An Investigation into Transformation and RNA Editing in the *Lolium* Plastome

A thesis submitted by

Rob Jozef Matheus van den Bekerom

To the National University of Ireland, Maynooth In fulfilment of the requirement for the degree of

Doctor of Philosophy

Supervisors: Professor Philip J. Dix (NUIM) Dr. Susanne Barth (Teagasc)

Department of Biology, National University of Ireland, Maynooth, October, 2010

Table of contents	
Abbreviations	Ι
Abstract	V
Publications and presentations during this project	VI
Acknowledgements	VII
Declaration of Originality	VIII
1. General introduction	1
1.1 Importance of grasses in Irish agriculture	2
1.1.1 Impact of climate change on yield and viability of	
Lolium perenne L.	2
1.2 Plastids	3
1.2.1 Evolution of plastids	6
1.2.2 Transcriptional and translational regulation of plastid protein	
expression	8
1.2.2.1 Promoters	8
1.2.2.2 Expression signals: 5' Untranslated region (5'UTR) and	
5' translation coding region (5'TCR)	10
1.2.2.3 Expression signals: 3' untranslated region (3'UTR)	12
1.3 Plastid transformation	12
1.3.1 Advantages of plastid transformation	13
1.3.1.1 Gene containment	13
1.3.1.2 High accumulation of recombinant protein	15
1.3.1.3 Lack of positioning effects	15
1.3.1.4 Transgene stacking	17
1.3.2 DNA delivery into the plastids	17
1.3.2.1 Biolistics	17
1.3.2.2 PEG mediated transformation	19
1.3.2.3 Femtoinjection	19
1.3.3 Selection strategies	20
1.3.3.1 Heterologous genes	20

1.3.3.2 "Binding-type" markers	22
1.3.3.3 Limitation of spectinomycin selection	23
1.4 Drought stress	23
1.4.1 Drought stress response	23
1.4.2 Oxidative stress	24
1.4.2.1 Antioxidant system	24
1.4.2.2 Chlororespiration	25
1.4.3 Ways to overcome the impact of climate change	25
1.5 RNA editing	26
1.5.1 RNA editing in plastids	27
1.5.2 Evolution of RNA editing in plastids	28
1.5.3 Cis acting elements	29
1.5.4 <i>trans</i> -factors	30
1.5.5 RNA editing regulation	31
1.5.5.1 Tissue specificity	32
1.5.5.2 Environmental specificity	32
1.5.6 RNA editing in Lolium perenne L.	32
1.6 Project aims and objectives	33
2. Transformation	34
2.1 Introduction	35
2.1.1 Regeneration systems	35
2.1.2 Expression of recombinant genes	37
2.1.3 Selection regimes	38
2.1.4 Gene delivery	39
2.1.5 Aim and objectives	39
2.2 Materials and methods	41
2.2.1 Molecular techniques	41
2.2.1.1 Minipreparations of plasmid DNA using alkaline lysis	41
2.2.1.2 Total genomic DNA (gDNA) isolation of plant tissue	41
2.2.1.3 Polymerase Chain Reaction (PCR)	42

2.2.1.4 Gel extraction of PCR fragments	43
2.2.1.5 Preparation of chemically competent TOP10	
Escherichia coli cells.	43
2.2.1.6 Ligation of PCR fragments into the pCR2.1 topo vector	44
2.2.1.7 Heat-shock plasmid DNA into chemically competent	
TOP10 cells	44
2.2.1.8 Restriction digests of plasmid DNA	44
2.2.1.9 Ligation of inserts and vectors	45
2.2.1.10 Southern blot analysis	45
2.2.1.10.1 PCR DIG-probe labelling	46
2.2.1.10.2 Sample digestion and electrophoresis	46
2.2.1.10.3 Southern blotting and hybridisation with	
probe	47
2.2.1.10.4 Chemiluminescent detection	47
2.2.2 Vector construction pIAPRvdB4 and pIAPRvdB5	48
2.2.2.1 Primers used for construction of pIAPRvdB4 and	
pIAPRvdB5	48
2.2.2.2 Construction of the Lolium perenne transformation vector	
pIAP	49
2.2.2.3 Construction of expression cassette RvdB4	51
2.2.2.4 Construction of expression cassette RvdB5	54
2.2.2.5 Construction of the transformation vectors pIAPRvdB4	
and pIAPRvdB5	58
2.2.2.6 Testing functionality of pIAPRvdB4 and pIAPRvdB5	60
2.2.2.6.1 Testing for GFP accumulation in Escherichia	
coli	60
2.2.2.6.2 Testing for functionality of the <i>aphA-6</i> gene	
conferring resistance to G-418 and	
paromomycin	60
2.2.3 In vitro culture methods	61
2.2.3.1 Plant material:	61

2.2.3.2 Aseptic techniques	61
2.2.3.3 Culture media	61
2.2.3.4 Surface sterilization of seeds	62
2.2.3.5 Induction of callus cultures	63
2.2.3.5.1 Induction of calli from apical meristem and	
leaf-base explants	63
2.2.3.5.2 Induction of calli from mature embryos	65
2.2.3.6 Shoot regeneration	66
2.2.3.6.1 Direct shoot regeneration	66
2.2.3.6.2 Delayed shoot regeneration	66
2.2.3.7 Root induction from shoots	66
2.2.4 Determination of conditions for antibiotic-resistance selection	67
2.2.4.1 Antibiotic stock solutions	67
2.2.4.2 Testing effect of antibiotics on callus initiation and growth	67
2.2.4.3 Testing effect of antibiotics on callus differentiation and	
shoot formation	67
2.2.5 Nuclear and plastid transformation experiments	67
2.2.5.1 Vectors used	67
2.2.5.2 Biolistic delivery of DNA	70
2.2.5.2.1 Stock solutions for biolistical delivery	70
2.2.5.2.2 Leaf-base explants preparation for biolistics	71
2.2.5.2.3 Callus preparation for biolistics	72
2.2.5.2.4 Testing for efficiency of DNA coating on gold	
particles	72
2.2.5.2.5 Particle preparation for bombardment	73
2.2.5.2.6 Preparation for biolistics	74
2.2.5.2.7 Biolistic delivery process	74
2.2.5.2.8 Treatment of calli and leaf-base explants after	
biolistics	75
2.2.5.2.9 Optimization of biolistic delivery regarding	
shooting parameters	75

2.2.5.3 Analyses of transient expression of <i>uidA</i> gene by GUS	76
assay	76
2.2.5.4 Fluorescent and confocal microscopy for GFP detection	77
2.2.6 Transformation	77
2.2.6.1 Nuclear transformation	77
2.2.6.2 Selection regime for nuclear transformation	78
2.2.6.3 Plastid transformation	78
2.2.6.4 Selection regime for plastid transformation	78
2.2.6.4.1 Selection with geneticin (G-418)	79
2.2.6.4.2 Selection with paromomycin	79
2.2.6.4.3 Delayed selection with paromomycin	79
2.2.6.5 Characterisation of putative transformants	79
2.2.6.5.1 PCR analysis of putative transformants	80
2.2.6.5.2 Primers used	80
2.2.6.5.3 PCR analyses on putative transformants	81
2.2.6.5.4 Southern blot analyses of putative transformants	82
2.2.7 Statistical analysis	82
2.3 Results	83
2.3.1 Construction of plastid transformation vectors pIAPRvdB4 and	
pIAPRvdB5	83
2.3.1.1 pIAPRvdB4	83
2.3.1.2 pIAPRvdB5	84
2.3.1.3 Functionality test for pIAPRvdB4 and pIAPRvdB5	85
2.3.1.4 GFP accumulation	85
2.3.1.5 Functionality of the <i>aphA-6</i> gene conferring resistance to	
G-418 and paromomycin	86
2.3.2 In vitro culture methods	86
2.3.2.1 Seed germination	86
2.3.2.2 Callus induction	87
2.3.2.2.1 Callus induction from apical meristems and	88

adjacent leaf-base explants	88
2.3.2.2.2 Callus induction from mature embryos	92
2.3.2.3 Callus differentiation and shoot induction	94
2.3.3 Determination of conditions for antibiotic-resistance selection	97
2.3.3.1 Effect of antibiotics on callus induction	97
2.3.3.2 Effect of antibiotics on callus differentiation and shoot	
induction	100
2.3.4 Choosing the target tissue for transformation experiments	104
2.3.5 Gene delivery	105
2.3.5.1 Testing for efficiency of DNA coating on gold particles	
for biolistics	105
2.3.5.2 Optimization of biolistic delivery regarding shooting	
parameters using transient expression of the <i>uidA</i> gene	
in the cytosol.	107
2.3.5.3 Transient expression assessment in plastids of leaf-tissue	
bombarded with pIAPRvdB5.	110
2.3.6 Analyses of putative transformants	113
2.3.6.1 Analyses of putative nuclear transformants	113
2.3.6.1.1 GUS assay	113
2.3.6.1.2 PCR analyses	113
2.3.6.1.3 Southern blot	114
2.3.6.2 Analyses of putative plastid transformants	116
2.3.6.2.1 Confocal microscopy	116
2.3.6.2.2 PCR analyses	116
2.3.6.2.2.1 Gene-specific PCR	116
2.3.6.2.2.2 Long-range PCR	117
2.3.6.2.3 Southern blot	118
2.4 Discussion	121
3. RNA editing	127
3.1 Introduction	128

3.1.1 Assessment of RNA editing efficiency	129
3.1.2 Systems for mimicking drought stress conditions for plants	130
3.1.3 Assessment of drought stress response of plants	132
3.1.4 Aim and objectives	133
3.2 Materials and methods	135
3.2.1 Plant material	135
3.2.2 cDNA synthesis from total RNA	136
3.2.3 Primers used for RNA-editing	136
3.2.4 PCR to amplify fragments from cDNA containing the editing-sites	138
3.2.5 Analyses of RNA editing patterns using the trace-file method	139
3.2.6 Verification of the trace-file method, using colony screens	140
3.2.7 Evaluation of accessions of Lolium perenne L. on drought stress	
susceptibility using an in vitro PEG-induced system	141
3.2.7.1 Plant material preparation	141
3.2.7.2 Preparation of PEG-infused plates	141
3.2.7.3 Drought stress experiment	142
3.2.7.4 Analyses of seedlings exposed to drought stress	142
3.2.8 Evaluation of accessions of Lolium perenne L. for drought stress	
susceptibility using an in vivo PEG-induced system	143
3.2.8.1 Plant material	143
3.2.8.2 Experimental setup	143
3.2.9 Analyses of plants exposed to drought stress	145
3.2.9.1 Pixel detection to record growth differences	145
3.2.9.2 Relative water content analyses	146
3.2.9.3 Total dry root biomass analyses	146
3.2.10 Molecular analyses	147
3.2.10.1 Total RNA isolation from leaf tissue	147
3.2.10.2 cDNA synthesis	147
3.2.10.3 PCR to amplify <i>ndhB</i> and <i>ndhF</i> fragments from cDNA	
and gDNA	147
3.2.11 Statistical analyses	148

3.3 Results	150
3.3.1 Editing analyses	150
3.3.1.1 Assessment of the Trace-file method to detect RNA	
editing efficiency in comparison with the conventional	
colony screen method	150
3.3.1.2 The editing efficiency within various transcripts in	
cultivars 'Cashel' and 'New Zealand'	151
3.3.1.3 Editing pattern differences between drought stressed	
and non-stressed plants	152
3.3.1.4 Editing pattern differences between cultivars 'Cashel'	
and 'New Zealand'	157
3.3.2 In vitro PEG-induced system to evaluate drought tolerance	159
3.3.2.1 Evaluation of accessions of <i>Lolium perenne</i> L. on drought	
tolerance using an in vitro PEG-induced system.	160
3.3.2.2 Relative water content	160
3.3.2.3 Total dry biomass	165
3.3.2.4 Overview of results for drought response, based on both	
RWC and total dry biomass evaluation	170
3.3.3 In vivo PEG-induced system to evaluate drought tolerance	171
3.3.3.1 Evaluation of accessions of <i>Lolium perenne</i> L. on drought	
response using an in vivo PEG-induced system	171
3.3.3.2 Pixel detection to record growth differences between	
plants exposed to different treatments	172
3.3.3.2.1 Root development differences after exposure	
to drought stress and control conditions	176
3.3.3.2.2 Shoot development differences after exposure to	
drought stress and control conditions	179
3.3.3.3 Results of drought response using the RWC and Root	
dry biomass.	181
3.3.3.1 Relative water content	181
3.3.3.2 Root dry biomass	183

3.3.3.4 Overview of results after analyses of plants exposed	
to drought stress with the in vivo PEG induced system	186
3.3.4 Assessment of RNA editing efficiency within the <i>ndhB</i> and <i>ndhF</i>	
transcripts of accessions with various drought tolerance responses	187
3.3.4.1 RNA editing efficiency in the <i>ndhB</i> trancript of	
accessions of Lolium perenne L. tested in the in vivo	
PEG-induced drought stress experiment	187
3.3.4.2 RNA editing efficiency in the <i>ndhF</i> transcript of	
accessions of Lolium perenne L. tested in the in vivo	
PEG-induced drought stress experiment	191
3.3.5 Assessment of relationship between drought stress response	
and RNA editing efficiency within the <i>ndhB</i> and <i>ndhF</i> transcripts	193
3.3.6 RNA editing of Lolium perenne L. accession-specific Single	
nucleotide polymorphism (SNP)	195
3.4 Discussion	
4. General discussion	206
References	
Appendix A: Complete sequences of <i>Lolium perenne</i> L. plastid	
transformation vectors pIAPRvdB4 and pIAPRvdB5	231
Appendix B: Trace files for comparison with the colony screen	237

Abbreviations:

A:	adenosine
aadA:	aminoglycoside 3"-adenylyltransferase
aphA-6:	3'-aminoglycoside phosphotransferase
APX:	ascorbate peroxidase
ATP:	adenosine-5'-triphosphate
BAP:	6-benzylaminopurine
BSA:	bovine serum albumin
C:	cytosine
CaCl ₂ :	calcium chloride
CAT:	catalase
cDNA:	complementary DNA
CIM:	callus induction medium
CMM:	callus maintenance medium
CO ₂ :	Carbon dioxide
Cv:	cultivar
2,4-D:	2,4-dichlorophenoxyacetic acid
DHAR:	dehydroascorbate reductase
DIG:	digoxigenin
DNA:	deoxyribonucleic acid
dNTP:	deoxynucleotide triphosphate
DW:	dry weight
EDTA:	ethylenediaminetetra acetic acid
EU:	European union
ETC:	electron transport chain
FW:	fresh weight
g:	gram
G-418:	geneticin
gDNA:	genomic DNA
GFP:	green fluorescent protein
GM:	genetically modified

GM:	germination medium
gRNA:	guide RNA
GR:	glutathione reductase
GRIN:	Germplasm Resources Information Network
GST:	glutathione S-transferase
GUS:	β-glucoronidase
H ₂ O ₂ :	hydrogen peroxyide
hpt:	hygromycin phosphotransferase
I:	inosine
IR:	inverted repeat
K:	kilo
L:	litre
LB:	Luria broth
LSC:	large single copy
μ:	micro
m:	milli
M:	molar
mRNA:	messenger RNA
MS:	Murashige and Skoog
mtDNA:	mitochondrial DNA
NAA:	α-Naphtalene acetid acid
NADPH:	nicotinamide adenine dinucleotide phosphate
NaOH:	sodium hydroxide
NDH complex:	NADH dehydrogenase complex
NEB:	New England Biolabs
NEP:	nuclear-encoded RNA polymerase
nptII:	neomycin phosphotransferase II
•O ₂ -:	superoxide
$^{1}O_{2}$:	singlet oxide
'OH:	Hydroxyl radical
PCR:	polymerase chain reaction

PEG:	polyethylene glycol
PEP:	plastid-encoded RNA polymerase
PPE:	poison primer extension
PPR:	pentatricopeptide repeat
PQ:	Plastoquinone
PS I:	photosystem I
PS II:	photosystem II
Psi:	pounds per square inch
ptDNA:	plastid DNA
rbs:	ribosomal binding site
RGM:	regeneration medium
RM:	rooting medium
RNA:	ribonucleic acid
ROS:	reactive oxygen species
Rpm:	revolutions per minute
rRNA:	ribosomal RNA
RT:	reverse transcription
Rubisco:	Ribulose-1,5-biphosphate carboxylase/oxygenase
RWC:	relative water content
SSC:	small single copy
SD:	Shine-Dalgarno
SDS:	sodium dodecyl sulphate
slRNA:	spliced leader RNA
SNP:	single nucleotide polymorphism
SOD:	superoxide dismutase
T:	thymine
T7g10:	gene 10 leader sequence of the T7 phage
5'TCR:	5' translated coding region
Tm:	melting temperature
tRNA:	transfer RNA
TSP:	total soluble protein

TW:	turgor weight	
U:	uracil	
UTR:	untranslated region	
3'UTR:	3' untranslated region	
5'UTR:	5' untranslated region	
UV:	ultraviolet	
X-gluc:	5-bromo-4-chloro-3-indolyl β -D-glucuronide	

Abstract

Ireland's agricultural land area comprises of 91% grassland, which predominantly consists of perennial ryegrass (Lolium perenne L.). Owing to the predicted climate change, grasslands in the east of Ireland will be severely affected over the next hundred years. Due to this prediction, strategies to circumvent this problem need to be addressed. The present study is focused on RNA editing (post-transcriptional nucleotide modifications resulting in altered transcripts) within plastidial transcripts of the NDH complex (NADH dehydrogenase complex) in relation to the drought response of several accessions of perennial ryegrass. Previous studies have shown that the NDH complex is involved with countering oxidative stress during environmental stresses like drought. Due to the nature of RNA editing within this complex, the RNA editing machinery could potentially play a role in regulating the activity of the NDH complex. In this study a difference was observed in editing behaviour between accessions of Lolium perenne L., however a direct relationship between editing behaviour and drought response could not be confirmed. Despite the lack of correlation, a possible role of RNA editing in regulation of the NDH complex cannot be completely disregarded. To expand the investigation concerning the role of RNA editing, plastid transformation can be utilised. Due to the absence of a protocol for plastid transformation of perennial ryegrass, a study was dedicated to design such a protocol. However despite extensive evaluation of all the involved factors in the transformation process, a working protocol was not established. Nevertheless small adjustments to this protocol in the future could potentially lead to an extension of the plastid transformation technology to this species.

Publications and presentations during this project

Publication

Diekmann, K., Hodkinson, T. R., Wolfe, K. H., van den Bekerom, R., Dix, P. J. and Barth, S. (2009). "Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (*Lolium perenne* L.)." <u>DNA Res</u> 16(3): 165-76.

Presentations:

- Van Den Bekerom, R. J.M., Barth, S., Dix, P.J. (2008) Development of a regeneration system for plastid transformation of perennial ryegrass (*Lolium perenne* L.) cv. 'Cashel'. Irish Plant Biologist Association Meeting (IPSAM), NUIM Maynooth 26th-28th March 2008
- Diekmann, K., Hodkinson, T.R., Bekerom, R.v.d., Dix, P.J., Wolfe, K., & Barth, S. (2008) Complete chloroplast genome sequence of perennial ryegrass (*Lolium perenne* L.). Irish Plant Biologist Association Meeting (IPSAM), NUIM Maynooth 26th-28th March 2008
- Van Den Bekerom, R.J.M., Barth, S., Dix P.J. (2008) The Development of Genetically Modified Perennial Ryegrass, using Chloroplast Transformation. Science Speak 2008, 4th April 2008
- Van Den Bekerom, R.J.M., Barth, S., Diekmann, K and Dix, P.J. (2009) The development of a protocol for nuclear and plastid transformation of perennial ryegrass (*Lolium perenne* L.), Walsh Fellowships Seminar, 11th November, 2009

Acknowledgements

First of all I would like to thank my two supervisors Phil Dix and Susanne Barth for giving me this opportunity and the support during this project. Of course along with the countless times I received advice from either of them.

Beside all the work that has gone into the project, I had the pleasure of meeting so many nice, funny and great people during my stay in Ireland. I had the honour of getting to know people like Mary, Miranda, Dave, Davy, Bénédicte, Julia, Manfred, Matt, Peter, Eva, Eileen, Orlaith, Aisling and last but not least Olga. Each one of them has left their mark on my life, in one or the other way. They made me feel welcome in this green (and wet) country.

But people at the home front, as in people from Limburg, have played the most important part in what I have become. Both in the time that has led up to this stay in Ireland, as in the time during my stay, although to them it might not be so obvious. It did indeed play a tremendous role knowing that people can be relied upon. To mention one specific person, would neglect the value of the other people, so that I will not do.

And finally I would like to thank my parents and of course my brother Roel for the support and the guidance. Ik weet dat jullie twijfels hadden of het nu zo'n goed besluit was om naar Ierland te gaan, maar ik heb er absoluut geen spijt van. Zoiets kun je maar één keer in je leven doen, hoewel niet alles is verlopen zoals ik had gehoopt.

Declaration of Originality

This thesis has not been submitted in whole or in parts, to this, or any other University for any degree, and is, except where otherwise stated the original work of the author.

Signed:

Rob J.M. van den Bekerom

Chapter 1:

General introduction

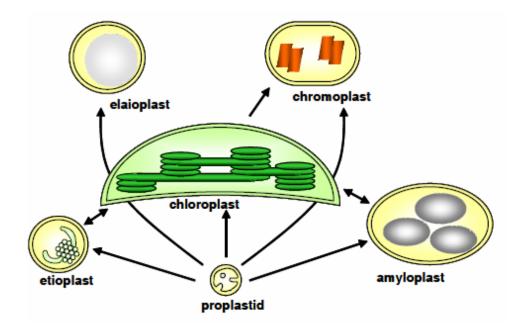
1.1 Importance of grasses in Irish agriculture

The most important crop in Ireland is grass: 91% of the agricultural land area is dedicated to grasslands. Grasslands contain a wide range of plants, including productive grasses, clovers and also weed species. Perennial ryegrass (*Lolium perenne* L.) dominated pasture is the basis for livestock production in Ireland and perennial ryegrass makes up 95% of the grass seed sales in Ireland (DAFF 2010a). Grass is the main feedstock for the livestock industry for production of beef, dairy and sheep (Holden and Brereton 2002), In 2009 it was estimated that the agriculture sector of Ireland exported livestock and livestock products worth approximately \in 7.2 billion (DAFF 2010b).

1.1.1 Impact of climate change on yield and viability of *Lolium perenne* L.

As a consequence of estimated climate change over the next hundred years in Europe and particularly in Ireland, the production of forage grasses will become a problem due to changes in temperature and rainfall (Holden and Brereton 2002). Climate change will affect grassland agriculture in a number of ways. Forage and livestock production will be influenced by changing seasonal patterns of weather, for example summer drought stress would lead to less grass production and a shift towards alternative forage crops will be needed. This will result in changes in grazing patterns and rotational management on the farm. An extensive study was performed on the effect of climate change on yield of forage grasses (Holden and Brereton 2002). These researchers estimated that in the east of Ireland, yield would decrease because of summer drought stress, to such an extent that grasses may not be viable anymore in this region, unless artificially irrigated. In the west of Ireland on the other hand, yield of grasses is estimated to increase. By improving the

drought tolerance of cultivars of perennial ryegrass, the impact of climate change can be countered. This could be accomplished by several different means, either by traditional breeding or genetic engineering.


1.2 Plastids

Plants are eukaryotes, however a plant cell has distinct differences compared to other eukaryotic cells. A higher plant cell lacks centrioles, lysosomes, intermediate filaments, cilia, and flagella. On the other hand a plant cell has specialised organelles that are lacking in other eukaryotic cells, like a vacuole, plasmodesmata and plastids, including chloroplasts (Campbell 1996).

Chloroplasts are the energy factories of plant cells, where photosynthesis takes place. In the thylakoids, the photosynthetic membranes are organised in grana containing an internal lumen. These membranes contain the four main protein complexes involved in the light reactions of photosystem I and II, the cytochrome b₆/f complex and ATP synthase. The thylakoids are surrounded by a liquid matrix, the stroma. This is the site for carbon fixation by Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Hinshaw and Miller 1989). Other functions of plastids include the biosynthesis of starch, fatty acids, pigments and amino acids from inorganic nitrogen (Neuhaus and Emes 2000).

There are several distinct plastid types (see Fig. 1.1), each derived, directly or indirectly from proplastids in meristematic cells of shoot, root, embryo's or endosperm. Proplastids are undifferentiated plastids that are variable in shape and are colourless. On the basis of their structure, pigment composition, metabolism and function, plastids are classified into

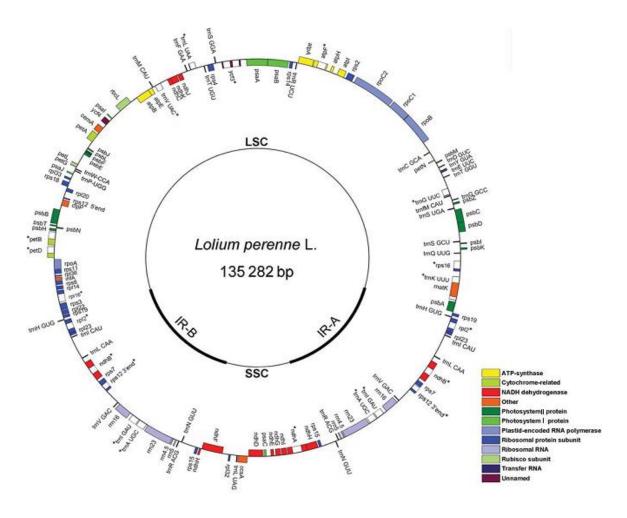
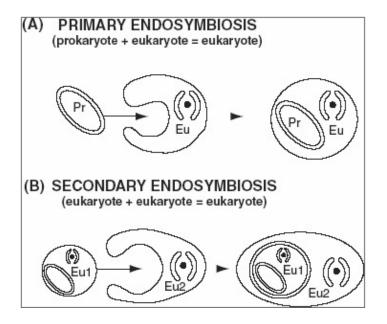

different groups (Fig. 1.1) (Lopez-Juez and Pyke 2005). Chloroplasts can be found in leaf tissue, the outer layers of unripe fruits, cotyledons and embryos. Chloroplasts are green and are the site for photosynthesis. Chromoplasts are located in fruits and petals and contain relatively high levels of carotenoids, which give rise to the yellow, orange and red pigmentation of petals, fruits and senescing leaves. Leucoplast is a general term applied to colorless plastids, but unlike proplastids these are not progenitors of other plastids. This group of plastids include two types of plastids, the first are amyloplasts, which are found in roots and storage tissues like cotyledons and the endosperm. These plastids contain large quantities of starch granules. The other type of leucoplast is the elaioplast, oil-containing plastids which can be found in the epidermis of some monocotyledonous species. The last type of plastid is the etioplast, which can be found in dark-grown leaf tissue. These appear yellow due to the presence of protochlorophyll. They can develop into chloroplasts upon exposure to light (Neuhaus and Emes 2000).

