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A system modelling autophagy is a new area of research. Current understanding 

of each step in this biochemical pathway is limited. The study of this mechanism is 

interesting in several aspects: autophagy plays an important role in physiological 

cellular processes, is a survival mechanism under external stress and is also connected 

with cancer and neurodegenerative diseases [Cuervo, 2004; Kondo et al., 2005; Levine, 

2007; Pan et al., 2008]. 

Autophagy is the pathway for degradation of redundant or faulty cell 

components. This important mechanism occurs in all eukaryotic cells as a part of cell’s 

everyday activities and plays an important role in cell growth and development (cellular 

differentiation, immunity, cellular homeostasis).  

This work proposes a simple mathematical model of autophagy pathway as a 

system with feedback, which controls the level of the total amino acid pool. Feedback 

comes from the amino acids which are produced during the autophagy mechanism 

which is induced as a result of starvation or rapamycin treatment. 
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 Autophagy is derived from Greek roots: auto, meaning "self" and phagy – "to 

eat“. It is the pathway for degradation of redundant or faulty cell components. This 

important "housekeeping" complex dynamical system occurs in all eukaryotic cells as a 

part of cell’s everyday activities and plays an important role in cell growth and 

development (cellular differentiation, immunity, cellular homeostasis).  

Autophagy activity is increased in some environmental cases such as a 

starvation, oxygen limitation, and hormonal stimulations or in intracellular stress such 

as microbial invasion, accumulation of mutant proteins and damaged organelles 

[Levine, 2007]. This survival promotion occurs by displacing nutrients from non–

essential to more important processes. This lysosomal degradation system leads to the 

turnover of proteins and organelles. It includes the sequestration of cytoplasm and 

damaged or excess organelles into double–membrane vesicle called autophagosome and 

finally delivery to the lysosome for bulk degradation. Proteins and macromolecules 

destined for degradation during autophagy degrade into amino acids, peptide and fatty 

acids which are reused by the cell for biosynthesis and to fuel energy production. 

Autophagy adapts to stress by escaping from cell death but on the other hand can be an 

alternative path to cellular degradation (type II of PCD, programmed cell death). 

Autophagy is highly regulated by many factors such as amino acids, hormones and 

growth factors [Klionsky, 1999]. 

Paradoxically autophagy plays a dual role in cancer. It depends on the particular 

situation and phase in the pathological process. This system may lead to survival of 

cancer cells and may protect against some of the cancer treatments (ionizing radiation). 
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On the other hand, at early stages of carcinogenesis, autophagy plays a role of a tumor 

suppressor by removing damaged organelles that may generate mutations. Autophagy is 

also involved in the degradation of misfolded and aggregated proteins and therefore 

plays a role in neurodegenerative diseases, such as Huntington’s and Parkinson’s 

diseases. 

 

�����B������BA�

Systems biology leads to a better understanding of cellular dynamics by 

investigation the elements of cellular networks and interactions between them. 

Approaches which can be used to achieve these objectives integrate experiments and 

computational modelling. 

Our intension is to develop a mathematical model for the autophagy pathway. 

An attempt to formulate the network of biochemical reactions in a mathematical 

framework can help with better understanding of the lysosomal degradation mechanism. 

In turn, better knowledge of the autophagy pathway could help improve future therapy 

(for example against cancer) and might contribute to recognition of alternative cell 

death mechanisms when some apoptotic pathways are inhibited. Also our work is 

motivated by current uncertainty of the role of autophagy; that is whether autophagy is a 

cell survival mechanism or rather another kind of cell death. Furthermore, the modelling 

might help in the future research to test the hypothesis for connection between 

autophagy and apoptosis, which has been already reported by experimental 

observations. 
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The objective of our work is to identify the molecular control systems regulating 

autophagy in cell death and survival. This is achieved by building mathematical model 

calibrated using published experimental data.  This involves: 

• developing a network of biochemical reactions involved in autophagy pathway, 

• extracting rate expressions and state equations for analysis, 

• simulations, which will be used to predict system behaviour in response to various 

stimuli. 

 

�����BA�������BA��

The main contributions in the thesis: 

• A set of biochemical reactions involved in autophagy induction was extracted based 

on scientific literature reviews. 

• Based on the network of biochemical reactions the set of rate expressions and ODE's 

was developed for computer simulations.  

• Parameters for the simulation were proposed based on experimental literature about 

autophagy and mTOR signalling pathway. 

• First test of an autophagy model was presented and tested. Mathematical model of 

autophagy pathway was detailed as a system with the feedback. 

• The value of the feedback strength was obtained, as well as the autophagy contribution 

on the total amino acid pool during starvation. 
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This thesis is focused on the study of the dynamics of the autophagy pathway, 

which is involved in controlling of amino acid pool in cells during the starvations 

conditions. Special attention is paid on autophagy induction and reaction which are 

involved in that process.  

Chapter 1 is focused on the introduction to autophagy pathway in general 

meaning. Chapter 2 describes in some details lysosomal degradation mechanisms. It 

explains the role of autophagy in health and diseases and gives an introduction to the 

steps of the autophagy pathway and autophagy related proteins. Also it presents an 

overview of our model from the biological point of view: explains set of reactions 

which are important for mTOR dependent autophagy induction and shows amino acids 

in the feedback loop. Chapter 3 gives an overview of biochemical pathway modelling. It 

presents a few approaches which are used in systems biology, such as the law of mass 

action and Michaelis-Menten kinetics. In the next chapter the dynamical model which 

reproduces the reactions in autophagy induction are presented. It hypothesises a novel 

model structure with references for the individual components of the pathway. It 

includes a diagrammatic representation of the proposed autophagy model, with the 

reactions involved and the ordinary differential equations that represent the system. This 

chapter also presents results of initial simulations. Chapter 5 explains how we extracted 

parameters essential for the model calibration from the experimental literature. The last 

chapter summaries the main results of our work, discuss the potential implications and 

gives some suggestions for future research. 
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The balance between cellular biosynthesis and intracellular degradation is 

regulated by two powerful but independent mechanisms: the ubiquitin-proteasome 

system and the lysosome pathway [Korolchuk et al., 2009]. Some cross-talk between 

these pathways has been suggested even though there are many differences in the 

individual mechanisms. These differences include substrate differences (in autophagy 

bulkier and longer half-lives) and time scales (where autophagy is significantly slower 

than the proteasome system) [Korolchuk et al., 2009]. In the other words, autophagy 

degrades long-lived proteins and some cytoplasmic organelles [Onodera and Ohsumi, 

2005], whereas the ubiquitin-proteasome system is involved in the degradation of 

specific short-lived proteins [Yorimitsu and Klionsky, 2005].  

The lysosomal pathway has at least three variants: Cvt (cytosol to vacuole 

targeting) pathway, Vid (vacuolar import and degradation) pathway and autophagy. 

There are three types of autophagy: microautophagy, macroautophagy and chaperone-

mediated autophagy. The most prevalent is macroautophagy. In general autophagy is a 

non-selective process; however in some cases it may select a target. Both types follow 

general steps including autophagosome formation and fusion with the lysosome. During 

non-selective autophagy, autophagic vacuoles enclose bulk cytoplasm. In general, this 

type of autophagy is induced by starvation and leads to increases in the size of the 

vesicle compared with the Cvt pathway. During selective autophagy only particular 

contents are sequestered into a vesicle.  

One classic example of selective autophagy is the cytoplasm-to-vacuole 

targeting (Cvt) pathway, which is a preferential type of transport under normal nutrient 
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conditions. The cytoplasm to vacuole targeting pathway is a biosynthesis transport 

mechanism which delivers Ape1 (aminopeptidase 1) and Ams1 (alpha-mannosidase) 

enzymes to the vacuole. When cells are moved to a poor nutrient medium, the Cvt 

complex (Ape1, Ams1 and Atg19) is wrapped into the autophagosome together with 

other components. Formation of a Cvt vesicle is topologically the same as induced 

autophagy [Baba et al., 1997]. Delivery of organelles or proteins via the Cvt pathway is 

selective and occurs in basal growth conditions while transport by autophagosomes is 

non-selective and is induced by stress [Scott et all, 2000]. Some physiological level of 

autophagy is essential for cellular homeostasis. Excessive levels of autophagy promote 

cell death by digesting vital amounts of cell components while insufficient autophagy 

leads to the accumulation of damaged proteins and organelles. 

The study of the autophagy pathway is interesting in many respects: it plays an 

important role in standard cellular processes, is a survival mechanism under external 

stress and also is connected with cancer and neurodegenerative diseases. In human 

diseases autophagy appears to play the role of a "double-edged sword", where in some 

cases it can mitigate pathogenesis whilst in others, it may aggravate pathologies. 

 

�������ED�AE�

Identification of the autophagy pathway started with the discovery of the 

lysosome in 1955 by Christian de Duve [Klionsky, 2007], who subsequently coined the 

name "autophagy", which was introduced in 1963. It was morphologically identified 

first in mammalian cells [Yorimitsu and Klionsky, 2005], however studies with yeast 

have improved knowledge of the molecular mechanism involved in the autophagy 

pathway. In 1992 Ohsumi and colleagues showed that the morphology of this process in 
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yeast was similar to that in mammalian [Takeshige, et al., 1992]. This discovery proved 

very valuable for further studies in autophagy related genes and their orthologs. 

Mortimore and his colleagues demonstrated that amino acids inhibit autophagy and at 

the same time he made a hypothesis that "autophagy could have a physiological role in 

the maintenance of body amino acid pools, although there is no direct experimental 

evidence for this" [Mortimore, 1977; page 174].   

In 1993 the target of rapamycin (TOR) gene was isolated from yeast [Kunz et al., 1993], 

and from mammalians one year later. Shortly after this, the TOR gene was connected 

with protein synthesis, cell growth and cell-cycle progression.  In 1995 Meijer and 

colleagues showed the stimulatory role of rapamycin for autophagy induction 

[Blommaart, 1995]. The same laboratory provided a link between amino acid-dependent 

and TOR-dependent regulation of autophagy pathway by demonstrating stimulation of 

TOR by amino acids. 

In 1966 de Duve suggested that autophagy might be selective process (autophagy still is 

considered to be primarily nonspecific [Kopitz, 1990]). The first evidence for specific 

autophagy of an organelle was showed by Bolender and Weibel in 1973 [Bolender & 

Weibel, 1973]; four years later specific sequestration was demonstrated for 

mitochondria [Beaulaton, 1977], and afterwards for peroxisomes [Veenhuis, 1983]. The 

next example of degradation in a selective manner was the cytoplasm-to-vacuole 

targeting (Cvt) pathway [Harding, 1995]. Its morphology overlaps with non selective 

autophagy, as well as with proteins required [Scott, 1996; Baba, 1997].  

In 1999 B. Levine's laboratory pointed out the essential connection between autophagy 

and diseases [Liang, 1999] and current research demonstrated that defects in autophagy 
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is associated with tumorgenesis [Mathew, 2007] and neurodegenerative diseases 

[Rubinsztein 2005].  

Recent studies have confirmed the hypothesis of Beaulaton and Lockshin, who 

suggested that autophagy is involved in cell death [Beaulaton and Lockshin, 1977]. In 

particular, this shows a connection between programmed cell death (PCD) type I, 

apoptosis, and autophagy (sometimes called type II PCD).  Mostly autophagy acts as a 

cytoprotective mechanism [Boya et al., 2005]. However, if apoptosis is disabled or if 

cellular damage is too large, autophagy may lead to cell death [Boya et al., 2005]. Better 

knowledge of this dual role of the autophagy pathway in cell death and survival is 

crucial for studies in regulation of those mechanisms. A more detailed description of the 

discovery and subsequent identification of the autophagosome process and pathway can 

be found in [Klionsky, 2007]. 

 

�������B! ��"�#�A���BA��

Autophagy plays a significant role in adaptation to starvation, development 

(birth, sporulation, fruiting body formation – for more details see Mizushima, 2005), 

programmed cell death, intracellular protein and organelle removal, elimination of 

microorganisms (degradation of bacteria), anti-aging, tumor suppression and prevention 

of neuron degradation [Xie and Klionsky, 2007; Mizushima, 2007]. This mechanism is 

an effective degradation process which can turn over proteins and remove redundant 

organelles. 

In some cases is very difficult to determine the role of autophagy, for example in 

cancer (see section 2.6) and cell survival and cell death (see section 2.5). Subclassifying 
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autophagy into "basal" (Cvt pathway) and "induced" might be helpful to better 

understand the various roles of autophagy. However, the normal (or basal) level of 

autophagy is low; however, it can be upregulated by starvation (birth and fasting). The 

basal level of autophagy is essential for intracellular quality control while the induced 

autophagy – for intracellular production of amino acids during nutrient deprivation 

[Mizushima, 2005]. 

 

����$�E!��B#�� E����B! ��"�!�� C�"�

The key steps in the autophagy process are:  

1) Induction of autophagy,  

2) Nucleation of phagophore, 

3) Vesicle expansion and completion,  

4) Retrieval of Atg9 from the PAS,  

5) Targeting, docking and fusion with the lysosome,  

6) Breakdown of the autolysosome,  

7) Recycling of the macromolecular constituents. 
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Figure 2.3 Steps of autophagy. At the beginning of the autophagy pathway creation of 

the phagophore/isolation membrane is observed (vesicle nucleation). In the next step 

Atg proteins are involved which are responsible for vesicle expansion. The 

autophagosome sequesters a bulk cytoplasm with organelles. The outer membrane fuses 

with a lysosome and creates an autophagolysosome. Finally, wrapped material 

undergoes breakdown and recycling   [Taken from Melendez and Levine, 2009]. 

 

Each step requires many of the autophagy related proteins Atg. For further information 

about autophagy related proteins which are essential for lysosomal degradation 

pathway, see sub-chapter 2.4. 

 

2.3.1 Induction of autophagy 

During the normal vegetative nutrient conditions autophagy occurs at a basal 

level in yeast and mammalians. mTOR (mammalian target of rapamycin) is a master 

controller of nutrient and growth factors signalling, which suppress autophagy induction 

under nutrient-rich conditions.  

mTOR signalling strongly regulates the binding between Atg1 and Atg13. The active 

form of TOR, in nutrient – rich conditions, affects hyperphosphorylation of Atg13, 
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which inhibits its association with Atg1 [Kamada et al., 2000]. After rapamycin 

treatment or during starvation (which is a classical inductor of the autophagy pathway) 

TOR activity is repressed and this causes rapid dephosphorylation of Atg13. This form 

of Atg13 has a high affinity for Atg1. This binding activates Atg1 kinase and leads to 

induction of autophagy.  

Atg1 creates a complex with Atg13, Atg17 and Cvt9. All of the proteins are 

found to play a role in either the Cvt pathway or autophagy, but not both as Atg1. For 

example the Atg1-Atg13 association is essential for autophagy but not for a Cvt 

pathway. This suggests that the Atg1 complex acts as a switching point between two 

distinct pathways for targeting proteins in response to nutrient conditions.  

 

Figure 2.3.1 Autophagy induction by TOR inhibition. In rich nutrients conditions that 

support transport via the Cvt pathway, Atg13 is hyperphosphorylated. In starvation 

autophagy pathway is induced by switching complex Atg1-Atg13.  [Taken from 

Gozuacik and Kimchi, 2004]. 

 

In mammalian cells, in response to ligand binding to the receptor (for example 

InR insulin receptor), a class I PI 3-K (class I phosphoinositide 3-kinase) is stimulated. 

Creation of the PtdIns(3)P (phosphatidylinositol 3-phosphate) at the membrane allows 

the attaching and activation of PDK1 (3-phosphoinositide-dependent protein kinase 1) 

and Akt/PKB (protein kinase B). Afterwards inhibition of TSC complex, which is a 
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GTP-ase activating protein for the Rheb (see chapter 2.7.2), by Akt resulting in the 

stabilization of the GTP-bounded form of Rheb. This form activates TOR and as a result 

– inhibits induction of autophagy [Klionsky, 2005]. For more detailed discussion of 

mTOR activation see chapter 2.7. 

 

 

Figure 2.3.2 Regulation of autophagy induction in mammalian cells. In higher 

eukaryotes, regulation of TOR is mediated via the action of a PI 3-K. Description of the 

roles of particular elements from the diagram see text above [Taken from Klionsky, 

2005]. 

 

2.3.2 Vesicle nucleation and autophagosome formation 

In yeast the location for autophagosome formation is called the pre-

autophagosomal structure or the phagophore assembly site (PAS) [Xie and Klionsky, 

2007; Mizushima, 2008]. The PAS is a composite of the forming vesicle and the core 
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machinery proteins which lead to the process of expansion and transformation of the 

phagophore into an autophagosome.  

The mechanism involved in vesicle formation and the genesis of the 

autophagosome membrane are not well known. In one of the model a vesicle is 

produced from pre-existing organelle (for example ER) by budding. The new-created 

vesicle has the same cellular topology as the membrane donor. Another model assumes 

that the vesicle is formed de novo [Klionsky, 2005].  

 

2.3.3 Vesicle expansion and complexion 

Most of the proteins which are involved in autophagy pathway appear during 

vesicle formation. Vesicle expansion and completion are parts of this process.  

The proteins that perform in the vesicle expansion and completion create two 

sets of ubiquitin-like (Ubl) proteins: Atg8-PE (phosphatidylethanolamine) and Atg12-

Atg5 [Yorimitsu and Klionsky, 2005]. Both of these proteins localize at the PAS. 

At the beginning of the conjugation, Atg8 undergoes cleavage by Atg4 protease. This 

process results in removing arginine residue (R) from Atg8 to expose a glycine residue 

and converts a soluble Atg8 to a membrane-associated protein. The conjugation system 

requires an ubiquitin-activating E1-like enzyme, Atg7. Atg8, even as Atg 12 from the 

second conjugation system, is activated by Atg7. Afterwards, Atg8 and Atg12, via the 

action of an E2-like conjugating enzyme (Atg3 for Atg8 and Atg10 for Atg12), are 

attached to the PE (phosphatidylethanolamine) and Atg5, respectively. Next Atg12-

Atg5 complex attaches Atg16 and all form a tetrameric complex, while Atg8-PE docks 
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to the PAS. In the complete vesicle Atg8 is released from membrane by Atg4 cleaving 

[Klionsky, 2005]. 

 

 

Figure 2.3.3 Atg proteins involved in vesicle expansion and completion. Two 

ubiquitin-like proteins act in the process. For detailed description see text above 

[Klionsky, 2005]. 

 

2.3.4 Retrieval of Atg9 

In most cases Atg proteins present a single localization at the PAS but Atg9 and 

Atg23 are also delivered to the many another structures. The movement of the Atg9 

between PAS and non-PAS structures is crucial for autophagosome formation [Xie and 

Klionsky, 2007]. The Atg9 transport factors (Atg23 and Atg27) are responsible for 

effective transfer of Atg9 to the PAS. The retrieval of Atg9 from the PAS involves Atg1 

complex, Atg2 and Atg18.  
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Figure 2.3.4 PAS. Different proteins are localized in the PAS, depending on the phase 

of the vesicle formation. a) The PI(3)K complex: the lipid kinase Vps34, the enzyme 

Vps15 and Atg6. b) The position of Atg2 and Atg18 at the PAS depends on Atg9, Atg1, 

the PI(3)K complex and on each other. c) The cycling of Atg9 between PAS and the 

peripheral site. Effective delivery to the PAS requires Atg9 transport factors (Atg23 and 

Atg 27) while away from the PAS Atg18, Atg1 complex andAtg2 are involved [Taken 

from Xie and Klionsky, 2007]. 

 

Based on figure 2.3 the retrieval Atg9 from the PAS has three stages: 

a) Atg9 and Atg1 complex are gathered to the PAS 

b) Atg18 and atg2 are recruited to the PAS where they interact with Atg9 

c) Atg9 moves out from the PAS. 

