k for any value of a: for a 6= b, it completely

determines the off-diagonal momenta:

Γab =
ik

2

λa − λb
|λa − λb|2

, a 6= b . (86)
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By inserting this back into the Hamiltonian (53), we find that diagonal and off-diagonal

terms decouple and obtain,

Hg=∞ = 2 Tr

[(
X

2
− i Π

)(
X

2
+ i Π

)]
= 2

N∑
a=1

(
λa
2
− ipa

)(
λa
2

+ ipa

)
+

k2

2

N∑
a6=b=1

1

|λa − λb|2
. (87)

Therefore, the theory reduced to the eigenvalues corresponds to the ordinary

Landau problem for N electrons plus an induced two-dimensional Calogero interaction.

Note also that the matrix measure of integration becomes flat after incorporating one

Vandermonde factor ∆(λ) into the wave functions. The occurrence of the Calogero

interaction is a rather common feature of matrix theories reduced to eigenvalues: in the

present case, the interaction is two-dimensional, owing to the presence of two Hermitean

matrices, and thus it is rather different from the exactly solvable one-dimensional case

[9][39].

We conclude that the Maxwell-Chern-Simons matrix theory at g = ∞ makes

contact with the physical problem of the fractional quantum Hall effect. The e2/r

Coulomb repulsion is replaced by the Calogero interaction k2/r2; however, numerical

results [3][5][16] indicate that quantum Hall incompressible states are rather independent

of the type of repulsive potential, for large B. (The specific form of the potential clearly

affects the detailed values of some quantities such as the gap.)

Some remarks are in order:

• The physical condition imposed by the Gauss law (85) is still that outlined in

section 3.2.1: it forces the electrons to stay apart by locking their density to the

value of the background parameter k. The solution of this constraint is however

rather different at the two points g = 0 and g =∞: for g = 0, it is the geometric, or

kinematic, condition of noncommutativity (39), while at g =∞ this is a dynamical

condition set by a repulsive potential with appropriate strength.

• Note also that the g = ∞ theory is not, by itself, less difficult than the ab-

initio quantum Hall problem: the gap is non-perturbative and there are no small

parameters. The advantage of embedding the problem into the matrix theory is

that of making contact with the solvable g = 0 limit, as we discuss in the next

section.

6.2. Conjecture on the phase diagram

In Figure (6) we illustrate the phase diagram of the Maxwell-Chern-Simons matrix

theory as a function of its parameters B/m and g. The quantized background charge

Bθ = k is held fixed over the diagram together with average density of the system.

The axes g = 0 and g =∞ have been discussed in sections 5 and 6.1, respectively.

For g = 0, the theory is solvable and displays a set of states that are in one-to-one relation

with the Laughlin and Jain ground states with filling fractions ν = m/(mk + 1). These
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Figure 6. Phase diagram of the Maxwell-Chern-Simons matrix theory. The axes g = 0
and g = ∞ have been discussed in sections 5 and 6, respectively. The Chern-Simons
matrix model sits at the left down corner.

non-degenerate states are selected by choosing the appropriate projection Am ≈ 0 and

the values of k and the density (or the angular momentum). For g =∞, we found that

the theory describes a realistic Hall system, but its ground states are difficult to find.

In ref.[12], we conjectured that the matrix ground states at g = 0 could match

one-to-one the phenomenological Jain states that are good ansatz in the physical limit

g =∞ (including the case of Calogero interaction) [5][16]: indeed, the two sets of states

become identical in the limit of both X,X diagonal, that is (classically) achieved at

g = ∞. In order to prove this conjecture, we would need to consider the evolution

of the matrix ground states as the coupling is varied in between, 0 < g < ∞, and to

check that the gap never vanishes, i.e. that there are no phase transitions in (B, g)

plane separating the g = 0 and g = ∞ regions at the specific density values [12].

This conjecture of smooth evolution of matrix Jain states is indirectly supported by the

numerical analyses, showing that the Jain wavefunctions are accurate ground states of

the g = ∞ theory. Further support is given by the form of the semiclassical density of

g = 0 matrix states that is the qualitatively the same of g = ∞ Jain incompressible

fluids states.

Let us finally remark that, the limit B → ∞ cannot be taken at g = 0, because

quasi-particle excitations and Jain states in the matrix theory have energies of O(B)

and would be projected out. Instead, the limit B = ∞ can surely be taken in the

g = ∞ physical theory (holding k = Bθ fixed), because the fractional quantum Hall

states are known to remain stable. This implies that the two limits are ordered: the

correct sequence is limB→∞ limg→∞Ψ, and the opposite choice is cut out in the phase

diagram of Fig.6.

7. Conclusions

We have reviewed the description of the fractional quantum Hall effect given by gauge

matrix theories, that provide one realization of the composite-fermion correspondence.
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In particular, the Maxwell-Chern-Simons theory, supplemented by certain projections

of states, reproduces the Jain hierarchical construction of ground state wavefunctions.

These results support the idea that the fractional Hall states should be uniquely

characterized by algebraic conditions and gauge invariance, rather than by detailed

dynamics, because they are exceptionally robust and universal.