Fig. 1.1: Diversity of plastid types and their interconversions. Source: (Lopez-Juez and Pyke 2005)

The genetic information of plants is located in three different compartments of the cell, within the nucleus (gDNA), the mitochondria (mtDNA) and the plastid (ptDNA) (Bock 2001). The plastid genome molecules can be circular or linear, mono- or multimeric, but the genome can be represented by a monomeric circular map containing two copies of an inverted repeat (IR) region and two singly copy regions, the small single copy (SSC) and the large single copy (LSC) region (See Fig. 1.2) (Diekmann et al. 2009). The genome size ranges from 120 kb to 160 kb in flowering plants, largely due to variable sizes of the inverted repeat regions.

In the case of perennial ryegrass, the plastid genome, which was recently sequenced (Diekmann et al. 2009), consists of 110 genes, of which 76 are protein-coding genes, 30 are tRNA (transfer RNA) genes and four are rRNA (ribosomal RNA) genes (Diekmann et al. 2009). Plastid genes with related functions are often transcribed as polycistronic clusters within vascular plants, similar to bacterial operons (Stern et al. 1997). This clustering allows separate regulations of different functions, as subunits within a complex can be transcribed at similar rates.


Fig 1.2: Map of the plastid genome of *Lolium perenne* L.. Annotated genes are colour coded according to their function. Source: Diekmann et al. (2009).

The plastid DNA is associated as nucleoids with the inner layer of the double membrane of the organelle (Lopez-Juez and Pyke 2005). Plastids contain multiple copies of the genome, ranging from twenty copies in proplastids to a hundred copies in chloroplasts (10.000 genome copies per cell) (Sugiura 1992).

1.2.1 Evolution of plastids

It is generally accepted that plastids were derived from an ancestral photosynthetic prokaryote related to cyanobacteria. This endosymbiotic theory was first mentioned by Mereschkowski in 1905. This was based on information that plastids always arise by

division of pre-existing plastids and the ability of plastids to stay alive for a while in the absence of the nucleus in the cell. This suggested that plastids had been acquired from the outside, through foreign bodies or symbionts (Mereschkowsky 1905). The symbiotic theory basically implies that a eukaryotic cell captured a prokaryotic cell, after which the prokaryotic cell got integrated functionally within the eukaryotic cell (see Fig 1.3, primary endosymbiosis). Confirmation of this theory has been reported in recent decades. Molecular analyses of chloroplast 5S rRNA and 16S rRNA genes revealed high similarities to those found in the cyanobacterium *Anacystis nidulans* (Dyer and Bowman 1979; Tomioka and Sugiura 1983). Comparable similarities for protein-coding genes were later found, confirming the link. Nevertheless it long remained a point of discussion if all plastids were derived from a single endosymbiotic event, or if more independent endosymbiotic events occurred. Some algae contain plastids with three or four membranes, this phenomenon could have occurred by the engulfment of algae containing plastids by other algae, this is called secondary symbiosis (Fig .1.3) (Gibbs 1981).

Fig. 1.3: Illustration of primary and secondary endosymbiosis. Source: (McFadden 2001)

Most of the present data suggest a single acquisition event of plastids by a primary host, out of which other organisms evolved. There is however a number of species with plastids which appear to be different, but little is known about their evolution. An example is the amoeba *Paulinella chromatophora*, which contain plastids that may be derived from an independent primary endosymbiosis, however more research may shed a light upon the origin of the plastid (McFadden 2001).

The acquisition of plastids is not only restricted to plants, one animal species has been identified that has the ability to integrate plastids into their cells. This occurs after feeding upon algae. The plastids are able to retain their function for up to nine months within the animal cells. This has only been observed in sea-slugs of the taxon Sacoglossa (Handeler et al. 2009).

Over the course of time the majority of the genes within the plastid genome have been transferred to the nucleus. This is evident after comparison of the ancestral cyanobacterial genomes and the current plastid genomes, which indicates a genome reduction to about 5% to 10% of the original size (Sugiura et al. 1998)

1.2.2 Transcriptional and translational regulation of plastid protein expression

1.2.2.1 Promoters

Plastid genes are transcribed by at least two different RNA polymerases, which can bind to specific sequence elements within promoters. One of these polymerases is encoded by the *rpo* complex within the plastid genome (Serino and Maliga 1998). This polymerase is

8

therefore called the plastid-encoded RNA polymerase (PEP). This polymerase is related to the eubacterial $\alpha_2 \beta\beta$ ' RNA polymerases (lgloi and Kössel 1992). PEP promoters are similar in structure to the eubacterial σ^{70} -promoters, in such a way that they contain two conserved blocks of hexameric sequences, corresponding to the eubacterial -35 and -10 promoter elements. The accumulation of transcripts depends on the conservation of these elements, in conjunction with upstream activators, as is the case with the light-responsive promoter of the *psbD* gene (Shiina et al. 1998).

The other type of RNA polymerase active within plastids, is encoded in the nuclear genome and transferred to the plastid compartment, through a translated signal peptide. Therefore this polymerase is called nuclear-encoded plastid polymerase (NEP). The existence of this polymerase, was first suggested when the plastid genome of *Epifagus virginia*, a non-photosynthetic species, was sequenced. The plastome lacked all but one of the PEP genes, however transcription was maintained at a number of plastid genes (Morden et al. 1991). There is a consensus motif from different NEP promoters from both dicots and monocots that binds the NEP (Hübschmann and Börner 1998).

Plastid promoters can have PEP binding sites, NEP binding sites or both. NEP promoters are usually active within proplastids and meristematic tissue, where housekeeping genes are mostly transcribed. PEP promoters generally take over transcription of housekeeping genes and initiates transcription of photosynthetic-related genes in developing chloroplasts (Toyoshima et al. 2005).

Transcription from different promoters is regulated at various levels. For example the *rbcL* gene, encoding the large subunit of ribulose-1,5-bisphosphate carboxylase, which has a PEP promoter. This promoter has a 10-fold higher transcription rate in light-grown leaves compared to dark-grown leaves. (Shiina et al. 1998). Another example is the plastid rRNA operon promoter Prrn, on which the transcription rates vary considerably when grown in the light or the dark (DuBell and Mullet 1995). Furthermore the transcription rates varied 50-fold in barley in response to developmental and environmental cues (Baumgartner et al. 1993). There have been two reports where dicotyledonous plastid promoters were successfully applied in monocots. In one they showed transient expression of the *uidA* gene in wheat (*Triticum aestivum* L.) using the PpsbA promoter from spinach. In this case only transient expression was achieved (Daniell et al. 1991). In the second paper, plastid transformation was achieved in rice (Oryza sativa) with an active Prrn promoter from tobacco (Nicotiana tabacum) (Khan and Maliga 1999). The reverse was also successfully demonstrated, where the barley promoter from *psbD* was analysed in tobacco. (Thum et al. 2001). This indicates that the transcription systems between the two classes are similar and interchangeable, when applied during plastid transformation.

1.2.2.2 Expression signals: 5' Untranslated region (5'UTR) and 5' translation coding region (5'TCR)

5'untranslated regions (5'UTR) are regions upstream of the start-codon of the gene. These regions are involved in the post-transcriptional control of gene-expression and in translation efficiency. Plastid gene expression is mainly regulated at a post-transcriptional level, induced by developmental changes where *cis* elements within the mRNA, interact with nuclear encoded *trans*-factors (Sugita and Sugiura 1996). Although the transcription rate is mainly influenced by the promoter, the 5'UTR influences the mRNA turnover. An example is the *rbcL* 5'UTR that helps maintain a steady-state of *rbcL* mRNA levels in the dark (Shiina et al. 1998).

In prokaryotes, mRNAs usually contain a ribosomal-binding site (SD (Shine-Dalgarno)) sequence) between four and twelve nucleotides upstream of the initiation codon (Shine and Dalgarno 1975). Although 90% of the plastid 5'UTR's contain SD-like sequences, the location of these elements is much more variable. As a result identification of these elements has been difficult. Furthermore it was shown that certain regions of the 5'UTR of *psbA*, were the target for the 16S rRNA, while the SD-like element in this 5'UTR was dispensable (Hirose and Sugiura 1996). At the 5'UTR of psbA in Chlamydomonas *reinhardtii* a stem-loop formation is the binding site for a protein complex, under lightregulation, indicating another pathway can be responsible for translation initiation (Katz and Danon 2002). Another region responsible for translational regulation, is the region directly downstream of the initiation codon, called the 5' translation coding region (5'TCR). A study showed that when point mutations were inserted downstream of the AUG start codon in a bacterial antibiotic resistance gene neomycin phosphotransferase II (*nptII*) transcript fused with the N-terminus of *rbcL* and *atpB*, protein accumulation was reduced significantly in the resulting transplastomic tobacco plants (Kuroda and Maliga 2001b). Another study showed that complementary sequences to the 16S rRNA, directly downstream of the AUG, destabilised transcripts (Kuroda and Maliga 2001c).

1.2.2.3 Expression signals: 3' untranslated region (3'UTR)

Like their bacterial counterparts, chloroplasts 3'untranslated regions (3'UTR) contain in almost all cases inverted repeats (IR). These repeats can form stem-loop structures, where mRNA associated proteins can bind. This interaction is involved in RNA processing and RNA stability. This is an important feature, as transcription termination is very inefficient at the IRs, resulting in extensive read-through (Monde et al. 2000). When the 3'UTR of *atpB* in *Chlamydomonas reinhardtii* was substituted with the 3'UTR of *petD* from spinach the mRNA processing was not affected, indicating that the IR structure is necessary, but not an absolute sequence (Stern et al. 1991). The 3'UTR also seems to be involved in translation regulation, by interacting with the 5'UTR. It was shown that proteins bound to the 5'UTR of *psbA* from *C. reinhardtii* had more affinity, when the 5'UTR was *cis* linked with the 3'UTR (Katz and Danon 2002).

1.3 Plastid transformation

Plastid transformation involves the integration of foreign DNA into a single plastid genome copy followed by replication of the transplastome, and the segregation of transformed and wild-type gene copies under selective pressure that eventually yields homoplasmic lines (Svab et al. 1990). An expression cassette containing plastid signal sequences surrounding the transgene are flanked by two targeting sequences that allow homologous integration into the plastid genome (Svab and Maliga 1993). The primary transformation event only leads to one or a few genome copies in the transformed cell alongside the majority of wild-type genome copies. These cells are heteroplasmic and

therefore unstable for transgene integration. To obtain stable transformants the remaining wild-type genome copies have to be eliminated. This is accomplished by multiple rounds of regeneration under the selection pressure. The number of rounds of regeneration depends on the species, typically for the model species tobacco this would involve two to four rounds of regeneration (Svab and Maliga 1993).

1.3.1 Advantages of plastid transformation

Plastids harbour a large number of metabolic pathways such as CO₂ fixation, starch, fatty acids, pigment and hormone synthesis. Furthermore photoreduction of nitrogen and sulphur for amino acid production occurs within plastids (Lopez-Juez and Pyke 2005). By utilising plastid transformation, genes involved with these pathways can be altered or disrupted, allowing investigation of the pathways by reverse genetics (Rochaix 1997; Heifetz 2000). Furthermore due to the possibility to express transgenes to a high level, the prospect to produce pharmaceuticals within plastids is appealing. There are several other advantages of plastid transformation, in comparison to nuclear transformation, including gene containment, lack of gene-silencing or positioning effects and the ability to have targeted integration.

1.3.1.1 Gene containment

One of the main concerns about Genetically Modified (GM) crops is the spread of transgenes into the environment. During the creation of transgenic plants, along with the gene of interest, a resistance gene is necessary to select for transgenic tissue. This can be an antibiotic resistance gene or a herbicide resistance gene.

This raises the risk that weed species could become tolerant to herbicides with consequences for organic crops grown nearby, or wild relatives. Another implication of lack of containment of transgenes is the demand of the public to be able to distinguish between GM food and non-GM food. In the European Union (EU) there is a regulation that all products that are called non-GM must have less than 0.9% GM content (EU Regulation No 1829/2003). When transgenes are transmitted to nearby fields, the ability to guarantee non-GM content is nearly impossible.

In the case of the traditional nuclear transformants, the transgenes are inherited biparentally according to Mendel's rules. The advantage of plastid transformation is that in most angiosperms, plastids are maternally transmitted to the progeny, pollen therefore does not contain plastids. When the plastid genome of a plant is genetically modified, the transgene will not be transmitted to the progeny through the pollen (Maliga 2004). However several publications show that there is a small fraction of the pollen that do contain plastids, this happens at a frequency of about 1.0 10⁻⁵ (Ruf et al. 2007; Svab and Maliga 2007). This means that plastids can be transmitted through the pollen, but at a very low frequency.

1.3.1.2 High accumulation of recombinant protein

Unlike nuclear transformation, plastid transformation allows accumulation of extremely high levels of recombinant protein. This is of particular interest for the production of pharmaceutical proteins. In general, levels of recombinant proteins produced in nuclear transformants are less then 1% total soluble protein (TSP). For the production of pharmaceutical proteins this is generally less than is required to make the system commercially viable, especially in view of losses during subsequent purification steps (Rybicki 2009). To achieve higher levels of recombinant proteins, plastid transformation can be applied. Due to the high copy number of plastid genomes within each cell, accumulation levels up to 70% TSP has been achieved (Oey et al. 2009). Plant-based systems are more economical then bioreactor systems. Furthermore the purification steps can be minimised if a food crop is used so the processing only needs to provide crude extracts. There are even prospects for directly supplying these edible vaccines directly as fresh food products (Daniell et al. 2001).

1.3.1.3 Lack of positioning effects

Plastids have a mechanism for DNA repair, involving a RecA-mediated recombination machinery inherited from their prokaryotic ancestors (Cerutti et al. 1992). This mechanism prevents the random insertion of transgenes that characterises nuclear transformation, and allows targeted integration of expression cassettes within the plastid genome. Integration involved homologous recombination and can be directed to any part of the plastome, simply by flanking the insert with sequences homologous to the chosen site of integration. Generally expression cassettes are targeted to intergenic regions, although it is possible to target expression cassettes to an existing operon. Some of the favoured sites used to date are located in the LSC region, whereas others are within the IR region (See Table 1.1) (Maliga 2004).

Due to the ability for targeted integration associated with plastid transformation, this system avoids the positioning effects that are commonly observed within nuclear transformants. In nuclear transformation, random integration of the transgene within the nuclear genome can result in gene silencing and undesired gene disruptions (Birch 1997). While for plastid transformation targeted integration could be used for desired gene disruptions.

Insertion site	Species	Reference
trnH/psbA	N. tabacum	(Carrer and Maliga 1995)
Ycf3/trnS	N. tabacum	(Huang et al. 2002)
trnG/trnfM	N. tabacum	(Bock and Maliga 1995; Ruf et al. 2001)
	L. esculentum	
rbcL/accD	N. tabacum	(Svab and Maliga 1993)
petA/psbJ	N. tabacum	(Bock et al. 1994)
5'rps12/clpP	N. tabacum	(Shikanai et al. 2001; Kuroda and Maliga 2003)
petD/rpoA	N. tabacum	(Suzuki and Maliga 2000)
ndhB/rps7	B. napus	(Hou et al. 2003)
3'rps12/trnV	N. tabacum	(Staub and Maliga 1992)
	A. thaliana	(Sikdar et al. 1998)
	O. sativa	(Khan and Maliga 1999)
	L. fendleri	(Skarjinskaia et al. 2003)
trnV/rrn16	N. tabacum	(Staub and Maliga 1993)
rrn16/trnI	N. tabacum	(Svab et al. 1990)
trnI/trnA	N. tabacum	(Daniell et al. 1998; Muhlbauer et al. 2002)
trnN/trnR	N. tabacum	(Zou et al. 2003)
Rpl32/trnL	N. tabacum	(Koop et al. 1996; Thum et al. 2001)

 Table 1.1: Regions of the plastid genome (plastome) used for targeted integration of expression cassettes.

1.3.1.4 Transgene stacking

Many chloroplast genes are located within clusters on the plastid genome, and are transcribed as polycistronic mRNAs. This phenomenon can be mimicked by insertion of multiple genes of interest within an expression cassette into the plastome, thereby allowing gene-stacking. The advantage of this strategy is the possibility to insert multiple genes, with just one transformation event, thereby avoiding the need for multiple selectable markers (Bock 2001).

1.3.2 DNA delivery into the plastids

Plastid transformation requires that foreign DNA is delivered to the plastid compartment through the cell wall, the plasma membrane and the plastid double membrane. Three different methods have been developed to accomplish this: Biolistics, PEG (polyethylene glycol)-mediated transformation and femto-injection. The type of transformation system has to be chosen carefully, as they may not work equally well depending upon the species to be transformed. For instance, if an efficient regeneration system of intact tissue is absent for a specific species, but a functional protoplast regeneration protocol is present, then the PEG-mediated transformation system is prefered (Kofer et al. 1998).

1.3.2.1 Biolistics

Biolistics consists of a process where nano-sized tungsten or gold particles coated with DNA are bombarded into tissue. Modern devices use a high pressure helium pulse to deliver these particles into plant tissue at a high-velocity in a vacuum chamber (see Fig. 1.4) (Sanford 1990), after which transgenic shoots can be obtained under selective

pressure. The development of biolistics for nuclear transformation was a major breakthrough in genetic engineering of plants due to the limitations of plant species that were not amendable to *Agrobacterium*-mediated transformation. Transient expression in onion epidermal cells using biolistics was first demonstrated in 1987 (Klein et al. 1987), and soon followed by the first plastid transformation event using this technique in *Chlamydomonas* (Boynton et al. 1988). Since then biolistics has been applied to a wide range of species including *Lolium perenne* L. for nuclear transformation, although at various efficiencies. The advantage of this approach in plastid transformation is the relative high efficiency compared to other methods, and its simplicity, so it is by far the most widely used approach (Bock 2001). The main drawback is that it requires special instrumentation (Sanford 1990).

Fig 1.4: PDS-1000/He Gun (Biorad)

1.3.2.2 PEG mediated transformation

PEG-mediated transformation in plants involves the delivery of DNA into protoplasts. Protoplasts are obtained by enzymatic removal of the cell walls, after which the protoplasts are treated with a solution containing polyethylene glycol (PEG), ions and DNA. The PEG disrupts the plasma membrane to allow the entry of DNA into the cytoplasm. Whether the PEG is also involved with penetrating the chloroplast membranes remains however unclear (Kofer et al. 1998). The first successful use of polyethylene glycol (PEG) for genetic modification was achieved in yeast (Hinnen et al. 1978). This was followed a few years later with genetic modification of tobacco protoplasts (Krens et al. 1982). In 1993 this approach was extended to plastid transformation, where a ptDNA fragment containing a point mutation for spectinomycin resistance was introduced into tobacco plastids (O'Neill et al. 1993). Since then this approach has been successfully applied to achieve plastid transformants in lettuce (Lelivelt et al. 2005) and cauliflower (Nugent et al. 2006).

1.3.2.3 Femtoinjection

A third approach to introduce foreign DNA into plastids is called femto-injection, which involves the direct injection of DNA into chloroplasts through a glass capillary with a 0.1µm diameter. The injection is accomplished by expansion of an alloy within the capillary due to warming, to drive the DNA into the plastid (Knoblauch et al. 1999). This method has been used to transform cyanobacteria, however only transient expression was achieved within plastids. Since then, no reports were published using this technique for plastid transformation.

1.3.3 Selection strategies

In order to achieve genetic modification in plants, a procedure is necessary to select for transgenic tissue. Selection strategies are usually based on inclusion of an antibiotic resistance gene which allows proliferation of transformed cells on antibiotic containing medium on which wild type cells are unable to grow (Joersbo and Okkels 1996).

1.3.3.1 Heterologous genes

Selection with heterologous genes is based on a gene insertion approach. This means using a plasmid containing an expression cassette with a selectable marker gene, flanked by a specific promoter and transcription/translation signals. This expression cassette can then be integrated into the respective genome, by various methods. Selection with the appropriate antibiotic is then utilized to select for transformed tissue.

Different selection markers can be used for nuclear transformation, in comparison with plastid transformation. This is mainly due to the mode of action of the corresponding antibiotic and the type of selection that is needed for each type of transformation. (e.g. achieving homoplasmy in plastid transformation, as opposed to the relatively quick full integration within the nuclear genome). For nuclear transformation several types of antibiotics can be used, with the corresponding antibiotic resistance genes. Most of these antibiotics are aminoglycosides, of which several subgroups exist. One of the most used aminoglycoside in nuclear transformation experiments is the aminocyclitol hygromycin B produced by *Streptomyces hygroscopicus*. This antibiotic inhibits protein synthesis by interfering with ribosomal translocation and aminoacyl-tRNA recognition, furthermore it

causes misreading of mRNAs (Zheng et al. 1991). This antibiotic has a lethal effect on plant tissue at higher concentrations. So far this antibiotic has not been successfully used to produce transplastomic plants, possibly due to a mode of action that causes lethality on tissue during selection. The detoxifying protein acting on this antibiotic is encoded by the hygromycin phosphotransferase gene (*hpt*) from *Escherichia coli*.

A second aminoglycoside group contains antibiotics like kanamycin, gentamycin, paromomycin and geneticin (G-418). These antibiotics bind to the 16S rRNA and to some extent to the 30S subunits of the prokaryotic ribosome, causing inhibition of protein synthesis and misreading of initiated translation. Furthermore they stimulate membrane leakage. Visually this results in bleaching of plant tissue. All these antibiotics have a lethal effect on plant tissue at higher concentrations. However kanamycin has a less stringent effect, compared to paromomycin during selection in several plant species (Mauro et al. 1995; Wang et al. 2005). Several enzymes can be used to detoxify these antibiotics, one of these is encoded by the neomycin phosphotransferase II gene (*nptII*) derived from the transposon Tn5 from *Escherichia coli*. This gene is widely used, to generate nuclear transformed plants. Another protein that can detoxify these antibiotics is encoded by the 3'-aminoglycoside phosphotransferase gene (*aphA-6*) from *Acinetobacter* baumannii (Shaw et al. 1993). This last marker gene, was successfully used to generate transplastomic plants in several species, including tobacco (Huang et al. 2002), Chlamydomonas (Bateman and Purton 2000) and cotton (Kumar et al. 2004).

A last group of aminoglycosides includes spectinomycin from *Streptomyces spectabilis*. This antibiotic binds to the 30S subunit of ribosomes, causing inhibition of protein synthesis, but in contrast to other aminoglycosides, it does not cause mistranslation. As a result it inhibits growth and causes bleaching, but is not lethal (Maliga 2004). This antibiotic is routinely used to select for transplastomic tissue. The detoxifying protein acting against spectinomycin is encoded by the aminoglycoside 3"-adenylyltransferase gene (*aadA*).

Recently the chloramphenicol acetyltranferase (*cat*) gene was used to generate transplastomic tobacco using chloramphenicol selection. The development of this new selection system for plastid transformation can potentially lead to an extension of the range of species amendable to plastid transformation (Li et al. 2010).

1.3.3.2 "Binding-type" markers

Several point mutations were identified within the genes 16S rRNA and *rps12* responsible for spectinomycin and streptomycin resistance, while mutations in the 23S rRNA gene conferred resistance to lincomycin (Kavanagh et al. 1994). The first report where these mutations were utilised to create stable plastid transformants, was with *Chlamydomonas reinhardtii* (Newman et al. 1990). This selection strategy was shortly afterwards also applied to tobacco (Svab et al. 1990). These "binding type" markers are desirable, as this system does not require dominant bacterial antibiotic resistance genes and therefore allays public concerns that the use of the bacterial genes might interfere with medical applications of the antibiotics (Conner et al. 2003).

1.3.3.3 Limitation of spectinomycin selection

Due to the presence of point mutations conferring spectinomycin resistance within monocotyledonous species (Fromm et al. 1987), including *Lolium perenne* L., the most utilised selection marker *aadA* can not be used in conjunction with spectinomycin selection for plastid transformation of perennial ryegrass.

1.4 Drought stress

1.4.1 Drought stress response

'Drought' is a general term, as it can have many meanings concerning crop production in different kind of aspects like time frame, severity of drought and the effect of drought on the crop. The effect of water deficit is looked upon differently depending on the type of person that is asked. For farmers the effect of water deficit is secondary to many other considerations like weeds, diseases and insects, that may affect yield much more than the water supply (Passioura 2006a). Furthermore a farmer takes into account a time frame of months to a few years. Plant physiologists on the other hand usually tend to look at drought stress over a relative short period of days up to a few months, while they explore the rate of survival of plants under water-deficit, rather then yield. Molecular biologists work with a timeframe of hours, where attention is paid to the molecular processes involved with water deficit. This includes the production of reactive oxygen species and the pathways involved in countering these molecules (Passioura 2006a).

1.4.2 Oxidative stress

Water deficit causes oxidative stress, as a result of a serious imbalance between the production of Reactive Oxygen Species (ROS) and the presence of the antioxidant defences (Møller 2001). ROS consist of superoxide (O_2), hydrogen peroxide (H_2O_2), hydroxyl radicals ('OH), and singlet oxide $(^{1}O_{2})$. Superoxide and hydrogen peroxide are produced at high rates within chloroplasts, even under optimal conditions. These compounds are produced by several enzyme systems (plasmalemma-bound NADPH (nicotinamide adenine dinucleotide phosphate)-dependent superoxide synthase and superoxide dismutase (SOD)). Although the toxicity of these compounds is relatively low, their detrimental effect resides in the ability to initiate cascade reactions that result in the production of hydroxyl radicals and other destructive molecules (Noctor and Foyer 1998). However, ROS can also play a role in signalling, for instance during pathogen infection, a plasma membrane NADPH oxidase is activated, which initiates the production of superoxide radicals, which in turn are converted to H₂O₂ by SOD. The high levels of H_2O_2 kill both the pathogen and the plant cells surrounding the infection site, thus preventing the spread of the pathogen to neighbouring cells (Grant and Loake 2000).

1.4.2.1 Antioxidant system

To counter the accumulation of these species, several ROS scavenging enzymes are produced within different compartments of the cells. These compounds quench ROS without undergoing conversion themselves to a destructive radical. The enzymes either catalyse reactions or are involved in the direct processing of ROS. Known ROS scavenging enzymes are glutathione S-transferase (GST), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), Catalase (CAT) and superoxide dismutase (SOD) (Noctor and Foyer 1998).

1.4.2.2 Chlororespiration

The discovery of the plastid NDH-complex (NADH dehydrogenase complex) provided molecular evidence of the existence in chloroplasts of chlororespiration (Burrows et al. 1998), which is defined as a respiratory electron transport chain (ETC). Increased activity of the NDH complex has been observed under various stress conditions (Casano et al. 2001). This pathway is believed to supply electrons, which can be cycled around photosystem I. This is used to drive ATP (adenosine-5'-triphosphate) synthesis, and is considered as an important system for extra ATP production when exposed to stress conditions which cause photoinhibition (Bendall and Manasse 1995). The second function is believed to involve compensating stromal overreduction through mediation of cyclic electron transfer, which prevents the formation of ROS (Wang et al. 2006).