The probable function of Atg9 cycling is to provide lipids for autophagosome formation 

[He et al., 2006]. 
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2.3.5 Fusion with a lysosome 

The vesicle fusion with the lysosome must be controlled to prevent premature 

fusion. The complex of Atg12-Atg5-Atg16 and Atg8-PE, placed on the outer membrane 

of autophagosome, regulate the fusion process [Klionsky, 2005]. 

The proteins system required for fusion process include: the SNARE proteins (Vam3, 

Vam7, Vti1 and Ykt6), the NSF, SNAP and GDI homologs (Sec17, Sec18 and Sec19), 

the Rab protein Ypt7, members of the class C Vps/HOPS complex, proteins Ccz1 and 

Mon1 [Klionsky, 2005].  

 

2.3.6 Breakdown of the autolysosome and recycling 

After fusion autophagosome with the lysosome (or vacuole in yeast), the inner 

membrane of the autophagosome and its contents (cytoplasmic material) are degraded 

by lysosomal/vacuolar hydrolases [Mizushima, 2008]. This step of autophagy pathway 

depends on the acidic pH of the vacuole. Also Atg15 and Atg22 may be involved in the 

breakdown step.  

Thereafter proteins and macromolecules are degraded in the lysosome/vacuole 

into simple elements (amino acids, peptide and fatty acids) which are exported to the 

cytosol for reuse by cell for biosynthesis of essential components and to fuel energy 

production. Amino acids produced via autophagy can be oxidized to produce energy in 

some tissues (such as muscles) or used for synthesis of proteins that are essential for 

adaptation to starvation [Mizushima, 2005]. 
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The ATG genes encode proteins essential for all steps involved in autophagy 

pathway. There are four functional groups of Atg proteins [Levine and Junying, 2005; 

Xie and Klionsky, 2007]: 

A) protein serine/threonine kinase complex which responds to TOR kinase (Atg1, 

Atg13, Atg17);  

B) lipid kinase signalling complex PI(3)K which induces vesicle nucleation (the 

PI(3)K complex is formed by Atg6/Vps30, Atg14, Vps34/class III PI(3)K and 

Vps15 and is localized to the PAS);  

C) two ubiquitin-like Ubl protein conjugation system, Atg12 and Atg8, which 

are essential for vesicle expansion and completion (includes an E1-like 

activating enzyme Atg7, two E2-like conjugating enzymes Atg10 (for Atg12) 

and Atg3 (for Atg8), an Atg8 modifying protease Atg4 (cause releasing PE from 

Atg8-PE), Atg5 and Atg16);  

D) a retrieval pathway, Atg9 and its cycling system, involved in disassembly of 

Atg proteins from matured autophagosome (Atg9, Atg1-Atg13 complex, Atg2, 

Atg18).  

 

For more detailed description of the core proteins required for autophagy and PAS see 

Xie and Klionsky, 2007. 
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Apart from classical apoptosis, there are several types of programmed cell death 

(PCD). Nomenclatures "autophagic cell death" or "type II cell death" are used for a 

mechanism characterized by the presence of autophagolysosomes. A term "autophagy" 

is preferred when describing a degradation process rather than cell death. However, for 

this type of death the most adequate terminology is "cell death with autophagy" 

[Mizushima, 2005]. The role of autophagy is quite controversial and creates question 

whether autophagy is a cell death or a survival mechanism. Recent studies suggest that 

autophagy can mediate cell death [Yu et al., 2004; Shimizu et al., 2004] and conversely 

it can also act as a cytoprotective mechanism during starvation [Lum et al., 2005]. 

Furthermore, inhibition of autophagy triggers starvation-induced apoptosis [Boya et al., 

2005]. For that reason, the role of autophagy as a cell death executor or cell protector 

might be connected with cellular nutrient conditions [Mizushima, 2005]. 
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Figure 2.5. A motif function of autophagy. Activation of signalling pathways that 

induce utophagy by metabolic stress and anti-cancer treatment. Dual role of 

autolysosomal degradation of cytoplasmic material: cell survival (generating fatty acids 

and amino acids for reuse and by removing harmful organelles and proteins) and cell 

death (self-cannibalisation). Also the turnover of proteins and organelles by autophagy 

can contribute to the control of cell growth [Levine, 2007]. 
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Autophagy is linked to several human pathologies, such as different kinds of 

cancer, Parkinson's disease and Alzheimer's disease [Cuervo, 2004; Kondo et al., 2005; 

Levine, 2007; Pan et al., 2008]. A better understanding of the role of autophagy in 

diseases is a great recent research interest; therefore the topic of lysosomal degradation 
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is developing very fast nowadays. Autophagy has been reported as a survival 

mechanism but also as a cell death, depending on the progression of the disease, the 

cellular surroundings and therapeutic treatment [Cuervo, 2004]. 

 

2.6.1 Neurodegenerative diseases 

A hallmark of several neurodegenerative diseases, such as Parkinson's disease, 

Alzheimer's disease and Huntington's disease, is intracellular protein aggregates which 

contain mutant proteins. Induction of autophagy may be beneficial for removing those 

aggregates, while inhibition causes formation of them [Mizushima, 2005]. The main 

challenging question in the topic of neurodegeneration diseases is how to prevent or at 

least slow down the formation of aggregates by promoting the turnover of misfolded 

proteins. For more information about protein aggregations and neurodegenerative 

diseases see Cuervo, 2005. 

 

2.6.2 Cancer 

The evidence which linked cancer and autophagy results in greater interest in the 

topic of autophagy pathway. Better understanding the role of autophagy in individual 

stages of tumor development may lead to improvement of anticancer treatment. 

Induction as well as inhibition of autophagy may enhance and inhibit 

progression and development of tumor. The relationship between autophagy regulation 

and tumor progression depends on the particular situation and phase in the pathological 

process. In typical cancer cells, due to autophagy suppression, protein synthesis prevails 

over degradation and cellular growth remains. Down-regulation of autophagy may 
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cause accumulation of toxic biochemical species that might stimulate mutation and 

support tumorgenesis [Cuervo, 2004].  Therefore, at early stages of carcinogenesis, 

autophagy plays a role of a tumor suppressor.  

On the other hand, tumor cells in late states of development are often low in 

nutrient factors and oxygen, and therefore may require autophagy for continued growth. 

For this reason autophagy can be induced to assure survival of tumor cells under 

adverse circumstances, for example, the inner area of tumor, with low vascularisation. 

To compensate for the low supply of nutrients and oxygen, activation of autophagy 

helps to gain the materials for the synthesis of the essential components by degradation 

of unnecessary intracellular elements. Furthermore induction of autophagy is beneficial 

in some type of cancers as a response to radiation and chemotherapy – it helps eliminate 

damaged structures before they accumulate, thereby reducing the desired death rate of 

tumor cells. 
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Figure 2.6 Double role of autophagy in cancer. Depending on the stage of tumor 

development, both inhibition and activation of autophagy may be beneficial for cancer 

cells. a) In the early stages, decreased autophagy leads to increasing protein synthesis 

and cellular growth. b) In the late stages, increased autophagy may help to survival of 

the cells located in centre of the tumor, which have restricted access to nutrients and 

oxygen. Furthermore, induced autophagy may be a defensive system as a response to 

different anticancer treatment. [Taken from Cuervo, 2004]. 

 

The conflicting pro-survival and pro-death autophagy performing makes the 

cancer treatment more complex. Efficacy of anticancer therapeutic may be improved by 

manipulation of autophagy [Kondo et al., 2005]. 
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The mammalian target of rapamycin (mTOR) is a serine/threonine kinase which 

is highly conserved in all eukaryotes. During the nutrient rich conditions mTOR occurs 

in a active form and controls many processes that are involved in cellular growth and 

metabolism in response to growth factors stimulations (insulin – via the PI3K-Akt/PKB 

pathway – figure 2.7.1), changes in cellular energy levels (ATP) and nutrients 

sufficiency (amino acids) – and in turn plays a role of a nutrient status sensor [Zempleni, 

2005; Meijer, 2008]. mTOR also acts as a gatekeeper for autophagy induction. 

Inactivation of mTOR by starvation or rapamycin treatment causes dephosphorylation 

of Atg13. This in turn raises the affinity Atg13 to Atg1 and this association results in 

increasing Atg1 protein kinase activity [Meijer, 2008]. For more detailed discussion 

about autophagy induction see chapter 2.3.1 and references Kamada et al., 2000 and 

Klionsky, 2005. 
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Figure 2.7.1 The mTOR signalling network [taken from Hall, 2008]. 

 

A lack of growth factors and energy can be repaid by high level of amino acids, 

but not vice versa [Hall, 2008]. This means that amino acids are a strong signal which 

positively regulates mTORC1 [Laplante and Sabatini, 2009]. An essential amino acid 

necessary for mTORC1 activation, as it was recently shown, is leucine. mTOR controls 

cell growth by both positively (protein synthesis, mitochondrial metabolism) and 

negatively (autophagy, apoptosis) regulating processes.  

 

2.7.1 Complexes of mTOR: mTORC1/mTORC2 

mTOR remains in two signalling muliprotein complexes: mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is composed of mTOR, raptor 
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(regulatory associated protein of mTOR), mLST8/G�L protein, PRAS40 [Vinod and 

Venkatesh, 2009; Kim, 2009] and FKBP38 [Kim, 2009; Bai et al., 2007]. This complex 

controls protein synthesis and functions as a nutrient/energy sensor. The activity of 

mTORC1 is stimulated by insulin, growth factors, amino acids and oxidative stress, 

while inhibition is caused by nutrient deprivation, low growth factor levels and 

rapamycin. Complex 1 is called a rapamycin-sensitive complex. mTORC2 is composed 

of mTOR, Rictor (rapamycin-insensitive companion of mTOR), mLST8/G�L and 

mSIN1. mTORC2 is regulated by insulin and growth factors. Complex 2 is called a 

rapamycin-insensitive complex. For more information recommended further reading: 

Bai and Jiang, 2009; Laplante and Sabatini, 2009. 

 

2.7.2 mTOR activation 

The mechanism by which amino acids activate mTORC1 is not well known yet. 

Some of the research results suggested that upstream of mTOR are TSC1-TSC2 and 

small GTPase Rheb. Recently, Rheb was confirmed as an effector of the TSC1/TSC2 

complex. TSC complex directly interacts with Rheb [Bai and Jiang, 2009] and 

modulates its GTP hydrolysis activity. Some evidence shows that Rheb is regulated by 

amino acids conditions [Roccio et al., 2005] when depletion of amino acids reduces the 

levels of GTP-bounded Rheb.  

FKBP38, by directly binding to mTOR [Bai and Jiang, 2009], inhibits activity of 

mTORC1 [Bai et al., 2007].  The level of cytosolic FKBP38 is negatively correlated 

with the mTOR activity [Bai and Jiang, 2009]. The interaction FKBP38 with mTOR is 

controlled by Rheb, which inhibits its association by directly binding to FKBP38 [Bai et 
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al., 2007] – see figure 2.7.2. Rheb-FKBP38 binding is GTP-dependent [Bai and Jiang, 

2009].  

 

 

Figure 2.7.2 A model for the role of FKBP38 in mTORC1 regulation. FKBP38 by 

direct binding to mTOR inhibits its activity. Rheb, in GTP-bounded form, interacts with 

FKBP38 and allow activation of mTORC1. TSC1/TSC2 complex promotes the 

hydrolysis of GTP to GDP.  [Taken from Bai and Jiang, 2009]. 

 

The association of Rheb with FKBP38 in cells is controlled by amino acids and growth 

factors and in starvation conditions it seems to be a weak binding [Bai and Jiang, 2009].  

 

2.7.2.1 Rheb 

Rheb (Ras-homology enriched in bran) is a small GTPase which is structurally 

close to Ras. The regions involved in GTP binding in Rheb are similar to those in Ras 
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and it is believed that the core action mechanism of Rheb is similar to Ras [Bai and 

Jiang, 2009]. There is one difference (Rheb contains an arginine, not a glycine like 

Rheb at the homologue position) which results in a high level of GTP-bound Rheb in 

cell. 

The activity of the small GTPases depends on their nucleotide-binding states, which are 

controlled by their related GAPs (GTPase-activating protein) and GEFs (guanine 

nucleotide exchange factor). The GAP for Rheb is TSC1/TSC2 complex, which 

stimulates GTP hydrolysis. Recently TCTP (the translationally controlled tumor 

protein) has been suggested to be the GEF for Rheb [Bai and Jiang, 2009]. 

 

2.7.2.2 FKBP38 

FKBP38 belongs to the PPIase (peptidyl prolyl cis/trans isomerase) family of 

FK506-binding protein. It has been suggested to be an inhibitor of mTOR [Bai et al., 

2007] and its level was found in reverse relation with mTOR1 activity. It is a part of 

mTORC1 complex [Kim, 2009; Bai et al., 2007]. FKBP38 is structurally related to 

FKBP12 and it inhibits mTOR activity by binding to it, in a similar manner to the 

FKBP12-rapamycin complex [Bai et al., 2007]. 

 

2.7.2.3 GTPase switch proteins 

In signal transduction pathways we can observe a group of intracellular switch 

proteins, which belong to the GTPase superfamily. The GTPase switch proteins occur in 

two forms: in active "on" GTP-bounded form and inactive "off" GDP-bounded form. 

GTP-bounded form modulates the activity of specific proteins [Lodish, 2001].  
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Figure 2.7.3 Cycling of GTPase switch proteins between the active and inactive forms 

[Lodish, 2001]. 

 

GAP (GTPase-activating protein) – promotes hydrolysis of bounded GTP to GDP; 

TSC1/TSC2 is a GAP for Rheb [Laplante and Sabatini, 2009]. Opposite reaction is 

catalyzed by GEF (guanine nucleotide exchange factor) and TCTP has been suggested 

to be the GEF for Rheb. 

During the signal deficiency, the protein is bound to GDP, whereas signals activate the 

release of GDP and binding to GTP. For more detailed discussion see "Molecular cell 

biology" [Lodish et al., 2001]. 
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Amino acids are essential to life and have a variety of roles in metabolism. One 

particularly significant function is to building blocks of proteins. Also they are 

prominent as precursors for the biosynthesis of molecules and in many other metabolic 

pathways [Murray, 2003]. Due to their central role in biochemistry, amino acids are 
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very important in nutrition. Nutrients must be taken in from an environment in the shape 

of food (for human and animals) or nutriment (for cell culture). 

Beside those functions, amino acids also play a role of signalling molecules that 

control signal transduction pathways [Meijer, 2008]. mTOR-dependent signalling 

pathway is activated by amino acids (especial leucine) in synergy with insulin. 

Induction of this pathways results in suppression of lysosomal degradation pathway and 

amino acids are known as inhibitors of autophagy. 

All organisms use many metabolic changes to survive during nutrient shortage 

periods. One of them is the autophagy pathway, where cells degrade their intracellular 

contents to support essential functions. Onodera and Ohsumi have shown that protein 

synthesis under nitrogen starvation requires autophagy and the products of degradation 

via autophagy are essential for this biosynthesis [Onodera and Ohsumi, 2005]. This 

suggestion of the amino acids in a feedback loop from protein degradation and back to 

building processes is used in our initial model, in chapter 4. During cellular starvation 

without autophagy the free amino acid pool decrease dramatically and could be limited 

as a substrate for protein synthesis. Next they showed that autophagy is fundamental for 

the maintenance of a free amino acid pool under starvation. Without autophagy, many 

of the amino acids fall below critical levels. 

Autophagy may be inhibited by the insulin-amino acid-mTOR signalling 

pathway (figure 2.8.1) and can be activated by amino acids depletion or rapamycin 

[Meijer and Codogno, 2008]. Insulin, in synergy with amino acids, inhibits autophagy 

by activating mTOR, which results in the phosphorylation of the protein kinase Atg13 

and inhibition of its association with Atg1. Complex of Atg1 and Atg13 is essential for 

induction of autophagy. 
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Figure 2.8.1 Regulation of autophagy by insulin and amino acids. Amino acids in a 

feedback loop. Activation of mTOR requires input from amino acids and insulin, which 

next stimulates protein synthesis and phosphorylates Atg13, which results in inactive 

form of Atg1. Amino acids, which are the products of autophagy pathway, play a role of 

feedback regulator for the process [Yang et al., 2005; figure taken from Meijer and 

Codogno, 2008]. 

 

2.8.1 Mechanism of amino acids sensing in mTOR-mediated signalling 

Amino acids can regulate autophagy via modifications in the signalling 

pathways activity.  The main question is how the level of amino acids is sensed and 

signals to mTOR (figure 2.8.2). Amino acids are provided into the cell via amino acid 

transporters. Currently few mechanisms of amino acid sensing are proposed, but recent 

studies suggest that intracellular amino acid concentration is responsible for the control 

of mTOR signalling pathway (intracellular amino acid receptor), rather than a 

membrane amino acid transporter [Kim, 2009]. 
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Figure 2.8.2 Mechanisms of amino acid sensing by mTOR. Amino acids may activate 

mTORC1 by membrane sensor or intracellular amino acid sensor [Kim, 2009]. 

 

Nutrients conditions regulate mTORC1 activity, despite the mechanism is not 

well known. Amino acids inhibit TSC1/2 complex and that could be one of the 

mechanisms for intracellular amino acid sensing. Another study suggests that amino 

acids stimulate the binding of Rheb with mTOR.  Rheb activates mTORC1 by binding 

to mTOR via FKBP38 and this association is reduced when amino acids are depleted. It 

could be proposed that mTOR itself is the amino acid sensor – then the effect of 

nutrients is indirect and amino acids could lower the concentration of an inhibitor which 

is involved in with the Rheb-mTOR association [Meijer, 2008]. For more detailed 

information of the mTOR activation see chapter 2.7.2. 
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This section describes some simple ideas of biochemical pathway modelling and 

approaches which are used in systems biology. A main target of systems biology is to 

turn a biochemical reactions networks maps into dynamic models. Using mathematical 

analysis or computer simulations, these models can enhance the knowledge of 

biochemical mechanisms, help to understand of dynamical interactions between 

components and also can predict behaviour of the system in response to different kinds 

of stimuli. 

Several modelling approaches for biochemical reactions or networks have been 

used to study metabolic networks and signalling cascades [Klipp, 2005]. Models of 

signalling cascades are often based on ordinary differential equations (ODE). According 

to Huber, they are "so far probably the most successful mathematical approaches to 

describe the molecular dynamics during cell death signalling" [Huber et al., 2009]. 

ODE models describe the fluctuation of states and assume a spatial homogeneity of 

distribution of the components within the modelled cell. They contain all biochemical 

reactions that can take a part in the modelled network and the relevant reaction rates and 

kinetic constants that characterize relations between reactants and products. 

In this section we describe kinetic modelling of individual biochemical 

reactions. The elementary quantity expressions are: 

a) the concentration S of a substance S (number of the molecules per volume) 

b) the reaction rate � (change of concentration S per time). 
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In biochemical kinetics we take advantage of assumption that "the reaction rate � at a 

certain point in time and space can be expressed as a unique function of the 

concentrations of all substances at this point in time and space" [Klipp, 2005]. 
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Kinetics of the biochemical reactions is based on the mass action law, proposed 

in 1864 by Guldberg and Waage. It says that "the reaction rate is proportional to the 

probability of a collision of the reactants. This probability is in turn proportional to the 

concentration of reactants to the power of the molecularity, i. e., the number in which 

they enter the specific reaction" [Klipp, 2005]. 

In signalling networks most reactions are modelled using the law of mass action. Other 

approach used in systems biology is a Michaelis – Menten kinetic.  