The study of the phase diagram of the matrix theory is clearly necessary to make

better contact between the nice results (g = 0) and the physical regime (g =∞), upon

varying the potential V = g Tr[X,X]2 . We plan to study the evolution of matrix

ground states for g > 0 by including the quartic potential in the semiclassical analysis

within the mean-field approximation.

One point to develop is the study of edge excitations of matrix Jain states [40]

and the comparison with the conformal field theory descriptions [20]: in particular,

the realization of the SU(n) symmetry, for ν = n/(2kn + 1), that is still debated [41].

Another open problem is the derivation of the fractional statistics of quasiparticles in

the matrix theory setting. Both issues require an improvement of the An ≈ 0 projection

that could better handle excitations above the ground state.

Acknowledgments

The authors would like to thank the hospitality of the G. Galilei Institute for Theoretical

Physics, Florence. This work was partially funded by the ESF programme INSTANS:

Interdisciplinary Statistical and Field Theory Approaches to Nanophysics and Low

Dimensional Systems, and by the MUR grant Fisica Statistica dei Sistemi Fortemente

Correlati all’Equilibrio e Fuori dall’Equilibrio.

References

[1] For a review see: R. A. Prange and S. M. Girvin, The Quantum Hall Effect, Springer, Berlin
(1990); S. Das Sarma and A. Pinczuk, Perspectives in Quantum Hall effects, Wiley, New York
(1997).

[2] D. Tsui, H. Sormer, A .Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum
Limit, Phys. Rev. Lett. 48 (1982) 1559.

[3] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with
Fractionally Charged Excitations, Phys. Rev. Lett. 50 (1983) 1395; Elementary Theory: the
Incompressible Quantum Fluid, in R. A. Prange and S. M. Girvin, Ref. [1].

[4] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Observation of the e/3 Fractionally
Charged Laughlin Quasiparticle, Phys. Rev. Lett. 79 (1997) 2526; R. de-Picciotto, M. Reznikov,
M. Heiblum, V. Umansky, G. Bunin and D. Mahalu, Direct observation of a fractional charge,
Nature 389 (1997) 162.

[5] J. Jain, Composite Fermions, Cambridge Univ. Press, Cambridge (2007).
[6] A. Lopez, E. Fradkin, Fractional Quantum Hall Effect and Chern-Simons gauge theories, Phys.

Rev. B 44 (1991) 5246; Universal properties of the wave functions of fractional quantum Hall
systems, Phys. Rev. Lett. 69 (1992) 2126.

[7] S. Kivelson, D.-H. Lee, and S.-C. Zhang, Global phase diagram in the quantum Hall effect,
Phys. Rev. B 46 (1992) 2223; S. C. Zhang, The Chern-Simons-Landau-Ginzburg theory of



Matrix Effective Theories of the Fractional Quantum Hall effect 29

the fractional quantum Hall effect, Int. J. Mod. Phys. B 6 (1992) 25; G. Murthy, R. Shankar,
Hamiltonian Theories of the FQHE, Rev. Mod. Phys.75 (2003) 1101.

[8] L. Susskind, The quantum Hall fluid and non-commutative Chern Simons theory, hep-th/0101029.
[9] A. P. Polychronakos, Quantum Hall states as matrix Chern-Simons theory, JHEP 0104 (2001)

011; Quantum Hall states on the cylinder as unitary matrix Chern-Simons theory, JHEP 0106
(2001) 070.

[10] S. Hellerman and M. Van Raamsdonk, Quantum Hall physics equals noncommutative field theory,
JHEP 0110 (2001) 039.

[11] A. Cappelli and M. Riccardi, Matrix model description of Laughlin Hall states, J. Stat. Mech.
0505 (2005) P001.

[12] A. Cappelli and I. D. Rodriguez, Jain states in a matrix theory of the quantum Hall effect, JHEP
0612 (2006) 056.

[13] T. H. Hansson, J. Kailasvuori, A. Karlhede and R. von Unge, Solitons and Quasielectrons in the
Quantum Hall Matrix Model, Phys. Rev. B 72 (2005) 205317.

[14] A. Cappelli and I. D. Rodriguez, Semiclassical Droplet States in Matrix Quantum Hall Effect,
JHEP 0802 (2008) 046.

[15] A. Cappelli, C. A. Trugenberger and G. R. Zemba, Infinite symmetry in the quantum Hall effect,
Nucl. Phys. B 396 (1993) 465; Large N limit in the quantum Hall Effect, Phys. Lett. B 306
(1993) 100; for a review, see: Nucl. Phys. B (Proc. Suppl.)33C (1993) 21.

[16] F. D. M. Haldane, The hierarchy of fractional states and numerical studies, in R. A. Prange and S.
M. Girvin [1]; J. Jain et al., in [5]; A. Cappelli, C. Méndez, J. Simonin, G. R. Zemba, Numerical
study of hierarchical quantum Hall edge states on the disk geometry, Phys. Rev. B 58 (1998)
16291;

[17] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore (1990).
[18] A. Lopez, E. Fradkin, Fermionic Chern-Simons Field Theory for the Fractional Hall Effect, in

Composite Fermions: A Unified View of the Quantum Hall Regime, O. Heinonen Ed., World
Scientific, Singapore (1998).

[19] X.-G. Wen, Quantum Field Theory of Many-Body Systems, Oxford Univ. Press, Oxford (2004).
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