1.4.3 Ways to overcome the impact of climate change

To achieve improved tolerance to drought stress, three approaches can be exploited. Firstly, plant physiology has provided new insights and developed new tools to understand the complex network of drought-related traits. Secondly molecular genetics has revealed many Quantitave trait loci (QTL) affecting yield under drought stress and detected expression of drought tolerance-related traits. Finally molecular biology has provided genes, useful either as candidate sequences to dissect QTL or for improving stress tolerance through a transgenic approach (Cattivelli et al. 2008). Despite the need for studies to counter drought stress in perennial ryegrass, most studies regarding drought response are performed on model species, like *Arabidopsis* and maize. This is due to the availability of full genome sequences of these species, which allows the use of extensive micro-array data. Unfortunately in perennial ryegrass, public accessible micro-array data are not available. Therefore only a few gene-expression studies have been performed on this species to identify genes involved with countering water deficit (Foito et al. 2009). The molecular analysis results obtained with one species cannot always be applied to a different species, so more studies are needed with perennial ryegrass (Foito et al. 2009).

1.5 RNA editing

RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template (Tillich et al. 2006). There are several different types of RNA editing, which include insertions, deletions and conversion of nucleotides. RNA editing is particularly associated with the organellar genomes and has been observed within molecules of messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA) and spliced leader RNA (slRNA) within all organellar compartments.

The majority of editing events take place within mRNA molecules. These events can result in an altered protein product, or the alteration of the start codon or stop codon. Nevertheless not all editing sites change the amino acid sequence, as editing events have also been observed within both introns and untranslated regions (UTRs). These editing sites may be involved in the stabilization of the transcripts (Maier et al. 1996).

Editing of tRNA creates essential structural elements at the primary, secondary, and tertiary levels. A tRNA molecule transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation. One instance of tRNA editing has been identified in plastids, namely adenosine (A) to inosine (I) editing within the tRNA^{Arg} (Pfitzinger et al. 1990; Karcher and Bock 2009).

Editing of rRNA appears to be less frequent than alterations in mRNAs and tRNAs, and has not been observed in plastids. Nevertheless rRNA editing was shown to be important for maturation of the mitochondrial small subunits of 17S rRNA of *Physarum polycephalum* (Mahendran et al. 1994).

Editing in slRNA was found in *Leptomonas collosoma*. slRNAs are small RNA molecules that are added as leader sequences to all mRNAs by *trans*-splicing in trypanosomes (Ben-Shlomo et al. 1999).

1.5.1 RNA editing in plastids

RNA editing in plastids consists mostly of C to U conversions, with the exception of U to C conversions in the bryophyte *Anthoceros formosae* (Kugita et al. 2003). So far 21 to 37 editing sites have been identified in plastid genomes of seed plants depending on the species. In closely related taxa, common editing sites can range from 23 sites within the Poaceae branch up to 30 sites within the Solanaceae branch. Editing occurs all along the plastid genome, however editing sites appear to be clustered mostly within the *rpoB*, *ndhB* and *ndhA* transcripts. The hypothesis is that editing occurs mostly in transcripts,

where transitory loss of function can be tolerated (Fiebig et al. 2004). The NDH protein complex is believed to play a role in cyclic electron flow around photosystem I, a function that is compatible with the absence of significant phenotypic effects of *ndhB* gene inactivation under normal growth conditions (Horvath et al. 2000). However under various stress conditions this complex did indeed play a role. Under water deficit, which causes a limitation of CO_2 availability, it was shown that in *ndh* mutants were compromised in its capability to quench fluorescence non-photochemically in an early stage of light induction, furthermore it was shown that the NDH complex optimizes the induction of photosynthesis under water stress conditions (Burrows et al. 1998; Horvath et al. 2000). A second study showed that the NDH complex was involved with reduction of the plastoquinone pool (PQ) in the dark in response to heat stress (Sazanov et al. 1998). In a third study it was shown that under illumination of strong light, *ndh* mutants exhibited more photodamage, which indicated the importance of the NDH complex in countering photodamage resulting from the stromal overreduction. This was thought to be accomplished by mediating the cyclic electron transport to supply ATP for the calvin cycle (Endo et al. 1999). Similar effects on *ndh* mutants were observed when cold stress was applied (Li et al. 2004)

1.5.2 Evolution of RNA editing in plastids

RNA editing has been observed in plastid genomes of all lands plants tested, except in the liverwort *Marchantia polymorpha* (Freyer et al. 1997). The frequency of RNA editing events differs immensely within the plant kingdom. Within angiosperms, RNA editing occurs at about 30 separate sites, whereas within the bryophyte hornwort *Anthoceros*

formosae 941 editing sites have been detected and within the fern *Adiantum capillusveneris* 350 editing sites were detected (Wolf et al. 2004). In comparison with *Anthoceros formosae* and *Adiantum capillus-veneris*, it was found that, 18 out of 85 editing sites found in seed plants, are shared with at least one of these taxa. These editing sites could be remnants of the original RNA editing system of land plants (Tillich et al. 2006). On the other hand, new editing sites have emerged or disappeared over a relative short time, this is evident when editing sites were compared within closely related species (Freyer et al. 1997). The reason for the emergence and disappearance of editing sites can be linked to the mutation rate on the DNA level. However the efficiency of the RNA editing machinery itself, seems to be more of a driving factor for the evolution of editing sites (Duff and Moore 2005).

1.5.3 *Cis*-acting elements

Cis acting elements are stretches of sequence surrounding editing sites that facilitate binding of specific proteins or guide RNAs (gRNAs), also called *trans*-factors, to induce RNA editing. Although a specific sequence consensus has not been found for plastidial RNA editing, it has been shown that sequences -20 to -5 upstream of the editing site are critical for binding of the *trans*-factors. Sequences at positions -5 and -1 upstream of the editing site are responsible to a lesser degree for interaction with the *trans*-factor (Hayes et al. 2006).

1.5.4 trans-factors

The mechanism of the RNA editing reaction involves *trans*-factors. These are molecules that interact with *cis* acting elements to induce editing. In mitochondrial RNA editing, it was found that small RNA molecules (gRNAs) were acting as *trans*-factors. For this reason, initially it was believed similar gRNA molecules would be responsible for editing site recognition within plastids (Gray and Covello 1993). However when a putative gRNA stretch was found within the plastid genome (ptDNA) that was complementary to the *psbL* transcript, this hypothesis was tested by altering the 14 nucleotide RNA molecule by plastid transformation (Bock and Maliga 1995). Despite this alteration the editing efficiency within the *psbL* transcript was not abolished. Since no other sequences were found that were complementary to the *psbL* editing site, it was hypothesized that either the gRNA molecule would have little complementarity to the editing site, or it would be encoded in the nuclear genome (Bock and Maliga 1995).

In 2001 a study showed that RNA-binding proteins could be involved in RNA editing, instead of gRNAs (Hirose and Sugiura 2001). Recently an increasing number of *trans*-factors have been identified. The first protein identified as being involved with RNA editing in the plastid genome was the cp31 protein, this chloroplast ribonucleoprotein was required for editing of a range of editing sites (Hirose and Sugiura 2001). All the other identified proteins involved with RNA editing are pentatricopeptide repeat (PPR) containing proteins (Kotera et al. 2005; Okuda et al. 2007; Chateigner-Boutin et al. 2008; Cai et al. 2009; Hammani et al. 2009; Okuda et al. 2009; Robbins et al. 2009; Yu et al. 2009; Zhou et al. 2009). This protein family consists of 400 members in rice and

Arabidopsis. Unlike cp31, these proteins are involved with editing at specific sites (Robbins et al. 2009). Only one of the identified PPR proteins was involved in more then one site, namely the CLB19 protein (Chateigner-Boutin et al. 2008; Kobayashi et al. 2008).

Robbins et al 2009 utilised a novel approach to identify more PPR proteins involved with RNA editing. With the use of bioinformatics, eight orthologs of PPR proteins with chloroplast signals were identified that were present in *Arabidopsis* but absent in rice. It was also known, that eight editing sites were present in *Arabidopsis*, but absent in rice. With this knowledge one of the PPR proteins, namely 'RACE1' was knocked out in *Arabidopsis*, after which editing malfunction was observed within one of the editing sites that was absent in rice. This strategy could be employed on other species, where genome resources are available (Robbins et al. 2009).

1.5.5 RNA editing regulation

RNA editing does not always happen at 100% efficiency. The efficiency of editing is determined by the availability of the corresponding *trans*-factor in conjunction with the number of editable transcripts present. When there are insufficient molecules of *trans*-factor available for the number of transcripts then the editing will be incomplete, resulting in transcripts being partially edited. There are several possible consequences of partial editing in coding sequences. Some editing sites create start or stop codons, if editing at these sites is absent in some transcripts, then translation will not occur correctly (Kudla et al. 1992; Neckermann et al. 1994; Lopez-Serrano et al. 2001). In other cases,

editing results in amino acid changes after translation, by translation of unedited coding sequences. This could impair the proteins' function (Zito et al. 1997; Sasaki et al. 2001).

1.5.5.1 Tissue specificity

RNA editing efficiency can be tissue specific, as was shown in tobacco, spinach and *Arabidopsis*, where editing efficiencies were reduced in root tissue compared to leaf tissue for editing sites within the NDH complex (Chateigner-Boutin and Hanson 2003). Furthermore editing efficiency of sites in different transcripts differed between various tissues in maize (Peeters and Hanson 2002).

1.5.5.2 Environmental specificity

RNA editing can be influenced by both endogenous and abiotic stimuli. For example, editing of the editing site III within the *ndhB* gene in *Nicotiana tabacum* could be completely blocked under heat shock conditions and treatment of the plants with spectinomycin, which impairs prokaryotic translation within plastids (Karcher and Bock 1998). It is likely that the production of the corresponding *trans*-factor is regulated by environmental conditions, therefore influencing the editing function (Hirose and Sugiura 1997).

1.5.6 RNA editing in *Lolium perenne* L.

Recently the plastid genome of *Lolium perenne* L. has been sequenced and during this study 31 RNA editing sites were identified (Diekmann et al. 2009). This study revealed five RNA editing sites unique to perennial ryegrass and previously not observed among

other species. Furthermore partial editing was observed in eight editing sites, although the number of unedited transcripts was small, with the exception of the two RNA editing sites located within the *matK* and the *psbL* transcripts (Diekmann et al. 2009).

1.6 Project aims and objectives

The aim of this project was to develop a plastid transformation protocol for perennial ryegrass (*Lolium perenne* L.) which could be employed to engineer the plastome to improve stress tolerance.

As target for investigation into drought tolerance, the editing machinery was evaluated to assess differences in editing behaviour of accessions that had various tolerances to drought stress. The information gathered from this investigation, could then be used to design a strategy to further assess the role of RNA editing in relationship with drought response by plastid engineering, and by investigating genes consisting of the NDH complex. This could be accomplished by several different approaches: 1. Over-expression of these genes; 2. Gene disruptions by replacing the gene-of-interest with the selectable marker; 3. Substitution of the endogonous genes with modified versions that are uneditable, but result in a dysfunctional protein; 4. Substitution of the endogonous genes with modified versions that are uneditable, but would result in a functional protein.

Chapter 2: Transformation

2.1 Introduction

In order to achieve plastid transformation in *Lolium perenne* L. several aspects have to be optimized. Each component is equally important, especially in a species that is recalcitrant to transformation procedures (Bock 2007). Despite the increasing range of dicotyledonous species where plastid transformation has been applied, it is only routinely used in tobacco (De Marchis et al. 2009). Furthermore plastid transformation has only been achieved in one monocotyledonous species, rice and even in that case the fertile plants remained heteroplasmic (Khan and Maliga 1999; Lee et al. 2006). The lack of protocols for plastid transformation within monocotyledonous species indicates that these species are highly recalcitrant to plastid transformation.

2.1.1 Regeneration systems

Tissue culture for transformation experiments is based on the ability of single cells to proliferate after gene transfer into fully fertile plants (Birch 1997).

One of the limitations for achieving genetic modification in monocotyledonous species is their less than optimal regeneration system. In monocotyledonous species regeneration take place through an "indirect organogenesis", often referred to as embryogenesis. During this type of regeneration, explants undergo an extensive proliferation before developing shoots or roots, unlike the "direct organogenesis" within dicotyledonous species, where explants may undergo minimum proliferation before forming shoots or roots (Ovecka et al. 2000). One important difference between monocotyledonous species and dicotyledonous species is that the former do not have a comparable wound reaction.

Once the cell has stopped dividing and is committed to a particular function in the plant, there is no stimulation of cell division following wounding (Dale 1983). In Lolium *multiflorum* the mitotic activity is restricted to tissue close to the apical meristem and the mitotic activity decreases rapidly in older leaves. As a consequence, cell division and callusing potential is restricted to a small region close to the apical meristem (Joarder et al. 1986). Calli can be induced from leaf-base explants, consisting of either the apical meristem or leaf tissue in close proximity to the apical meristem, as has been demonstrated in several studies (Dalton et al. 1999; Newell and Gray 2005; Bajaj et al. 2006). Another source for induction of regenerable callus in monocotyledonous species is mature embryos. Induction of calli derived from this source tissue has been utilized in order to achieve nuclear transformation in several previous studies (Maas et al. 1994; Spangenberg et al. 1995; Altpeter et al. 2000; Wu et al. 2005). In all cases the callus induction media consisted of full-strength Murashige and Skoog (MS) medium, with 30 g L^{-1} maltose or sucrose, supplemented with 5 mg L^{-1} 2,4-D (2,4-dichlorophenoxyacetic acid), occasionally including 0.1 to 0.2 mg L^{-1} BAP (6-benzylaminopurine). This common callus induction medium across different projects suggests that this medium may be optimal for callus induction of Lolium perenne L. Furthermore in all of the mentioned studies, the callus induction was conducted in the dark. In contrast to the callus induction medium several different culture media were used for shoot regeneration in previous studies, as shown in Table 2.1. The major differences in regeneration media indicate that an optimal culture medium has not been developed yet for the induction of shoots Furthermore the optimal regeneration medium is likely to be cultivar dependent (Altpeter and Posselt 2000). Significant genotypic variation for tissue culture response is well documented for cereals (Lazar et al. 1983; Lührs and Lörz 1987).

In this project, the standard callus induction media was utilized to induce callus (full strength MS medium supplemented with 30 g L⁻¹ maltose and 5 mg L⁻¹ 2,4-D), while two different regeneration protocols were tested for their efficiency for shoot regeneration on various cultivars of *Lolium perenne* L. (Protocol I and II, see Table 2.1.).

Table 2.1: Different regeneration media used for Lolium perenne L. transformation experiments.

Regeneration media	Publications
MS-medium + 0.2 mg L ⁻¹ kinetin	(Spangenberg et al. 1995; Dalton et al. 1999; Hiroko and Tadashi 2006)
MS medium + 0.1 mg L^{-1} 2,4-D + 0.1 mg L^{-1} BAP	(Altpeter et al. 2000)
Protocol I : MS medium + 5 mg L^{-1} 2,4-D + 0.1 mg L^{-1} BAP, followed by MS medium + 0.1 mg L^{-1} 2,4-D + 0.25 mg L^{-1} BAP Protocol II : MS medium + 1 mg L^{-1} BAP	(Altpeter and Posselt 2000; Newell and Gray 2005) (Bajaj et al. 2006)

2.1.2 Expression of recombinant genes

The second limitation to obtain transplastomic tissue in monocots is the low protein synthesis rate within the proplastids of non-green tissue. This leads to poor expression of the selectable marker from a transgene cassette, needed to detoxify the selectable agent. To overcome this problem during plastid transformation experiments, a strong promoter and suitable plastid signals have to be used within the expression cassette to ensure sufficient expression of the selectable marker gene (Daniell et al. 2002). During this study, two different plastid transformation vectors were constructed. The Lolium perenne L. plastid transformation vectors pIAPRvdB4 and pIAPRvdB5 contain the trnI-trnA region of the Lolium perenne L. plastid genome to facilitate targeted integration of an expression cassette within the intergenic region between the trnI and trnA genes. Both pIAPRvdB4 and pIAPRvdB5 contain a dicistronic cassette containing the reporter gene soluble modified green fluorescent protein (*smGFP*), for visualisation of transgenic tissue and the selectable marker aphA-6, which detoxifies kanamycin, paromomycin, geneticin and neomycin (Shaw et al. 1993). The difference between these two vectors lies in the expression signals within the expression cassette. In the vector pIAPRvdB4, these genes are under regulation of the full-length Prrn promoter including the binding sites for nuclear-encoded polymerases (NEP) and plastid-encoded polymerases (PEP), whereas the mRNA stability and processing are regulated by the 5'UTR of *rbcL* and the 3'UTR of *rps16* of Nicotiana tabacum, as described by (Svab and Maliga 1993). In pIAPRvdB5 these genes are transcribed by a truncated Prrn promoter fused with the gene 10 leader sequence of the T7 phage, which is known to facilitate high expression levels (Kuroda and Maliga 2001b). Furthermore the cassette contains the 3'UTR of rps16 from Nicotiana tabacum for transcript stabilisation.

2.1.3 Selection regimes

The third limitation involves the selection regime in the dark. In monocotyledonous species, the proliferation of calli is usually restricted under conditions in the dark. Although this might be quite manageable for nuclear transformation, this poses a problem for plastid transformation, because the aminoglycoside antibiotics, like spectinomycin,

streptomycin and kanamycin used for selection of plastid transformation are mostly ineffective when selection is performed in the dark (Bock 2007).

2.1.4 Gene delivery

The last limitation is the delivery of foreign DNA into the double membrane chloroplast. DNA delivery to plant cells of monocotyledonous species can be accomplished by several different methods; 1. *Agrobacterium*-mediated transformation (Wu et al. 2005; Hiroko and Tadashi 2006); 2. PEG-mediated transformation (Folling et al. 1998); 3. Biolistic particle bombardment (Dalton et al. 1999; Altpeter et al. 2000); 4. Silicon carbide whisker-mediated transformation (Dalton et al. 1998). However for plastid transformation, only two of the above methods have been used successfully. These are biolistic particle bombardment (biolistics) and the PEG-mediated transformation. The preferred method for plastid transformation is biolistics, mainly for its efficiency in comparison with PEG-mediated transformation (Daniell et al. 2002). In conjunction to the choice of gene delivery method, the choice of target tissue is equally important. The tissue should be able to proliferate readily and selection on the tissue should be possible to develop transgenic tissue after transgene delivery.

2.1.5 Aim and objectives

The aim of this study was to achieve plastid transformation of *Lolium perenne* L.. In order to maximize the chances to achieve DNA modification of *Lolium perenne* L. (both plastid transformation and nuclear transformation) all the above mentioned aspects had to be optimized, as the transformation efficiency was expected to be very low. This is based on the fact, that only one other monocotyledonous species has ever been successfully transformed within the plastid genome (Khan and Maliga 1999; Lee et al. 2006) and monocot species remain relatively recalcitrant even to nuclear transformation. Firstly an efficient transformation vector was constructed based on data obtained from previous studies at the time of the start of the project. Secondly an optimal regeneration protocol was developed. This step is critical due to the limitations of a regeneration system for *Lolium perenne* L. conducted in the light. Light is essential for an efficient selection procedure for plastid transformation. Thirdly, an optimal selection regime was assessed and determined. Several antibiotics were analysed for feasibility for both plastid and nuclear transformation. Fourthly, gene delivery conditions were tested for their efficiency in a transient expression test. The DNA-Gold coating protocol, target distance and shooting pressure were assessed for their effect on transient expression. Finally transformation experiments were conducted, and putative transformants were subsequently characterised.

2.2 Materials and methods

2.2.1 Molecular techniques

2.2.1.1 Minipreparations of plasmid DNA using alkaline lysis

2 ml of overnight bacterial cultures containing plasmids were spun down in 1.5ml Eppendorf tubes. The pellet was resuspended in 100 μ l lysis buffer (50mM Glucose; 10mM ethylenediaminetetra acetic acid (EDTA); 25mM Tris; 1 μ l 100 mg ml⁻¹ RNase) with vortexing. After 10 minutes at room temperature, 200 μ l of fresh solution 2 (0.2M sodium hydroxide (NaOH); 1% sodium dodecyl sulphate (SDS) was added. The Eppendorf tubes were placed on ice for 10min, before 200 μ l 3M sodium acetate, pH 5.2, was added. The Eppendorf tubes were placed on ice for a further 10 minutes, before they were spun down at max revolutions per minute (rpm) for 5 minutes. The supernatant was transferred to new Eppendorf tubes, and spun down again. 2 volumes of 96% ethanol were added to the Eppendorf tubes, which were then placed at -20°C for 30 minutes. The samples were spun down at max rpm for 10 minutes, and the DNA pellets were washed with 300 μ l 70% ethanol. After another 3 minute spin, the ethanol was removed and the pellet was air-dried in the laminar flow hood. Finally the DNA was dissolved in 50 μ l of sterile MilliQ. DNA samples were stored at -20°C.

2.2.1.2 Total genomic DNA (gDNA) isolation of plant tissue

100 mg of plants tissue was collected into an Eppendorf tube and frozen in liquid nitrogen, prior to grinding up the tissue into powder. The plant cells were subsequently lysed with 500 µl lysis buffer 1 (20mM Tris pH 8; 20mM EDTA; 2M sodium chloride).

Tubes were heated for 5 minutes at 85°C and cooled for 5 minutes on ice. This step was repeated twice. The suspension was spun at max rpm for 10 minutes, and the supernatant was transferred to a new tube. This was done twice. To each tube 1 μ l 100 mg ml⁻¹ RNase was added, and incubated at 37°C for 30 minutes, after which 1/10 volume of 3M sodium acetate pH 5.2 and 1 volume 100% isopropanol was added. Tubes were incubated at -20°C for 30 minutes, and the precipitated DNA was spun down at max rpm for 10 minutes. The DNA-pellet was washed with 500 μ l 70% ethanol and spun at max rpm for 3 minutes. The supernatant was removed, and the pellet was air-dried. Finally the DNA-pellet was dissolved in 50 μ l MilliQ.

2.2.1.3 Polymerase Chain Reaction (PCR)

All PCR reactions were conducted with REDTaq[®] Genomic DNA Polymerase (Sigma cat. no. D8312). The standard PCR mixture was as shown in Table 2.2 and the PCR cycles are given in Table 2.3.

Reaction mix	Volume (µl)
DNA $(1 \mu g \mu l^{-1})$	1.0
Primer 1 (0.1 μ M μ l ⁻¹)	1.0
Primer 2 (0.1 μ M μ l ⁻¹)	1.0
REDTaq [®] Genomic DNA Polymerase (1unit μ l ⁻¹)	2.5
10x REDTaq buffer	5.0
dNTP (10mM)	2.0
MilliQ ddH ₂ O	37.5
Total reaction mix	50.0

 Table 2.2.
 Standard PCR mixes

Steps	Temperature	Time
Step1 Denaturation	94°C	5 min
Step 2 Denaturation	94°C	30 seconds
Step 3 Annealing	5°C below the lowest melting	30 seconds
	temperature of both primers	
Step 4 Extension	72°C	1kb per minute
Step 5 Repeat cycles	Repeat step 2-4	30 times
Step 6 Final extension	72°C	10 min
Step 7 End of program	4°C	Indefinite storage

 Table 2.3: PCR cycle:

2.2.1.4 Gel extraction of PCR fragments

PCR fragments were run on a 0.8% agarose gel, after which the fragment was cut out of the gel with a clean scalpel. The fragment was subsequently purified from the gel with the "QIAquick[®] Gel Extraction Kit", as specified by the manufacturer's protocol (Qiagen cat. No. 28704).

2.2.1.5 Preparation of chemically competent TOP10 Escherichia coli cells.

Commercial TOP10 heat-shock competent *Escherichia coli* cells (Invitrogen) were plated out on solid Luria broth (LB) plates. The next day a tube containing 5 ml LB was inoculated with a colony from the LB plates for overnight growth at 225 rpm and 37° C. 5ml of the overnight culture was inoculated into 200 ml LB in a 1 litre flask. This culture was grown at 37° C at 225 rpm until an OD₆₀₀ value of 0.3 was reached. The culture was spun down inside a pre-cooled sterile centrifuge tube at 5,000 rpm and 4°C for 10min. The pellet was resuspended in 100ml ice-cold 100mM calcium chloride (CaCl₂) and incubated on ice for 20 minutes, after which the cells were spun down at 4,000 rpm and 4° C for 10min. The pellet was resuspended in 20ml ice-cold 100mM CaCl₂ and the culture was incubated for 1 hour on ice. 3.87 ml 100% glycerol was added to the centrifuge tube to give a final concentration of 15% glycerol and 100mM CaCl₂. The culture was mixed gently and 200 µl was aliquoted to cold 0.5 ml Eppendorf tubes. Tubes were snap frozen in liquid nitrogen and stored at -80°C for future use.

2.2.1.6 Ligation of PCR fragments into the pCR2.1 topo vector

PCR fragments were cloned into the TA cloning vector pCR2.1 (Invitrogen, cat. no. K2020-20) using the manufacturer's protocol. The vector with insert was then transfected into chemically competent TOP10 cells.

2.2.1.7 Heat-shock of plasmid DNA into chemically competent TOP10 cells

1 μ l of 1 μ l μ l⁻¹ plasmid DNA was added to 50 μ l of ice-cold competent cells. The cells were then heat-shocked at 42°C for a duration of 45 seconds. Afterwards the tube was directly placed on ice for 2 minutes. Subsequently 200 μ l LB was added, and the culture was incubated for 1 hour at 37°C at 200 rpm. Finally 75 μ l and 150 μ l of cultures were plated on solid LB with the appropriate antibiotic.

2.2.1.8 Restriction digests of plasmid DNA

To facilitate cloning, plasmids were digested with appropriate restriction endonucleases ordered from Promega as summarised in Table 2.4.

Components	Volumes or units
Plasmid DNA for backbone fragment	5 μg (usually 5 μl)
Restriction endonuclease I	1 unit if single digest
	2 units if double digest
Restriction endonuclease II	1 unit if single digest
	2 units if double digest
Appropriate restriction buffer (10x)	2 µl
BSA (10x) (if needed)	2 μl if needed
MilliQ ddH ₂ O	Add until final volume is 20 µl
Total mix	20 μl

Table 2.4: General restriction digestion overview

Components	Volumes or units
plasmid DNA for creating an insert	10 μg (usually 10 μl)
Restriction endonuclease I	1 unit if single digest
	2 units if double digest
Restriction endonuclease II	1 unit if single digest
	2 units if double digest
Appropriate restriction buffer (10x)	2 µl
BSA (10x) (if needed)	2 μl if needed
MilliQ ddH ₂ O	Add until final volume is 20 μ l
Total mix	20 µl

2.2.1.9 Ligation of inserts and vectors

Digested inserts and vectors were ligated together using T4 DNA Ligase (Invitrogen, cat.

no. 15224-017), according to the manufacturer's protocol.

2.2.1.10 Southern blot analysis

Southern blot analysis was performed according to the method of McCabe et al (1997).

2.2.1.10.1 PCR DIG-probe labelling

A dNTP labelling mix was used from the digoxigenin (DIG) DNA labelling kit (Roche cat. No. 11175033910) in conjunction with GoTaq polymerase (Promega cat. No. M8301). The PCR reaction was performed in a 0.2 ml Eppendorf tube, containing 1 μ l of 0.1 μ g μ l⁻¹ template DNA, 0.2 μ l GoTaq polymerase, 10 μ l 5x buffer, 6 μ l 2.5 M CaCl₂, 1 μ l 10 mM forward primer, 1 μ l 10 mM reverse primer, 5 μ l dNTP labelling mix and 25.8 μ l MilliQ. A control reaction with unlabeled PCR reaction was also set up as a reference. The PCR cycle consisted of 35 cycles with the annealing temperature five degrees Celsius below the Tm of the used primers. 5 μ l of the reaction mix was analysed on a 0.8% agarose gel. The control product would show at the expected size, whereas the labelling reaction's product would migrate slower due to the integrated dUTPs. DIG-labelled probes were stored at -20⁰C until use.