Based on some elementary biochemical reactions and on mass action kinetic, here are 

basic examples for ODE generation: 

a) Binding/Dissociation: 

This reaction is reversible and in biochemical sense it means protein synthesis (for 

example inhibitor – target interaction).  

Consider the following reaction where A and B react to form a complex AB: 

                                                           ABBA
k

k

1

1−

↔+                                                    (3.1.1) 
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According to the law of mass action the reaction rate v  is proportional to the product of 

the reactant concentrations: 

                                           1 1k A B k ABυ υ υ+ − −= − = ⋅ ⋅ − ⋅                                       (3.1.2) 

where: 

υ+  forward reaction 

υ−  backward reaction 

11 , −kk  kinetic/rate constants. 

We can describe the temporal change in concentration of the proteins and the complex 

using the ordinary differential equations:  

                                       1 1

dA dB
k A B k AB

dt dt
υ

−
= = − = − ⋅ ⋅ + ⋅                                   (3.1.3) 

                                              1 1

dAB
k A B k AB

dt
υ

−
= = ⋅ ⋅ − ⋅                                       (3.1.4) 

 

b) Irreversible cleaving: 

                                            '''2 CCACA
k

++→+                                                (3.1.5) 

This reaction is irreversible and in a biochemical sense it can be analysed as an enzyme 

A, without being changed itself, cleaving protein C into two fragments C' and C'' and 

returning the enzyme.  
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From the law of mass action, reaction rate is: 

                                                         2k A Cυ = ⋅ ⋅                                                      (3.1.6) 

Based on this reaction we can illustrate the dynamic of the concentrations of reactants 

using ODEs: 

                                                      2

dC
k A C

dt
= − ⋅ ⋅                                                    (3.1.7) 

                                                      0
dA

A const
dt

= � =                                             (3.1.8) 

                                                  
' ''

2

dC dC
k A C

dt dt
= = ⋅ ⋅                                              (3.1.9) 

 

c) Degradation: 

                                                         0→
k

A                                                        (3.1.10) 

The kinetics of this simple decay can be described by reaction rate: 

                                                          Ak ⋅=υ                                                         (3.1.11) 

The dynamic of the concentration of substrate A can be illustrated by ODE: 

                                                          Ak
dt

dA
⋅−=                                                    (3.1.12) 

 

The ODE’s integration from time t=0 and initial concentration A0, to time t with 

concentration A(t) leads to the expression: 
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                                                         tk
eAtA

⋅−⋅= 0)(                                                (3.1.13) 

The equation 3.1.13 formulates that the quantity decreases at a rate proportional to its 

value. 
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In 1902 Brown introduced the first enzymatic mechanism which was for all one-

substrate reactions [Klipp, 2005]: 

                                               PEESSE
k

k

k
+→↔+

−

2

1

1

                                           (3.2.1) 

The reaction illustrates a reversible formation of the enzyme-substrate complex ES from 

the enzyme E and substrate S and irreversible deliver of the product P. The systems of 

ODEs for this reaction are: 

                                                ESkSEk
dt

dS
⋅+⋅⋅−= −11                                          (3.2.2) 

                                          ESkkSEk
dt

dE
⋅++⋅⋅−= − )( 211                                     (3.2.3) 

                                         ESkkSEk
dt

dES
⋅+−⋅⋅= − )( 211                                       (3.2.4) 

                                                       ESk
dt

dP
⋅= 2                                                       (3.2.5) 

The reaction rate is equivalent to the rate of decay of the substrate and of product 

formation: 
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dS dP

dt dt
υ = − =                                                        (3.2.6) 

 

To simplify the ODE system some assumptions can be made:  

a) the transformation of the enzyme E and substrate S to ES complex and the 

opposite reaction is much faster than the decay of ES complex into enzyme E 

and product P (quasi-equilibrium between the free enzyme and the ES complex). 

In terms of the kinetic constants this assumption can be expressed as:  

                                             211 , kkk >>−                                                      (3.2.7) 

b) to reached a steady state the ES complex has to remain constant and this 

condition is accomplished only if the initial concentration of the substrate S is 

much larger than the concentration of enzyme E: EtS >>= )0( ; the more 

general postulate of quasi-steady state of the ES complex: 

                                                  0=
dt

dES
                                                  (3.2.8) 

The reaction rate can be extract by using above ODEs (3.2.2-3.2.5) and the assumption 

(3.2.8) for ES. Adding (3.2.3) and (3.2.4): 

                                                        0=+
dt

dES

dt

dE
                                                   (3.2.9) 

results in: 

                                                        ESEEtotal +=                                                 (3.2.10) 
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what means that total concentration of enzyme, free form or in complex, remains 

constant – enzyme is not produced and not consumed. 

Adding equation (3.2.10) to (3.2.4) under the steady-state assumption (3.3.8): 

                                                 

1

21

k

kk
S

SE
ES total

+
+

⋅
=

−

                                                 (3.2.11) 

and the reaction rate from (3.2.6) and (3.2.5): 

                                            2
2

1 2

1

total
k E S

k ES
k k

S
k

υ
−

⋅ ⋅
= ⋅ =

+
+

.                                           (3.2.12) 

Above equation we can write in shorter way, using: 

                                                    totalEkV ⋅= 2max                                                    (3.2.13) 

                                                      
1

21

k

kk
K m

+
= −                                                    (3.2.14) 

where: 

maxV  is the maximal velocity – maximal ratio that can be obtained when the enzyme is 

completely saturated with substrate; 

mK  is the Michaelis constant – is equivalent to the substrate concentration that 

produces the half-maximal reaction rate. 

Now we can present equation (3.2.12) as an expression of Michaelis-Menten kinetics: 

                                                       
mKS

SV
v

+

⋅
= max                                                       (3.2.15) 
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The figure below shows the dependence of reaction rate on substrate concentration, and 

helps illustrate the meaning of the parameters: 

 

 

Figure 3.2.1 Plot of reaction rate versus substrate concentration in Michaelis-Menten 

kinetics [taken from Klipp et al., 2005]. 
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Feedback loops are the principal elements for all kind of regulation and control. 

In general, when a variable of a system inhibits its own level of activity, we say that this 

variable is subject to negative feedback. Negative feedback plays an important role in 

metabolic pathways, for example in amino acids synthesis, where a negative signal from 

the product at the end to the precursor at the beginning of the system can avoid an 

overproduction of this amino acid [Klipp, 2005]. Another example is a product of a 

gene which inhibits its own gene.  

To illustrate some possible effects of negative feedback let's analyze a chain of six 

reactions with a substrate, five metabolites and final product: 
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                                          61 2

0 1 2 5 6... vv v
P S S S P←→ ←→ ←→                                   (3.3.1) 

for which kinetics rate expressions is 1i i iv S k−= ⋅  for  1,...,6i = , where ik corresponds to 

kinetics constant of i -th metabolite. 

Feedback inhibition of the first reaction by the j -th metabolite is: 

                                                     1 1
1

1 j I

S k
v

S K

⋅
=

+ ⋅
                                                      (3.3.2) 

where 
IK corresponds to inhibition constant. 

In the case of no feedback, all substrates concentrations reach a steady state in 

short time (see figure 3.4.1). 

 

Figure 3.4.1 The dynamics of a simple reactions chain. In the absence of feedback, all 

metabolite concentrations reach asymptotically a high constant level [Klipp, 2005]. 

 

In the case when the feedback is from the second metabolite, the substrate 

concentrations reach a steady state but in significant lower level. 
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Figure 3.4.2 The dynamics of a simple reactions chain. The second metabolite inhibits 

the first reaction [Klipp, 2005]. 

 

In final example, when feedback is from the last metabolite resulting on 

inhibition of the first reaction, concentrations of substrates reach lower level than 

without feedback. A long acting feedback results in damped oscillations. 

 

 

Figure 3.4.3 The dynamics of a simple reactions chain. The long acting feedback 

creates damped oscillations and the level of substrate concentrations reach lower than 

without feedback steady state [Klipp, 2005]. 
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We propose a simple model of amino acid control in the cell via autophagy as 

the feedback system. The idea behind our model is based on literature which show 

amino acids in the feedback loop from degradation of proteins and back to building 

proteins. According to Yang, "Amino acids, which are the final products of autophagic 

protein degradation, act as negative feedback regulators for the process" [Yang et al., 

2005]. In other words, the products of degradation via autophagy are essential for 

protein biosynthesis in nutrient limitation [Onodera and Ohsumi, 2005]. 

A brief description of the model is provided in this chapter, with biochemical 

reactions, mass balances, and kinetic equations and models parameters. 

Chapter 4 describes mathematical modelling based on ODEs. In this part of the 

thesis we focus on the mTOR dependent induction of autophagy which occurs as a 

response of cells to amino acid depletion. A simplified version of autophagy induction 

is described by four reactions (R1, R3, R5 and R6). This model also trades on idea of 

amino acids from autophagy in a negative feedback to control level of total amino acid 

pool. We use here idea of time delay for the part of the pathway from autophagosome 

nucleation to degradation in lysosome and recycling. 

Reactions involved in the induction of autophagy are complex. Autophagy can 

be initiated by many different interacting pathways (see figure 2.7.1, chapter 2): 

changes in cellular energy levels, nutrients availability and in response to growth factors 

stimulations. One of the main regulators of autophagy is the level of extracellular and 
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intracellular amino acids, which are sensed via mTOR. mTOR in an activated form 

promotes protein synthesis. Active mTOR keeps in hyperphosphorylated state Atg13, 

thus inhibits the induction of autophagy. Stressor signals, like starvation, inhibit mTOR 

activity and in turn induce autophagy. Autophagy also can be activated by intracellular 

debris (unfolded proteins and damaged organelles) and pathogens. 

  
To simplify our work with autophagy model we start by modelling the mTOR – 

dependent pathway which is controlled via amino acid signalling and it involves: signal 

from amino acid external supply and from autophagy, Rheb, FKBP38, mTOR, Atg13 

and Atg1. The diagram below displays connections between those elements. 
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Figure 4.1 Diagram of the autophagy induction. Diagram was made based on 

scientific literature about autophagy pathway. It shows mTOR-dependent autophagy 

induction, which includes amino acid external supply, Rheb, FKBP38, mTOR, Atg13 

and Atg1. 

 

The mTOR is a fundamental cell growth controller and its activity is regulated 

by Rheb in response to nutrient availability and growth factors [Bai et al., 2007]. Rheb 

regulates mTOR through FKBP38, which by binding to mTOR inhibits its activity. To 

prevent this association, Rheb interacts directly with FKBP38. In different words, 

FKBP38 is an inhibitor of mTOR, which in response to growth factor and nutrients 

conditions is antagonized by Rheb [Bai et al., 2007].                                                                             

mTOR controls the level of phosphorylation of Atg13, one of the proteins involved in 

induction of autophagy pathway. Under nutrient – rich conditions, during the normal 

cell life, Atg13 occurs in highly phosphorylated form, which has low affinity for Atg1 

kinase – another autophagy related protein, essential for induction of autophagy. In this 

case autophagy is suppressed [T. Yorimitsu, 2005]. Inhibition of mTOR results on 

dephosphorylation of Atg13, which in this form has higher affinity for Atg1. New 

created Atg1-Atg13 complex allows to switch from basal Cvt pathway (basal 

autophagy) to induced autophagy. 

Reactions, which visualise mTOR activation/deactivation and autophagy 

induction, are based on diagram above: 
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Table 4.1 Reactions involved in autophagy induction. 

Reaction Reference 

1

1 :

TCTP
AA B

kGDP GTPR Rheb GTP Rheb GDP

+

↓+ → +  

Bai & Jiang, 2009; Bai et al., 2007; 

Roccio et al., 2006; Avruch et al., 

2006; Kim, 2009; 

2

2 :

TSC

kGTP GDP

iR Rheb Rheb P↓→ +  
Bai & Jiang, 2009; Bai et al., 2007; 

Kim, 2009; Zhang et al., 2003 

3

3

3 : ( _ 38)

( _ 38)

kGTP

k GTP

R Rheb mTOR FKBP

Rheb FKBP mTOR

+ ←→

←→ +
 

Bai & Jiang, 2009; Bai et al., 2007; 

Kim, 2009; Sato et al., 2009; Wang et 

al., 2008 

4

4 : 13 ( 13_ )

mTOR

k
R Atg ATP Atg P ADP↓+ → +  

Kamada et al., 2000; Kamada et al., 

2010; Klionsky and Emr, 2000; 

?

5

5 : ( 13 _ ) 13
k

iR Atg P Atg P↓→ +  
Kamada et al., 2000; Kamada et al., 

2010; Hosokawa et al., 2009; 

Klionsky and Emr, 2000; 

6

6 : 13 1 ( 1_ 13)k
R Atg Atg Atg Atg+ ←→  Kamada et al., 2000; Hosokawa et 

al., 2009; Klionsky and Emr, 2000; 

7

7 : ( 1_ 13) 1 13

mTOR

k
R Atg Atg Atg Atg↓→ +  

Kamada et al., 2000;  

 

The rate expressions for reactions above are: 
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In the rate expressions some substrates are missing on purpose. If we assume 

that values of TSC and TSTP are constant, we do not have to take them into calculations 

(reaction R1 and R2). It is sufficient if the speed of the reaction R1 is driven only by 

amino acids. Also to simplify our model initially we assume that energy equivalents 

such as GTP are not limited, therefore we can leave GTP, Pi and ATP out of the 

calculations (reaction R1 and R4). An unknown phosphatase takes part in reactionR5, 

Atg13 dephosphorylation [Klionsky and Emr, 2000; Kamada et al., 2000]. With 

assumption that the amount of phosphatase does not change we do not include it into 

equations.  

Based on reaction above we can describe the temporal change in concentration 

of the proteins and the complex by using an ordinary differential equation:  
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1 2

1 2

3 3

3 3

( )
[ ]

( )
[ ]

( _ 38) ( _ 38)

( _ 38)
( _ 38) ( _

GDP
GDP GTP

GTP
GDP GTP

GTP GTP

GTP
GTP GTP

d Rheb
k Rheb AA B k Rheb

dt

d Rheb
k Rheb AA B k Rheb

dt

k Rheb mTOR FKBP k mTOR Rheb FKBP

d Rheb FKBP
k Rheb mTOR FKBP k mTOR Rheb FK

dt

−

−

= − ⋅ ⋅ + + ⋅

= ⋅ ⋅ + − ⋅ −

− ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ − ⋅ ⋅

3 3

3 3

4 5 6 6

38)

( _ 38)
( _ 38) ( _ 38)

( )
( _ 38) ( _ 38)

( 13)
13 ( 13_ ) 13 1 ( 1_ 1

GTP GTP

GTP GTP

BP

d mTOR FKBP
k Rheb mTOR FKBP k mTOR Rheb FKBP

dt

d mTOR
k Rheb mTOR FKBP k mTOR Rheb FKBP

dt

d Atg
k Atg mTOR k Atg P k Atg Atg k Atg Atg

dt

−

−

−

= − ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ − ⋅ ⋅

= − ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅

4 5 7

6 6

6 6 7

3)

( 13_ )
13 ( 13_ ) ( 1_ 13)

( 1_ 13)
13 1 ( 1_ 13)

( 1)
13 1 ( 1_ 13) ( 1_ 13)

d Atg P
k Atg mTOR k Atg P k Atg Atg mTOR

dt

d Atg Atg
k Atg Atg k Atg Atg

dt

d Atg
k Atg Atg k Atg Atg k Atg Atg mTOR

dt

−

−

= ⋅ ⋅ − ⋅ + ⋅ ⋅

= ⋅ ⋅ − ⋅

= − ⋅ ⋅ + ⋅ + ⋅ ⋅
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This section with details describes model parameterization and implementation, 

and gives an explanation of methods which were used to obtain set of parameters. Our 

mathematical model is calibrated using published experimental data on the autophagy 

pathway in mammalian cells. 

 

4.1.1 Parameterization of kinetic constants k1 and k2 

Parameters k1 and k2 for the first pair of reactions (figure 4.1.1) were derived 

from the two publications by Inoki et al and Marshall et al [Inoki et al., 2003 and 

Marshall et al., 2009].   
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Figure 4.1.1 represents the first reactions which are implemented in our model. 

The activity of Rheb, which is a small GTPase, depends on its nucleotide-binding state, 

which is controlled by a GTPase-activating protein (GAP) and a guanine nucleotide 

exchange factor (GEF). The GAP for Rheb is the TSC1/TSC2 complex, which 

stimulates GTP hydrolysis. Recently, TCTP has been suggested to be the GEF for Rheb 

[Bai and Jiang, 2009]. 

 

                         

Figure 4.1.1 Cycling of Rheb GTPase protein between the active and inactive forms. 

Conversion of the active Rheb
GTP

 into the inactive Rheb
GDP

 form by hydrolysis of GTP 

is catalyzed by TSC (GAP for Rheb). The reverse reaction is promoted by TCTP (GEF 

for Rheb) [references: Bai & Jiang, 2009; Bai et al., 2007; Roccio et al., 2006; Avruch 

et al., 2006; Kim, 2009; Zhang et al., 2003]. 

 

As was mentioned in the previous chapter, we can assume that the amounts of 

TSC and TSTP are constant, so here we do not need to consider them in the 

calculations. Also to simplify our model, initially we assume that energy equivalents 

   k2 

Pi 

TSC 

k1 

RhebGDP RhebGTP 

   

TCTP 
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such as GTP are not limited. Therefore we can leave GTP, GDP and Pi out of the 

calculations.  

 

Simplified rate expressions extracted from the figure 4.1.1: 

GTP

GDP

Rhebk

Rhebk

⋅=

⋅=

22

11

υ

υ
 

 

4.1.1.1 Parameter k2  

Inoki et al. showed that the TSC1/TSC2 complex stimulates the GTP hydrolysis 

of Rheb. In figure 1C from that publication the authors displayed the time-dependent 

GTP hydrolysis of Rheb stimulated by TSC, as measured by radioactive counting of 

free 32P-phosphate, which is released during hydrolysis. From the experimental data 

shown we quantified that after 30 minutes the relative activity of free 32P-phosphate 

slowly approached saturation. Based on that partial set of data we extrapolated that in 

the presence of TSC almost all (95%) RhebGTP is converted into RhebGDP within 60 

minutes with a kinetic closely resembling an exponential decay (figure 4.1.2).  
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Rheb-GTP hydrolysis in the presence of TSC 
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Figure 4.1.2 Representation of the Rheb
GTP

 hydrolysis. The plot represents the curve 

of the exponential decay for the Rheb
GTP 

hydrolysis in the presence of TSC, which 

catalyses this reaction. The time of 95% completion of GTP hydrolysis was derived 

from experimental data from Inoki et al., 2003 and used to plot the exponential decay 

curve. 

 

The curve equation for the exponential decay is: 

                                                         tk
eyy

⋅−
⋅= 2

0                                                     (4.1.1) 

where y is a quantity at time t , 0y  is an initial amount of RhebGTP, and 2k  indicates the 

decay constant. From (4.1.1) and the assumption that at time 60=t min only 5% of 

RhebGTP is left, the decay rate is: 

                                            04992.0
05.0ln

2 =
−

=
t

k  min-1                                       (4.1.2) 
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The half time of the RhebGTP hydrolysis thus calculated as 

                                                      14
2ln

2
2

1 ≅=
k

t  min                                             (4.1.3) 

 

During the course of this study another paper was published, which we could 

use for our model parameterization [Marshall et al., 2009]. The authors explored the 

molecular mechanism of the RhebGTP hydrolysis alone or in the presence of TSC. 