2.2.1.10.2 Sample digestion and electrophoresis

For testing plastid putative transformants 1 μ g of total DNA was digested with *SacII*, while for nuclear putative transformants 12 μ g of total DNA was digested with *SacII*. As control, 0.1 μ g plasmid DNA was digested with *SacII* or *KpnI* depending on the plasmid. Digests were setup containing 1 μ l restriction enzyme, 2 μ l of appropriate restriction enzyme buffer, 2 μ l 10x BSA, an x amount of DNA depending on the concentration and MilliQ to added to gain a final volume of 20 μ l. The reactions were incubated at 37^oC for a minimum of 16 hours. The reaction mixes were ran on a 0.8% agarose gel for five hours at 60 volts and visualised using UV.

2.2.1.10.3 Southern blotting and hybridisation with probe

The DNA was blotted onto a Hybond N⁺ membrane by capillary pull overnight using 0.4M NaOH as transfer buffer (McCabe et al. 1997). The capillary blot was dismantled and the membrane was neutralized by washing in 2x SSC (0.3M sodium chloride, 30 mM sodium citrate, pH 7) for 5 minutes. The membrane was subsequently baked for 30 minutes at 120° C, after which the membrane was transferred into a roller tube containing 20 ml pre-hybridisation solution (DIG easy hyb solution (Roche cat. No. 11603558001)) and incubated for a minimum of 1 hour at 37° C. Meanwhile DIG labelled probe was denatured for 10min at 95° C, of which 25 µl was added to 10 ml of DIG easy hyb solution, resulting in the hybridisation solution. The pre-hybridisation solution was poured off, and replaced with the hybridisation solution. The roller tube was placed back in the hybaid oven at 42° C for 16 hours. The pre-hybridisation solution can be stored at - 20° C and be reused three times. The membrane was washed twice in 50ml of wash solution A (2x SSC, 0.1% SDS) at 68° C for 15 minutes.

2.2.1.10.4 Chemiluminescent detection

The membrane was rinsed briefly in buffer 1A (0.1M Maleic acid, 3M sodium chloride, pH 8, autoclaved, 0.3% tween-20). The membrane was blocked by incubation in 50ml of 0.75% blocking solution (Roche cat No. 11096176001 dissolved in buffer 1A) for one hour. The solution was poured in a tube, and anti-DIG-AP antibody was prepared by dilution 1:10.000 (v/v) in the blocking solution. The membrane was incubated in this solution for 30 minutes. The unbound anti-DIG-AP was removed by washing the

membrane five times in buffer 1A for 10 minutes. The blot was incubated in 50 ml buffer 3 (0.1M Tris/Cl, pH 9.5, 0.1M sodium chloride) for five minutes, after which buffer 3 was replaced with buffer 3 containing 0.24 mM CDP-star (Roche cat No. 12041677001) for five minutes. The blot was drained of excess solution and sealed between two acetate sheets, the hybridisation signals were detected by exposing the filter to Kodak X-ray film for 1 to 16 minutes.

2.2.2 Vector construction pIAPRvdB4 and pIAPRvdB5

2.2.2.1 Primers used for construction of pIAPRvdB4 and pIAPRvdB5

The following primers were used for construction of the *Lolium perenne* L. plastid transformation vectors pIAPRvdB4 and pIAPRvdB5.

P1trnI: <u>aagctt</u>tttagggtgaagtaagacc

Underlined sequence is the *HindIII* restriction site.

P2trnI: <u>ttaattaaggtacc</u>tgcttcttctattcttttcc.

Underlined sequences are the *PacI* and *KpnI* restriction sites respectively

P1trnA: ttaattaatctgactctttcatgcatac

Underlined sequence is the *PacI* restriction site

P2trnA: ccatgaatgcgaaatcatag.

P1Prrn: <u>Ggtaccgctcccccgccgtcgttcaa</u>

Underlined sequence is the KpnI restriction site

P2Prrn-RbcL: gagetcccctccctacaactgtatcca

Underlined sequence is the *SacI* restriction site

P1smGFP: <u>gagctc</u>atgagtaaaggagaagaact

Underlined sequence is the SacI restriction site

P2smGFP: <u>Ggccggcccccccttatttgtatagttcatccatgc</u>

Underlined sequence is the *FseI* restriction site, the sequence in red is the ribomosal binding site from *RbcL* gene derived from *Nicotiana tabacum*

P1aphA: ggccggccatgaccatggaattaccaaa

Underlined sequence is the *FseI* restriction site

P2aphA: gcggccgctcaattcaattcatcaagtt

Underlined sequence is the *NotI* restriction site

P1rps16: gcggccgcaccgaaattcaattaaggaa

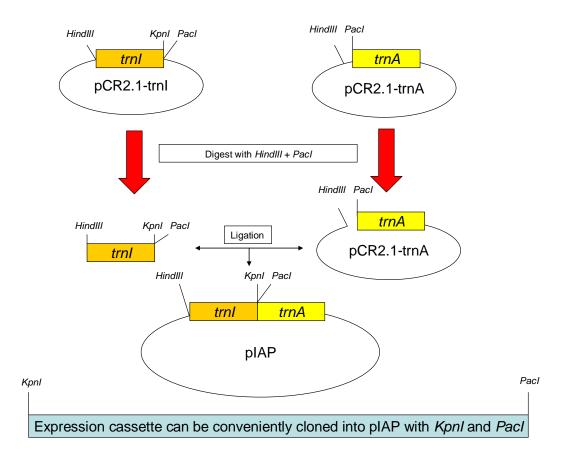
Underlined sequence is the NotI restriction site

P2rps16: <u>ctcgagttaattaa</u>agaacacggaattcaatgga

Underlined sequences are the *XhoI* and *PacI* restriction sites respectively

P1nheI- smGFP: gctagcagtaaaggagaagaact

Underlined sequence is the NheI restriction site


P2T7g10-ndeI-nheI: gctagccatatgtatatctccttctt

Underlined sequences are the *NheI* and *NdeI* restriction sites respectively

2.2.2.2 Construction of the Lolium perenne transformation vector pIAP

The flanking regions *trnI* and *trnA* were amplified from total DNA isolated from *Lolium perenne* accession '*Shandon*' with the primers P1trnI, P2trnI, P1trnA and P2trnA (see 2.2.2.1). The PCR products were ligated into pCR2.1, and subsequently sequenced at John Lester's DNA sequencing facility at Cambridge using the M13 sequencing primers, which bind on the pCR2.1 vector for confirmation. Positive clones of fragments trnI and

trnA were ligated together with the use of restriction sites *HindIII* and *PacI*. This resulted in the transformation vector pIAP with a *KpnI-PacI* cloning site for integration of an expression cassette. The construction of this vector is illustrated in Fig. 2.1

Fig. 2.1: Illustration of construction of the *Lolium perenne* L. plastid transformation vector pIAP. Flanking sequences homologous to the *Lolium perenne* L. plastid region $trnI(tRNA^{ile})$ and $trnA(tRNA^{ala})$.

2.2.2.3 Construction of expression cassette RvdB4:

The following fragments for pRvdB4 were amplified:

Full length Prrn promoter + *rbcL* 5'UTR from pZS197(Svab et al. 1990), with the following primers P1Prrn and P2Prrn-Rbcl (see 2.2.2.1). *smGFP* (soluble modified *Green Fluorescent Protein*) from the plasmid smGFP (Davis and Vierstra 1998) with the following primers, P1smGFP and P2smGFP (see 2.2.2.1). *AphA-6 (3'-aminoglycoside phosphotransferase*) from pSK.KmR (Bateman and Purton 2000), with the following primers; P1aphA, and P2aphA (see 2.2.2.1). *rps16* 3'UTR from total DNA isolated from *Nicotiana tabacum* Cv. 'Petit Havanna', with the following primers; P1rps16 and P2rps16 (see 2.2.2.1). Amplified fragments were cloned into pCR2.1 and sequenced for confirmation using M13 primers which bind to the pCR2.1. Positive clones were selected and used to construct the vector pRvdB4. An overview of the steps that were involved in this process, are illustrated in Fig. 2.2a and Fig. 2.2b.

pCR2.1-aphA-6 and pCR2.1-Trps16, were digested with *NotI* and *XhoI*. The rsp16 fragment was subsequently cloned downstream of the *aphA-6* gene. This resulted in the pCR2.1-aphA-6-Trps16 construct. This vector and the pCR2.1-smGFP were digested with *SacI* and *FseI*. After which the smGFP fragment was cloned upstream of the *aphA-6* gene, resulting in the pCR2.1-smGFP-aphA-6-Trps16, finally this vector and the pCR2.1-Prrn-Rbcl 5'UTR were digested with *KpnI* and *SacI*. The Prrn-Rbcl 5'UTR fragment was cloned upstream of the *smGFP* gene, resulting in the expression vector pRvdB4.

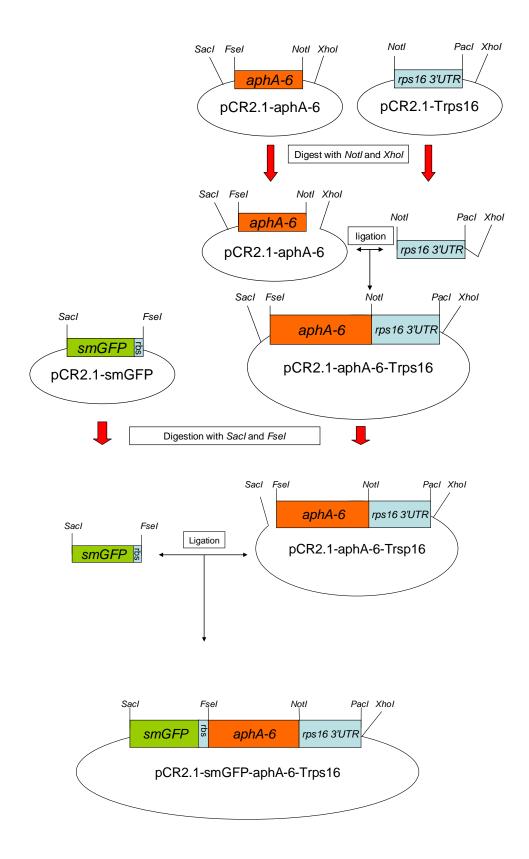
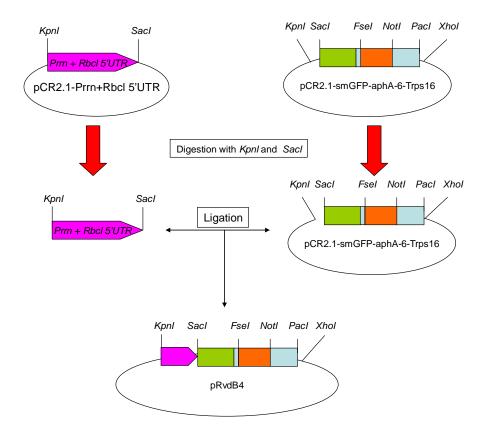
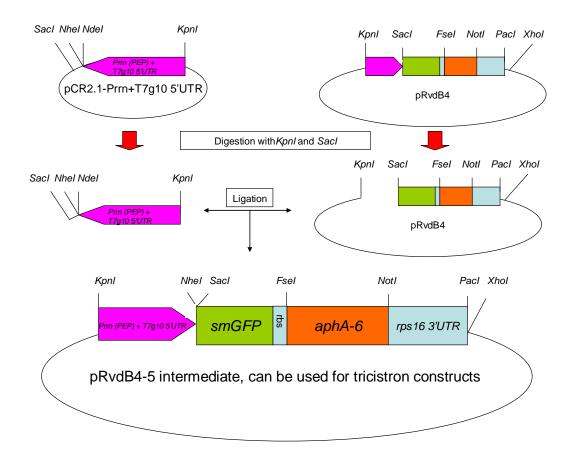



Fig. 2.2a: Part I of stepwise illustration of the construction of expression vector pRvdB4


Fig. 2.2b: Part II of stepwise illustration of the construction of expression vector pRvdB4. Prrn: Promoter from the *rrn* operon in *Nicotiana tabacum*, *rbcL: rubisco large subunit*, *smGFP: soluble modified Green Fluorescent Protein*, aphA-6: *3'-aminoglycoside phosphotransferase*, *rps16: ribosomal protein S16*.

2.2.2.4 Construction of expression cassette RvdB5:

The expression cassette RvdB5 contains the truncated Prrn promoter with the binding sites for the PEP (Plastid-Encoded Polymerase), fused with the *T7g10* (*gene* 10 of the T7 phage) leader for high expression of the transgene. The Prrn-*T7g10* fragment was amplified from pHK20 (Kuroda and Maliga 2001b) using the following primers; P1Prrn and P2T7g10-ndeI-nheI (see 2.2.2.1). The *smGFP* fragment was amplified from pRvdB4 using the following primers; P1ndeI- smGFP and P2smGFP (see 2.2.2.1). The cloning steps are illustrated in Figs. 2.3 and 2.4.

pCR2.1-Prrn-T7g10 5'UTR and pRvdB4 were digested with *KpnI* and *SacI*. The Prrn T7g10 5'UTR fragment was cloned into the excised region from pRvdB4, replacing the Prrn Rbcl 5'UTR. The resulting vector was pRvdB4/5 intermediate, as shown in Fig. 2.3. The pRvdB4/5 intermediate vector can be used to construct a tricistronic vector. An extra gene can be cloned between the T7g10 leader and the *smGFP*. However if done, an extra ribosomal binding site (RBS), has to be amplified between the new gene and the *smGFP*.

Finally the pRvdB4/5 intermediate and the pCR2.1-nheI-smGFP vectors were digested with *NheI* and *FseI*. The NheI-smGFP-FseI fragment was cloned into the excised region of the pRvdB4/5 intermediate, replacing the *smGFP* fragment from pRvdB4. This resulted in the pRvdB5 expression vector. The maps of the completed vectors are shown in Fig. 2.5.

Fig. 2.3: Illustration of construction of the intermediate vector pRvdB4/5, Prrn (PEP): *Prrn(PEP)*: Truncated promoter of the *rrn* operon including the PEP binding sites. *T7g10* 5'UTR: *gene 10* of the T7 phage 5'UTR. *smGFP: soluble modified Green Fluorescent Protein*, aphA-6: *3'-aminoglycoside phosphotransferase*, *rps16*: *ribosomal protein S16*

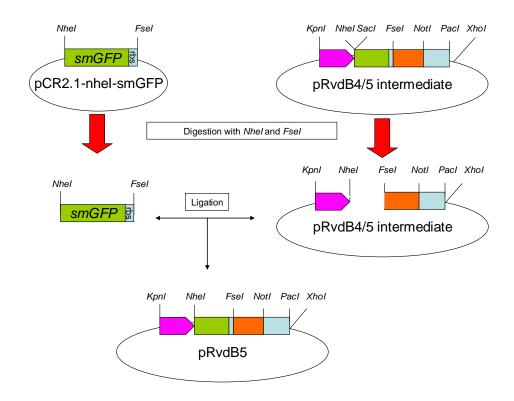
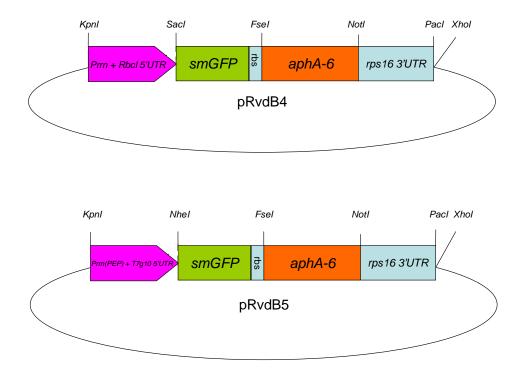



Fig. 2.4: Final step of construction of expression vector pRvdB5

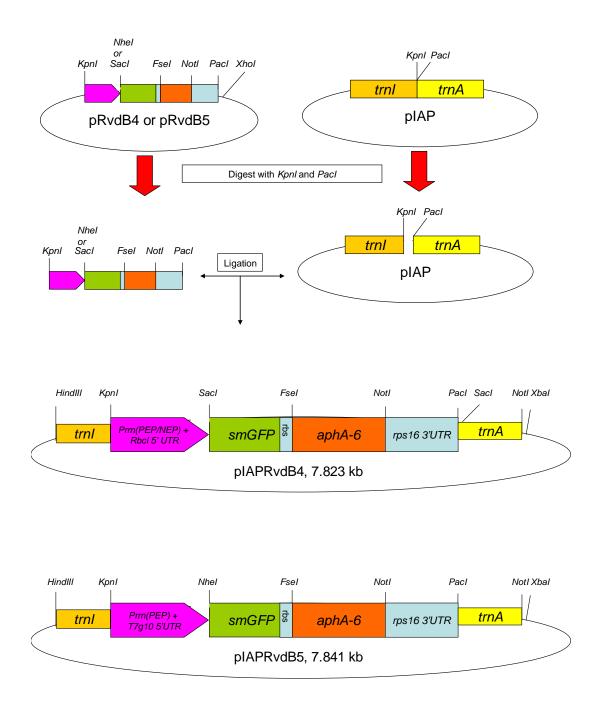


Fig. 2.5: Complete map of pRvdB4 and pRvdB5, (illustrated fragment sizes do not represent actual sizes)

Prrn: Full length promoter from the *rrn* operon of *Nicotiana tabacum*, *rbcL: rubisco large subunit*, *Prrn(PEP)*: Truncated promoter of the *rrn* operon of *Nicotiana tabacum* including the PEP binding sites. *T7g10* 5'UTR: *gene 10* of the T7 phage. *smGFP: soluble modified Green Fluorescent Protein*, aphA-6: *3'-aminoglycoside phosphotransferase*, *rps16: ribosomal protein S16*.

2.2.2.5 Construction of the transformation vectors pIAPRvdB4 and pIAPRvdB5

The transformation vector pIAPRvdB4 and pIAPRvdB5 was constructed by digesting both the pIAP and pRvdB4/5 with *KpnI* and *PacI*. The excised expression cassette was ligated into pIAP resulting in respectively pIAPRvdB4 and pIAPRvdB5 as illustrated in Fig. 2.6.

Fig. 2.6: Illustration of introduction of RvdB4 and RvdB5 cassettes into the *Lolium perenne* L. plastid transformation vector pIAP, resulting in plastid transformation vectors pIAPRvdB4 and pIAPRvdB5.

2.2.2.6 Testing functionality of pIAPRvdB4 and pIAPRvdB5

2.2.2.6.1 Testing for GFP accumulation in Escherichia coli

Escherichia coli stain TOP10 was transfected with either plastid transformation vector pIAPRvdB4, pIAPRvdB5 or an empty transformation vector pIAP, as described in paragraph 2.1.1.7.

Transfected bacteria, were grown overnight in 3 ml of LB, after which centrifuged bacteria could be assessed for GFP accumulation using a tabletop UV-light.

2.2.2.6.2 Testing for functionality of the *aphA-6* gene conferring resistance to G-418 and paromomycin

To test if the *aphA*-6 gene was correctly translated, and to test if G-418 and paromomycin could be used as antibiotic, the expression cassette was ligated into the pUC19 vector, which lacked a backbone containing the *nptII* gene. This step was necessary, due to the *nptII* gene within the backbone of the transformation vector pIAPRvdB4 and pIAPRvdB5. Bacteria containing pUC19-RvdB4, pUC19-RvdB5 or pUC19 were plated on LB + 50 mg L⁻¹ paromomycin and LB + 50 mg L⁻¹ G-418 and allowed to grow overnight at 37° C. Growth was assessed by looking at the number of colonies that developed for each construct.

2.2.3 In vitro culture methods

2.2.3.1 Plant material:

Seed from six accessions of *Lolium perenne* L. were provided by Teagasc, Oak Park, Carlow. These were 'Cashel', 'Shandon', 'Greengold' (4n), 'S23', 'Cancan' and 'Limes'. Another two accessions were acquired, namely cultivars 'Action' and 'Telstar' (kindly provided by Dr. Christian Sig Jensen, DLF-Trifolium A/S, Denmark)

2.2.3.2 Aseptic techniques

All tissue culture experiments were carried out in a laminar flow cabinet using aseptic techniques. Equipment was sterilized, by dipping in 70% ethanol, prior to flaming. All media were sterilized by autoclaving for 20 minutes at 120° Celsius. Heat labile chemical solutions were filter sterilized using Millex GP filter units (pore size 0.22µm)

2.2.3.3 Culture media

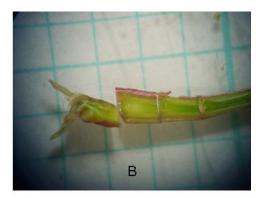
The media used for regeneration studies of Lolium perenne L are described in Table 2.5.

Name of media	CIM	CMM	RGM1	RGM2	GM
	(Callus	(Callus	(Regeneration	(Regeneration	(Germination/
Ingredients	Induction	Maintenance	medium 1)	medium 2)	Rooting
	Medium)	Medium)			medium)
MS + vitamins	4.4 g L ⁻¹	4.4 g L ⁻¹	4.4 g L ⁻¹	4.4 g L ⁻¹	2.2 g L ⁻¹
(Murashige &					
Skoog, 1962)					
(including					
vitamins)					
Sucrose					30 g L ⁻¹
Maltose*	30 g L ⁻¹	30 g L ⁻¹	30 g L ⁻¹	30 g L ⁻¹	-
2,4-D*	5 mg L ⁻¹	5 mg L^{-1}	-	0.1 mg L ⁻¹	-
BAP*	-	0.25 mg L ⁻¹	1 mg L ⁻¹	0.25 mg L ⁻¹	-
micro agar	7 g L ⁻¹	7 g L ⁻¹	7 g L ⁻¹	7 g L ⁻¹	7 g L ⁻¹
рН	pH 5.7	рН 5.7	pH 5.7	pH 5.7	рН 5.7

 Table 2.5. Composition of media used for tissue culture.

*: Filter sterilised, and added after autoclaving

2.2.3.4 Surface sterilization of seeds


Seeds were placed in 1.5ml eppendorf tubes, with 1 ml of 5% sodium hypochlorite (undiluted Domestos) solution 1 hour. The seeds were three times rinsed with sterile water, after which they were transferred to a new sterile eppendorf tube and kept overnight at 4°C. The next day the seeds were treated with 0.5% sodium hypochloride for 10min, after which they were rinsed three times with sterile water and left to dry on a sterile filter paper in the laminar flow unit before use.

2.2.3.5 Induction of callus cultures

2.2.3.5.1 Induction of calli from apical meristem and leaf-base explants

Sterile seedlings were grown for four weeks on 150 ml of Germination Medium (GM) (see Table 2.5.) in polypropylene tubs of 90mm in diameter and 140mm in height. After four weeks apical meristems and 2mm sections of leaf-base explants adjacent to the apical meristem were removed from the seedlings under a compound microscope (Cambridge Instruments, model Z30 E) see Fig. 2.7. The explants were arranged on the Petri dishes according to leaf number and distance from the apical meristem. From these pieces, calli were induced on CIM (see Table 2.5.) as described by (Newell and Gray 2005) (see Fig. 2.7). Callus was induced for four weeks in the dark at 22°C.

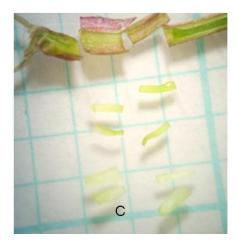


Fig. 2.7: Preparation of source tissue for callus induction;

A: 4 week old base of a seedling, B: longitudinal section of leaf base, C: excision of 2mm leaf-base explants adjacent to the apical meristem. Small squares on roster paper represent 2mm by 2mm.

2.2.3.5.2 Induction of calli from mature embryos

Sterilized seed were soaked in sterile water overnight at 4°C to facilitate embryo excision. The next day, the embryos were aseptically excised from the seed under a compound microscope (Cambridge Instruments, model Z30 E) with the use of a seeker (see Fig. 2.8). The embryos were gently squeezed with a seeker to prevent germination before placement on CIM (see Table 2.5) in the dark at 22°C for callus induction.

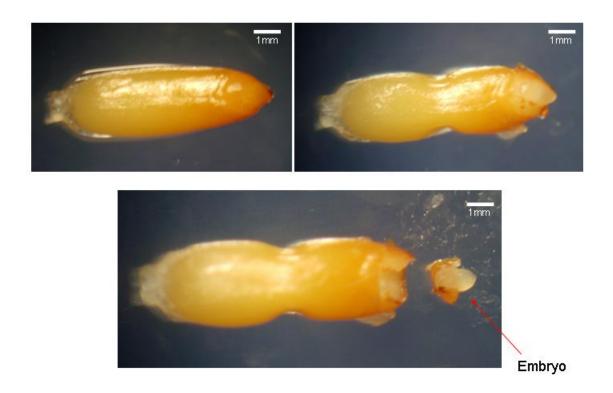


Fig 2.8: Mature embryo excision from sterile seeds

2.2.3.6 Shoot regeneration

2.2.3.6.1 Direct shoot regeneration

This protocol consisted of direct shoot regeneration, after callus induction (Bajaj et al. 2006). Four week old calli were placed on Regeneration medium 1 (RGM1) (see Table 2.5) at 22°C with a 16 hour photoperiod. Calli were transferred to new RGM1 media biweekly.

2.2.3.6.2 Delayed shoot regeneration

This protocol consisted of a callus maintenance phase, which allows the calli to differentiate further into the embryogenic stage using a Callus Maintenance Medium (CMM, see Table 2.4.) in the dark at 22°C. Calli which produced shoots were transferred to Regeneration Medium 2 (RGM2) (see Table 2.5) at 22°C with a 16 hour photoperiod, while the remaining calli were sub cultured on CMM at a 22°C with a 16 hour photoperiod. Calli were sub cultured biweekly. The percentage of calli that produced shoots was recorded.

2.2.3.7 Root induction from shoots

Small plantlets were transferred to tubs with 150 ml of Rooting Medium (RM) (Table 2.5) for root development.

2.2.4 Determination of conditions for antibiotic-resistance selection

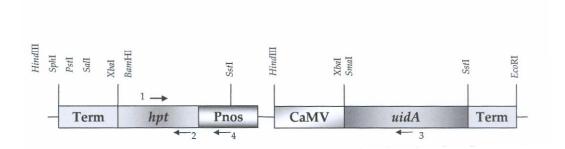
2.2.4.1 Antibiotic stock solutions

Antibiotics were added to freshly prepared medium from filter-sterilised 50 mg ml⁻¹ stock solutions.