Experiments were based on a real-time assay, which took advantage of nuclear 

magnetic resonance (NMR) spectroscopy. According to their results, “addition of TSC 

to GTP-bound Rheb at a 1:2 molar ratio increased Rheb’s rate of GTP hydrolysis by 50-

fold (compared to the experiment of GTP hydrolysis in absence of TSC) to 

1min031.0 −=k ” [Marshall et al., 2009]. The time of 95% RhebGTP hydrolysis based on 

this rate constant calculates as 100 minutes, with a corresponding half time of the 

reaction min7.21
2

1 =t . While this is slightly longer than the half time determined from 

Inoki et al., it still displays a good match between independent studies. We therefore 

decided to calculate the average value of 2k  from these two publications, which is: 

04046.02 =k  min-1 

The average half time of the RhebGTP hydrolysis is: 

17
2

1 ≅t  min. 
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Using the model in absence of all reactions except for R2 we could show that k2 

corresponded to published data. The plot below shows the hydrolysis of RhebGTP in the 

presence of TSC: 

 

 

Figure 4.1.3 Result of the simulation for reaction 2R  with decay constant 

04046.02 =k  min
-1

. The plot was made as a result of a simulation in SBtoolbox for 

MatLab and shows the exponential decay of Rheb
GTP

 by TSC catalysed hydrolysis. The 

half time for this reaction is 17≅ minutes, corresponding well with published data. 

 

 

4.1.1.2 Parameter k1  

To calculate the parameter 1k  for our model, we focused again on Inoki et al. 

Experimental data from this paper indicated that the ratio of GTP/GDP- bound Rheb in 
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living cells comes to 66.1=
GDP

GTP

Rheb

Rheb
. The ratio is formulated in the steady state 

condition, that is: 

                                               0==
dt

dRheb

dt

dRheb
GDPGTP

                                       (4.1.4) 

 

From the ordinary differential equations, which describes change in 

concentrations of the proteins, where GTPGDP
GDP

RhebkRhebk
dt

dRheb
⋅+⋅−= 21  and 

GTPGDP
GTP

RhebkRhebk
dt

dRheb
⋅−⋅= 21 , the ratio is equivalent to: 

                                                      
2

1

k

k

Rheb

Rheb
GDP

GTP

=                                                    (4.1.5) 

From this we calculated 1k  by 

                                                    
GDP

GTP

Rheb

Rheb
kk 21 =                                                    (4.1.6) 

 

According to the equation above, parameter 1k  for our model comes to 

06716.01 =k  min-1 

The half time for the TCTP catalysed conversion of RhebGDP into RhebGTP calculates as: 

10
2

1 ≅t  min. 
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Using the model in absence of all reactions except for R1 a similar simulation as 

before was made to check the correct software implementation of the parameter k1, 

which drives reverse reaction to RhebGTP hydrolysis, converting RhebGDP to RhebGTP: 

 

 

Figure 4.1.4 Result of the simulation for reaction 1R  with decay constant for Rheb
GDP

 

06716.01 =k  min
-1

. The plot was made by a simulation in SBtoolbox for MatLab and 

shows the exponential decay of Rheb
GDP

 by conversion into Rheb
GTP

. The half time for 

this reaction is 10≅ minutes, which corresponds well with calculated half time above). 
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4.1.1.3 Model testing for parameters k1 and k2 

Using SBtoolbox, the rate expressions based on figure 4.1.1 and parameters k1 

and k2 obtained as above, we tested the model for the two first reactions, which 

represents turnover of RhebGTP into RhebGDP and vice versa. The simulations conducted 

show two different initial conditions: a) when 100)0( =GTP
Rheb  and 0)0( =GDP

Rheb ; 

b) when 0)0( =GTP
Rheb  and 100)0( =GDP

Rheb . The first condition represents 

oversaturated nutrient conditions, when all Rheb is in an active GTP-bound form. The 

second condition mimics nutrients starvation, when all RhebGTP is converted to the 

inactive form. These two scenarios thus show opposite extreme conditions. 

In the first scenario we expect that RhebGTP levels should decrease, because a 

part of it is converted to RhebGDP. On the other hand, the level of RhebGDP should 

increase. Ultimately, a steady state ratio 
GDP

GTP

Rheb

Rheb
 of 1.66 was expected to be achieved. 

In the second condition we expected that RhebGTP levels increase because of 

conversion of RhebGDP into RhebGTP. In this scenario also the experimentally 

determined steady state ratio of 1.66 should be reached. 
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Figure 4.1.5a Result of the simulation for reactions 1R  and 2R  when 

100)0( =GTP
Rheb  and 0)0( =GDP

Rheb . A ratio 63.1=r  of 
GTP

GDP

Rheb

Rheb
 is reached after 

100 minutes, closely approaching the steady state of 1.66. 
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Figure 4.1.5b Result of the simulation for reactions 1R  and 2R  when 0)0( =GTP
Rheb  

and 100)0( =GDP
Rheb . A ratio 63.1=r  of 

GTP

GDP

Rheb

Rheb
 is reached after 100 minutes, 

closely approaching the steady state of 1.66. 

 

 

 

In both plots (4.1.5a and 4.1.5b) we can see that the value of the ratio of GTP/GDP- 

bound Rheb after 100 minutes is 63.1=
GDP

GTP

Rheb

Rheb
. We also made simulations for the 

same conditions for a time 1000 minutes (figure not shown). We could observe that the 

final levels of RhebGTP and RhebGDP were slightly different than this one after 100 

minutes. They reached 62.5% and 37.5% respectively, which gives a ratio 1.66. 

 We therefore conclude that we successfully implemented this pair of reactions 

and can re-model the published biological behaviour of the reactions 1R  and 2R . 
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4.1.2 Parameterization of kinetic constants k3 and k-3 

Parameters k3 and k-3 for the second pair of reactions (figure 4.1.6) were derived 

from the two publications by Bai et al and Sato et al [Bai et al., 2007 and Sato  et al., 

2009].   

Figure 4.1.6 represents the following reactions which are implemented in our 

model. FKBP38, by direct binding to mTOR, inhibits the activity of mTORC1 [Bai and 

Jiang, 2009; Bai et al., 2007]. The interaction of FKBP38 with mTOR is controlled by 

Rheb in the GTP-dependent manner [Bai and Jiang, 2009]. RhebGTP inhibits this 

association by competitively binding to FKBP38 [Bai et al., 2007], and in turn results in 

activation of mTOR. 

 

Figure 4.1.6 Reaction of Rheb
GTP

-dependent mTOR activation and FKBP38-

dependent mTOR inhibition. Rheb in the active GTP-bound form binds to FKBP38 and 

leads to mTOR activation. In the reverse reaction mTOR is inhibited by FKBP38 

through direct binding [references for that reactions: Bai & Jiang, 2009; Bai et al., 

2007; Kim, 2009; Sato et al., 2009; Wang et al., 2008]. 

 

Rate expressions extracted from the figure 4.1.6: 

)38_(33 FKBPmTORRhebk
GTP ⋅⋅=υ  

RhebGTP RhebGTP_FKBP38     k3 

   k-3 

mTOR_FKBP38 

mTOR 
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mTORFKBPRhebk
GTP ⋅⋅= −− )38_(33υ  

 

4.1.2.1 Parameter k3  

 Sato and colleagues experimentally showed that RhebGTP activates mTOR [Sato 

et al., 2009]. Cells were first starved to shut down mTOR activity. In starvation mTOR 

binds to its endogenous inhibitor FKBP38. The kinase activity was measured by 

measuring phosphorylation of the mTOR substrate 4E-BP1. The phosphorylation of 4E-

BP1 during the starvation period is minimal, but the addition of RhebGTP enhanced the 

mTOR kinase activity substantially (figure 4.1.7). 

mTOR activation by Rheb-GTP
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Figure 4.1.7 mTOR activation by Rheb
GTP

. Activation of mTOR is measured as an 

intensity of the phosphorylation of 4E-BP1. Figure shows results in starvation (red 

squares) and after addition of Rheb
GTP

 (dark blue squares). Plot based on figure 1C, 

page 12785 from Sato et al., 2009, modified and plotted in Microsoft Office Excel 2003. 
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As we can see, after addition of active Rheb to the starving cells, full activation 

of mTOR occurs in 20 minutes (figure 4.1.7). According to the figure above and the 

figure 4.1.6, we therefore can say that time to achieve completion of reaction 3R  is 

approximately 20 minutes. Based on all this information we can assume that after 

addition of Rheb, amount of an inactive mTOR-FKBP38 complex decrease with the 

same kinetics as mTOR activity increases (figure 4.1.8). 
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Figure 4.1.8 Decrease of the mTOR_FKBP38 complex after addition of Rheb
GTP

 to 

the starving cells. The equation of the exponential decay, with the decay constant 

2259.03 =k  min
-1

, was given after adding the best suited trend line in Microsoft Office 

Excel 2003. Plot made based on figure 5.6 and Bai et al., 2007. 
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The half time of the mTOR-FKBP38 complex decreasing  

                                                         3
2ln

3
2

1 ≅=
k

t  min                                           (4.1.7)              

which also can be observe from the figure 4.1.8.    

 

As we can see from the rate expression, which is based on the figure 4.1.6, 

)38_(33 FKBPmTORRhebk
GTP ⋅⋅=υ , reaction R3 is dependent on RhebGTP. Both 

mTOR_FKBP38 complex and RhebGTP are reactants consumed in reaction R3. These 

reactions are different to the reactions in the previous chapter; here we have two 

reactants and we can say that they have a nature of second-order process, in which the 

concentrations of the two reactants behave the same.  

For a second-order reactions the half time is depended on the initial value of the 

reactant A: 

                                             
][

1

0
2

1
Ak

t
⋅

=                                                     (4.1.8) 

 

Base on above equation we could calculate the rate constant for reaction R3, which is: 

                                            3

1
2

1

[ _ 38]
k

t mTOR FKBP
=

⋅
                                       (4.1.9) 
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and assuming, that the initial value for the complex is _ 38(0) 100mTOR FKBP = rate 

constant comes then to 11

3 min00333.0 −− ⋅= uk , where u represents relative unit, in our 

model [%]. 

Using the model in absence of all reactions except for R3 we could show that k3 

could reproduce the published data. The plot below shows the exponential decay of 

mTOR_FKBP38 complex after addition of active RhebGTP. 

 

 

Figure 4.1.9 Result of the simulation for reaction 3R  with decay constant for 

mTOR_FKBP38 decreasing 11

3 min00333.0 −− ⋅= uk . The plot was made as a result of 

simulation in SBtoolbox for MatLab and shows the exponential decay of 

mTOR_FKBP38 in the reaction of mTOR activation. The half time for this reaction is 

3≅ minutes, corresponding well with published data. (u represents relative unit, %). 
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4.1.2.2 Parameter k-3  

To derive parameter k-3 for the reverse reaction, inhibition of mTOR activity by 

FKBP38, we have studied publication by Bai et al., where they describe inhibition of 

mTOR kinase activity by FKBP38. 

In their experiment, the inhibitory effect of FKBP38 on mTOR activity was 

tested. From the material and methods chapter we know that to determine the effect of 

FKBP38 on the kinase activity, 2 µg of FKBP38 was used and incubated with the cells 

for 10 minutes. After the time of incubation mTOR activity was decreased to 40% of 

the initial value (figure 4.1.10). 
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Figure 4.1.10 Effect of FKBP38 on the mTOR kinase activity. After 10 minutes of 

incubation with 2 µg of FKBP38, the activity of mTOR dropped to 40% of initial 

activity. Figure based on data from Bai et al., 2007 and figure 2D from this publication. 
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Since the mTOR_FKBP38 complex decreases in exponential decay manner after 

addition of Rheb ( 3k  parameterization), we can assume that mTOR activation, as a 

reverse reaction, proceeds with similar characteristic. Based on that the curve equation 

for the exponential decay of mTOR activity is: 

                                                       tk
eyy

⋅− −⋅= 3

0                                                    (4.1.10) 

at time 10=t  min the value of 4.0=y  is achieved. The kinetic rate therefore is: 

                                       09163.0
4.0ln

3 =
−

=−
t

k  min-1                                                                (4.1.11) 

and a half time for the inhibition: 

                                                    5.7
2ln

3
2

1 ≅=
−k

t  min                                           (4.1.12) 

According to the method which was used above ( 3k  parameterization) we can calculate 

the rate constant for the reaction R-3. Here again we have two reactants, mTOR and 

RhebGTP_FKBP38, both of which are consumed in the reaction. We can say that they 

have a nature of second-order process. With the assumption that the initial value for 

mTOR is 100)0( =mTOR , we can use equation (4.1.9) to derived k-3, which comes then 

to 11

3 min00133.0 −−

− ⋅= uk . 

Using the model in absence of all reactions except for R-3 we could show that 

the calculated k-3 matches published data. The plot below shows exponential decay of 

mTOR-FKBP38 complex after addition of active RhebGTP. 
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Figure 4.1.11 Result of the simulation for reaction R-3 with decay constant for mTOR 

decreasing 11

3 min09163.0 −−

− ⋅= uk . The plot was made as a result of simulation in 

SBtoolbox for MatLab and shows the exponential decay of mTOR8 in the reaction of 

mTOR inhibition by FKBP38. The half time for this reaction is 5.7≅ minutes, 

corresponding well with published data. 

 

4.1.2.3 Model testing for parameters k3 and k-3 

Using SBtoolbox, the rate expressions based on figure 4.1.6 and parameters 3k  

and 3−k  obtained as above, we tested the model for two reactions, which represent 

activation of mTOR by RhebGTP and mTOR inhibition by FKBP38, respectively. The 

simulations show two different initial conditions: a) when 100)0( =GTP
Rheb   and 

0)0( =mTOR  ( 100)0(38_ =FKBPmTOR  and 0)0(38_ =FKBPRheb
GTP ); b) when 

0)0( =GTP
Rheb  and 100)0( =mTOR  ( 0)0(38_ =FKBPmTOR  and 

100)0(38_ =FKBPRheb
GTP ).  
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The first condition represents oversaturated nutrient conditions, when all Rheb is 

in an active GTP form. In this scenario we expected that the level of RhebGTP should 

decrease, because it is converted to the complex with FKBP38. Activity of mTOR 

should rapidly increase, because RhebGTP, which is necessary for this activation, is 

already in a full GTP state. In turn, the level of inactive complex mTOR-FKBP38 

should rapidly decrease, as a reverse reaction to mTOR activation. Also the 

RhebGTP_FKBP38 complex was supposed to increase with mTOR activation. 

 

 

Figure 4.1.12a Result of the simulation for reactions R3 and R-3 when 

100)0( =GTP
Rheb  and 0)0( =mTOR . With the increasing activation of mTOR, the level 

of the Rheb
GTP

 decreases, since it is used for this activation. 

 

The second condition mimicked nutrient starvation, when all RhebGTP is 

converted to the inactive form, but mTOR remains present in an active form. In this 
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scenario we expect that the level of RhebGTP should increase, because it is released from 

the complex RhebGTP_FKBP38 in the reaction R-3. The activity of mTOR should 

decrease, because RhebGTP_FKBP38 complex which is necessary for its inhibition is 

present in the system. In turn, the level of inactive complex mTOR_FKBP38 should 

increase, as a consequence of the mTOR inhibition. Also the RhebGTP_FKBP38 

complex was expected to decrease as long with mTOR activation.  

 

Figure 4.1.12b Result of the simulation for reactions R3 and R-3 when 0)0( =GTP
Rheb  

and 100)0( =mTOR . Because of inhibition by FKBP38, mTOR decreases. At the same 

time, RhebGTP increases, since it is a product of this inhibition. 

 

In both plots (figure 4.1.12a and 4.1.12b) we observe that the final steady state 

values of the all products are the same respectively in both conditions, and they come to 

~62% for mTOR and RhebGTP-FKBP38 and to ~38% for RhebGTP and mTOR-FKBP38. 

To compare parameters 33 / −kk  with 21 / kk  we can see that reactions 3R  and 3−R  are 
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faster and they approached steady state after approximately 15 minutes (compare to 

reactions 1R  and 2R  approximately 60 minutes). 

We showed here results of the simulations with the simplified condition of 

nutrient saturation. The majority of mTOR is in its active state (62%) which correlates 

with the biological experimental data. 

 

4.1.3 Parameterization of kinetic constants k4 and k5 

Parameters 4k  and 5k  for the reactions R4 and R5 (figure 4.1.13) were derived 

from the publication by Kamada et al [Kamada et al., 2000].   

Figure 4.1.13 represents the reactions R4 and R5 which are implemented in our 

model. Under nutrient rich conditions, and when the cell is in a normal living state, 

active mTOR keeps Atg13 in a hyperphosphorylated state, that is, almost all Atg13 is 

phosphorylated to Atg13_P. During cell starvation mTOR is inhibited and this results in 

dephosphorylation of Atg13_P. 
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Figure 4.1.13 mTOR controls the level of phosphorylation of Atg13. Under nutrient 

rich conditions, almost all Atg13 is phosphorylated to the form Atg13_P. Inhibition of 

mTOR, which occurs during starvation, results in Atg13 dephosphorylation [references 

for the reactions: Kamada et al., 2000; Kamada et al., 2010; Hosokawa et al., 2009; 

Klionsky and Emr, 2000]. 

 

Simplified rate expressions extracted from the figure 4.1.13: 

 

4 4

5 5

13

( 13 _ )

k Atg mTOR

k Atg P

υ

υ

= ⋅ ⋅

= ⋅
 

 

In these rate expressions, for simplicity we have deliberately suppressed the 

influence of other substrates. We initially assume that energy equivalents such as ATP 

are not limited; therefore we can leave ATP, ADP and Pi out of the calculations. An 

unknown phosphatase that takes part in reaction R5, Atg13 dephosphorylation [Klionsky 

and Emr, 2000; Kamada et al., 2000] is assumed to have a constant influence on the 

   k4 

      k5 

Atg13 Atg13_P    

Pi 

    ATP            ADP 

mTOR 
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reaction rate. Therefore, any dependence on this phosphatase is absorbed into the 

constant k5.  

 

4.1.3.1 Parameter k5  

Kamada and colleagues experimentally investigated the biochemical character of 

Atg13 [Kamada et al., 2000]. They observed that in growing cells Atg13 occurs in the 

phosphorylated form, and after starvation or mTOR inhibition by rapamycin this form 

disappeared (dephosphorylation). In starvation condition Atg13 dephosphorylation 

takes 30 minutes, whereas after rapamycin treatment only 5 minutes (figure 3A from the 

Kamada et al., 2000). This difference in reaction rates stems from the fact that 

rapamycin acts direct on mTOR by blocking its activity, whereas the signal from amino 

acids deprivation first results in the transformation of RhebGTP to RhebGDP, and then 

Rheb in this inactive form mediates inhibition of mTOR (figure 4.1).  

For our calculations we used the data from the rapamycin treatment, because we 

were interested in the immediate effects of mTOR inhibition on Atg13 

dephosphorylation. Within 5 minutes after rapamycin treatment Atg13 was 

dephosphorylated. The same publication, based on the experiment suggested, that 

“Atg13 remains partially phosphorylated under starvation conditions” [Kamada et al., 

2000]. We therefore assumed that after 5 minutes after rapamycin treatment 95% of 

Atg13 was transformed into the unphosphorylated form (figure 4.1.14). 
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Decay of Atg13-P after rapamycin treatment
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Figure 4.1.14 Representation of the Atg13-P dephosphorylation. The plot represents 

the curve of the exponential decay for the Atg13-P dephosphorylation after rapamycin 

treatment. The time of 95% completion of Atg13-P dephosphorylation was derived from 

experimental data from Kamada et al., 2000 and used to plot the exponential decay 

curve. 

 

The curve equation for the exponential decay is: 

                                                         tk
eyy

⋅−
⋅= 5

0                                                   (4.1.13) 

where y is a quantity at time t , 0y  is an initial amount of Atg13_P, and 5k  indicates the 

decay constant. From (4.1.13) and the assumption that at time 5=t min only 5% of 

Atg13_P is left, the decay rate is: 

                                            5991.0
05.0ln

5 =
−

=
t

k  min-1                                       (4.1.14) 

The half time of the Atg13_P dephosphorylation thus calculated as 
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                                                 15.1
2ln

5
2

1 ≅=
k

t  min                                             (4.1.15) 

Using the model in absence of all reactions except for 5R  we could show that 5k  

corresponded to published data. The plot below shows the dephosphorylation of Atg13-

P after rapamycin treatment (4.1.15): 

 

 

Figure 4.1.15 Result of the simulation for reaction 5R  with decay constant 

5991.05 =k  min
-1

. The plot was made as a result of a simulation in SBtoolbox for 

MatLab and shows the exponential decay of Atg13-P after treatment with rapamycin. 

The half time for this reaction is 15.1≅ minutes, which corresponds well with published 

data.  

 

4.1.3.2 Parameter k4  

In the next experiment Kamada and colleagues were again testing the sensitivity 

of the phosphorylation state of Atg13 [Kamada et al., 2000]. They found that after re-



 

 

81

addition of growth medium to the starved cells, the dephosporylated form of Atg13 was 

phosphorylated within 10 minutes (figure 3D from the Kamada et al., 2000). This 

means, according to the diagram of the biochemical reaction involved in the autophagy 

pathway (figure 4.1), that reactions R1, R3 and R4 together take 10 minutes. But from 

the previous calculations, which were based on experimental publications, we already 

know the half times for the reaction R1, which is 10 minutes, and for the reaction R3, 

which is 3 minutes. We can assume that all three reactions take 15 minutes (which is 

still in the correct range, compare to 10 minutes from Kamada, et al, 2000) and thereby, 

reaction R4 is estimated to take 2 minutes. 

Based on this information we know that after re-addition of the growth medium, 

due to phosphorylation, amount of Atg13 decrease (figure 4.1.16). 
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Decay of Atg13 after amino acids re-addition
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Figure 4.1.16 Representation of Atg13 phosphorylation. The plot represents the curve 

of the exponential decay for the Atg13 due to phosphorylation after re-addition the 

growth medium to the staved cells. The data of Atg13 phosphorylation was derived from 

experimental data from Kamada et al., 2000 and used to plot the exponential decay 

curve. 

 

According to the equations (4.1.13) and (4.1.14) the decay rate for Atg13 during 

phosphorylation is 4979.1
05.0ln

4 =
−

=
t

k  min-1 and the corresponding half time 

calculated as in (4.1.15) comes to 46.0
2ln

4
2

1 ≅=
k

t  min-1. 

As we can see from the reaction rate mTORAtgk ⋅⋅= 1344υ , which is based on 

figure 4.1.13, reaction of Atg13 phosphorylation is dependent on mTOR (k4 includes 

already influence from mTOR). In reaction R4 mTOR acts as an enzyme, which 

catalyses this reaction and increases the reaction rate. To derive the exact rate constant 
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for reaction R4, we have to divide it by the concentration of the enzyme (mTOR). This 

leads to the value of constant 11
4 min01498.0 −− ⋅= uk , where u represents relative unit, 

%. 

Using the model in absence of all reactions except for 4R  and implementing 

mTOR as a constant value ( 100)0( =mTOR  and 0
)(

=
dt

mTORd
) together with the value 

of  k4 above, we can reproduce the published data. The plot below shows the 

exponential decay of Atg13 after re-addition of amino acids to the starved cells (figure 

4.1.17). 

 

 

Figure 4.1.17 Result of the simulation for reaction 4R  with decay constant 

11
4 min01498.0 −− ⋅= uk . The plot was made as a result of a simulation in SBtoolbox for 

MatLab and shows the exponential decay of Atg13 after re-addition of the growth 

medium to the starved cells. The half time for this reaction is 46.0≅ minutes, 

corresponding well with published data. 
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4.1.3.3 Model testing for parameters k4 and k5 

Using SBtoolbox, rate expressions based on figure 4.1.13 and parameters 4k  

and 5k  obtained above, we tested the model for the reactions R4  and R5, which 

represents turnover of Atg13 into the phosphorylated form Atg13-P and vice versa. The 

simulations conducted show two different initial conditions: a) when 

100)0(_13 =PAtg  and 0)0(13 =Atg ; b) when 0)0(_13 =PAtg  and 100)0(13 =Atg . 

The first condition represents oversaturated nutrient conditions, when all Atg13 is in a 

phosphorylated form. The second condition mimics nutrients starvation, when all Atg13 

is converted to the unphosphorylated form. These two scenarios thus show opposite 

extreme conditions. 

In the first scenario we expect that Atg13-P levels should decrease, because a 

part of it is converted to Atg13. On the other hand, the level of Atg13 should increase. 

In the second condition we expected that Atg13 levels decrease because a part of it is 

converted to phosphorylated Atg13-P form. In both scenarios Atg13-P should reached 

higher level in the steady state conditions. 
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Figure 4.1.18a Result of the simulation for reactions 4R  and 5R  when 

100)0(_13 =PAtg  and 0)0(13 =Atg . With the decreasing in the phosphorylated form 

of Atg13, the level of the unphosphorylated Atg13 increases. 
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Figure 4.1.18b Result of the simulation for reactions 4R  and 5R  when 

0)0(_13 =PAtg  and 100)0(13 =Atg . With the decrease in the unphosphorylated form 

of Atg13, the level of the phosphorylated Atg13_P increases. 

 

On both plots (figure 4.1.18a and 4.1.18b) we can observe that final steady states 

values of the products are the same respectively in both conditions, and they come to 

~72% for Atg13-P and to ~28% for Atg13.  

 

4.1.4 Parameterization of kinetic constants k6, k-6 and k7 

Figure 4.1.19 represents the next reactions which are implemented in our model. 

Parameters k6, k-6 and k7 for the next reactions were derived from the publication by 

Kamada et al [Kamada et al., 2000].   

Under nutrient rich conditions, during the normal cellular life, active mTOR 

keeps Atg13 in hyperphosphorylated state (reaction R4). In starvation mTOR is 
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inhibited and this results in Atg13 dephosphorylation (reaction R5). Dephosphorylated 

Atg13 has a high affinity to Atg1, and together they create a complex (reaction R6). 

Atg1_Atg13 complex spontaneously break up in reverse reaction (reaction R-6), and 

also after re-activation of mTOR (reaction R7).  

 

       

Figure 4.1.19 The level of phosphorylation of Atg13 controlled by mTOR and 

Atg1_Atg13 complex formation. Under nutrient rich conditions Atg13 occurs in the 

highly phosphorylated form (reaction 4). Inhibition of mTOR, for example during cell 

starvation, results in Atg13 dephosphorylation (reaction 5) and Atg1_Atg13 complex 

formation (reaction 6). This complex can break up in the reverse reaction (reaction -6) 

and after mTOR re-activation (reaction 7) [references for the reactions: Kamada et al., 

2000; Kamada et al., 2010; Hosokawa et al., 2009; Klionsky and Emr, 2000]. 
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Simplified rate expressions extracted from the figure 4.1.19: 

4 4

5 5

13

( 13 _ )

k Atg mTOR

k Atg P

υ

υ

= ⋅ ⋅

= ⋅
 

mTORAtgAtgk

AtgAtgk

AtgAtgk

⋅⋅=

⋅=

⋅⋅=

−−

)13_1(

)13_1(
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77

66

66

υ

υ

υ

 

 

In the rate expressions some substrates are again deliberately suppressed. To 

simplify our model initially we assume that energy equivalents such as ATP are not 

limited; therefore we can leave ATP, ADP and Pi out of the calculations. An unknown 

phosphatase participates in reaction 5R , Atg13 dephosphorylation [Klionsky and Emr, 

2000; Kamada et al., 2000]. With assumption that the amount of phosphatase does not 

change we do not include it into equations.  

Kamada et al., 2000 is the only publication that we are aware of, which 

describes the reactions in Atg1_Atg13 complex formation and which gives some 

quantitative information on these reactions. 

 

4.1.4.1 Parameter k7  

Reaction R7 can be treated as a competitive reaction for reaction R4, where in 

both Atg13_P is produced, and both are controlled by mTOR. However, reaction R7 

occurs when Atg1_Atg13 complex is present (so in starvation conditions), while 

reaction R4 occurs always. Reaction R7 is also catalysed by mTOR, therefore we can 

assume that k7 is equal to k4, so 11

7 min01498.0 −− ⋅= uk , where u represents relative 

unit, %. 
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4.1.4.2 Parameter k6 

From the publication by Kamada et al. we know that after rapamycin treatment 

the formation of the Atg1_Atg13 complex stabilises within about 10 minutes. This 

includes reactions R5 and R6 according to the diagram 4.1.19. As we can see from the 

rate expression, 11366 AtgAtgk ⋅⋅=υ , reaction R6 is dependent on both Atg13 and 

Atg1. Both of them are consumed as reactants in the process of complex formation. We 

can say that they have a nature of second-order process, in which the concentrations of 

the two reactants behave the same.  

Using the model including reactions R4, R5, R6 and R7, and with implemented 

parameters k4, k5 and k7, we tried to find parameter k6. mTOR was implemented as 

model variable, which after 30 minutes was shut off, to mimic rapamycin action. We 

optimized k6 by manual fitting. The goal of the fitting was to find Atg1-Atg13 complex 

increased up to approximately 85% in 10 minutes after rapamycin treatment [Kamada et 

al., 2000]. An optimal value for k6 was found with 0.0066 min-1·u-1, where u represents 

relative unit, %. The result of simulation with the fitted value of k6 is represented on 

figure 4.1.20. 
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Figure 4.1.20 Result of the simulation with the fitted parameter k6. The plot was made 

as a result of a simulation in SBtoolbox for MatLab and shows the behaviour of 

Atg1_Atg13 complex after rapamycin treatment. mTOR was shut off after 30 min as a 

result of rapamycin treatment. In the next 10 min Atg1_Atg13 complex increased to the 

~85% level.  The time 30 min was chosen randomly to ensure that the system was in 

steady state before rapamycin treatment. 

 

In the plot above we can see that in 10 minutes after rapamycin treatment Atg1_Atg13 

complex reached ~85% (from the ~8% in steady state condition in presence of mTOR). 

After mTOR shut off, the level of Atg13 rapidly reached a higher level (due to Atg13_P 

dephosphorylation) and then decreased due to Atg1_Atg13 complex formation. 
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4.1.4.3 Parameter k-6 

Based on the results from the previous simulations we checked how these plots 

changed after addition of reaction R-6. We expected a slightly lower level of 

Atg1_Atg13 complex in the final steady state condition. 

Reaction R-6, similar to reaction R7, eliminates the Atg1_Atg13 complex. 

However, in reaction R-6 parameter k-6 does not depend on mTOR and thus represent a 

spontaneous dissociation reaction.  

Using the model in presence of reaction R4, R5, R6, R-6 and R7, and with 

implemented parameters k4, k5, k6 and k7, we tried to find the parameter k-6 by manual 

fitting. The goal of the fitting was to find a slightly lower level of Atg1-Atg13 complex 

after rapamycin treatment, but behaviour of the rest of the species similar to the 

previous simulation (because there is no a significant influence on the system from 

reaction R-6). An optimal value for k-6 was found with 0.0059 min-1. Together with the 

rest of the implemented parameters, this combination best represented the changes in 

the individual species. The result of the simulation with the fitted k-6 is represented on 

figure 4.1.21. 
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Figure 4.1.21 Result of the simulation with the fitted parameter k-6. The plot was made 

as a result of a simulation in SBtoolbox for MatLab and shows the behaviour of Atg1-

Atg13 complex after rapamycin treatment. mTOR was shut off after 30 min as a result 

of rapamycin treatment. The time 30 min was chosen randomly to ensure that the system 

was in steady state before rapamycin treatment. 

 

In the plot above we can see that in 10 minutes after rapamycin treatment Atg1-Atg13 

complex reached ~83% (from the ~8% in steady state condition in presence of mTOR). 

Level of Atg13 rapidly after mTOR shut off reached a higher level. 
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4.1.4.4 Model testing for parameters k4 – k7 

Using SBtoolbox, rate expressions based on figure 5.18 and parameters k6, k-6 

and k7 obtained as above, we tested the model for the  reactions R4, R5, R6, R-6 and R7. 

The simulations conducted show three different initial conditions (table 4.1.1). 

 

Table 4.1.1 Initial conditions for model testing 

Species 1
st
 initial conditions 2

nd
 initial conditions 3

rd
 initial conditions 

Atg13_P 100 0 0 

Atg13 0 100 0 

Atg1 100 100 0 

Atg1-Atg13 0 0 100 

 

The first condition represents oversaturated nutrient conditions, when all Atg13 

is in a phosphorylated form and there is no Atg1-Atg13 complex. The second condition 

mimics nutrients starvation, when all Atg13 is converted to the unphosphorylated form. 

The third scenario represents also nutrient starvation condition, when all Atg13 and 

Atg1 are converted to the Atg1-Atg13 complex.  
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4.1.4.4.1 Simulations in the normal rich nutrient conditions (in the presence of 

active mTOR) 

We expected that in all three conditions the final steady states for all species will 

be identical. Figure below presents result of the simulation in the first scenario of initial 

conditions (table 4.1.1). 

 

Figure 4.1.22 Result of the model testing for parameters k4-k7 in the normal rich 

nutrient conditions. The plot was made as a result of a simulation in SBtoolbox for 

MatLab and shows the behaviour of Atg1_Atg13 complex, Atg13_P, Atg13 and Atg1 in 

normal nutrient conditions. Initial concentrations for this simulation: Atg13_P(0)=100, 

Atg13(0)=0, Atg1(0)=100 and Atg1_Atg13(0)=0. Steady state of Atg1_Atg13 complex 

is lower than 10%, which is reasonable level in rich nutrient conditions. 
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Figure below presents result of the simulation in the second scenario of initial 

conditions (table 4.1.1). 

 

 

Figure 4.1.23 Result of the model testing for parameters k4-k7 in the normal rich 

nutrient conditions. The plot was made as a result of a simulation in SBtoolbox for 

MatLab and shows the behaviour of Atg1_Atg13 complex, Atg13_P, Atg13 and Atg1 in 

normal nutrient conditions. Initial concentrations for this simulation: Atg13_P(0)=0, 

Atg13(0)=100, Atg1(0)=100 and Atg1_Atg13(0)=0. Steady state of Atg1_Atg13 

complex is lower than 10%, which is reasonable level in nutrient rich conditions. 

 

 

Figure below presents result of the simulation in the third scenario of initial 

conditions (table 4.1.1). 
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Figure 4.1.24 Result of the model testing for parameters k4-k7 in the normal rich 

nutrient conditions. The plot was made as a result of a simulation in SBtoolbox for 

MatLab and shows the behaviour of Atg1_Atg13 complex, Atg13_P, Atg13 and Atg1 in 

normal nutrient conditions. Initial concentrations for this simulation: Atg13_P(0)=0, 

Atg13(0)=0, Atg1(0)=0 and Atg1_Atg13(0)=100. The steady state concentration of 

Atg1_Atg13 complex is less than 10%, which is reasonable level in rich nutrient 

conditions. 

 

In all plots (4.1.22, 4.1.23 and 4.1.24) we can see the levels of each individual 

species reaches the same final level, irrespectively of the initial conditions (table 4.1.1), 

in the normal nutrient conditions (in the presence of active mTOR). Atg1_Atg13 

complex reaches a very low steady states level, on the contrary Atg13_P. Preaches a 

high level. This result is reasonable in the nutrient rich conditions. 
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4.1.4.4.2 Simulations in the inhibition of mTOR 

In the previous simulations (part 4.1.4.4.1) we tested the model in the presence 

of active mTOR. Next we wanted to test the model when mTOR is shut off in the first 

second of simulation, which means that system could not reached the steady state 

before. We expected that when mTOR is inactive the individual species reach different 

steady state levels than in mTOR active - scenario. Thus, we expected that Atg1_Atg13 

complex, which in our model is a marker of autophagy induction, will be in high level 

(due to mTOR inhibition). 

mTOR was implemented as model variable, which after 0.00005 minutes was shut off, 

to mimic rapid rapamycin action. We expected that after inhibition of mTOR in all three 

different conditions (table 4.1.1) final steady states of all species reach the same levels. 

Figure below presents result of the simulation in the first scenario of initial 

conditions (table 4.1.1). 
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Figure 4.1.25 Result of the model testing for parameters k4-k7 in the mTOR 

inhibition. The plot was made as a result of a simulation in SBtoolbox for MatLab and 

shows the behaviour of Atg1_Atg13 complex, Atg13_P, Atg13 and Atg1. Initial 

concentrations for this simulation: Atg13_P(0)=100, Atg13(0)=0, Atg1(0)=100 and 

Atg1_Atg13(0)=0. Steady state of Atg1_Atg13 complex is high ~90%, which is 

reasonable level in the inhibition of mTOR. 

 

Figure below presents result of the simulation in the second scenario of initial 

conditions (table 4.1.1). 
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Figure 4.1.26 Result of the model testing for parameters k4-k7 in the mTOR 

inhibition. The plot was made as a result of a simulation in SBtoolbox for MatLab and 

shows the behaviour of Atg1_Atg13 complex, Atg13_P, Atg13 and Atg1. Initial 

concentrations for this simulation: Atg13_P(0)=0, Atg13(0)=100, Atg1(0)=100 and 

Atg1_Atg13(0)=0. Steady state of Atg1_Atg13 complex is high ~90%, which is 

reasonable level in the inhibition of mTOR. 

 

 

Figure below presents result of the simulation in the third scenario of initial 

conditions (table 4.1.1). 
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Figure 4.1.27 Result of the model testing for parameters k4-k7 in the mTOR 

inhibition. The plot was made as a result of a simulation in SBtoolbox for MatLab and 

shows the behaviour of Atg1-Atg13 complex, Atg13_P, Atg13 and Atg1. Initial 

concentrations for this simulation: Atg13_P(0)=0, Atg13(0)=0, Atg1(0)=0 and 

Atg1_Atg13(0)=100. Steady state of Atg1_Atg13 complex is high ~90%, which is 

reasonable level in the inhibition of mTOR. 

 

In all plots (4.1.25, 4.1.26 and 4.1.27) we can see the levels of all individual 

species reached the same level, respectively to all initial conditions (table 4.1.1), in the 

inhibition of mTOR conditions. Atg1_Atg13 complex reached very high steady states 

level, on the contrary to Atg13_P, which is on the low level. This result is reasonable in 

the mTOR inhibition conditions. 
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4.1.5 Conclusions for model parameterization 

We therefore conclude that we successfully implemented all reactions and can 

re-model the published biological behaviour of the all reactions involved in the 

induction of the autophagy. 

Table 4.1.2 contains all reaction kinetics which are used in the model. 

References for all the calculations and fittings are also enclose.  

 

Table 4.1.2 Reaction kinetics used in the model. 

Rate expression Parameter Value of the 

parameter  

Reference 

 

GTP
Rhebk ⋅1  

 

k1 

0.06716 

[min-1] 

Calculated based on 

Inoki et al., 2005; 

Marshall et al., 2009 

 

GTP
Rhebk ⋅2  

 

k2 

0.04046 

[min-1] 

Calculated based on 

Inoki et al., 2005; 

Marshall et al., 2009 

)38_(3 FKBPmTORRhebk
GTP ⋅⋅  k3 0.00333 

[min-1·u-1]* 

Calculated based on 

Sato et al., 2009 

mTORFKBPRhebk
GTP ⋅⋅− )38_(3  k-3 0.00133 

[min-1·u-1] * 

Calculated based on 

Bai et al., 2007 
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mTORAtgk ⋅⋅ 134  k4 0.01498 

[min-1·u-1] * 

Calculated based on 

Kamada et al., 2000 

)_13(5 PAtgk ⋅  k5 0.5991 

[min-1] 

Calculated based on 

Kamada et al., 2000 

1136 AtgAtgk ⋅⋅  k6 0.006649 

[min-1·u-1] * 

Fitting based on 

Kamada et al., 2000 

)13_1(6 AtgAtgk ⋅−  k-6 0.0059 

[min-1] 

Fitting based on  

Kamada et al., 2000 

mTORAtgAtgk ⋅⋅ )13_1(7  k7 0.01498 

[min-1·u-1] * 

Assumption based on 

Kamada et al., 2000 

*
 u represents relative unit, %. 