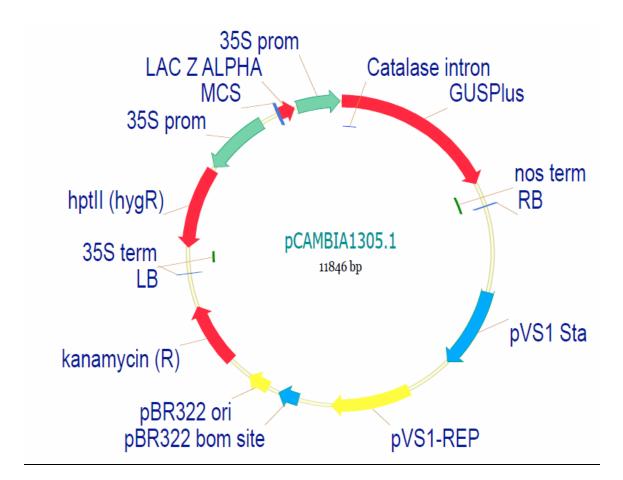
2.2.4.2 Testing effect of antibiotics on callus initiation and growth

To test if leaf-base explants could be used for the transformation experiments, leaf-base explants of Cv. 'Cashel' were placed on CIM (see Table 2.5) supplemented with various antibiotics at various concentrations in the dark at 22°C for four weeks. The percentage of explants producing regenerable calli was assessed, for each treatment twenty to thirty leaf-base explants were used.

2.2.4.3 Testing effect of antibiotics on callus differentiation and shoot formation


Four week old calli were placed on CMM (see Table 2.5) in a 16h photoperiod at 22° C with various concentrations of several antibiotics. The callus morphology and the frequency of shoot development were recorded for each treatment. For each treatment 20 calli were used.

2.2.5 Nuclear and plastid transformation experiments


2.2.5.1 Vectors used

For transient expression experiments and nuclear transformation experiments the vectors pGUSHYG (Fig. 2.9) (Nugent et al. 2006) and pCambia1305.1 (Fig. 2.10) (http://www.cambia.org) were used. Both contained the *uidA* gene, for visualisation of

cells containing the GUS protein (β -glucoronidase). Furthermore both contained the *hygromycin phosphotransferase* (*hpt*) gene for hygromycin selection in plants. The differences between the vectors were the expression signals and promoters. The pCambia 1305.1 vector contained introns within the *uidA* gene.

Fig. 2.9: Nuclear transformation vector pGUSHYG. It contains the *GUS* reporter gene, encoding β -glucuronidase under the control of the Cauliflower Mosaic Virus 35S promoter (CaMV) and terminator (Term). Furthermore it contains the selectable marker gene, hygromycin phosphotransferase (*hpt*) under regulation of the nopaline synthase promoter (Pnos) and termination (Term).

Fig. 2.10: Nuclear transformation vector pCambia 1305.1. Containing the hygromycin phosphotransferase (*hpt*) gene under regulation of the Cauliflower Mosaic Virus promoter (35S prom) and terminator (35S term). Furthermore it contains a modified *GUS* reporter gene including introns for optimized expression under regulation of the 35S promoter and nopaline synthase terminator. This vector also contains left and right border regions (LB, RB) for use in conjunction with Agrobacterium-mediated transformation.

For the plastid transformation experiments the vector pIAPRvdB5 was used (Fig. 2.6).

2.2.5.2 Biolistic delivery of DNA

2.2.5.2.1 Stock solutions for biolistical delivery

0.1M Spermidine stock solution: 1g ampoule spermidine was heated in a water bath at 37° C for 5 min until liquid. 750 µl spermidine was transferred to a falcon tube, after which 47.5 ml of MilliQ was added. The solution was filter-sterilized and divided into 200 µl aliquots in 500 µl Eppendorf tubes. 0.1 M spermidine stocks were stored at -80°C.

2.5M Calcium chloride stock solution: 3.86 g CaCl₂.2H₂O was dissolved in 10 ml MilliQ using a vortex. The solution was divided into aliquots of 1 ml in 1.5ml Eppendorf tubes and stored at -20°C. 0.6 Micron Gold particle preparation; 36 mg of 0.6 micron Gold (Biorad) was transferred into a 1.5 ml Eppendorf tube. 1 ml of 96% ethanol was added to the tube and sonicated for 2 minutes, after which the tube was spun at 11,000 rpm for 5 seconds. The supernatant was removed, and the step was repeated twice. After this the pellet was washed with 1 ml of sterile MilliQ, followed by a spin at 13,000 rpm for 5 seconds. The supernatant was removed, and the step was repeated twice. After the last spin, the pellet of gold was resuspended in 600 μ l 50% sterile glycerol. Aliquots of 30 μ l were made from this suspension in 1.5 ml Eppendorf tubes. Each tube contained 1.8 mg gold and could be used for 10 biolistical shots. The tubes were stored at -20°C.

2.2.5.2.2 Leaf-base explants preparation for biolistics

2 mm leaf-base explants were excised from four-week old seedlings, and placed on CIM + 64 g L⁻¹ mannitol for pre-osmotic treatment 1 day prior to biolistic delivery, as illustrated in Fig. 2.11.

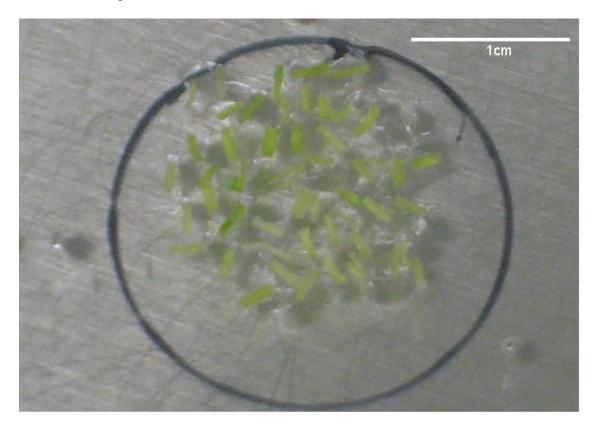


Fig. 2.11: Arrangement of leaf-base explants for biolistic delivery.

2.2.5.2.3 Callus preparation for biolistics

Four week-old calli (both embryogenic and non-embryogenic) were broken up into 0.25 cm2 pieces and placed in the middle of a Petri dish containing CIM + 64 g L-1 mannitol for pre-osmotic treatment 1 day prior to biolistic delivery, as illustrated in Fig. 2.12.

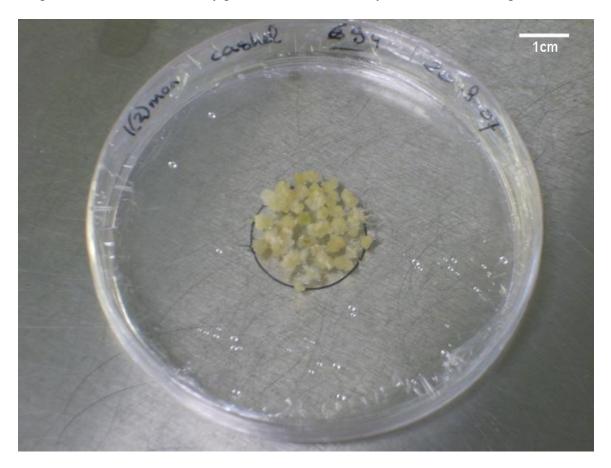


Fig. 2.12: Arrangement of calli for biolistic delivery

2.2.5.2.4 Testing for efficiency of DNA coating on gold particles

1.8 mg of 0.6 micron Gold was sonicated for 2 minutes. 15 μ l 1 μ g μ l⁻¹ plasmid DNA was added to the gold and mixed 5 seconds using a vortex at speed setting 3. Next, 20 μ l 0.1M spermidine and 50 μ l 2.5M CaCl2 was added to the lid of the tube and mixed. The lid was closed and the whole suspension was vortexed for either 3 minutes (protocol I) or 15 seconds (protocol II) at speed setting 3, followed by a spin at 5,000 rpm for 15

seconds. The supernatant was removed and stored (Solution B) and the pellet was washed with 140 μ l 96% ethanol. The resulting suspension was spun at 3,000 rpm for 1 min, after which the supernatant was removed and stored (Solution C). The pellet consisting of DNA-coated gold particles was resuspended in 100 μ l 96% ethanol, and spun down at 5,000 rpm for 15 seconds. The supernatant was removed and stored (Solution D). DNA coated to the gold particles was dissolved in 20 μ l Milli-Q. (Solution A).

DNA from solutions B, C and D was precipitated, by adding 1/10 volume of 3 M sodium acetate pH 5.2 and 1 volume of 96% ethanol. The solutions were incubated at -20° C for 30 minutes and spun down at max. rpm for 10 minutes. The DNA pellets were washed with 300 µl 70% ethanol, followed by another spin at max. rpm for 3 minutes. The pellet was resuspended in 20 µl MilliQ. The DNA originated from the gold (A) and precipitated DNA from B, C and D were run on a 0.8% agarose gel, for visualisation of DNA retained at each step during coating.

2.2.5.2.5 Particle preparation for bombardment

1.8 mg of 0.6 micron Gold was sonicated for 2 minutes. 15 μ l 1 μ g μ l⁻¹ plasmid DNA was added to the gold and mixed for 5 seconds using a vortex at speed setting 3. Next, 20 μ l 0.1M spermidine and 50 μ l 2.5M CaCl2 was added to the lid of the tube and mixed. The lid was closed and the whole suspension was vortexed for 15 seconds at speed setting 3, followed by a spin at 5,000 rpm for 15 seconds. The supernatant was removed and the pellet was washed with 140 μ l 96% ethanol. The suspension was spun at 3,000

rpm for 1 min, after which the supernatant was replaced with 100 μ l 96% ethanol. 10 μ l of gold-DNA suspension was used per shot.

2.2.5.2.6 Preparation for biolistics

Transformation experiments were conducted through biolistics. For these experiments the "Biolistic® PDS-1000/He Particle Delivery System" from Bio-Rad was used, as described by (Svab and Maliga 1993), and (Johnston 1990).

The assembly for the holder of the macrocarriers, the retaining cap for rupture disks and the tray for the Petri dishes were sprayed with 70% ethanol and dried prior to use. The macrocarriers were soaked in 96% ethanol and left to dry. The stopping screens were submerged in 96% ethanol, flamed and left on a sterile cardboard plate in the laminar flow hood. The macrocarrier holder was submerged in 96% ethanol and flamed before being placed on a sterile cardboard plate. Dried macrocarriers were inserted into the macrocarrier holder. The rupture discs were submerged in 70% isopropanol prior to use.

2.2.5.2.7 Biolistic delivery process

10 µl of the DNA coated gold particles were pipetted onto the macrocarrier and left to dry for 15 minutes. When ready the gene gun was turned on, along with the vacuum pump. The helium tank was opened at a pressure of 200 PSI over the shooting pressure. The shooting chamber was sprayed with 70% ethanol before use. Rupture disks were placed in the retaining cap, and securely fastened in the top of the shooting chamber. The macrocarriers containing the microcarriers with the gold, were added to the holder assembly device, and placed directly beneath the retaining cap. Lastly the Petri dish with the calli or explants was placed on the Petri dish tray and located at the desired shooting distance from the holder assembly device. The chamber was closed, and a vacuum was created at 28 in Hg. When the right vacuum pressure was reached, the shots were performed by holding down the "fire" button until the rupture disc burst. Lastly the vacuum was released by pressing the "vent" button. The Petri dish was removed and wrapped with Parafilm. The contents of the chamber were reassembled with a new rupture disk and a new macrocarrier. The process was repeated for the remaining shots.

2.2.5.2.8 Treatment of calli and leaf-base explants after biolistics

Bombarded calli and leaf-base explants remained on CIM + 64 g L^{-1} mannitol for two more days, before transferral to other media.

2.2.5.2.9 Optimization of biolistic delivery regarding shooting parameters

Several different parameters (shooting distances and shooting pressures) were tested (Table 2.6) to find the optimal conditions for biolistics on calli of *Lolium perenne* L. They were evaluated by testing for GUS activity after biolistics with pCambia 1305.1, containing the *uidA* gene.

Shooting distance (cm)	Shooting pressure (PSI)	
6	900	
6	1100	
6	1350	
9	900	
9	1100	
9	1350	

Table 2.6: Parameters tested for biolistical delivery of DNA

2.2.5.3 Analysis of transient expression of *uidA* gene by GUS assay

Calli bombarded with pGUSHYG and pCAMBIA 1305.1 were tested for transient expression two days after biolistic delivery of DNA. GUS activity was tested histochemically by submerging the explants in the GUS incubation solution (100mM sodium phosphate buffer, pH 7; 10mM EDTA; 0.5mM potassium ferricyanide; 0.5mM potassium ferrocyanide; 1mM 5-bromo-4-chloro-3-indolyl β -D-glucuronide (X-gluc); 0.1%(v/v) triton X-100) at 37°C overnight. The number of blue spots, indicating GUS activity, was recorded the next day.

2.2.5.4 Fluorescent and confocal microscopy for GFP detection

Putative transformants could be analysed by checking for GFP presence using a fluorescent microscope or confocal microscope. Tissue is illuminated with light of specific wavelengths, which can be absorbed by GFP molecules, causing them to emit light of longer wavelengths. This light is passed through a specific filter, allowing visualisation of GFP within the tissue. As positive control, transplastomic tobacco plants expressing GFP within the plastids were used. Initial checks were performed with the fluorescent microscope "Olympus BX51" with a mercury lamp "Olympus U-RFL-T".

Confirmation of GFP presence and better resolution could be accomplished by using the confocal microscope "Olympus Fluoview 1000", with which photographs could be taken for subsequently analysis using the program "Olympus Fluoview version 1.6b".

2.2.6 Transformation

Initially biolistic delivery was performed on leaf-base tissue, but after re-evaluation of the strategy, the target tissue was changed to four week calli as described in section 2.2.5.2.3. All biolistical experiments were performed on cultivar 'Cashel', with the exception of the last few plastid transformation experiments, which were performed on Cultivar 'Action'

2.2.6.1 Nuclear transformation

A total of 175 biolistic shots were performed on four week old calli (± 20 calli per shot). Forty of these shots were performed with the nuclear transformation vector pGUSHYG (see map at Fig. 2.9). This vector contained the *hpt* selectable marker gene for hygromycin selection under regulation of the CaMV 35S promoter and the *uidA* gene as visual marker gene under regulation of the *nopaline synthase* promoter.

Another 135 shots were performed with the nuclear transformation vector pCAMBIA 1305.1 (see map at Fig.2.10), containing the *hpt* selectable marker gene and *uidA* visual marker gene, both under regulation of the CaMV 35S promoter.

2.2.6.2 Selection regime for nuclear transformation

Calli bombarded with pGUSHYG and pCAMBIA 1305.1 were moved to CIM two days after biolistics. After another five days, the calli were transferred to CIM + 75 mg L^{-1}

hygromycin B for two weeks, followed by two weeks on CIM + 150 mg L⁻¹ hygromycin B. Selection was continued after this on CMM + 150 mg L⁻¹ hygromycin B with biweekly sub culturing, until shoot development. Once shoots developed, calli with shoots were transferred to RGM2 + 150 mg L⁻¹ hygromycin B. Remaining calli were subculture on CMM + 150 mg L⁻¹ hygromycin B.

2.2.6.3 Plastid transformation

A total of 339 shots were performed on four week old calli (± 20 calli per shot). All the shots were performed with the *Lolium perenne* L. plastid transformation vector pIAPRvdB5. The first series of shots (102 shots), the calli were exposed to G-418 selection two days post-biolistics. The second series of shots (162 shots), the calli were exposed to paromomycin selection two days post-biolistics. The third series of shots (75 shots), the calli were exposed to paromomycin selection 14 days post-biolistics. Of which 27 shots were performed on Cv. 'Action' instead of Cv. 'Cashel'.

2.2.6.4 Selection regime for plastid transformation

2.2.6.4.1 Selection with geneticin (G-418)

Calli bombarded with pIAPRvdB4 and pIAPRvdB5 were transferred to CIM two days after biolistic delivery of DNA. After another five days the calli were transferred to CIM + 75 mg L⁻¹ G-418 for two weeks, followed by a two week period on CIM + 100 mg L⁻¹ G418. All calli were sub cultured thereafter biweekly on CMM + 100 mg L⁻¹ G-418 until shoot development. Calli with shoots were moved to RGM2 + 100 mg L⁻¹ G-418. When

green shoots were over 2 cm in size they were transferred to tubs with $RM + 100 \text{ mg L}^{-1}$ G-418 for rooting.

2.2.6.4.2 Selection with paromomycin

Calli bombarded with pIAPRvdB4 and pIAPRvdB5 were transferred to CIM two days after biolistics. After another five days the calli were transferred to CIM + 75 mg L⁻¹ paromomycin for two weeks, followed by a two week period on CIM + 150 mg L⁻¹ paromomycin. All calli were sub cultured thereafter biweekly on CMM + 150 mg L⁻¹ paromomycin until shoot development. Calli with shoots were moved to RGM2 + 150 mg L⁻¹ paromomycin. When green shoots were over 2 cm in size they were transferred to tubs with RM + 150 mg L⁻¹ paromomycin for rooting.

2.2.6.4.3 Delayed selection with paromomycin

Calli bombarded with pIAPRvdB4 and pIAPRvdB5 were transferred to CIM two days after biolistics. After 14 days the calli were transferred to CIM + 100 mg L⁻¹ paromomycin for two weeks, followed by a two week period on CIM + 150 mg L⁻¹ paromomycin. All calli were sub cultured thereafter biweekly on CMM + 150 mg L⁻¹ paromomycin until shoot development. Calli with shoots were moved to RGM2 + 150 mg L⁻¹ paromomycin. When green shoots were over 2 cm in size they were transferred to tubs with RM + 150 mg L⁻¹ paromomycin for rooting.

2.2.6.5 Characterisation of putative transformants

Nuclear putative transformed tissue could be analysed using several methods, the easiest and fastest method involved a GUS assay, to assess transgene expression of the *uidA* gene (see section 2.2.5.3). However due to gene-silencing, tissue could show up negative with the assay, while the tissue could actually be transformed. Therefore other methods were employed to assess transgene integration. These include PCR analysis and southern blots

Plastid putative transformed tissue could be analysed using several methods. The fastest method would be to use a fluorescent microscope, which can visualise GFP presence in transformed tissue (See section 2.2.5.4). Other methods were utilised to assess transgene integration, these include gene specific PCR analysis, long-range PCR analysis and southern blots.

2.2.6.5.1 PCR analysis of putative transformants

2.2.6.5.2 Primers used

Primers used for the PCR analysis of putative transformants were:

P1hpt CAMBIA: cctgcctgaaaccgaactgcccgct

(primer to assess nuclear transformants)

P2hpt CAMBIA: gatgttggcgacctcgtatt

(primer to assess nuclear transformants)

Plextern IA: tggatcacctccttttcagg

(external primer to assess putative plastid transformants)

P2 extern IA: gcaagcctttcctcttttga

(external primer to assess putative plastid transformants)

P2T7g10-ndeI-nheI: gctagccatatgtatatctccttctt

(Primer to assess putative plastid transformants) Underlined sequences are NheI and NdeI

P1aphA: ggccggccatgaccatggaattaccaaa

(Primer to assess putative plastid transformants) Underlined sequence is Fsel

P2aphA: gcggccgctcaattcaattcatcaagtt

(Primer to assess putative plastid transformants) Underlined sequence is the *NotI* restriction site

2.2.6.5.3 PCR analysis on putative transformants

All PCR reactions were carried about with RedAccuTaq[®] LA DNA Polymerase mix (Sigma, cat no. D4937). The PCR mix used is shown in Table 2.7 and the PCR cycle regime in Table 2.8.

Reaction mix	Volumes (µl)
$gDNA (1\mu g \mu l^{-1})$	1.0
Primer 1 (0.1 μ M μ l ⁻¹)	1.0
Primer 2 (0.1 μ M μ l ⁻¹)	1.0
REDTaq [®] Genomic DNA Polymerase	2.5
$(1 \text{ unit } \mu l^{-1})$	
10x REDaccuTaq buffer	5.0
dNTP (10mM)	2.0
MilliQ ddH ₂ O	37.5
Total reaction mix	50.0

 Table 2.7: general PCR mix

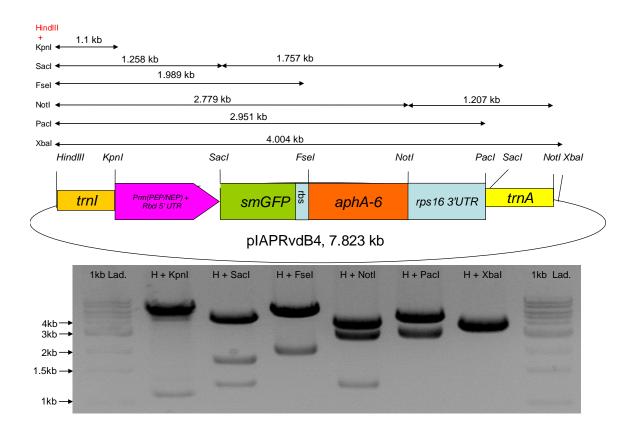
Steps	Temperature	Time	
Step1 Denaturation	94°C	5 min	
Step 2 Denaturation	94°C	30 seconds	
Step 3 Annealing	5°C below the lowest	30 seconds	
	melting temperature of both		
	primers		
Step 4 Extension	68°C	1kb per minute	
Step 5 Repeat cycles	Repeat step 2-4	30 times	
Step 6 Final extension 68°C		10 min	
Step 7 End of program	4°C	Indefinite storage	

 Table 2.8: PCR cycle

2.2.6.5.4 Southern blot analysis of putative transformants

Southern blotting was performed according to the method of (McCabe et al. 1997) as described in section 2.2.1.10.

2.2.7 Statistical analysis


For the tissue culture evaluation, replicates represented separate experiments conducted on different days. Arcsine transformation and *t*-tests were conducted in 'Microsoft Excel', whereas chi square tests and the variance tests were performed in the program 'Minitab Solutions 15'. All data sets were initially tested for sampling distribution using the chisquare test and analysed for equal variance using the Levene test. Subsequently *t*-tests were performed on arcsine transformed percentage values on the datasets to determine statistical differences, the differences were grouped accordingly.

2.3 Results

2.3.1 Construction of plastid transformation vectors pIAPRvdB4 and pIAPRvdB5

2.3.1.1 pIAPRvdB4

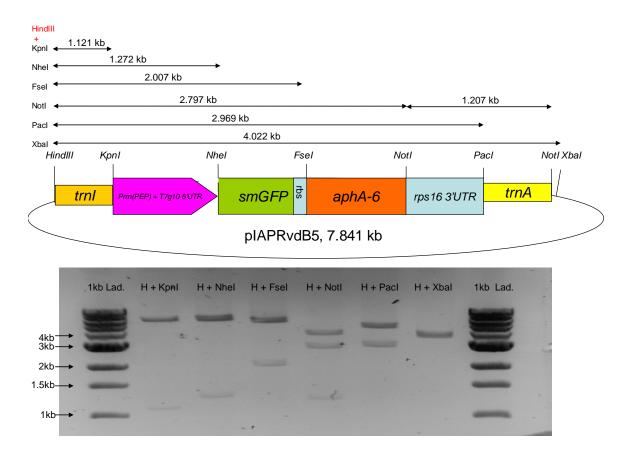
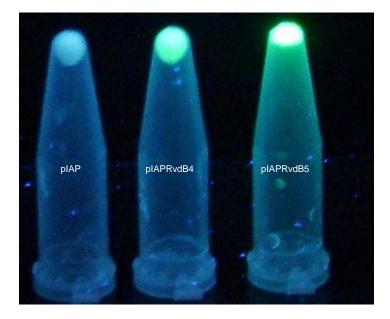

The vector pIAPRvdB4 has a total size of 7.823 kb (complete sequence in Appendix A). To show the vector was correctly assembled as described in section 2.2.2, the vector was digested with various restriction enzymes. This resulted in the following restriction pattern, which was confirmed as illustrated in Fig. 2.13.

Fig. 2.13: Illustration restriction digest pattern of pIAPRvdB4. The expected restriction pattern is shown at the top for *HindIII* and a second enzyme (*KpnI, SacI, FseI, NotI, PacI* and *XbaI*). Below are the separate digests on pIAPRvdB4 separated on a 0.8% agarose gel.

2.3.1.2 pIAPRvdB5

The vector pIAPRvdB5 had a total size of 7.841 kb (complete sequence in Appendix A). To show the vector was correctly assembled as described in section 2.2.2, the vector was digested with various restriction enzymes. This resulted in the following restriction pattern, which was confirmed as illustrated in Fig. 2.14.


Fig. 2.14: Illustration restriction digest pattern of pIAPRvdB5. The expected restriction pattern is shown at the top for *HindIII* and a second enzyme (*KpnI, NheI, FseI, NotI, PacI* and *XbaI*). Below are the separate digests on pIAPRvdB5 separated on a 0.8% agarose gel.

2.3.1.3 Functionality test for pIAPRvdB4 and pIAPRvdB5

Because of the prokaryotic nature of plastids, the expression cassette is also expected to be active in *Escherischia coli*. To show that the plasmids pIAPRvdB4 and pIAPRvdB5 were correctly assembled and functional, the expression cassettes were tested in *Escherischia coli*.

2.3.1.4 GFP accumulation

Both constructed vectors contain an expression cassette including the *smGFP* gene. Therefore if the bacteria contained these plasmids, they would fluorescence green under UV-light. As shown in Fig. 2.15 this was the case for bacteria containing either pIAPRvdB4 or pIAPRvdB5. The bacteria containing vector pIAPRvdB5 had a higher expression, as was expected due to the nature of the expression cassette.

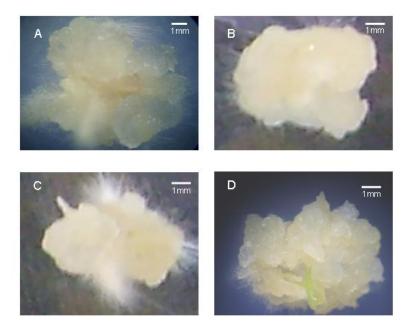
Fig. 2.15: Green Fluorescent Protein presence in *Escherischia coli* containing pIAPRvdB4 and pIAPRvdB5 (vector containing smGFP) and pIAP (control without smGFP).

2.3.1.5 Functionality of the *aphA-6* gene conferring resistance to G-418 and paromomycin

Bacteria transfected with pUC19-RvdB4 and pUC19-RvdB5 grew on LB + 50 mg L⁻¹ paromomycin and LB + 50 mg L⁻¹G-418, whereas bacteria with an empty pUC19 failed to grow on this medium. Moreover pUC19-RvdB4 and pUC19-RvdB5 fluorescent green under UV light, indicating the functionality of the *smGFP* gene within these constructs.

2.3.2 In vitro culture methods

2.3.2.1 Seed germination


The seed germination rate influences the amount of starting material which can be used to induce callus. In Table 2.9 the germination rates are shown of all the tested cultivars.