 

 

In the next part of the thesis we implemented full model with all reactions which 

are involved in the autophagy induction.  
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After extraction all parameters for every single reaction (for details see chapter 

4.1, Model parameterization) we implemented the initial model which includes 

reactions 1 to 7. The input to the system is the initial concentrations of species from the 

first reaction (RhebGDP and RhebGTP), which are not in the ratio of normal nutrient 

conditions. This means that the system needs some time to reach the steady state and 

this time depends on the individual initial concentrations of all species. The output is the 

amount of Atg1-Atg13 complex, which is essential to induce the autophagy pathway.  

 

4.2.1 Simulations and results for initial model without feedback 

The initial conditions of all species for the first 4.2.1A simulation were:  

RhebGDP(0)=100, RhebGTP(0)=0, mTOR(0)=0, mTOR-FKBP(0)=100, RhebGTP-

FKBP(0)=0, Atg13-P(0)=0, Atg13(0)=100, Atg1(0)=100 and Atg1-Atg13(0)=0. These 

initial conditions represent an extreme scenario, where there is no mTOR in the active 

form and all Rheb is in the inactive GDP form. This scenario can mimic starvation 

conditions. Atg13 is in the unphosphorylated form, which allows fast creation of the 

Atg1-Atg13 complex. However, after some time, due to normal regular reactions, the 

system reaches steady states conditions, where the active mTOR concentration is quite 

high and the concentration of the Atg1-Atg13 complex decreases significantly. Figure 

4.2.1 shows the result of simulations with these initial conditions. 
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Figure 4.2.1 Result of simulation 4.2.1A for all reactions involved in autophagy 

induction. The plot displays the results of a simulation using the SBtoolbox for MatLab 

and shows the different behaviours of the individual species for the given initial 

condition. Blue bold line represents Atg1-Atg13 complex, which slowly decreasing with 

mTOR (red) increase. 

 

The steady state for all species is given by: RhebGDP=16.7091, RhebGTP=27.7356, 

mTOR=55.5553, mTOR-FKBP=44.4447, RhebGTP-FKBP=55.5553, Atg13-P=58.1475, 

Atg13=25.1944, Atg1=83.3419 and Atg1-Atg13=16.6581. 

To check the implementation, we run simulation for different initial conditions 

and tested whether the same steady state was reached. The difference in initial 

conditions for the second simulation, compared with the first one, is that all Atg13 is in 

the hyperphosphorylated form, thus Atg13-P(0)=100 and Atg13(0)=0. We expected that 

the Atg1-Atg13 complex would appear later, compared with the simulation 4.2.1A, and 
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that its concentration would be lower, because of the inhibitory role of active mTOR. 

Figure 4.2.2 shows the result of the second simulation. 

 

Figure 4.2.2 Result of the simulation 4.2.1B for all reactions involved in autophagy 

induction. The plot displays the results of a simulation using the SBtoolbox for MatLab 

and shows the different behaviour of the individual species for the given initial 

conditions. Atg1-Atg13 complex (blue) slowly decreases with mTOR (red) increasing. 

Final steady state values of all the species are the same as in previous simulation. 

 

Figure 4.2.3 below shows the result of a third simulation. In this case all Rheb is 

in the active GTP form, thus RhebGDP(0)=0 and RhebGTP(0)=100. This scenario mimics 

rich nutrient conditions, suggesting that the system will reach steady state faster than in 

two previous simulations. The plot 4.2.3 shows the result of this simulation. 
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Figure 4.2.3 Result of the simulation 4.2.1C for all reactions involved in autophagy 

induction. The plot displays the results of a simulation using the SBtoolbox for MatLab 

and shows the different behaviour of the individual species for the given initial 

conditions. mTOR (red) increase very fast, as well as Atg1-Atg13 complex (blue) 

decreases, due to high level of Rheb in an  active GTP form. Final steady state values of 

all the species are the same as in previous simulation. 

 

The initial conditions for the simulation 4.2.1D mimic an extreme starvation 

scenario, when the Atg1-Atg13 complex is in very high concentration, thus Atg13-

P(0)=0, Atg13(0)=0, Atg1(0)=0 and Atg1-Atg13(0)=100.  

While the system is approaching the steady state conditions, the Atg1-Atg13 complex 

should continuously decrease with the increase of mTOR activity. 
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Figure 4.2.4 Result of the simulation 4.2.1D for all reactions involved in autophagy 

induction. The plot displays the results of a simulation using the SBtoolbox for MatLab 

and shows the different behaviour of the individual species for the given initial 

conditions. Atg1-Atg13 complex (blue) decreases slowly from the very high 

concentration, with the slowly increasing of mTOR (red).  Final steady state values of 

all the species are the same as in previous simulation. 

 

In conclusion, our initial model represents the behaviour of all model 

components in response to changes in initial conditions. In all cases, mTOR was not 

inhibited but its initial concentration was always 0. The other species were in conditions 

which might mimic starvation (Rheb in inactive GDP form, Atg13 in unphosphorylated 

form, high level of atg1-Atg13 complex) or in normal nutrient conditions (Rheb in 

active GTP form, Atg13 in hyperphosphorylated form). In all scenarios our system 

reached the same steady state, which is 55.55 % of mTOR and 16.66 % of Atg1-Atg13 
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complex. Table 4.2.1 shows the list of the initial conditions for all simulations and the 

final steady states for all the species. The steady state which was approached is the 

steady state in normal rich nutrient conditions, when all the species function properly. 

The time taken to reach the steady state depended on initial conditions: the closer to 

starvation conditions the longer the time taken to reach steady state. 

 

Table 4.2.1 Initial concentrations for all species involved in the model for the first 

fourth initial simulations 4.2.1A – 4.2.1D 

Species Initial concentrations for simulation 

4.2.1A       4.2.1B     4.2.1C       4.2.1D 

Steady 

state [%] 

RhebGDP 100 100 0 100 16.71 

RhebGTP 0 0 100 0 27.74 

mTOR 0 0 0 0 55.55 

mTOR-FKBP38 100 100 100 100 44.44 

RhebGTP-FKBP38 0 0 0 0 55.55 

Atg13_P 0 100 0 0 58.15 

Atg13 100 0 100 0 25.19 

Atg1 100 100 100 0 83.34 

Atg1-Atg13 0 0 0 100 16.66 
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4.2.2 Implementation of the rapamycin as an mTOR inhibitor 

 In the previous sub-chapter mTOR was not inhibited for four different sets of 

initial conditions, the system reached the same steady state. The steady state levels for 

all the species are characteristic in normal rich nutrient conditions (high mTOR, low 

Atg1-Atg13 complex). 

In the next stage we add mTOR inhibition by rapamycin to the model 

(simulation 4.2.2). Specifically, we include reaction R8 which represents inhibition of 

mTOR by rapamycin (R). The product of the reaction is the inactive mTOR-rapamycin 

complex (mTOR-R). 

                                              RmTORRmTORR
k _: 8

8 →+                                 (4.2.1) 

The rate expression for this reaction is: 

                                                        RmTORk ⋅⋅= 88υ                                           (4.2.1) 

Based on the reaction above we can describe the temporal change in 

concentration of the mTOR, rapamycin and mTOR-R complex by using an ordinary 

differential equation:  

                                                      

8

8

8

)(

)(

υ

υ

υ

=
−

−=

−=

dt

RmTORd

dt

dR

dt

mTORd

                                        (4.2.3) 
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The initial concentration of rapamycin for the simulation 4.2.2 is assumed to be 

100, the same as the total amount of mTOR (in all different species). This assumption 

was essential to ensure that rapamycin was able to inhibit all mTOR. Also we updated 

the model with the initial conditions of all the species obtained from the previous 

simulation (table 4.2.1). These concentrations represent the amount of the model 

components in normal cellular conditions. The parameter k8 for the added reaction was 

assumed to be 0.02 min-1 based on information that after rapamycin treatment the Atg1-

Atg13 complex appears in 10 minutes [Kamada et al., 2000]. 

We expected that the level of mTOR would decrease quite fast because 

rapamycin is its direct inhibitor. Further, the amount of Atg1-Atg13 complex should 

increase and after 10 minutes we expect a significant rise. 

The figure below represents the results of the simulation 4.2.2A.  
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Figure 4.2.5 Result of the simulation 4.2.2 for mTOR and Atg1-Atg13 complex 

behaviour after mTOR inhibition by rapamycin.  The plot displays the results of a 

simulation using the SBtoolbox for MatLab and shows the different behaviour of the 

mTOR and Atg1-Atg13 complex after rapamycin treatment (dose of rapamycin 100%). 

mTOR (red) decreases very quickly because of direct inhibition by rapamycin. Atg1-

Atg13 complex (blue) increases significantly within 10 minutes 

 

The new steady states after rapamycin treatment (100%) are: 

mTOR=4.42389·10-8 and Atg1-Atg13=90.9424. We can say that after rapamycin 

treatment, mTOR is completely inhibited and the Atg1-Atg13 complex increases up to 

~91%, which means that autophagy pathway can be induced. 

The figure plots the amount of mTOR and the Atg1-Atg13 complex against the 

dose of rapamycin.  
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Plot of mTOR (red) and Atg1-Atg13 complex (blue) against dose of rapamycin
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Figure 4.2.6 Dose dependent inhibition of mTOR kinase activity by rapamycin (red) 

and relationship between dose of rapamycin and Atg1-Atg13 complex (blue) creation. 

The plot represents the relation between the mTOR and Atg1-Atg13 complex on 

different doses of rapamycin. The plot displays the results of a simulation using the 

SBtoolbox for MatLab.With rising dose of rapamycin mTOR decreases while Atg1-

Atg13 complex increases. Dose dependent inhibition of mTOR by rapamycin has linear 

manner. 

 

 

We observed that even small doses of rapamycin (>10%) are able to inhibit mTOR 

activation. mTOR decreases in a linear manner with higher doses of rapamycin. We can 

also note that the creation of the Atg1-Atg13 complex is slightly delayed compared to 

the beginning of mTOR inhibition. Atg1-Atg13 complex has also bigger changes at the 

end of its curve, and reaches some level of saturation.  
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Figure 4.2.7 represents the kinetic behaviour of mTOR for different doses of 

rapamycin. The plot displays the results of a simulation using the SBtoolbox for 

MatLab.  

 

mTOR for different dose of rapamycin
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Figure 4.2.7 Representation of the kinetic behaviour of mTOR in response to 

different doses of rapamycin. The plot represents the relation between mTOR in 

different doses of rapamycin and time. The plot displays the results of a simulation 

using the SBtoolbox for MatLab. We can observe that mTOR inhibition is very fast in all 

doses of rapamycin. 

 

The smaller the dose of rapamycin, the faster the steady state is reached and its value is 

closer to the basic level of the steady state for mTOR (55.55%). The higher dose of 
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rapamycin, the longer it takes to reach the steady state. mTOR’s response to different 

doses of rapamycin is rather linear, there is no significant threshold. 

Figure 4.2.8 represents the kinetic behaviour of the Atg1-Atg13 complex for 

different doses of rapamycin. The plot displays the results of a simulation using the 

SBtoolbox for MatLab. 

Atg1-Atg13 complex for different dose of rapamycin
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Figure 4.2.8 Representation of the kinetic behaviour of Atg1-Atg13 complex in 

response to different doses of rapamycin. The plot represents the relation between the 

Atg1-Atg13 complex for different doses of rapamycin and time. The plot displays the 

results of a simulation using the SBtoolbox for MatLab. We can observe that Atg1-

Atg13 complex creation is very fast in all doses of rapamycin. 

 

The smaller the dose of rapamycin, the lower the effect on the Atg1-Atg13 complex and 

the faster the steady state is reached. The higher the dose of rapamycin, the longer it 
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takes to reach the steady state. The response of Atg1-Atg13 complex to different doses 

of rapamycin is rather linear, there is no significant threshold. 

 

4.2.3 Starvation mimic by changing parameter k1 

In the next step we checked our initial model (as implemented in 4.2.1) in 

starvation conditions by changing the parameter k1. Parameter k1 which was calculated 

in chapter 4.1 is correct in normal rich nutrient conditions. By decreasing its value we 

can mimic starvation conditions. 

For the simulations 4.2.3 the model was implemented exactly the same as in 

4.2.1. This time to obtain plots we used MatLab syntax [SBtoolbox code was 

transferred to the MatLab code by Bartlomiej Tomiczek] and the parameter k1 was 

changed automatically. We were interested only in the starvation effect, therefore 

parameter k1 has only been changing in the range of (k1, 0), where k1=0.06716 min-1. 

Figure 4.2.9 plots the amount of mTOR and Atg1-Atg13 complex against different 

values of k1. 
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Plot of mTOR (red) and Atg1-Atg13 complex (blue) 

against different values of parameter k1
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Figure 4.2.9 Inhibition of mTOR kinase activity (red) by decreasing parameter k1 

(starvation mimic). Relation between changes in parameter k1 and Atg1-Atg13 

complex (blue) creation. Figure plots the mTOR and Atg1-Atg13 complex against 

different values of k1. The plot was made using simulations in MatLab. To obtain good 

autophagy response (high level of Atg1-Atg13 complex) parameter k1 has to be 

implemented as very low. With lower values of parameter k1 mTOR decreases while 

Atg1-Atg13 complex increases. 

 

We could observe that to induce autophagy (which is synonymous to an increase in the 

Atg1-Atg13 complex) we need to decrease parameter k1 by approximately 90-95%. It 

means that to get good autophagy response we need almost total starvation. mTOR 

decreases earlier and more rapidly than the Atg1-Atg13 complex increases. This fact 

allows us to conclude that mTOR has a buffer character. 

Figure 4.2.10 represents the kinetic behaviour of mTOR for different values of 

parameter k1. The plot was made using simulation in MatLab.  
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Figure 4.2.10 Representation of the kinetic behaviour of mTOR in response to 

different value of k1. The plot displays the results of a simulation using the SBtoolbox 

for MatLab. The figure plots mTOR against time for different values of k1. The level of 

mTOR decreases with decreasing of the parameter k1 value. We observe that mTOR 

inhibition is very slow for all values of k1, and the smaller k1 is the longer it takes. 

 

The higher value of k1 (closer to value k1=0.06716) the faster steady state is reached and 

the closer it is to the basic value of steady state for mTOR (55.55%). The smaller k1 

value, the longer it takes to reach steady state. 

 

Figure 4.2.11 represents the kinetic behaviour of Atg1-Atg13 complex for 

different values of parameter k1. The plot was made using simulation in MatLab. 
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Figure 4.2.11 Representation of the kinetic behaviour of Atg1-Atg13 complex in 

response to different value of k1. The plot was made using simulations in MatLab. The 

figure plots the Atg1-Atg13 complex against time for different values of k1. The level of 

the Atg1-Atg13 complex increases with decreasing of the parameter k1 value. We could 

observe that Atg1-Atg13 complex creation is very slow for small values of k1, which 

means that to get a high level of complex we have to starve the cell for a long time. 

 

The higher value of k1, the lower the effect on Atg1-Atg13 complex and the faster the 

steady state is reached. The smaller values of k1 the longer it takes to reach the steady 

state.  
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4.2.4 Conclusions for the initial model 

We successfully implemented the initial model which includes reactions 1 to 7 

(diagram 4.1). We checked the model in three different scenarios (all without feedback): 

4.2.1) in normal rich nutrient conditions, 4.2.2) in mTOR inhibition by rapamycin and 

4.2.3) in starvation mimic (by decreasing parameter k1). Simulation 4.2.1 provides the 

steady state values for all the species involved in the model in normal nutrient 

conditions. Simulations 4.2.2 and 4.2.3 lead to the induction of the autophagy pathway, 

due to mTOR inhibition. 

Simulation 4.2.1 was performed in the normal rich nutrient conditions, whereby we 

could get values of the steady states in this scenario. The obtained steady states are 

reasonable agreement with biological experimental data. In normal nutrient conditions 

the steady state for mTOR is 55.55%, while for the Atg1-Atg13 complex it is 16.66%. 

This illustrates that in rich medium conditions mTOR is active and the Atg1-Atg13 

complex remains on a low level. This partial amount of complex is required to maintain 

basal autophagy (Cvt pathway), which is necessary for turnover of long lived proteins. 

Based on the last two simulations (with mTOR inhibition by rapamycin and 

starvation mimic by decreasing k1) we can observe that induction of autophagy by 

rapamycin and by starvation has different kinetics, however the final results are similar: 

simulation 4.2.2 with rapamycin R(0)=100 and simulation 4.2.3 with 01 ≅k both gave 

the results of Atg1-Atg13 complex 90.94 % and mTOR ~10-8 % (table 4.2.2). We could 

also observe significant differences in the amount of rapamycin and the lack of nutrients 

which are needed for autophagy induction. To increase Atg1-Atg13 complex to ~20%, 

only 15-20% of rapamycin is needed, while during the starvation scenario almost 90-

95% of the k1 value has to be taken out to obtain the same results. 
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Table 4.2.2 List of the steady states values for the all species obtained in simulations 

4.2.1, 4.2.2 and 4.2.3. 

Species Steady states concentrations [%] in conditions: 

       normal               rapamycin            mimic starvation 

                            (100%)                        k1=0 

Simulation:  4.2.1           4.2.2                         4.2.3 

RhebGDP 16.71 0.000632913 100 

RhebGTP 27.74 0.00105058 0 

mTOR 55.55 4.42389·10-8 2.54474·10-8 

mTOR-FKBP38 44.44 0.00168349 100 

RhebGTP-FKBP38 55.55 99.9983 0 

Atg13_P 58.15 1.10634·10-7 6.36398·10-8 

Atg13 25.19 9.05764 9.05764 

Atg1 83.34 9.05764 9.05764 

mTOR-R - 99.9983 - 

Atg1-Atg13 16.66 90.9424 90.9424 

 

We also can say that the system has a fast response to rapamycin treatment – 

mTOR decreases after a maximum of 30 minutes (figure 4.2.7), while in starvation 

mimic (k1 manipulation) the response is quite slow and new steady states established in 

approximately 103 minutes (figure 4.2.10 and 4.2.11). This indicates that autophagy 

induction after rapamycin treatment is 100 times faster than induction due to nutrient 

starvation. 
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Possible reasons why there is such a big difference in the time of autophagy 

induction via rapamycin and starvation include: 

- rapamycin is a direct inhibitor of mTOR, which means that to block mTOR 

activation we can omit reactions 1 and 3 (according to the diagram 4.1) 

- to obtain mTOR inhibition by decreasing k1 (starvation mimic) we have to take 

into account reactions 1 and 3 (diagram 4.1), which take some time. 

In the normal rich nutrient conditions k1 is bigger than k2, which allows creation 

of active RhebGTP. Active RhebGTP plays the role of mTOR activator. In the starvation 

scenario k1 is smaller than k2, so production of new RhebGTP is blocked. All fraction of 

RhebGTP is in the complex with FKBP38, thus mTOR is activated. To inhibit mTOR in 

starvation conditions, we need its endogenous inhibitor FKBP38, thus dissociation of 

RhebGTP-FKBP38 is necessary. The reaction of dissociation, which takes some time, 

might slow down in general mTOR inhibition in starvation. In different words, to inhibit 

mTOR in starvation conditions, FKBP38 is needed. And because FKBP38 is in the 

complex with RhebGTP, it takes some time to dissociate this complex and obtain 

FKBP38 to block mTOR activity. 

 From the experimental data [Kamada et al., 2000] we know, that inhibition of 

mTOR after rapamycin is very fast (~5 minutes). Activation of autophagy by starvation 

is a much slower process and could a take few days [Chera et al., 2009]. We can 

conclude that the results of our initial model agree with experimental data. 
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Next, we could include into the model the total amino acid pool (4.3.1) and 

feedback from the amino acids created during autophagy pathway (4.3.2). 

In this chapter we present results of simulations with the fully implemented 

model of the autophagy pathway. First we wanted to test again the initial model but this 

time with the total amino acid pool implementation as a variable. In normal nutrient 

conditions, when the external amino acid supply is set to 100%, we expected the same 

results as in the previous simulations (4.2.1) with fixed k1. Next the feedback from the 

amino acids produced by autophagy was implemented as a contribution on the total 

amino acids pool.  

 

4.3.1 The total amino acid pool implementation 

Until now reaction 1 was implemented with a fixed k1 which takes into account 

normal nutrient conditions. The assumption before was that the external amino acid 

supply was constant and by manipulating k1 we could simulate changes in the external 

amino acids. Amino acids now should become a variable throughout the modelled time 

frame. 

Amino acids are continuously provided (external supply) and consumed by 

various reactions in the cell. We reduce these processes to the two reactions. 
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Figure 4.3.1 The total amino acid pool. Amino acids control the activation Rheb. The 

total amino acid pool is feed by an external amino acid supply. Amino acids are 

consumed by various reactions in the cell. 

 

The mass balance would be: 

                                               outAAinAA
dt

AAd
__

)(
υυ −=                                         (4.3.1) 

where: 

�AA_in – inflow of amino acids (for example external supply) 

�AA_out – amino acids consumption by the cell (for example protein production, cell 

growth and division) 

In order to keep things as simple as possible, we consider a constant inflow of 

the amino acids: 

                                                   inAAinAA k __ =υ                                                     (4.3.2) 

and the consumption of the amino acids could be shown as follow: 

Total amino 

acids pool 

Amino acid 

consumption 

AA_out 

    GTP            GDP 

Amino acid supply 

AA_in 

kAA_in       kAA_out 

  k1 
  RhebGDP RhebGTP 
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                                               AAk outAAoutAA ⋅= __υ                                               (4.3.3) 

This is a simply assumption for the amino acids consumption to make sure that the cell 

reduces its amino acids consumption when the concentration is reduced and that the 

amino acids concentration will remain positive. 

A turnover of the amino acids in mammalian cells is 1% per hour [Mandelstam, 

1960], which gives the reaction constant kAA_out=0.0001666 min-1. To balance the total 

amino acid pool, the inflow of amino acids AA_in would have to be outAAinAA __ υυ = , 

which means that AAkk outAAinAA ⋅= __  and kAA_in=0.01666 min-1. 

 

Using the model in the case of the amino acid pool implementation, a simulation 

4.2.7 was made to check the correct software implementation of parameters kAA_in and 

kAA_out. We started the simulation with the same initial conditions as all previous 

simulations to see the behaviour of all of the species. We expected the same steady 

states values as in 4.2.1 simulation. 
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Figure 4.3.2 Result of the simulation 4.2.7 for all reactions involved in autophagy 

induction. The plot was made as a result of a simulation in SBtoolbox for MatLab and 

shows different behaviour of the individual species with set initial conditions. Blue bold 

line represents Atg1-Atg13 complex, which slowly decreases with mTOR (red bold line) 

increase. The simulation was similar to 4.2.1A, but in this scenario amino acids were 

implemented as a catalyser of reaction 1 (see figure 4.3.1).  

 

 

The steady states, which are the results of the simulation, are: RhebGDP=16.7091, 

RhebGTP=27.7356, mTOR=55.5553, mTOR-FKBP=44.4447, RhebGTP-FKBP=55.5553, 

Atg13-P=58.1475, Atg13=25.1944, Atg1=83.3419 and Atg1-Atg13=16.6581. These 

steady states values are exactly the same as in simulation 4.2.1. This result proves that 

the amino acids were implemented correctly. 
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4.3.2 The contribution of the autophagy feedback on the amino acid pool 

In the previous sub-chapters we implemented the initial model without the 

contribution of autophagy to the amino acid pool. In this part of the thesis the feedback 

loop has been added (figure 4.3.3), to modify the level of the total amino acid pool. The 

total amino acid pool is feed now with extra amino acids, which are produced by 

autophagy. The contribution of these amino acids is added to the model with a time 

delay and kinetic constant kF, which represents the strength of the feedback. We use 

here an idea of time delay for the part of the pathway from autophagosome nucleation to 

the degradation in lysosome and recycling.  
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Figure 4.3.3 Diagram of the full model of autophagy pathway. The total amino acid 

pool is maintained by two inflows: external amino acids supply and amino acids from 

the autophagy pathway. Amino acids control induction of the autophagy (reactions 

1+3+5+6). The result of the induction is the Atg1-Atg13 complex. The amount of the 

Atg1-Atg13 complex, with the time delay and strength kF composes feedback of the 

system. 

 

Now the total amino acids mass balance with the autophagy contribution aa_A 

would be 

                                   AaaoutAAinAA
dt

AAd
___

)(
υυυ +−=                                        (4.3.4) 
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The process from the autophagosome nucleation and finishing with the 

lysosomal degradation and recycling is modelled as a time delay (20 minutes). Little is 

known about the part of the biochemical pathway from the autophagosome nucleation 

until fusion with the lysosome, but at least we know that it takes approximately 10 

minutes [Yoshimori, 2004]. The lysosomal pathway for the protein degradation 

(autophagy) we model as a pure time delay as well (additional 10 minutes time is set for 

degradation in the lysosome). The total time delay from the Atg1-Atg13 complex 

formation to the generation of the amino acids from the autophagy therefore was 20 

minutes. 

We made a simple assumption, that amount of the amino acids which are 

produced during the autophagy pathway, is proportional to the amount of Atg1-Atg13 

complex. Based on this assumption and figure 4.3.3 we could write a rate expression for 

the feedback reaction 

                                        delaytimeFF AtgAtgk _)13_1(⋅=υ                                     (4.3.5) 

The rate of the amino acids which are produced during autophagy is defined by 

the strength of the feedback constant kF.  

The part of the model with the time delay and feedback was implemented in the 

MatLab syntax by Bartlomiej Tomiczek. The reason for switching to the MatLab was 

that this software is more flexible and it allows more complex work, than SBtoolbox. 

The time delay was set to 20 minutes. Parameter kF was assumed to be 1, in order to get 

the proportional amount of aa_A to the Atg1-Atg13 complex.  In other words, we can 

present this relationship by 
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( _ ) ( 1_ 13)

( )
F

delay

d aa A d Atg Atg
k

dt d t
= ⋅                                    (4.3.6) 

 

The parameter kF is responsible for the velocity of the production of the amino 

acids during the autophagy pathway.  The feedback strength kF and the time delay are 

implemented in this way so that none of them influences the level of the amino acids 

production by the autophagy. The response of the system is not restricted by 

implementation method. Feedback modifies k1 and plays a role of the total amino acids 

pool modulator. 

Five simulations were conducted, in scenarios where the total amount of amino 

acids pool was set to: 100% (normal cellular conditions), 75%, 50%, 25% and 0% (the 

total starvation conditions). We wanted to check the influence of kF on the level of the 

amino acid production by autophagy, in different initial concentrations of the total 

amino acid pool. The plots below show the result of this simulation. Figure 4.3.4 shows 

the amount of the amino acids produced by autophagy as a result of the response to the 

total amino acid pool changes. Figure 4.3.5 shows the amount of the total amino acid 

pool with the contribution of autophagic amino acids. 
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Figure 4.3.4 Result of the simulation with the feedback for kF=1, for different initial 

values of the total amino acid pool AA(0). The plot was made as a result of a 

simulation in MatLab and shows the amount of amino acids produced in the autophagy 

pathway. Production of amino acids in this pathway acts as a response to starvation. In 

the scenario with 100% of the initial amino acid pool there is no autophagy respond 

(blue). In the case of starvation, when the amount of the initial amino acids is 0%, the 

production of the internal amino acids, as a response of the system, gives approximately 

the 8.5% (purple) steady state.  

 

We can observe that in the scenario when the amount of the initial amino acid pool is a 

maximum, there is no autophagy response (figure 4.3.4, line blue). In the case of full 

starvation the system gives approximately the 8.5 % level of the amino acids produced 

by autophagy. 
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Figure 4.3.5 Result of the simulation with the feedback for kF=1, for different initial 

values of the total amino acid pool AA(0). The plot was made as a result of a 

simulation in MatLab and shows the amount of the total amino acid pool with the 

contribution of autophagic amino acids. In the scenario with 100% of the initial amino 

acid pool, there is no autophagy response and the level of the AA pool stays the same 

(blue). In the case of starvation, when the amount of the initial amino acid pool is 0%, 

the production of the autophagic amino acids rises (purple).  

 

We can observe that in normal nutrient conditions (maximum AA(0)=100%) the level 

of the total amino acid pool reminds the same. Also for other conditions (AA(0)=75%, 

50%, 25%) changes in the total amino acid pool are small. In the starvation scenario, 

after 20 minutes time delay, due to autophagy, the amount of the amino acid pool 

increases and after approximately 140 minutes reaches the steady state.  
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We can conclude that autophagy, which occurs as a response to the starvation 

conditions, can replace some amount of the amino acids in the total amino acid pool.  

 

 In the next step we checked the model for different values of the parameter kF. 

This parameter represents the strength of the feedback and is responsible for the speed 

of the production of the amino acids in the autophagy pathway. In these simulations the 

influence of the different values of kF on the production of amino acids was 

investigated. We tried three values of parameter kF: 3, which represents a slightly 

stronger feedback than in the previous simulation; 5, which represents strong feedback; 

and 0.5 which represents weak feedback. The plots below show the results of these 

simulations (figure 4.3.6 – 4.3.11). Figures 4.3.6, 4.3.8 and 4.3.10 show the amount of 

amino acids produced by autophagy as a result of the response to the total amino acid 

pool changes. Figures 4.3.7, 4.3.9 and 4.3.11 show the amount of the total amino acid 

pool with the contribution of autophagic amino acids. 
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Figure 4.3.6 Result of the simulation with the feedback for kF=3, for different initial 

values of the total amino acid pool AA(0). The plot was made as a result of a 

simulation in MatLab and shows the amount of amino acids produced in the autophagy 

pathway. Production of the amino acids in this pathway acts as a response to 

starvation. In the scenario with 100% of the initial amino acid pool there is no 

autophagy response (blue). In the case of starvation, when amount of the initial amino 

acids is 0%, the production of the autophagic amino acids rises up very quickly and 

after few small oscillations and approximately 200 minutes reaches the 9% steady state 

(purple).  

 

 

We can observe that in the scenario when the amount of the initial amino acid pool is 

maximum, there is no autophagy response. In the case of full starvation the system 
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gives approximately the 9% level of amino acids produced by autophagy. In the first 

200 minutes, before system reaches the steady state, we can observe small oscillations. 

 

 

 

Figure 4.3.7 Result of the simulation with the feedback for kF=3, for different initial 

values of the total amino acid pool AA(0). The plot was made as a result of a 

simulation in MatLab and shows the amount of total amino acids pool with the 

contribution of autophagic amino acids. In the scenario with 100% of the initial amino 

acid pool, there is no autophagy response and the level of AA pool stays the same 

(blue). In the case of starvation, when the amount of the initial amino acid pool is 0%, 

the production of the autophagic amino acids rises up (purple) quickly at the beginning 

and after approximately 160 minutes reaches the steady state.  
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We can observe that in normal nutrient conditions (maximum AA(0)=100%) the level 

of the total amino acid pool remains the same. Also for other conditions (AA(0)=75%, 

50%, 25%) changes in the total amino acid pool are small. In the starvation scenario, 

after a 20 minute time delay, due to autophagy, the amount of the amino acid pool 

increases and after approximately 160 minutes reaches the steady state. In the first 160 

minutes, before it reaches the steady state we can observe small oscillations. 

 

In the next simulation we tested kF=5. The plots below show the result of these 

simulations (figure 4.3.8 and 4.3.9). Figure 4.3.8 shows the amount of amino acids 

produced by autophagy. Figure 4.3.9 shows the amount of the total amino acid pool 

with the contribution of autophagic amino acids. 
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Figure 4.3.8 Result of the simulation with the feedback for kF=5, for different initial 

values of the total amino acid pool AA(0). The results plotted are from MatLab 

simulations and shows the amount of the amino acids produced in the autophagy 

pathway. Production of the amino acids in this pathway acts as a response to 

starvation. In scenario with 100% of the initial amino acid pool there is no autophagy 

response (blue). In the case of starvation, when amount of the initial amino acids is 0%, 

the production of the autophagic amino acids rises up very quickly and after many 

oscillations and approximately 400 minutes reaches the 9% steady state (purple).  

 

 

We can observe that in the scenario when the amount of the initial amino acid pool is 

maximum, there is no autophagy response. In the case of the full starvation the system 

gives approximately the 9% level of the amino acids produced by autophagy. In the first 
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400 minutes, before system reaches the steady state, we can observe many oscillations, 

which at the end reach the same steady state as in the scenario with kF=1 and kF=3. 

 

 

Figure 4.3.9 Result of the simulation with the feedback for kF=5, for different initial 

values of the total amino acid pool AA(0). The results plotted are from MatLab 

simulations and shows the amount of total amino acids pool with the contribution of 

autophagic amino acids. In scenario with 100% of the initial amino acid pool, there is 

no autophagy response and the level of AA pool stays the same (blue). In the case of 

starvation, when the amount of the initial amino acid pool is 0%, the production of the 

autophagic amino acids rises (purple) quickly at the beginning and after approximately 

350 minutes and many oscillations reaches the steady state.  
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We can observe that in normal nutrient conditions (maximum AA(0)=100%) the level 

of the total amino acid pool remains the same. Also for other conditions (AA(0)=75%, 

50%, 25%) changes in the total amino acid pool are small. In starvation scenario, after 

20 minutes time delay, due to autophagy, the amount of the amino acid pool increases 

and after approximately 350 minutes reaches the steady state. In the first 350 minutes, 

before it reaches the steady state we can observe many oscillations. 

 

We can conclude that in starvation conditions, with higher value of kF, the 

autophagic amino acids production is quicker (the first peak grows faster and higher – 

compare figures 4.3.4, 4.3.6 and 4.3.8). But also the higher kF the bigger oscillations 

occur in the system response. 

  

In the next simulation we tested kF=0.5. The plots below show the results of 

these simulations (figure 4.3.10 and 4.3.11). Figure 4.3.10 shows the amount of amino 

acids produced by autophagy. Figure 4.3.11 shows the amount of the total amino acid 

pool with the contribution of autophagic amino acids. 
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Figure 4.3.10 Result of the simulation with the feedback for kF=0.5, for different 

initial values of the total amino acid pool. The results plotted are from MatLab 

simulations and shows the amount of amino acids produced in autophagy pathway. 

Production of the amino acids in this pathway acts as a response to the starvation. In 

scenario with 100% of the initial amino acid pool there is no autophagy response 

(blue). In the case of starvation, when amount of the initial amino acids is 0%, the 

production of the autophagic amino acids rises and after approximately 300 minutes 

reaches the 7% steady state (purple).  

 

We can observe that in the scenario when the amount of the initial amino acid pool is 

maximum, there is no autophagy response. In the case of full starvation the system 

gives approximately 7% level of the amino acids produced by autophagy. This steady 

state is lower than in previous simulations, which reached 9%. Compared to figure 4.3.4 
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with kF=1, the time which the system takes to reach steady state is longer (300 minutes 

compare with 160 minutes on figure 4.3.4). 

 

 

Figure 4.3.11 Result of the simulation with the feedback for kF=0.5, for different 

initial values of the total amino acid pool AA(0). The results plotted are from MatLab 

simulations and shows the amount of total amino acid pool with the contribution of 

autophagic amino acids. In scenario with 100% of the initial amino acid pool, there is 

no autophagy response and the level of AA pool stays the same (blue). In the case of 

starvation, when the amount of the initial amino acid pool is 0%, the production of the 

autophagic amino acids rises (purple).  

 

We can observe that in normal nutrient conditions (maximum AA(0)=100%) the level 

of the total amino acid pool remains the same. Also for other conditions (AA(0)=75%, 

50%, 25%) changes to the total amino acid pool are small. In the starvation scenario, 
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after a 20 minute time delay, due to autophagy, the amount of the amino acid pool 

increases and after approximately 250 minutes reaches the steady state. Compare this 

result to figure 4.3.5 with kF=1, time which system takes for the achievement steady 

states is longer (250 minutes compare with 140 minutes on figure 4.3.5). 

 

�����BA�D���BA��BA�� E�#�DD���!DE�EA�EF����B! ��"��BFED�

 We successfully obtained results from simulations of a fully implemented model 

with feedback on the total amino acid pool. In starvation, the total amino acid pool 

decreases dramatically. Autophagy occurs as a response to the starvation conditions.  

Based on the simulations, we can conclude that autophagy can replace some of the 

amino acids in the total amino acid pool. This contribution to the total amino acid pool 

is approximately 9%. 

The parameter kF is in control of the speed of the production of the amino acids 

during the autophagy pathway. Base on the simulations, we can conclude that in 

starvation conditions, with higher value of kF, the autophagic amino acids production is 

quicker. But the higher kF also results in bigger oscillations in the system response. 

Figure 4.3.12 below shows the influence of the different values of kF on amount of the 

amino acids produced by autophagy. 
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Figure 4.3.12 Result of the simulation with the feedback for kF=1 (blue), kF=2.5 

(green), kF=5 (red), kF=7.5 (light blue) and kF=10 (purple), in starvation (AA(0)=0). 

The plot was made as a result of a simulation in MatLab and shows the amount of the 

amino acids produced in autophagy pathway. The simulation was conducted in 

starvation conditions, for different values of kF. The bigger the value of kF, the faster 

and the higher production of the autophagic amino acids. Also bigger and more 

oscillation occur while we implement bigger value of kF. The contribution of the 

autophagy to the total amino acid pool is on the approximately 9% level. 

 

 

We can see that the contribution of the autophagy to the total amino acid pool reaches 

the 9% level. This value does not depend on the value of kF. We can also conclude that 

the lower value of kF has better dampening character. 
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This section describes model parameterization and implementation, and gives an 

explanation of methods which were used to obtain set of parameters. Our mathematical 

model is calibrated using published experimental data on the autophagy pathway in 

mammalian cells. 

All simulations were performed with a system of ordinary differential equations 

(ODE) which describe the biochemical reactions involved in signal transduction 

between amino acids and components of the mTOR-dependent autophagy induction 

pathway. The ordinary differential equations were based on mass action kinetics. The 

diagram, which represents all reactions included in the model, is provided in the chapter 

4 (figure 4.2). 

 

%����E� BF����EF��A�� E��BFED�!����E�E��0���BA�

The kinetic constants for the first two reactions were derived from the two 

publications by Inoki et al and Marshall et al [Inoki et al., 2003 and Marshall et al., 

2009]. Based on the experimental data [Inoki et al., 2003] and by using the equation for 

exponential decay, we could calculate parameter k2. Another publication [Marshall et 

al., 2009], which was published during the course of this study, provided the value of 

k2. We calculated the average value of k2 from these two publications for use in our 

model. To calculate the parameter k1, we used again experimental data from Inoki et al. 