Cultivars	Germination rate in %
Cv. 'Shandon'	100
Cv. 'Cashel'	98
Cv. 'Greengold'	26
Cv. 'Cancan'	66
Cv. 'Limes'	7
Cv. 'Action'	~75
Cv. 'Telstar'	~75

Table 2.9: Germination rate of cultivars used

2.3.2.2 Callus induction

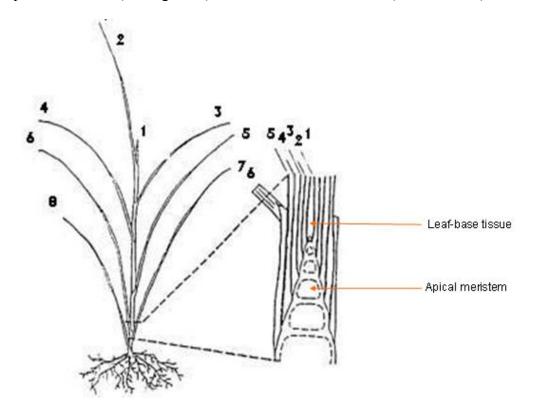

During this study, four different types of induced calli were observed; of which three types were able to induce shoots at a later stage (see Fig. 2.16, B, C and D). The fourth type was unable to initiate differentiation (see Fig. 2.16, A). More often then not, different types of calli could be observed within 1 cluster. To record the callus induction rate for each cultivar, regenerable callus type B, C and D were pooled together. These were recorded for their frequency of occurrence during the callus induction phase in relationship to the total number of explants used. Most calli were induced from the edges of the leaf-base explants, therefore when leaf-base explants were to be used as target tissue for transformation experiments, the chances of obtaining transgenic tissue would be restricted as the majority of the target cells would not be able to proliferate.

Fig. 2.16.: Types of calli induced from leaf-base explants. A: watery callus, B: Friable callus, C: Friable callus with root hairs, D: Embryogenic callus

2.3.2.2.1 Callus induction from apical meristems and adjacent leaf-base explants

In this study calli were induced from apical meristems and leaf-base explants adjacent to the apical meristems (see Fig. 2.17) on Callus Induction Media (see Table 2.5).

Fig. 2.17: Illustration of growth of a typical monocot plant. Numbers represent the order of leaves according to age, where 1 is the youngest and 8 is the oldest. Generally the numbering is reversed, but for the nature of this tissue culture study, the shown order was chosen.

Source: Modified from Colorado State University Extension no. 6.108: Grass Growth and Response to Grazing by M.J. Trlica

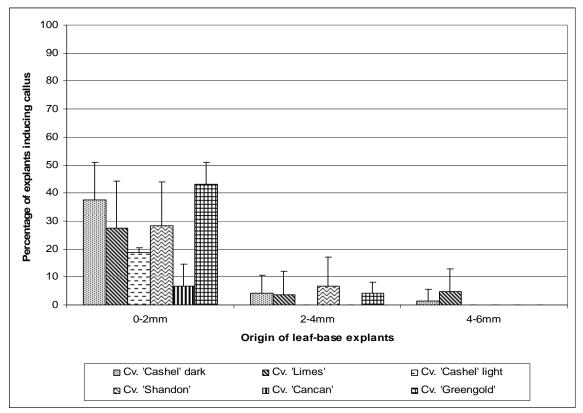

The leaf tissue adjacent to the apical meristems had the highest callus induction response. Tissue further away from the meristem had a significant decrease in callus induction rate. Furthermore older leaves proved to be less efficient in callus induction (Fig. 2.18 and Fig. 2.19). Differences in callus induction response between cultivars were observed. They were arranged in groups that were significantly different, separated for each origin of explants as shown in Table 2.10 and 2.11. Furthermore *in vitro* culture in the light had a significantly negative effect on callus induction rate in the cultivar 'Cashel' (16h photoperiod), compared to growth conditions in the dark (see Table 2.10 and Table 2.11). All the results were combined to rank the different cultivars for their overall efficiency in callus induction, as shown in Table 2.12. Cultivars 'Cashel' and 'Shandon' were ranked as most responsive to callus induction, whereas cultivar 'Cancan' was ranked the least responsive.

Fig. 2.18: The percentage of explants derived from the youngest leaf, producing regenerable callus. n = experimental replicates 'Cashel' dark n=15, 'Limes' n=6, 'Action' n=4, 'Telstar' n=4, 'Cashel' light n=2, 'Shandon' n=12, 'Cancan' n=3, 'Greengold' n=10. Error bars represent the standard deviation of the mean.

Table 2.10: Percentage of leaf explants that induce regenerable callus, separated into
different cultivars and source tissue. Between brackets are given the standard deviation of
the means. Means within a column followed by different letters are significantly different
according to the student <i>t</i> -test (two-tailed distribution, unequal variance done on arcsine
transformed percentages of combined replicates) with a statistical difference at P<0.05.
n.a. = not analysed.

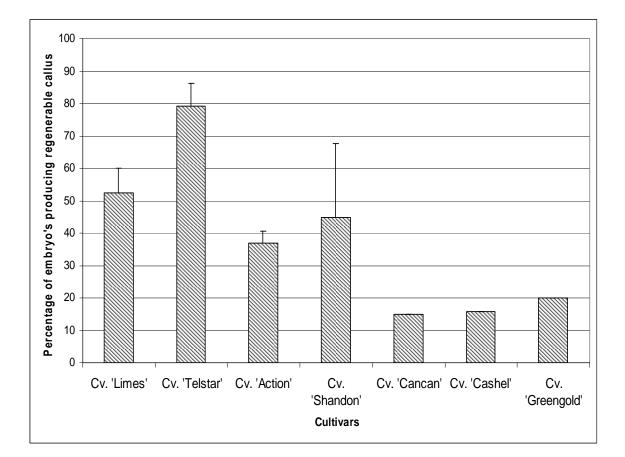
n.u. not unurysed.				
origin of explants	meristem	Leaf 1, 0-2mm	Leaf 1 2-4mm	Leaf 1 4-6mm
Cv 'Cashel' dark	93% (±1.5) ^a	88.3%(± 7.4) ^a	34.1%(±12.0) ^a	7.8%(±8.3) ^a
Cv. 'Limes'	94.4%(±0.0) ^a	57.5%(±10.0) ^b	21.9%(±14.6) ^{a,b}	9.5%(±8.2) ^a
Cv. 'Action'	92.2%(±2.9) ^a	70.8%(± 0.6) ^c	17.6%(± 5.6) ^{a,b}	n.a.
Cv. 'Telstar'	97.1%(±1.3) ^a	84.6%(±13.6) ^{a,b}	40.6%(± 0.3) ^b	n.a.
Cv. 'Cashel' light	n.a.	62.5%(± 0.0) ^b	7.5% (± 7.1) ^{a,b}	n.a.
Cv. 'Shandon'	n.a.	89.5%(± 8.0) ^a	40.2%(±14.3) ^{a,b}	3.1%(±6.3) ^a
Cv. 'Cancan'	n.a.	61.7%(± 1.4) ^b	13.1%(±13.0) ^{a,b}	n.a.
Cv. 'Greengold'	n.a.	81.5%(±18.7) ^{a,b}	20.7%(±23.9) ^{a,b}	2.5%(±7.1) ^a

Fig. 2.19: The percentage of explants derived from the second youngest leaf, producing regenerable callus. n = number of experimental replicates 'Cashel' dark n=15, 'Limes' n=6, 'Action' n=4, 'Telstar' n=4, 'Cashel' light n=2, 'Shandon' n=12, 'Cancan' n=3, 'Greengold' n=10. Error bars represent the standard deviation of the mean.

Table 2.11: Percentage of leaf explants inducing regenerable callus. Between brackets are given the standard deviation of the means. Means within a column followed by different letters are significantly different according to the student *t*-test (two-tailed distribution, unequal variance done on arcsine transformed percentages of combined replicates) with a statistical difference at P<0.05.

n.a. = not analysed.			
Origin of explants	Leaf 2 0-2mm	Leaf 2 2-4mm	Leaf 2 4-6mm
Cv 'Cashel' dark	37.5%(±13.5) ^{b,c,d}	4.1%(± 6.5) ^b	1.3%(±4.3) ¹
Cv. 'Limes'	27.5%(±16.7) ^{b,c,d,e}	3.8%(± 8.4) ^{a,b}	4.8%(±8.2) ¹
Cv. 'Action'	n.a.	n.a.	n.a.
Cv. 'Telstar'	n.a.	n.a.	n.a.
Cv. 'Cashel' light	18.8%(± 1.8) ^{a,c,e}	$0.0\%(\pm 0.0)$ ^b	n.a.
Cv. 'Shandon'	28.4%(±15.6) ^{b,c,e}	6.8%(±10.3) ^a	0.0%(±0.0) ¹
Cv. 'Cancan'	6.7%(± 7.8) ^{a,e}	n.a.	0.0%(±0.0) ¹
Cv. 'Greengold'	43.2%(± 7.7) ^{b,d}	4.1%(± 4.1) ^{a,b}	0.0%(±0.0) ¹

 1 = replicates were too variable according to a chi-square test to do statistical analysis.


Table 2.12.: Responses regarding callus induction of different cultivars, arranged in groups according to statistical differences.

explant position /	Leaf l	Leaf 1	Leaf l	Leaf 2	Leaf 2	Average	Ranking
Cultivar	0-2mm	2-4mm	4-6mm	0-2mm	2-4mm	Rating	
Cv 'Cashel' dark	1	2	1	1	1	1.2	1
Cv. 'Shandon'	1	1	1	2	1	1.2	1
Cv. 'Telstar'	2	1	-	-	-	1.5	2
Cv. 'Greengold'	2	3	1	1	2	1.8	3
Cv. 'Limes'	4	4	1	2	2	2.6	4
Cv. 'Action'	3	3	-	-	-	3	5
Cv. 'Cancan'	4	4	-	3	3	3.5	6

Average rating: rating after pooling of all separate ratings. Ranking: Ranking for best callus induction responses overall.

2.3.2.2.2 Callus induction from mature embryos

Callus was induced from excised mature embryos on CIM in the dark at 22^oC. Results show that cultivars 'Telstar' had the highest induction rate, whereas cultivars 'Limes' and 'Action' had a significantly lower induction rate. Cultivar 'Shandon' showed no significant difference with the three aforementioned cultivars. Cultivars 'Cancan', 'Cashel' and 'Greengold' appeared to perform the worst, however no statistical analysis could be performed on those cultivars, due to limited replicates (see Table 2.13 and Fig. 2.20).

Fig 2.20: Percentage of mature embryo's that induced regenerable callus in the tested cultivars. Error bars represent the standard deviation of the mean. n = number of replicates, 'Limes' n=3, 'Telstar' n=2, 'Action' n=3, 'Shandon' n=2, 'Cancan' n=1, 'Cashel' n=1, 'Greengold' n=1.

Table 2.13: Percentage of mature embryo's inducing regenerable callus. Between brackets are given the standard deviation of the means. Means within a column followed by different letters are significantly different according to the student *t*-test (two-tailed distribution, equal variance done on arcsine transformed percentages of combined replicates) with a statistical difference at P < 0.05.

Cultivar	Percentage of explants producing regenerable callus
Cv. 'Limes'	52.3(± 7.7) ^b
Cv. 'Telstar'	79.1(± 7.1) ^a
Cv. 'Action'	$36.9(\pm 3.6)^{\circ}$
Cv. 'Shandon'	$36.9(\pm 3.6)^{c}$ 44.7(±22.8) ^{a,b,c} 15.0(± 0.0) ¹
Cv. 'Cancan'	$15.0(\pm 0.0)^{-1}$
Cv. 'Cashel'	$15.8(\pm 0.0)^{1}$
Cv. 'Greengold'	$20.0(\pm 0.0)^{1}$

 1 = too few replicates to perform statistical analysis.

2.3.2.3 Callus differentiation and shoot induction

Two different protocols were tested for their regeneration efficiency. Protocol I consisted of a direct regeneration phase after a four week callus induction period, whereas protocol II consisted of a callus differentiation phase, followed by a regeneration period (See Table 2.1). Shoots could be induced from friable callus (Fig. 2.21) and embryogenic callus (Fig. 2.22). Shoot induction results were scored by taking the percentage of calli producing shoots per replicate. The means and standard deviation were calculated based on the results obtained in each replicate.

There were no statistical differences between Protocol I (direct regeneration), and Protocol II (callus differentiation, followed by shoot induction) in all tested cultivars 'Cashel', 'Shandon' and 'Limes' (see Table 2.14 and Fig. 2.23). When Protocol II was further tested with various cultivars, it showed that there was no statistical difference in response between cultivars, except Cv. 'Greengold' which had no shoot induction whatsoever under these conditions (see Table 2.14 and Fig. 2.23). Induction of calli at a 16h photoperiod, prior to induction of shoots, seemed to improve the shoot induction potential in cultivar 'Cashel', however this could not be statistically proven. Moreover, the callus induction rate was significantly lower, resulting in a lower amount of starting material that could potentially be used for transformation experiments (See Table 2.10 and Fig. 2.18).

Cv. 'Action' and Cv. 'Telstar' were acquired at a very late stage of the project. Because of the known good regeneration response (Patent WO/2004/035797; Patent

WO/2003/076612) and the limited timeframe they were subjected to the transformation experiments after callus induction, without having tested the regeneration potential.

Fig. 2.21: Shoot induction from friable callus in Lolium perenne L. Cv. 'Cashel'

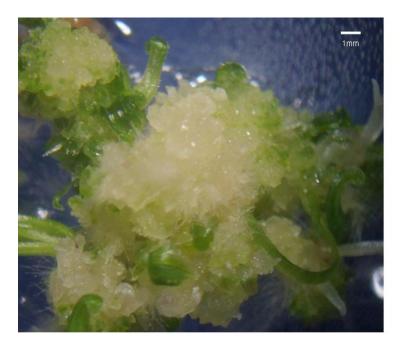
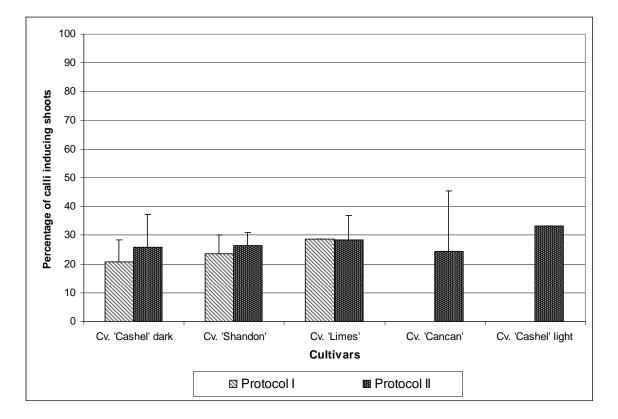



Fig. 2.22: Shoot induction from embryogenic callus in Lolium perenne L. Cv. 'Cashel'

Fig. 2.23: Regeneration efficiency of both protocols. n = number of experimental replicates. Protocol I 'Cashel' dark n=3, 'Shandon' n=3, 'Limes' n=1, Protocol II 'Cashel' dark n=5, 'Shandon' n=2, 'Limes' n=3, 'Cancan' n=4, 'Cashel' light n=1. Error bars represent the standard deviation of the mean.

Table 2.14: Percentage of calli inducing shoots for both regeneration protocols. Between brackets are given the standard deviation of the means. Means within a column followed by different letters are significantly different according to a *t*-test (two-tailed distribution, unequal variance) on arcsine transformed percentages of combined replicates with a statistical difference at P<0.05.

n.a. = not applicable			
Cultivars	Protocol I	Protocol II	
Cv 'Cashel' dark	20.7(± 7.8) ^a	25.9(± 11.3) ^a	
Cv. 'Shandon'	23.6(± 6.5) ^a	26.4(± 4.6) ^a	
Cv. 'Limes'	$28.6(\pm 0.0)^{-1}$	28.4(± 8.5) ^a	
Cv. 'Cancan'	n.a.	24.4(± 21.2) ^a	
Cv. 'Cashel' light	n.a.	$33.3(\pm 0.0)^{1}$	
Cv. 'Greengold'	n.a.	0.0(± 0.0) ^b	

 1 = too few replicates to perform statistical analysis.

2.3.3 Determination of conditions for antibiotic-resistance selection

2.3.3.1 Effect of antibiotics on callus induction

The response of callus induction to hygromycin B is shown in Table 2.15, to kanamycin in Table 2.16, to geneticin in Table 2.17, to streptomycin in Table 2.18 and to paromomycin in Table 2.19 and Fig. 2.24. Callus induction response was scored after four weeks on CIM supplemented with antibiotics.

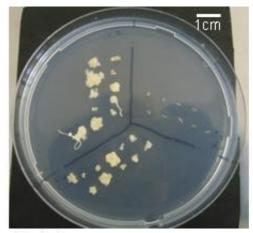
Table 2.15: Effect of hygromycin B on callus induction. Percentages represent the amount of leaf-base explants at specific distances from the apical meristem, producing regenerable callus.

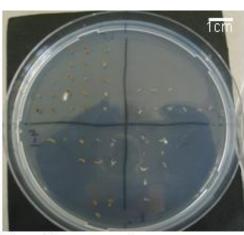
Hygromycin	Percentage of explants	Percentage of explants	Percentage of explants
concentrations	inducing calli at 0-2mm	inducing calli at 2-4mm	inducing calli at 4-6mm
in mg L^{-1}	from the meristem	from the meristem	from the meristem
0	60	20	n.a.
10	20	0	n.a.
20	10	0	n.a.
30	0	0	n.a.
50	0	0	n.a.

Table 2.16: Effect of kanamycin on callus induction. Percentages represent the amount of leaf-base explants at specific distances from the apical meristem, producing regenerable callus.

Kanamycin	Percentage of explants	Percentage of explants	Percentage of explants
concentrations	inducing calli at 0-2mm	inducing calli at 2-4mm	inducing calli at 4-6mm
in mg L^{-1}	from the meristem	from the meristem	from the meristem
0	67	10	27
10	50	17	0
25	60	0	0
50	50	0	0
100	20	0	0

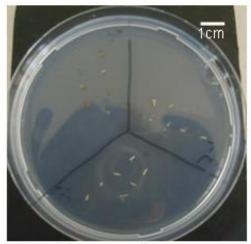
Table 2.17: Effect of geneticin (G-418) on callus induction. Percentages represent the amount of leaf-base explants at specific distances from the apical meristem, producing regenerable callus.

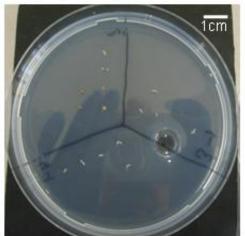

G-418	Percentage of explants	Percentage of explants	Percentage of explants
concentrations	inducing calli at 0-2mm	inducing calli at 2-4mm	inducing calli at 4-6mm
in mg L^{-1}	from the meristem	from the meristem	from the meristem
0	67	10	27
10	40	0	10
25	0	0	0
50	0	0	0
75	0	0	0


Table 2.18: Effect of streptomycin on callus induction. Percentages represent the amount of leaf-base explants at specific distances from the apical meristem, producing regenerable callus.

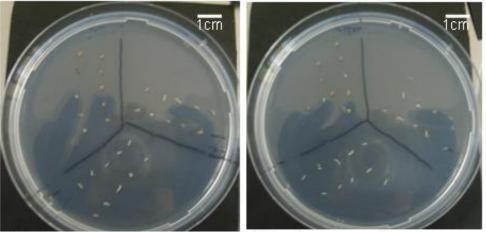
Streptomycin	Percentage of explants	Percentage of explants	Percentage of explants
concentrations	inducing calli at 0-2mm	inducing calli at 2-4mm	inducing calli at 4-6mm
in mg L^{-1}	from the meristem	from the meristem	from the meristem
0	67	20	n.a.
1000	62	23	n.a.
5000	13	8	n.a.
10000	0	0	n.a.

Table 2.19: Effect of paromomycin on callus induction. Percentages represent the amount of leaf-base explants at specific distances from the apical meristem, producing regenerable callus.


Paromomycin	Percentage of explants	Percentage of explants	Percentage of explants
concentrations	inducing calli at the	inducing calli at 0-2mm	inducing calli at 2-4 mm
in mg L-1	meristem	from the meristem	from the meristem
0	91	75	11
25	4	0	0
50	0	0	0
75	0	0	0
100	0	0	0
125	0	0	0



Control


25 mg L⁻¹ paromomycin

50 mg L⁻¹ paromomycin

75 mg L⁻¹ paromomycin

100 mg L⁻¹ paromomycin

125 mg L⁻¹ paromomycin

Fig. 2.24: Paromomycin selection after four weeks on CIM supplemented with various concentrations of paromomycin. Each Petri dish was divided into sections representing origin of the explants.

Selection on streptomycin was ineffective. Even at antibiotic concentrations of 5000 mg L^{-1} calli were able to develop (See Table 2.18). This is due to the nature of callus induction, as this had to be performed in the dark, while streptomycin blocks protein synthesis of photosynthetic genes in the light.

Kanamycin selection was also fairly inefficient. Even at a concentration of 100 mg L^{-1} 20% of the leaf-base explants were able to induce regenerable callus (see Table 2.16). Selection with geneticin (see Table 2.17), paromomycin (Table 2.19 and Fig. 2.24) and hygromycin B (See Table 2.15) at 50 mg L^{-1} was sufficient to prevent callus development completely. Furthermore all explants showed necrosis at this concentration with these antibiotics. It can be noted that these concentrations may have to be lowered to allow transgenic tissue to proliferate, as the selection pressure may be too stringent. The downside is the increased possibility of escapes.

2.3.3.2 Effect of antibiotics on callus differentiation and shoot induction

The shoot induction response and callus growth during the regeneration phase to hygromycin B is shown in Table 2.20, to geneticin in Table 2.21, to kanamycin in Table 2.22, and to paromomycin in Table 2.23 and Fig. 2.25. Callus development and shoot induction was scored after six weeks on CIM2 supplemented with antibiotics.

hygromycin concentrations	Percentage of calli producing	Percentage of calli, where growth
in mg L-1	shoots	was inhibited within 6 weeks
0	20	0
10	20	20
25	17	17
50	25	17
75	0	78
150	2	95

Table 2.20: Effect of hygromycin on callus growth and shoot induction

Table 2.21: Effect of geneticin (G-418) on callus growth and shoot induction

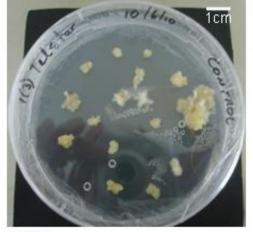
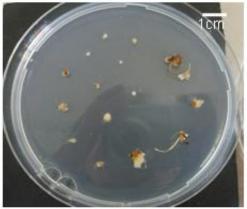
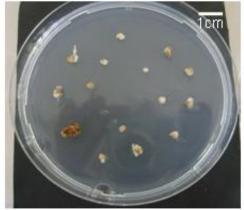

G-418 concentrations in	Percentage of calli producing	Percentage of calli, where growth
mg L-1	shoots	was inhibited within 6 weeks
0	47	0
25	20	53
50	25	73
75	48	76
100	23	92
125	30	95
150	23	95

 Table 2.22: Effect of kanamycin on callus growth and shoot induction


Kanamycin concentrations	Percentage of calli producing	Percentage of calli, where growth
in mg L-1	shoots	was inhibited within 6 weeks
0	20	0
10	20	20
25	17	17
50	25	17
75	0	78
100	0	75

Paromomycin	Percentage of	Percentage of calli	Percentage of calli, where
concentrations in mg L-1	calli producing	producing white	growth was inhibited
	shoots	shoots	within 6 weeks
0	20	0	0
50	7	0	80
75	13	0	93
100	0	0	87
125	0	0	75
150	5	5	91

Table 2.23: Effect of paromomycin on callus growth and shoot induction




75 mg L⁻¹ paromomycin

50 mg L⁻¹ paromomycin

100 mg L⁻¹ paromomycin

125 mg L⁻¹ paromomycin

150 mg L⁻¹ paromomycin

Fig. 2.25: Paromomycin selection after six weeks on CIM2 supplemented with various concentrations of paromomycin.

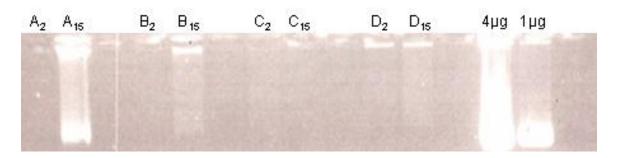
Selection with hygromycin B up to 50 mg L^{-1} resulted in a low efficiency for growth inhibition. At 75 mg L^{-1} 78% of the calli stopped developing, at 150 mg L^{-1} this was 95.4%. Shoot induction could not completely be inhibited even at 150 mg L^{-1} .

For geneticin necrosis was evident from concentration of 75 mg L^{-1} and upwards, but even at 150 mg L^{-1} 5% of the calli remained viable. Furthermore shoot induction was not inhibited even at 150 mg L^{-1} .

Kanamycin had a mild effect on callus survival, although more than 75% of the calli stopped developing at concentrations higher then 75 mg L^{-1} , the callus itself appeared healthy. Green healthy shoots stopped developing at concentrations of 75 mg L^{-1} .

Paromomycin selection was quite rigorous, as the percentage of viable callus decreased rapidly to about 10% at antibiotic concentrations of 75 mg L⁻¹ upwards. However complete callus growth inhibition was not accomplished even at 150 mg L⁻¹. Shoots that developed in the first week turned brown/white within a week on concentrations higher then 100 mg L⁻¹, this was mainly evident at the meristematic regions of the induced shoots (the apical meristem).

2.3.4 Choosing the target tissue for transformation experiments


The choice of target tissue is of utmost importance to create a successful transformation protocol. The tissue should be able to proliferate readily and selection on the tissue should be possible to develop transgenic tissue after DNA delivery by biolistics. Based on the regeneration studies and the selection regimes tested, the choice of target tissue is therefore restricted to four week old induced calli. This is because initial callus induction from leaf-base explants is mostly limited to the wounded edges of the leaf-explants. Furthermore selection in the dark will be difficult when attempting to create transplastomic tissue, due to the low expression levels in the dark of the selectable marker gene. Selection in the light would therefore be favourable, which can be accomplished when using four week old induced calli.

2.3.5 Gene delivery

Biolistical particle bombardment was the method used during this project. In order to use biolistics for *Lolium perenne* L., all the parameters involved with biolistics had to be assessed and optimized. To test these parameters, a GUS assay was utilized to test for transient expression of the *uidA* gene. The nuclear transformation vector pCAMBIA1305.1 containing the *uidA* gene, was used for this study. The *uidA* gene produces an enzyme that can convert X-Gluc to a blue dye during a GUS-assay. The efficiency of DNA delivery could be calculated by counting the blue spots (foci of GUS-stained cells) two days after biolistical delivery of the transgene.

2.3.5.1 Testing for efficiency of DNA coating on gold particles for biolistics

Two different protocols were tested for their efficiency at coating DNA on gold particles. Protocol I consisted of a 3 minute spin to bind the DNA to the gold particles, while protocol II consisted of a 15 second spin to bind the DNA to the gold particles (see 2.2.5.2.4). The waste solutions of each step during the coating procedure were run on an agarose gel to visualise the presence of DNA contained within each waste solution (see Fig. 2.26). Solution A (A_2 and A_{15}) contained the DNA that was attached to the gold particles after the coating procedure, the DNA present in this solution indicates the DNA actually delivered to the tissue during biolistics. All the other lanes in Fig. 2.26 show the DNA lost in the respective washing solutions. The presence of DNA in solution A indicates that protocol II proved to be much more efficient in binding the DNA to gold particles then protocol I.

Fig. 2.26: A 0.8% agarose gel visualising the DNA contained within each washing solution, and the DNA coated to the gold particles.

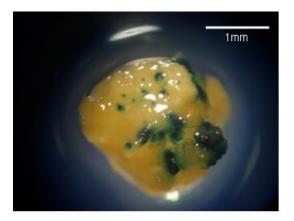
A₂: DNA redissolved into water from gold particles prepared with protocol I

A15: DNA redissolved into water from gold particles prepared with protocol II

B₂: Waste solution B from protocol I

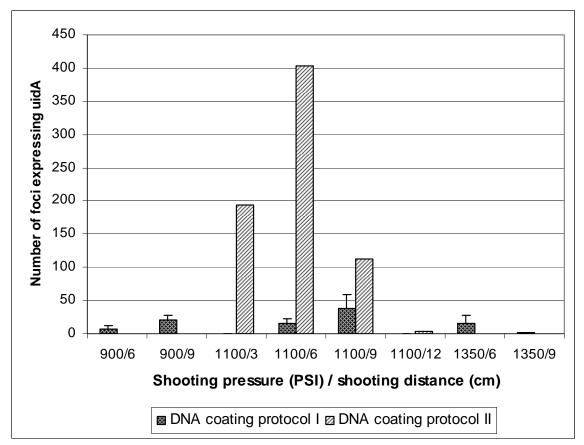
B₁₅: Waste solution B from protocol II

C₂: Waste solution C from protocol I


C₁₅: Waste solution C from protocol II

- D₂: Waste solution D from protocol I
- D₁₅: Waste solution D from protocol II
- 4μg: 4 μg DNA

1µg: 1µg DNA


2.3.5.2 Optimization of biolistic delivery regarding shooting parameters using transient expression of the *uidA* gene in the cytosol.

The shooting pressure and shooting distance were evaluated for their influence on transgene delivery. This was tested by introducing the nuclear transformation vector pCAMBIA 1305.1, which contains the *uidA* gene, into calli of *Lolium perenne* L. Cv. 'Cashel'. After a histochemical GUS assay, the blue spots were counted (see Fig. 2.27) and compared for each shooting parameter and different DNA coating protocol. Initial results obtained with DNA coating protocol I, suggested that a shooting pressure of 1100 PSI and a shooting distance of six cm was optimal (see Fig. 2.28). Further transient expression tests were narrowed down to fewer parameters and were conducted using the DNA coating protocol II. The number of expressing foci increased dramatically, furthermore there did not seem any clear difference in delivery efficiency between the shooting distance parameter (See Fig. 2.28 and Fig. 2.29). However when a shooting distance of three centimetre was used, the target area got reduced substantially, therefore the use of six to nine centimetre was determined preferential.

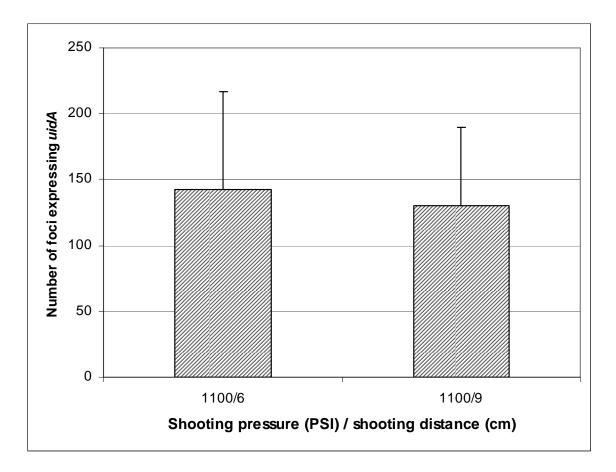


Fig 2.27: GUS expression after biolistic delivery of pCAMBIA 1305.1, histochemically visualised by a GUS assay, in calli 2 days post-biolistics

Fig. 2.28: Number of foci expressing the *uidA* gene after biolistic delivery using various parameters. DNA preparation protocol I: n=3, DNA preparation protocol II: n=1. Error bars represent the standard deviation of the mean.

Fig. 2.29: Number of foci expressing the *uidA* gene after biolistic delivery using various parameters with DNA preparation protocol II: n=5. Error bars represent the standard deviation of the mean.

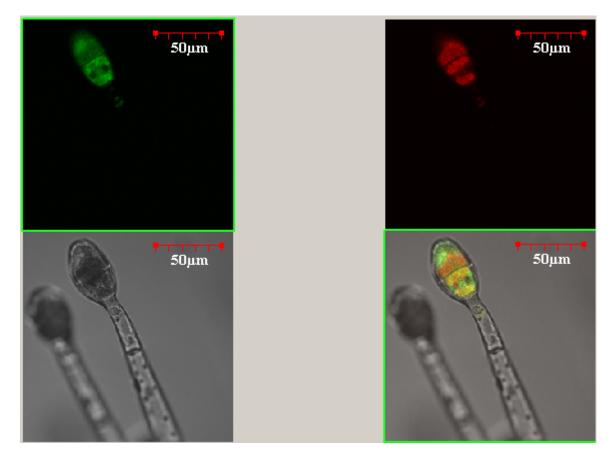
After assessment of the parameters, it could be concluded that the optimal conditions for

DNA delivery were the following.

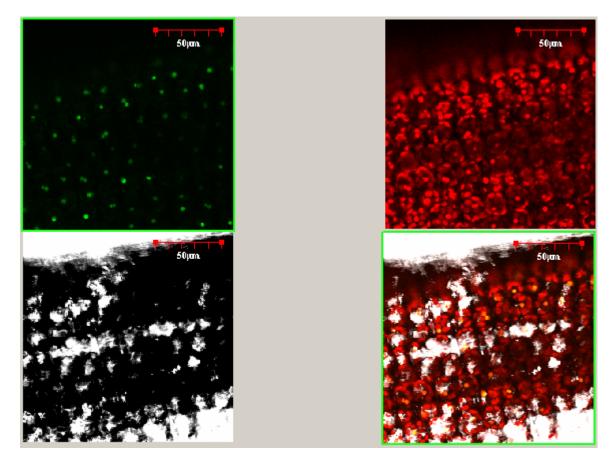
The utilisation of DNA-Gold coating protocol II.

For biolistical delivery:

- Six or nine cm target distance
- 1100 PSI shooting pressure.


Although the DNA delivery efficiency was relatively low, compared to earlier published results, the efficiency was greatly increased when Cv. 'Action' was used at a later stage

in the project. Nevertheless the optimal conditions obtained with the tests conducted on Cv. 'Cashel' could be applied to other cultivars of *Lolium perenne* L..


2.3.5.3 Transient expression assessment in plastids of leaf-tissue bombarded with pIAPRvdB5.

To test if the *Lolium perenne* L. vector pIAPRvdB5 could be successfully used for plastid transformation, transient expression experiments were conducted. Leaf tissue was bombarded with a shooting pressure of 1100 PSI and a shooting distance of nine cm or six cm. After a two day cultivation, leafs were assessed for green fluorescent protein located within the plastids, using a confocal microscope with UV-light. As positive control, a *Nicotiana tabacum* leaf was used with GFP expressed within the chloroplasts (kindly provided by Aisling Dunne). As negative control a wild-type *Lolium perenne* L. leaf was used.

The assessment was complicated by a strong background signal, making it nearly impossible to locate the true GFP emissions (See Fig. 2.30 and Fig. 2.31); this is due to the low number of GFP emitting plastids that were expected.

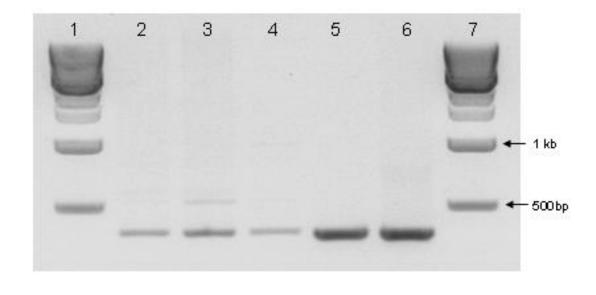
Fig. 2.30: Positive control (plastid transformant of tobacco expressing GFP, kindly supplied by Aisling Dunne) in a tricome containing chloroplasts, top left GFP filter, top right auto-fluorescence, bottom left no filter, bottom right merged.

Fig. 2.31: Negative control, leaf tissue of wild-type *Lolium perenne* L.. Top left: GFP filter, top right: auto-fluorescence, bottom left: no filter, bottom right: merged.

Afterwards a DAPI stain on leaf tissue of wild-type *Lolium perenne* L. was conducted to find the location of this background signal, this showed that the signal was outside the chloroplasts and in proximity of the nucleus.

2.3.6 Analysis of putative transformants

2.3.6.1 Analysis of putative nuclear transformants


Three separate calli continued to develop slowly after delivery of pCAMBIA 1305.1, nevertheless shoot induction did not occur. These calli were analysed using a GUS-assay, PCR analysis and southern blot.

2.3.6.1.1 GUS assay

None of the three proliferated calli during selection showed GUS expression.

2.3.6.1.2 PCR analysis

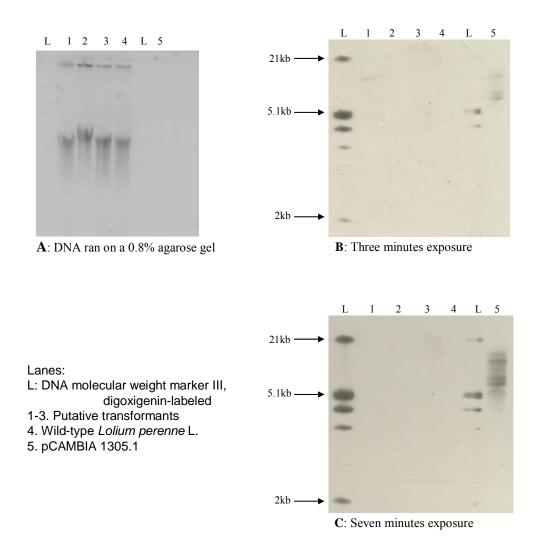

Gene specific PCR was carried out on gDNA isolated from putative plastid transformants with an *hpt* gene specific primer pair. The expected fragment size was 391bp (see Fig. 2.32 lane 6). A false positive band was amplified from wild-type DNA (see Fig 2.32, lane 5). Different primer pairs were tested, but all resulted in false positives in the negative control.

Fig. 2.32: PCR analysis of putative transformants using *hpt* specific primers. Lane 1 + 7: 1kb ladder Lane 2-4: Putative transformants Lane 5: negative control, wild-type *Lolium perenne* L. Cv. 'Cashel' Lane 6: Positive control, pCAMBIA1305.1

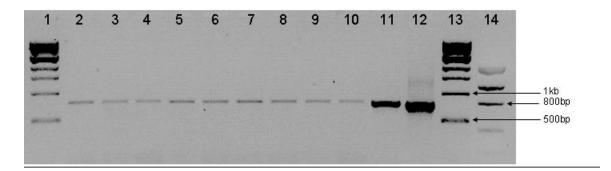
2.3.6.1.3 Southern blot

A Probe was designed to hybridise with the *hpt* gene. During hybridization with *SacII* digested wild-type gDNA, no fragment should be visualised. If the expression cassette of vector pCAMBIA 1305.1 got integrated, a fragment of any size should be visualised due to random integration, possibly more fragments could be visualised if there were more then one integration event. For all three putative transformants no fragment appeared after hybridisation, indicating that in all putative transformants the expression cassette was absent (See Fig. 2.33).

Fig. 2.33: Southern blot with hpt probe, pCAMBIA 1305.1 plasmid DNA digested with *EcoRI* and *SacII*. gDNA from putative transformants and wild-type *Lolium perenne* L. digested with *SacII*. **A**: Digested DNA ran on a 0.8% agarose gel, **B**: Southern blot with a Three minutes exposure time, **C**: Southern blot with a seven minutes exposure time

2.3.6.2 Analysis of putative plastid transformants

Nine small shoots developed during delayed paromomycin selection. These shoots were green at first, but slowly started to exhibit detrimental effects under paromomycin selection, including a lack of root growth. Nevertheless these were analysed with fluorescent microscopy to detect GFP accumulation, PCR analysis and southern blots.


2.3.6.2.1 Confocal microscopy

No GFP was detected in regenerated leaf tissue.

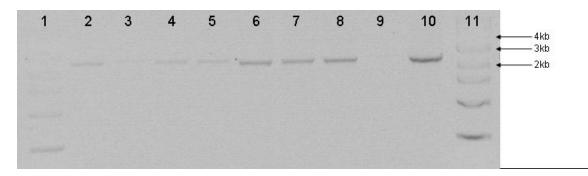
2.3.6.2.2 PCR analysis

2.3.6.2.2.1 Gene-specific PCR

Gene specific PCR was carried out on gDNA isolated from putative plastid transformants with various primer pairs. However for every primer pair, a false positive band appeared at the negative control with similar sizes to the expected band. However with a primer pair designed on the *aphA-6*, a slight difference in size was observed, so that positive bands (865 bp) could be distinguished from false positive bands (see Fig. 2.34). All putative transformants appeared negative for transgene integration.

Fig. 2.34: PCR analysis of putative transformants using *aphA-6* specific primers. Lane 1 + 13: 1kb ladder Lane 14: low mass ladder Lane 2-10: Putative transformants Lane 11: negative control, wild-type *Lolium perenne* L. Cv. 'Cashel' Lane 12: Positive control, pIAPRvdB5

2.3.6.2.2.2 Long-range PCR


Long-range PCR was carried out on gDNA isolated from putative plastid transformants

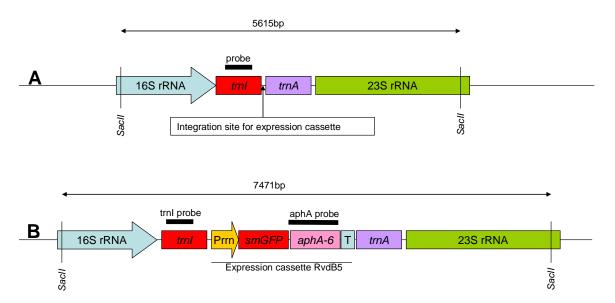
with a primer pair designed on the plastid region external of the homologous integration

region. A wild-type PCR product of 2.589 kb was expected, with a possible PCR

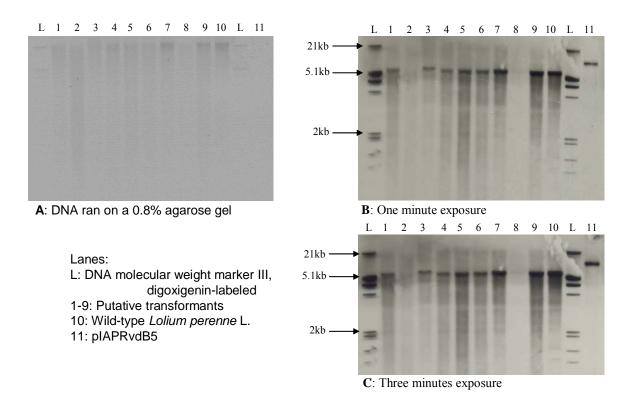
fragment of 4.2kb size, indicating transgene integration. All putative transformants only

contained the wild-type band as shown in Fig. 2.35.

Fig. 2.35: PCR analysis of putative transformants using primers external of the integration cassette


Lane 1 + 11: 1kb ladder

Lane 2-9: Putative transformants


Lane 10: negative control, wild-type Lolium perenne L. Cv. 'Cashel'

2.3.6.2.3 Southern blot

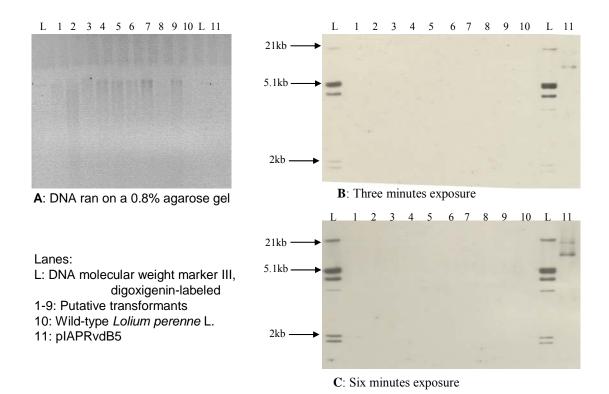

Two probes were designed to hybridise with the *trnI* and the *aphA-6* gene. During hybridization with *SacII* digested wild-type gDNA, a fragment of 5615 bp should be visualised with the *trnI* probe. If the expression cassette RvdB5 is integrated within the plastid genome a fragment of 7471bp would be visualised for both probes (See Fig. 2.36). For all the putative transformants strictly the wild-type fragment was present, indicating that none of the putative transformants were positive for targeted integration (See Fig. 2.37). Furthermore hybridisation with probe designed on the *aphA-6* gene, showed no signal in all putative transformants, indicating the absence of the expression cassette (see Fig. 2.38).

Fig.2.36: Map of the plastid genome region of *Lolium perenne* L with the insertion site for targeted integration of the expression cassette RvdB5. **A**: Map of plastid genome region without integration of the expression cassette (WT), dig labelled probe for the *trnI* gene is shown. The trnI probe hybridises to a fragment of 5615bp **B**: Plastid genome region with targeted integration with expression cassette RvdB5. Both the trnI and aphA probe hybridise to a fragment of 7471bp.

Fig. 2.37: Southern blot using trnI probe, all gDNA samples were digested with *SacII*, pIAPRvdB5 was digested with *KpnI*, **A**: Digested DNA ran on a 0.8% agarose gel, **B**: Southern blot with a one minute exposure time, **C**: Southern blot with a three minutes exposure time.

Fig. 2.38: Southern blot using aphA probe, all gDNA samples were digested with *SacII*, pIAPRvdB5 was digested with *KpnI*, **A**: Digested DNA ran on a 0.8% agarose gel, **B**: Southern blot with a three minutes exposure time, **C**: Southern blot with a Six minutes exposure time.

2.4 Discussion

During this study, all the known factors involved with plastid and nuclear transformation through biolistics were assessed and accordingly optimized.

The *Lolium perenne* L. plastid transformation vectors pIAPRvdB4 and pIAPRvdB5 were correctly assembled; both could be used for plastid transformation experiments. Vector pIAPRvdB5 was designed to achieve a higher protein accumulation, which could be beneficial due to lower expected gene-expression within callus tissue. Vector pIAPRvdB4 contained the full-length Prrn promoter with both the NEP and PEP binding sites, which is active in both light and dark growth conditions albeit at lower levels, facilitating selection regimes in the dark.

A suitable tissue culture regime was established. As source tissue for callus induction, two types were assessed for efficiency in callus induction. Both leaf-base explants and mature embryos successfully induced regenerable callus for all cultivars tested. However there were differences in response between cultivars. When leaf-base explants were used as source tissue, cultivars 'Cashel' and 'Shandon' had the highest induction rates, while cultivar 'Telstar' had the highest induction rate when mature embryos were used. The advantage of using mature embryos as source tissue is the time-frame at which the callus can be obtained. Unlike leaf-base explants as source tissue, this protocol does not require a four-week tissue culture period prior to callus induction. However for plastid transformation, to obtain homoplasmic tissue, the tissue has to go through several rounds of regeneration. To achieve this, leaf-base explants are the obvious choice for callus induction, as this will be readily available after obtaining the primary transformants. There are two problems with combining the two aforementioned techniques. A specific genotype (seed) might be efficient in regenerable callus induction from mature embryos, but might not be efficient for callus induction from leaf-base explants. This could prove to be a bottleneck to obtain homoplasmy during plastid transformation. On balance it was felt that leaf-base explants were the preferred choice as source tissue for transformation experiments.

An overview about the order of responses for callus induction from leaf-base explants and shoot induction is given in Table 2.24., with an overall score of both combined in column 4 of Table 2.24. The cultivars 'Cashel' and 'Shandon' responded overall the best, for both callus induction and shoot regeneration. As a consequence these two cultivars were prime candidates to continue the transformation experiments with. However due to a sister project where the plastid genome of Lolium perenne L. Cv. 'Cashel' was sequenced (Diekmann et al. 2009), this cultivar was ultimately chosen to continue with. It should be noted that when calli were transferred in 16h light conditions, the first shoots appeared within a week. This could pose a problem during selection, where callus selection would be preferential, due to the unwanted possibility of obtaining chimeric shoots.

Cultivar	Callus induction	shoot induction	Combined response
	ranking	ranking	ranking
Cv 'Cashel' dark	1	1	1
Cv. 'Shandon'	1	1	1
Cv. 'Limes'	4	1	2
Cv. 'Cancan'	6	1	3
Cv. 'Greengold'	3	2 (no shoot induction)	4
Cv. 'Telstar'	2	n.a.	*
Cv. 'Action'	5	n.a.	*

Table 2.24: The overall response for callus induction and regeneration and the combined ranking of cultivars by taking both responses into consideration.

A selection regime was developed for both nuclear transformation and plastid transformation. For nuclear transformation experiments selection at 75 mg L^{-1} hygromycin B should be sufficient to select primary transformants, although a fair number of initial escapes are to be expected. For plastid transformation, paromomycin seems to be the best choice, with selection pressures between 100 to 150 mg L^{-1} paromomycin. Several options as to when selection should be initiated to obtain transplastomic tissue remains a question that has yet to be answered.

Lastly, the gene-delivery protocol was optimized for the use on calli from Lolium perenne L. Cv. 'Cashel'. Although the DNA delivery efficiency was relatively low, the efficiency was greatly increased when Cv. 'Action' was used at a later stage in the project. Despite this, the ratio obtained with the tests conducted on Cv. 'Cashel' could be applied to other cultivars of *Lolium perenne* L..

Despite the thorough assessment and optimisation of cultivars, explant source, tissue culture parameters, biolistic delivery parameters, and selection protocol, transgenic tissue was not recovered. The reason for the failure to achieve genetic modification can be due to several independent aspects. The most likely bottle neck to acquire any nuclear or plastid transformants, could be due to the choice of cultivar. Despite the fact that Cv. 'Cashel' proved to be the best candidate based on the tissue culture conditions, this does not exclude the possibility that another untested cultivar would perform better. Furthermore gene-delivery proved to be more efficient when the Cv. 'Action' was used. Unfortunately this cultivar was obtained at a late stage of the project, therefore limited number of transformation experiments were conducted on this cultivar.

There are several other likely problems in acquiring plastid transformants. For instance, in deciding what kind of vector would be most suitable for plastid transformation of *Lolium perenne* L., you are restrained by the available data. To test the efficiency of an expression cassette in *Lolium perenne* L., a working plastid transformation protocol has to be developed first. So basically you end up in a vicious circle. To determine "A" you need to have done "B" and vice versa.

Theoretically the expression cassette used within pIAPRvdB5 should express sufficient APHA-6 to inactivate the antibiotic paromomycin. The functionality was tested and confirmed in *Escherichia coli*, by introducing the expression cassette into the pUC19 vector, which lacked the *nptII* gene within the backbone. Bacteria containing the expression cassette were resistant to paromomycin and G-418. Furthermore high

expression levels with similar constructs were recorded in previous studies (Kuroda and Maliga 2001b). Moreover similar expression signals were used to achieve plastid transformants in the monocot *Oryza sativa* (Khan and Maliga 1999). Nevertheless there is no guarantee the expression cassette would be as efficient in *Lolium perenne* L. as it was in other systems. Every species and every tissue has a different expression profile, this was demonstrated by comparing expression profiles within chromoplast and chloroplasts in tomato (Kahlau and Bock 2008). Therefore it is quite possible that this expression cassette would not be active enough in callus tissue within *Lolium perenne* L., to provide enough APHA-6 to inactivate the selectable agent.

Another likely barrier to obtain transgenic tissue is the selection regime. After biolistical delivery, the expression cassette has to be integrated within the plastid genome. Furthermore sufficient accumulation of the detoxifying protein has to be present for transgenic cells to proliferate, this can pose a problem as it was shown that the Prrn PEP promoter activity in rice proplastids was seven fold lower compared to the activity in chloroplasts (Silhavy and Maliga 1998). As a result, when selection is commenced too early, the transgenic cells may not be able to proliferate. If selection is commenced too late, the transgene might have looped out already. The timing to induce selection could therefore be of vital importance to obtain transplastomic tissue.

Taking all this into account, it is possible that a working protocol for plastid transformation in this species will be difficult to obtain, as has proven the case with monocots in general. On the other hand, a small alteration to this protocol could well prove to be sufficient to achieve plastid transformation within *Lolium perenne* L..

Chapter 3:

RNA-Editing

3.1 Introduction

In this study, the editing efficiencies of various plastid editing sites were evaluated under drought stress in various genotypes of perennial ryegrass. The hypothesis was that it may be that drought tolerance could in part be regulated directly or indirectly by editing events within the plastid genome, in particular within the NDH complex (NADH dehydrogenase complex). Previous reports indicate that the NDH complex optimizes the induction of photosynthesis under conditions of water stress in the light (Burrows et al. 1998) and that the plastidial NDH complex activity increases under stressed conditions (Ibanez et al. 2010). More specifically when the *ndhB* gene was inactivated in transplastomic plants, the dark reduction in the plastoquinone pool was impaired and an enhanced growth retardation was observed under humidity stress conditions (Horvath et al. 2000). Potentially the functionality of the NDH complex could be impaired by the lack of RNA editing, therefore decreasing the tolerance to oxidative stress caused by water deficit.

RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template (Tillich et al. 2006). Different RNA editing systems exist and each is thought to have evolved independently (Brennicke et al. 1999). RNA editing in chloroplasts belongs to the conversion system, where exclusively C to U substitutions occur, with the exception of U to C substitutions in the bryophyte *Anthoceros formosae* (Kugita et al. 2003). mRNA editing usually results in the restoration of codons for conserved amino acids (Bock et al. 1994).

3.1.1 Assessment of RNA editing efficiency

RNA editing efficiency can be investigated by several different methods. The most trustworthy method is a colony screen (Roberson and Rosenthal 2006). This involves the amplification of a fragment derived from complementary DNA (cDNA) within a transcript where editing occurs. The fragment is introduced into a sequencing vector, after which the vector is transfected into *Escherichia coli*. Subsequently the editing efficiency can be determined, by screening separate colonies of bacteria for editing sites within the fragment in the vector. By screening a large number of clones, the editing efficiency can be calculated. Although this method is very accurate, it is a labour intensive method, furthermore it is a costly endeavour, due to the large number of sequencing reactions involved. A second method to analyse the RNA editing efficiency is the poison primer extension (PPE) technique (Peeters and Hanson 2002). This assay is based on using a polymerase to extend a 32P end-labeled primer through the editing site in the presence of three deoxynucleotide triphosphates and one dideoxynucleotide triphosphate. The dideoxynucleotide, or chain terminator, normally contains the same base as the edited nucleotide. Therefore, if a transcript is edited, the extension stops at the editing site. If not, it extends to the next instance of the edited nucleotide in the chain. To estimate editing efficiency, reactions can be separated on an acrylamide gel and the relative proportions of the two extension products are quantified. The run through can be as low as 5%, although in some cases it was 70%, depending on the polymerase and terminators used (Peeters and Hanson 2002; Roberson and Rosenthal 2006). This method is quite accurate, although the optimization can be major drawback to get it to work efficiently. However once optimized it is cost- and labour effective. The last method

available is the trace-file method (Nakae et al. 2008). This technique involves direct sequencing of specific PCR products containing editing sites, amplified from cDNA. The trace files from the sequencing results can be analysed by comparing peaks representing edited and unedited editing sites. The ratio determines the editing efficiency. The accuracy of this method was found to be 5%, although in general a lower accuracy in the range of 20% is mentioned (Nakae et al. 2008). This method is labor efficient and fairly cost effective (Nakae et al. 2008).