They provided the ratio of GTP/GDP- bound Rheb in living cells, which was 

formulated in the steady state condition. From the ordinary differential equations for the 
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first and second reaction we could obtain the equation for the ratio
2

1

k

k

Rheb

Rheb
GDP

GTP

= . 

From this equation k1 was calculated by 
GDP

GTP

Rheb

Rheb
kk 21 = . The model was tested using 

SBtoolbox, rate expressions and calculated parameters. System Biology Toolbox for 

MatLab (version 1.8) is free software, developed as a suit of MATLAB scripts.  

The kinetic constants for the next two reactions were derived from the 

publications by Bai et al and Sato et al [Bai et al., 2007 and Sato et al., 2009]. Based on 

the experimental data [Sato et al., 2009] and using the equation for exponential decay, 

we could calculate half time for reaction R3. In this reaction we have two reactants and 

we can say that they behave like a second order process, in which the concentrations of 

the two reactants behave the same. For second-order reactions the half time is depended 

on the initial value of the reactant A.  

Based on this we could calculate the rate constant for reaction R3 as 

]38[

1

2
1

3
FKBPmTORt

k
−⋅

= .  

To derive parameter k-3 for the next reaction we have studied publication by Bai et al. 

Based on their experimental data [Bai et al., 2007] and using again the equation for 

exponential decay, we could calculate the half time for this reaction. As the character of 

the reaction R-3 is the same as the reaction R3, we could obtain parameter k-3 from the 

equation for the half time in the second-order reaction. This part of model was also 

tested using SBtoolbox, rate expressions and calculated parameters. 

       The kinetic constants for the next two reactions were derived from the 

publication by Kamada et al [Kamada et al., 2000]. Based on their experimental data 
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and using the equation for exponential decay, we could calculate parameter k5 and also 

the half time for reaction R4. Because reaction R4 has the nature of a second-order 

process, we could again calculate parameter k4 from the equation for the half time in the 

second-order reaction. This part of model was also tested using SBtoolbox, rate 

expressions and calculated parameters. 

 The kinetic constants for the next reactions were derived from the publication by 

Kamada et al [Kamada et al., 2000]. Parameters k6 and k-6 were fitted based on their 

experimental data. Parameter k6 was optimized by manual fitting. The aim was to get 

result which correlates with the experimental data, which shows the time of Atg1-Atg13 

complex creation after rapamycin treatment. Parameter k-6 was also optimized by 

manual fitting that together with the rest of model components, could represent changes 

in the system, in the best way according to the experimental data. Parameter k7 was 

assumed to be equal to k4, based on the character of this reaction. Reaction R7 is a 

competitive reaction for reaction R4, where Atg13_P is produce, and both are controlled 

by mTOR. 

 

%����E� BF����EF��A�� E��BFED���!DE�EA����BA�

All simulations were performed with a system of ordinary differential equations 

(ODE). The ODEs were solved using SBtoolbox for MatLab and MatLab 7.3.0.267 

(R2006b). MatLab used ode15s solver for ordinary differential equations and dde23 

solver for delayed differential equations. SB code is available in appendix A and 

MatLab syntax in appendix B and C. 
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A system modelling autophagy is a new area of research. Current understanding 

of each step in this biochemical pathway is limited. The study of this mechanism is 

interesting in several aspects: autophagy plays an important role in physiological 

cellular processes, is a survival mechanism under external stress and is also connected 

with cancer and neurodegenerative diseases [Cuervo, 2004; Kondo et al., 2005; Levine, 

2007; Pan et al., 2008]. 

This work proposes a simple mathematical model of autophagy pathway as a 

system with feedback, which controls the level of the total amino acid pool. Feedback 

comes from the amino acids which are produced during the autophagy mechanism 

which is induced as a result of starvation or rapamycin treatment. 

There are limitations in the experimental literature with regards to the possible 

parameterisation of autophagy models. The research which is currently done on the 

autophagy pathway is poorly documented with quantitative data. There are no direct 

useful numbers or data, which can be used in systems biology (like half time of 

reaction, concentrations, etc.). The work in this field is often described in general terms, 

like "increasing", "decreasing", "less" or "more", and there is no really interest in 

specific numbers. Since systems biology has become more popular it is necessary to 

exchange information about the biological aspects and to provide helpful data. We can 

suggest at this point that the biochemical experiments might be more focused on 

quantitative results, which show a more detailed autophagy pathway.  Nevertheless, I 

was able to indirectly extract most of the parameters necessary for the model from the 

literature and published experimental data. The model, described here, is the first test of 

an autophagy model. It was implemented using parameters from the published 
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literature, some of which were estimated and optimized by manual fitting. This thesis 

details the model in order to serve as a reference for future work on the autophagy 

pathway. 

Still, the model is based on many additional assumptions and simplifications. In 

order to simplify our work, we did not include into our model other processes, which go 

on parallel in the cell. Also we did not take into calculations energy equivalents such as 

GTP, GDP, ATP and ADP. Initially we assumed that they are not limited. Amounts of 

reaction catalysers, such as TSC, TSTP and unknown phosphatase in reaction R5, we 

assumed as constants and we do not consider them in the equations.  Autophagy, in 

contrast to apoptotic cell death signalling, is not a well isolated signalling network. In 

fact, it is strongly linked with many other cellular signals and processes [Huett et al., 

2010]. A recent paper in Nature reported a proteomic analysis of the autophagy 

interaction network in human cells in normal nutrient conditions (Cvt pathway), 

uncovering a network of more than 750 interactions [Behrends et al., 2010]. 

Nevertheless, our initial model still reflects basic features of autophagy signalling. 

The initial simulations, which were performed in the normal nutrients scenario, 

show the behaviour of all model components involved in the autophagy induction. 

These simulations provided the values of the steady states for all species in normal 

nutrient conditions.  

We tested the initial model in two scenarios: when mTOR was inhibited by 

rapamycin and in starvation mimic conditions (decreasing parameter k1). Both of the 

scenarios lead to the induction of the autophagy pathway. In comparison, induction of 

autophagy by rapamycin and by starvation has different kinetics. However, the final 
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steady states are similar; the Atg1-Atg13 complex reaches approximately the 91% level 

in the full starvation scenario and after 100% rapamycin treatment. 

We observe that the system responded faster on rapamycin treatment. The new steady 

states established in 30 minutes, while in starvation after approximately 103 minutes. 

This indicates that autophagy induction after rapamycin treatment is 100 times faster 

than induction due to nutrient starvation. Possible reasons why there is such a big 

difference in the time of autophagy induction via rapamycin and starvation may be due 

to the character of both reactions. To obtain mTOR inhibition by starvation we have to 

start from reaction 1 and 3 (diagram 4.1). Because rapamycin is a direct inhibitor of 

mTOR we can omit these reactions. It means that we “save the time” by taking a 

shortcut. In the normal rich nutrient conditions k1 is bigger than k2. This allows creation 

of active RhebGTP. Afterwards, RhebGTP activates mTOR. In starvation conditions 

production of new RhebGTP is limited. The entire fraction of RhebGTP is in the complex 

with FKBP38, thus mTOR is active. To inhibit mTOR in the starvation scenario, we 

need its endogenous inhibitor FKBP38. That is why dissociation of RhebGTP-FKBP38 is 

necessary. Reaction of dissociation, which takes some time, might slow down in general 

mTOR inhibition in starvation. In other words, to inhibit mTOR in starvation 

conditions, its endogenous inhibitor FKBP38 is needed. And because FKBP38 is in the 

complex with RhebGTP, it takes some time to dissociate this complex and obtain 

FKBP38 to block mTOR activity. 

Kamada with his colleagues showed experimentally that inhibition of mTOR after 

rapamycin is very fast (~5 minutes) [Kamada et al., 2000]. In turn, activation of 

autophagy by starvation is a much slower process and could take even a few days 
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[Chera et al., 2009]. In conclusion, the results of our initial model correspond well to 

the experimental data. 

In the next step the feedback from the amino acids produced by autophagy was 

implemented as a contribution on the total amino acid pool. The feedback loop modifies 

k1 and regulates the level of the total amino acid pool. The contribution of the 

autophagic amino acids was implemented with a time delay and kinetic constant kF. 

Parameter kF represents the strength of the feedback and is responsible for the velocity 

of the production of the amino acids during the autophagy pathway. The amount of 

amino acids which are produced by the autophagy pathway is proportional to the 

amount of Atg1-Atg13 complex. 

During simulations, the influence of the different values of kF on the production of 

amino acids was investigated. We could observe that in starvation conditions the 

autophagic amino acids production was faster with higher value of kF. But also higher 

kF produced bigger oscillations in the system response. The lower values of kF had 

better dampening character. 

In general, we conclude that during starvation, autophagy is induced and this 

process can replace some amount of the amino acids in the total amino acid pool. This 

contribution on the total amino acid pool, amount to the 9% level. This value does not 

depend on the value of kF.  

From the results in chapter 4.2.3 when we tested model for starvation conditions, we 

know that 5-10% of the remaining amino acids (during starvation) is sufficient to 

prevent a significant increase in autophagy. The final simulations with the feedback 

showed that the autophagy contribution to the total amino acid pool is 9%. In general, 
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these results allow us to conclude that, the amount of amino acids produced in the 

autophagy pathway, as a response to starvation, is sufficient to keep basal Cvt pathway, 

unnecessarily autophagy induction. 

 The strength of the feedback kF is not reported in the experimental literature. 

However, Onodera and Ohsumi presented work on autophagy contribution to the 

maintenance of the amino acid pool [Onodera and Ohsumi, 2005], which might be 

helpful to obtain this value. They showed that the total amino acid pool decreased 

dramatically during the first 2 hours of starvation. Next, the pool was partially restored 

during 3-6 hours of starvation. Finally, the amino acid level reached a slightly lower 

level than first response. We can compare their result to our one oscillation plot (figure 

4.3.6) for the simulation with kF=3. Our value of the kF qualitatively correlates to their 

data. The results are only qualitatively comparable because the investigated species 

were different – Onodera and Ohsumi used yeasts, while our model is mostly validated 

based on results on mammalians. 

 In summary, this thesis presents a mathematical model of amino acids level 

control via the autophagy pathway as a feedback system. We tested the model in the 

case of mTOR inhibition by rapamycin and autophagy induction in starvation 

conditions. In the next step we suggest additional model testing in scenarios of protein 

overexpression or knock down. That requires experiments to validate model predictions. 

At the same time the model might assist already in experiments planning. 

We mentioned at the beginning of this chapter that our model does not include 

other reactions which occur in parallel with autophagy in the cell. However autophagy 

is linked to cell death signalling [Boya et al., 2005; Levine et al., 2008]. In mammalian 

cells there is the Bcl-2 protein family, which is implicated in the control of apoptosis 
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and autophagy [Levine et al., 2008]. As a further step we suggest simulations which 

might prove the connection of autophagy with apoptosis, which is already well 

described by system biological studies [Rehm et al., 2006; Huber et al., 2009]. 

Autophagy is also implicated in several human pathologies, such as different 

kinds of cancer, Parkinson's disease and Alzheimer's disease [Cuervo, 2004; Kondo et 

al., 2005; Levine, 2007; Pan et al., 2008]. In the future, the optimized, improved and 

fully validated model may help in anticancer research strategies and drag development.  
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********** MODEL NAME 
Mathematical model of amino acids level control 
via autophagy as a feedback system. 

  
********** MODEL NOTES 

  
********** MODEL STATES 
d/dt(RhebGDP) = -v1+v2               
d/dt(RhebGTP) = v1-v2-v3+v33         
d/dt(mTOR) = v3-v33                  
d/dt(mTORxFKBP) = -v3+v33            
d/dt(RhebGTPxFKBP) = v3-v33          
d/dt(Atg13_P) = v4-v5+v7             
d/dt(Atg13) = -v4+v5-v6+v66          
d/dt(Atg1) = -v6+v66+v7              
d/dt(Atg1xAtg13) = v6-v66-v7         
d/dt(AA) = vAA_in-vAA_out            

                                     
RhebGDP(0) = 16.709173735229925      
RhebGTP(0) = 27.735575258098557      
mTOR(0) = 55.555251006671519         
mTORxFKBP(0) = 44.444748993328481    
RhebGTPxFKBP(0) = 55.555251006671519 
Atg13_P(0) = 58.147525934909623      
Atg13(0) = 25.19436723424695         
Atg1(0) = 83.341893169156577         
Atg1xAtg13(0) = 16.658106830843426   
AA(0) = 99.999400001200001 

  
********** MODEL PARAMETERS 
k1 = 0.00067159999999999995          
k2 = 0.040460000000000003            
k3 = 0.0033300000000000001           
k33 = 0.00133                        
k4 = 0.01498                         
k5 = 0.59899999999999998             
k6 = 0.0066499000000000003           
k66 = 0.005999                       
k7 = 0.01498                         
kAA_in = 0.0166666                   
kAA_out = 0.00016666660000000001 

  
********** MODEL VARIABLES 

  
********** MODEL REACTIONS 
v1 = k1*RhebGDP*AA                   
v2 = k2*RhebGTP                      
v3 = k3*(mTORxFKBP)*RhebGTP          
v33 = k33*(RhebGTPxFKBP)*mTOR        
v4 = k4*Atg13*mTOR                   
v5 = k5*(Atg13_P)                    
v6 = k6*Atg13*Atg1                   
v66 = k66*(Atg1xAtg13)               
v7 = k7*(Atg1xAtg13)*mTOR            
vAA_in = kAA_in                      
vAA_out = kAA_out*AA 
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%this file is the last version that I was able to write ('Bartomiej 

Tomiczek's code') 
%please mention in any papers while using this file  

  
function autofagia 

  
clear all;% necesery while using presistent variables  
ci=zeros(1,11);%input definition of the concentration 
out = [];%input definition of out  
d =[];%input definition of matrix d 
outt80 = [];%input definition  
par = [1]; %input definition of feedback kinetic constant 

multiplication 
Q = [];%input definition 
out1 = [];%input definition  
zmien = [1 0.75 0.5 0.25 0];%in this area you put the multiplication 

of the chosen parameter(you can use 10^zmien also) 
e = [];%input definition 
 for z = zmien  
%parametr z is being changed acording to zmien matrix elements so the 

chosen concentration can be changed         
ci(1) = 16.7103;   %RhebGDP 
ci(2) = 27.7349;   %RhebGTP 
ci(3) = 55.5548;   %mTOR 
ci(4) = 44.4452;   %mTORxFKBP 
ci(5) = 55.5548;   %RhebGTPxFKBP 
ci(6) = 58.1473;   %Atg13_P 
ci(7) = 25.1944;   %Atg13 
ci(8) = 83.3418;   %Atg1  
ci(9) = 16.6582;   %Atg1xAtg13 
ci(10) = 99.9999.*z;          %AA  
ci(11) = 0;          %AAB 

  
c = ci; 

  
%load('out80.mat'); %for loading variables  

  
 time = 200; %time of the simulation 
 tstep =0.1;%time step 
 licznik = 0;%counter of the number of solutions dine by dde 
 zas = 0;%definition of the variable 
 auto = zeros(1,time*tstep); %matrix that has a size of number of 

timesteps 

  

  
 opt = ddeset('RelTol', 1e-1, 'MaxStep', tstep);%options for the 

solver relative eror tolerance and time step  

  

  
 sol = dde23(@oligofago_MSC,[20 10],c,[0:tstep:time],opt,ci,par); 

%solve the simulation using oligofago_MSC script 

  
 e = sol.y;%concentration matrix 

  
 d = [d ; (e(11,:)) ];%AAB concentration matrix in different runs 
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 Q = [Q ; (e(11,:) + e(10,:)) ];%AA + AAB concentration matrix in 

different runs 

  
%  figure; 

  
% out80 = sol.y; 
% out80 
save('out80.mat'); 

  
 end 

  
 %figure,mesh((d)'); 

  
 figure,plot(sol.x,d);%plots AAB 
 figure,plot(sol.x,Q);%plots AA+AAb 
 %legend('100%AA','75%AA','50%AA','25%AA', '0%AA') 
 xlabel('time') 
 ylabel('AAB') 

  
end 
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function out = oligofago_MSC(t,c,Z,ci,par) 

% global licznik zas time,ci,auto,licznik,zas 

S = [ % 1           2      3       4        5           6         7         8         9          

10     11       

      %RhebGDP   RhebGTP mTOR  mTORxFKBP RhebGTPxFKBP Atg13_P   Atg13    Atg1    

Atg1xAtg13     AA      AAB 

       -1           1      0       0        0           0         0         0         0           

0      0   %1 RhebGDP  + AA --> RhebGTP 

        1          -1      0       0        0           0         0         0         0           

0      0   %2 RhebGTP       --> RhebGDP 

        0          -1      1      -1        1           0         0         0         0           

0      0   %3 mTORxFKBP + RhebGTP --> RhebGTPxFKBP + mTOR 

        0           1     -1       1       -1           0         0         0         0           

0      0   %4 RhebGTPxFKBP + mTOR --> mTORxFKBP + RhebGTP 

        0           0      0       0        0           1        -1         0         0           

0      0   %5 Atg13 --> Atg13_P 

        0           0      0       0        0          -1         1         0         0           

0      0   %6 Atg13_P-->Atg13 

        0           0      0       0        0           0        -1        -1         1           

0      0   %7 Atg13 + Atg1 ---> Atg1xAtg13 

        0           0      0       0        0           0         1         1        -1           

0      0   %8 Atg1xAtg13 -->  Atg13 + Atg1  

        0           0      0       0        0           1         0         1        -1           

0      0   %9 Atg1xAtg13 -->  Atg13_P + Atg1 

        0           0      0       0        0           0         0         0         0           

1      0   %10 creation 

        0           0      0       0        0           0         0         0         0          

-1      0   %11 degradation 

        0           0      0       0        0           0         0         0         0           

0      1   %lag  

        0           0      0       0        0           0         0         0         0           

0     -1   %lag 

        0           0      0       0        0           0         0         0         0           

0     -1   %lag 

      ]; 
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k1 = 0.00067159999999999995;          
k2 = 0.040460000000000003;            
k3 = 0.0033300000000000001;           
k33 = 0.00133;                        
k4 = 0.01498;                         
k5 = 0.59899999999999998;             
k6 = 0.0066499000000000003;           
k66 = 0.005999;                       
k7 = 0.01498;                                      
kAA_out = 0.0001666666; 
kAA_in = kAA_out*ci(10); 
k11 = 1*par; 

  
cl = Z(:,1); 

  

  
v = zeros(14,1); 
v(1) = k1*c(1)*(c(10)+ par*c(11));  %k1*RhebGDP*AA 
v(2) = k2*c(2);   %k2*RhebGTP 
v(3) = k3*c(4)*c(2);%k3*(mTORxFKBP)*RhebGTP 
v(4) = k33*c(5)*c(3);%k33*(RhebGTPxFKBP)*mTOR 
v(5) = k4*c(7)*c(3);%k4*Atg13*mTOR 
v(6) = k5*c(6);%k5*(Atg13_P) 
v(7) = k6*c(7)*c(8);%k6*Atg13*Atg1 
v(8) = k66*c(9);%k66*(Atg1xAtg13) 
v(9) = k7*c(9)*c(3);%k7*(Atg1xAtg13)*mTOR  
v(10) = kAA_in;%kAA_in 
v(11) = kAA_out*c(10);%kAA_out*AA 
v(12) = k11*k6*cl(7)*cl(8);%k6*c(7)*c(8);%k6*Atg13*Atg1 
v(13) = k11*k66*cl(9);%k66*c(9);%k66*(Atg1xAtg13) 
v(14) = k11*k7*cl(9)*cl(3);%k7*c(9)*c(3);%k7*(Atg1xAtg13)*mTOR 

  
out = S'*v; 
% out 
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