3.1.2 Systems for mimicking drought stress conditions for plants

Several systems for assessing drought susceptibility or tolerance have been employed in previous studies. However none of the systems is considered optimal, for various reasons, which are discussed below (Munns et al. 2010). The system mostly used, is plants grown in pots under controlled conditions. If the plants are grown in soil, the induction of drought can be accomplished by withholding water for a specific duration of time. Uniformity of soil is however difficult to maintain, resulting in a variable water potential throughout the soil profile, this can result in a mixed nutrient transmission (Nye and Tinker 1977). Furthermore soil saturation at the bottom can happen easily when pots are not sufficiently deep, resulting in 'control' plants not growing as well as moderately stressed plants (Passioura 2006b). To avoid saturation, inorganic 'soils', like calcined clay can be used. However artificial material with large particles may have little root contact, resulting in decreased growth. For example, vermiculite caused a greater reduction in root growth at low water potential than did liquid medium at the same water potential at least up to -1.6 MPa (Verslues et al. 1998).

Alternatively hydroponics can be used to circumvent the problems with heterogeneity, drainage and variable water potential. Several non-ionic osmotica have been used to decrease the media water potential. Examples are mannitol, melibiose and sorbitol. Despite the osmotic properties of these chemicals, these components are not suitable for the induction of drought stress, because the cell membranes are permeable to these small molecules. Therefore entry of these chemicals within the roots occurs, resulting in their movement within the xylem towards the shoots. In the case of mannitol it was shown that cell elongation occurs, causing a problem for interpretation of growth differences between stressed and control conditions (Hohl and Schopfer 1991). Besides these lowmolecular-weight molecules, high-molecular-weight polyethylene glycol (PEG) was used to mimic drought stress. The advantage of this chemical is the inability to penetrate the cell membrane; so it does not cause any unintended adverse effects on growth. However due to the viscous nature of a PEG solution, the poor supply of oxygen to the roots can pose a problem (Mexal et al. 1975). To overcome this problem, aerating of the roots is necessary. However too rigorous bubbling can cause damage to roots through shear stress, so a gentle aeration is desirable (Mexal et al. 1975). To improve oxygen supply, it was shown that bubbling with oxygen instead of air increased root growth (Verslues et al. 1998). Despite the inability of PEG to penetrate the cell membrane, the change of solutions during experiments can lead to entry of PEG into the roots, by lateral breaks of the roots. This was shown to cause necrosis, by blocking pathways used for transpiration (Lawlor 1970).

Besides hydroponics and soil based systems, another system to mimic drought stress was developed by Van Der Weele et al. (2000) using a nutrient-agar medium supplemented with PEG-8000. This system is called the "PEG-infused *in vitro* system" It involved dissolving PEG in a nutrient medium, after which the PEG medium was allowed to diffuse into an agar medium. *Arabidopsis* seedlings were subsequently placed on top of the PEG-agar medium. By placing the Petri dishes vertically, the supply of oxygen to the roots was guaranteed (van der Weele et al. 2000).

3.1.3 Assessment of drought stress response of plants

To test for drought tolerance, several different tests can be performed. Firstly the Relative water content (RWC) can be assessed. This is a method for determining the water content within tissue under different environmental conditions. It was first described by (Barrs and Weatherley 1962). Under optimal conditions leaf tissue has a RWC of 85-95%, however when exposed to drought conditions this value decreases. The extent of this reduction is an indication how well it copes with its ability to retain water by limiting transpiration and maintaining water uptake (Volaire and Lelièvre 2001). Another indicator of drought tolerance is root growth. In previous studies it was shown that drought tolerant plants had an increase in root development under moderate stress conditions. Most likely, this reflects an adaptive response involving an increase in root length to reach water deeper in the soil (van den Berg and Zeng 2006). Other strategies for determining drought tolerance are analyses of stomatal conductance by imaging analyses (Grant et al. 2006; Leinonen et al. 2006) or determination of the photosynthesis has been

demonstrated in previous studies (Lawlor and Cornic 2002). A decreased RWC slowed down the CO₂ assimilation rate and at RWC values lower then 75%, metabolic inhibition occurred.

3.1.4 Aim and objectives

Previous studies have shown that the RNA editing pattern is developmentally influenced (Peeters and Hanson 2002; Chateigner-Boutin and Hanson 2003), furthermore environmental control was also shown to influence the editing pattern as temperatures of 37^oC was shown to inhibit editing of specific editing sites within tobacco (Karcher and Bock 2002). The aim of this study was to determine if RNA editing was directly or indirectly involved with drought response. In order to investigate this, the RNA editing efficiencies of various editing sites were analysed in accessions of *Lolium perenne* L. that had different responses to drought stress. In a previous study only two cultivars were characterized for drought response (Foito et al. 2009), these cultivars were initially assessed for RNA editing patterns (see section 3.3.1). After which the study was expanded to a range of other accessions, which had to be characterized first for their drought response.

Initially the "*In vitro* PEG-induced system" was used to detect differences in drought response between accessions of *Lolium perenne* L. obtained from the GRIN database (Germplasm Resources Information Network in the United States of America). The choice of this system relied on the ability of this protocol to assess a large number of accessions simultaneously. The results obtained with this system are described in section 3.3.2. To confirm the drought response of these accessions, another drought test was performed to verify the findings and to obtain sufficient amount of tissue for RNA editing analyses. For this a hydroponics system with PEG (*In vivo* PEG-induced system) was utilized. The results are described in section 3.3.3.

Once the drought response of the tested accessions was determined, the RNA editing behaviour of these genotypes was assessed; these results are described in section 3.3.4 After analyses of the data, the relationship between drought response and RNA editing could be evaluated, this is shown in section 3.3.5.

Finally another feature in plastid DNA was analysed, namely single nucleotide polymorphisms (SNPs). These are single nucleotide polymorphisms that can in some cases change the amino-acid sequence of a transcript. There are two different types of SNPs, either transition or transversion mutations. Transition mutations are C - T and A - G combinations, whereas transversion are C - G and A - T combinations. These combinations co-exist within the same plant, making up different haplo-types. These SNP's can be used to design markers to assess population genetics and phylogenetic studies (Diekmann et al. 2009). Despite the identification of SNP's within the plastid genome, it has not been tested whether these SNP's could potentially be converted by the RNA editing machinery. This is shown in chapter 3.3.6

3.2 Materials and methods

3.2.1 Plant material

Lolium perenne L. cultivar 'Cashel' was obtained Teagasc, Oak Park, Carlow.

Other accessions of Lolium perenne L. were acquired from the Germplasm Resources

Information Network (GRIN) in the United States of America as shown in Table 3.1.

Accessions - Origin		
PI462336 New Zealand	PI 418717 Italy	PI 577270 Norway
PI 598433 Italy	PI 610803 Norway	PI 440475 Russia
PI 610806 Romania	PI 418723 Luxembourg	PI 598434 Italy
PI 502412 Russia	PI 418701 Former Yugoslavia	PI 610802 Norway
PI 610820 Romania	PI 201187 Netherlands	PI 610825 Switzerland
PI 577266 Romania	PI 512321 Spain	PI 632538 Italy
PI 628717 Bulgaria	PI 619554 Wales	PI 632553 Italy
PI 611044 Russia	PI 223178 Greece	PI 632575 Italy
PI 598453 Romania	W6 11256 Turkey	PI 632590 Morocco
NK 200 USA	PI 229476 Iran	PI 634278 USA
PI 231565 Libya	PI 577270 Norway	

 Table 3.1: Accessions ordered from GRIN database.

These accessions had been tested for their winter hardiness (Hulke et al. 2007; Hulke et al. 2008), and accessions used in this study were chosen over a scale of good to bad response to low temperatures.

3.2.2 cDNA synthesis from total RNA

A drought stress experimental series has been carried out at Oak Park by Dr. Stephen Byrne. For this experiment clones were vegetatively propagated from single tillers from two different cultivars, Cv. 'Cashel' (drought susceptible) and Cv. 'New Zealand' PI462336 (drought tolerant).

Total RNA was extracted from leafs at different time points during the stress test, both from control conditions and stressed conditions, a total of 28 samples were prepared. This RNA was used to synthesize cDNA, using Superscript III Reverse transcriptase following the manufacturer's instructions (Invitrogen cat. No. 18080-400).

3.2.3 Primers used for RNA-editing

All the primers used for RNA editing are listed in Table 3.2.

Fragments	Editing site / SNP location within the plastid genome	Primer pair	Primer 1	Primer 2
psbJ	61111	66	ctggtccctccgatt	gataaaatgtggaggaaagt
petB	72259	7	ggttctaatgatgatcctg	aattetttatgatatgeett
ndhB-1	85696	8	gaaagaaatagacctagcag	ccttttcatcaatggact
	86347	8		
	86341	8		
ndhB-2	87155	9	tccttcgtagacgtcag	ttggatgcagttactaattc
	87188	9		
	87281	9		
	87306	9		
	87425	9		
	87743	9		
ndhD	107165	17	cattaatagaccggactggt	ggaagcgcattatagtacatg
rps8	76422	31	gaattcgggtactatagccacagc	gaaaaatttggaggaacctagaatt aga
rpoC2	28731	34	gcagctaaaccttatttggccac	tcctttatgtatccttaactcgtataaa tgg
atpA	35112	89	taccaatagttgagactcaat	aacaagaaagagtagacgtg
ndhA	111250	23	agaagaaattagaaaaaccagaaa	gggaagttgatcgttgaaa
	112355	23		
	112778	23		
ndhG	109624	12	tttgcaattettataatttttaetettt	tgccttttcgttgggattag
rpl2	82031 (133217)	11	tgctgctctagctaattgc	ctattccacttctagatagagaaaa
rpl20	66009	29	gggaattcggtttttattat	attagttattcattaaggttaatttg
ndhF	103515	88	ggagctagtaaccaatccca	agtaaaaattgcaatttcttttc
	103675	88		
ndhK	49245	86	tgaacattccccctgtaata	atggcgaaaaggagcctt
	49367	86		
rpoB	19737	13	taagattaagatgctccgg	caagattaagceteega
1	19815	13		0 0 0
	19830	13		
	19560	13		
ycf	42700	30	ttatgaaaaagaaggagcgtggtc	ggttgggaattatgcctagatcc
	43599	30		
psbL	61339	44	tccctccgattactatagagatgaa	ccaacgataaacaaaattccaac
psaB	37506	psaB	tcaaagatcttttagaagcgca	gccaataaaaagtaacccat
rps18	65631	rps18	ctaaacaaccttttcttaaa	aacttaagttccgattgttg

Table 3.2: Primers designed to amplify regions containing known RNA-editing sites.

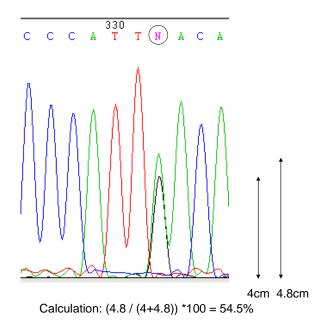
Red annotated genome locations are known SNPs.

3.2.4 PCR to amplify fragments from cDNA containing the editing-sites

Fragments were amplified using Taq polymerase (New England Biolabs, Inc., Ipswich, MA, USA). The reaction mixture is shown in Table 3.3 and the PCR cycles are given in Table 3.4.

Reaction mix	Volume (µl)
$cDNA (1 \mu g \mu l^{-1})$	1.0
Primer 1 (0.1 μ M μ l ⁻¹)	1.0
Primer 2 (0.1 μ M μ l ⁻¹)	1.0
Taq Polymerase (1unit μl^{-1})	1.0
10x Thermo buffer	2.0
dNTP (10mM)	1.0
ddH ₂ O	13.0
Total reaction mix	20.0

Table 3.3: Standard PCR mix


	Table	3.4 :	PCR	cv	vcle:
--	-------	--------------	-----	----	-------

Steps	Temperature	Time
Step1 Denaturation	95°C	5 min
Step 2 Denaturation	95°C	1 min
Step 3 Annealing	50°C	1 min
Step 4 Extension	72°C	1 min
Step 5 Repeat cycles	Repeat step 2-4	35 times
Step 6 Final extension	72°C	10 min
Step 7 End of program	4°C	Indefinite storage

3.2.5 Analyses of RNA editing patterns using the trace-file method

All PCR products were sent to AGOWA (Germany) for PCR purification and sequencing. The returned trace files were analysed with the program 'Chromas Lite' for RNA-editing sites and the corresponding efficiency. To analyse the efficiency of editing, the height of the peaks at an editing location within the trace files were measured, and compared to each other as illustrated in Fig. 3.1. The editing efficiency was calculated with the following formula;

 $\frac{\text{Height edited peak}}{\text{Height edited peak} + \text{Height unedited peak}} x100\%$

Fig. 3.1: Calculation of editing efficiency using the trace-file method. The circle around the nucleotide represents the editing site.

3.2.6 Verification of the trace-file method, using colony screens

To determine if the trace-file method can be used confidently, a colony screen was performed. This involved setting up PCR reactions of randomly selected samples (see Table 3.5.) using primers designed for the *ndhB* and *ndhF* fragments (see Table 3.2, primer-sets 9 and 88).

PCR-product	Samples	RNA editing sites at genome position within
		the plastid genome of Lolium perenne L.
ndhB	17 (Cashel)	87188, 87281, 87306, 87425, 87743
ndhB	23 (New Zealand)	87188, 87281, 87306, 87425, 87743
ndhF	23 (Cashel)	103675

 Table 3.5: Samples used for colony screen experiment

These PCR-products were sent off for sequencing at John Lester's, sequencing facility at the department of biochemistry, University of Cambridge, United Kingdom. Peaks in the resulting trace files were analysed using the formula stated in section 3.2.5. The same PCR-products were cloned into the cloning-vector pCR2.1-TOPO, and subsequently introduced into *E.coli* strain TOP10 as described in paragraph 2.2.1.

Agar stab-cultures were made in 96-well plates, each well containing a separate clone, derived from the *E.coli* with pCR2.1-*ndhB* and *E.coli* with pCR2.1-*ndhF*. The clones containing the *ndhB* fragment were sequenced in both directions, whereas the clones containing the *ndhF* fragment was only sequenced in one direction. The sequencing was done at GATC Biotech AG, Konstanz, Germany.

The editing efficiency was calculated as the percentage of clones containing the edited site, in comparison to the total number of clones. If the colony screen gave similar results, compared to the trace-file method, then it could be assumed the trace-file method was trustworthy.

3.2.7 Evaluation of accessions of *Lolium perenne* L. on drought stress susceptibility using an in vitro PEG-induced system

3.2.7.1 Plant material preparation

Surface sterilised seeds of all accessions were germinated on germination medium (see Table 2.4). When the hypocotyls of the seedlings reached a length of 1 cm, the drought stress experiment was initiated.

3.2.7.2 Preparation of PEG-infused plates

Polyethylene glycol (PEG)-infused plates were made as described by (van der Weele et al. 2000; Verslues et al. 2006). The water potential of plates was lowered by addition of various amounts of PEG-8000 (Sigma) to the culture medium (see Table 3.6). Culture medium (half-strength MS, 1.2 g L^{-1} MES, pH 5.7) was prepared. For base medium, 15 g L⁻¹ agar was added and autoclaved at 120°C for 20 minutes. For the overlay solution, no agar was added, prior to autoclaving. Desired amounts of PEG-8000 were dissolved in the medium after autoclaving, without filter sterilisation. To set up the PEG-infused plates, 20 ml of base media was poured into 9 cm Petri dishes. When solidified, 30 ml of overlay solution was added on top. The PEG in the overlay solution was allowed to diffuse into the agar overnight. After which the remaining liquid on top, was gently

removed by decanting. Plates were used immediately, or stored while wrapped in cling-

film until use.

Final water potential of the PEG-infused	PEG added per litre of medium to make the
plate (MPa)	overlay solution (g)
- 0.25	0
- 0.5	250
- 0.7	400
- 1.2	550
- 1.7	700

Table 3.6: Final water potential of the medium, when using specific amounts of PEG in overlay solution.

Source: (Verslues et al. 2006).

3.2.7.3 Drought stress experiment

Five to seven seedlings, 1 cm in length were placed on the surface of each Petri dish, both the PEG-infused and the control plates. The plates were then placed vertically in a growth chamber at 22°C with a 16 hour photoperiod. The seedlings were exposed to the stress treatment for 13 days, prior to assessment.

3.2.7.4 Analyses of seedlings exposed to drought stress

Photographs were taken before and after the drought treatment of each Petri dish on top of a 1 mm roster paper; these images were used to measure the shoot lengths of each seedling. In addition the total dry biomass and the Relative Water Content (RWC) were measured as described by (Barrs and Weatherley 1962). The Fresh weight (FW) was measured by weighing whole seedlings on a fine scale (Ohaus, PA-114). The seedlings were submerged in distilled water for 3 hours, after which the seedlings were blotted dry and the Turgor Weight (TW) was measured of these seedlings on a fine scale. Subsequently, the seedlings were placed in a tube to dry in an oven at 70°C, after which the Dry Weight (DW) was measured.

The following formula was used to calculate the RWC;

$$\frac{(FW - DW)}{(TW - DW)} \times 100\% = RWC$$

FW: Fresh weight, DW: Dry weight, TW: Turgor weight, RWC: Relative Water Content

3.2.8 Evaluation of accessions of *Lolium perenne* L. for drought stress susceptibility using an *in vivo* PEG-induced system

3.2.8.1 Plant material

Accessions were chosen based on the results from the *in vitro* PEG induced system. Seeds of each accession were germinated, after which at least ten clones from a single seedling per accession were propagated vegetative, by continuous tillering. All clones were genotypically identical unlike the seedlings in the *in vitro* experiment.

3.2.8.2 Experimental setup

Plants were allowed to establish in a hydroponics system, supplemented with 4.4 g L^{-1} Gamborg + vitamins B5 (Gamborg et al. 1968). The system was aerated by an aquatic pump, to supply oxygen in the solution as illustrated in Fig. 3.2. Two separate systems were setup. After one week the solution was refreshed, to prevent depletion of nutrients. The second week after experimental setup, the drought stress experiment was initiated by replacing the solutions in both systems, in the first system the solution was replaced with

4.4 g L⁻¹ MS, this system acted as the control. In the second system the solution was replaced with a solution comprising of 4.4 g L⁻¹ MS supplemented with 20% PEG-6000 (Duchefa cat. No. P0805) for the induction of drought stress. This concentration of PEG results in a water potential of about -0.45 MPa (Michel and Kaufmann 1973). The experiment was performed in a controlled glass house at Teagasc, Oak Park, Carlow with a mean daily temperature of 22°C and supplemented with lighting (PAR = 650 microeinsteins m⁻²s⁻¹) for 16hrs. After two weeks in these conditions, samples were taken for analysis.

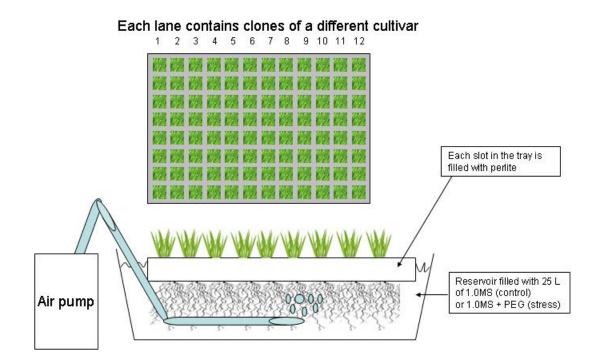


Fig. 3.2: Experimental set-up of the hydroponics system for assessing drought stress.

3.2.9 Analyses of plants exposed to drought stress

Three different methods were used, to determine the response to drought stress.

3.2.9.1 Pixel detection to record growth differences

Photographs were taken of the plants after the completion of the experiment and analysed using Adobe Photoshop 5.5. Pixel detection of leaf tissue and root tissue was performed (See Fig. 3.3), revealing the number of pixels in each photo consisting of either leaf (Fig. 3.3 C) or root tissue (Fig. 3.3 D), thereby indicated the amount of tissue present after each treatment.

Because the photos were not all taken from the same distance, the number of pixels could not be compared directly. To circumvent this problem the data had to be converted, this was achieved by using a reference area in each photograph to detect the number of pixels therein (See Fig. 3.3B), the ratio of pixels between each photo for this reference area represented the difference in photograph size. Although these data cannot be converted to biomass, the ratio of pixels between treatments/accessions could be analysed and provide a reliable measure of relative growth. Pixel detection of leaf tissue within individual plants could not be performed, due to overlapping tissue of separate clones. Therefore the number of pixels within leaf tissue of individual plants was predicted by taking the total number of pixels consisting of leaf tissue, divided by the number of plants in the photograph. For pixel detection of root tissue, individual plants could be assessed, due to the fact that roots tissue did not overlap between separate clones.

Fig. 3.3: Analyses of amounts of different tissues using pixel detection.

- A: Complete photograph
- B: Pixels consisting of background
- C: Pixels consisting of leaf tissue
- D: Pixels consisting of root tissue

3.2.9.2 Relative water content analyses

The RWC was calculated for each plant, by taking a two cm leaf piece from the middle of the plant and weighing the Fresh Weight (FW), Turgor Weight (TW) and the Dry weight (DW) of these leaf tissues as described in paragraph 3.2.7.4.

3.2.9.3 Total dry root biomass analyses

The total roots from each plant were harvested, wrapped in tin foil and dried in an oven at

70°C for three days. The total root dry weight was afterwards recorded for each separate

plant. The leaf dry weight could not be recorded, as the total leaf tissue was required to extract total RNA for RNA editing analyses.

3.2.10 Molecular analyses

3.2.10.1 Total RNA isolation from leaf tissue

Total RNA from three plants per treatment, per accession was extracted using the RNeasy[®] Plant Mini Kit from Qiagen Cat. No.74903. mRNA extraction was performed using the manufacturer's instructions.

3.2.10.2 cDNA synthesis

cDNA was synthesized using Superscript III Reverse transcriptase following the manufacturer's instructions (Invitrogen cat. No. 18080-400).

3.2.10.3 PCR to amplify *ndhB* and *ndhF* fragments from cDNA and gDNA

For the *ndhB* fragment primerset 9 was used, while for the *ndhF* fragment primerset 88 was used (see Table 3.2). Fragments were amplified using GoTaq polymerase (Promega cat. No. M8301). The reaction mixture was as shown in Table 3.7, and the PCR cycles were as shown in Table 3.8.

Reaction mix	Volume (µl)	
$cDNA / gDNA (1\mu g \mu l^{-1})$	1.0	
Primer 1 (0.1 μ M μ l ⁻¹)	1.0	
Primer 2 (0.1 μ M μ l ⁻¹)	1.0	
GoTaq polymerase (5unit μl^{-1})	0.2	
5x GoTaq flexi buffer	6.0	
dNTP (10mM)	2.0	
MgCl ₂ (25 mM)	3.6	
ddH ₂ O	15.2	
Total reaction mix	30.0	

 Table 3.7. PCR reaction mix

 Table 3.8: PCR cycle:

Steps	Temperature	Time
Step1 Denaturation	95°C	5 min
Step 2 Denaturation	95°C	1 min
Step 3 Annealing	45°C	1 min
Step 4 Extension	72°C	1 min
Step 5 Repeat cycles	Repeat step 2-4	35 times
Step 6 Final extension	72°C	10 min
Step 7 End of program	4°C	Indefinite storage

3.2.11 Statistical analyses

The arcsine transformation and *t*-tests were conducted in 'Microsoft Excel', whereas the variance tests were performed in the program 'Minitab Solutions 15'.All data sets were analysed for equal variance using the Levene test, results obtained determined if *t*-tests were performed with equal variance or unequal variance.

For the RWC analyses, arcsine transformation of the values was necessary to obtain a normal distribution to do statistical analyses, as percentages cannot be used directly for comparison studies. These values were subsequently tested for statistical differences using the *t*-test with a one-tailed distribution and equal variance. A one-tailed distribution was chosen, as the hypothesis was that stressed plants would exhibit lower values compared to the plants in control conditions.

For the total dry weight analyses, the results were tested for a normal distribution and subsequently tested for statistical differences using the *t*-test with a two-tailed distribution and unequal variance. A two-tailed distribution was chosen on the hypothesis that the root biomass could be either higher or lower for the stressed conditions compared to the control conditions.

For the editing efficiency, the values were transformed into Arcsine values. These values were subsequently tested for statistical differences using the *t*-test with a two-tailed distribution and unequal variance. A two-tailed distribution was chosen, based on the hypothesis that efficiency could be either lower or higher for plants in stressed conditions compared to plants in control conditions.

3.3 Results

3.3.1 Editing analyses

3.3.1.1 Assessment of the Trace-file method to detect RNA editing efficiency in comparison with the conventional colony screen method.

cDNA samples were randomly selected for analyses of RNA editing. A colony screen was performed as described in section 3.2.6. Results obtained from the colony screen were compared to results obtained from the trace-file method (described in section 3.2.5) as shown in Table 3.9. The highest difference observed between methods, was a 10.8% difference in editing, whereas the lowest difference observed was 0.8%. The corresponding trace-files can be found in appendix B.

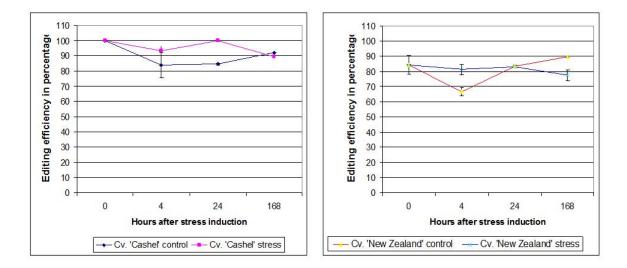
The editing efficiencies themselves have no relevance, as this was just to test the methodology.

Editing site – cDNA sample	Colony screen	Trace-file method	Difference
	derived editing	derived editing	observed between
	efficiency in	efficiency in	methods in
	percentage	percentage	percentage
ndhB 87188 – sample 17	93.6%	88.2%	5.4%
ndhB 87188 - sample 23	18.1%	16.1%	2.0%
ndhB 87281 – sample 17	92.2%	87.5%	4.7%
ndhB 87281 – sample 23	85.7%	74.9%	10.8%
ndhB 87306 – sample 17	94.4%	84.3%	10.1%
<i>ndhB</i> 87306 – sample 23	83.7%	73.4%	10.3%
ndhB 87425 – sample 17	96.6%	91.8%	4.8%
ndhB 87425 – sample 23	83.9%	83.1%	0.8%
ndhB 87743 – sample 17	92.1%	89.3%	2.8%
<i>ndhB</i> 87743 – sample 23	81.3%	75.6%	5.7%
<i>ndhF</i> 103675 – sample 23	21.5%	27.3%	5.8%

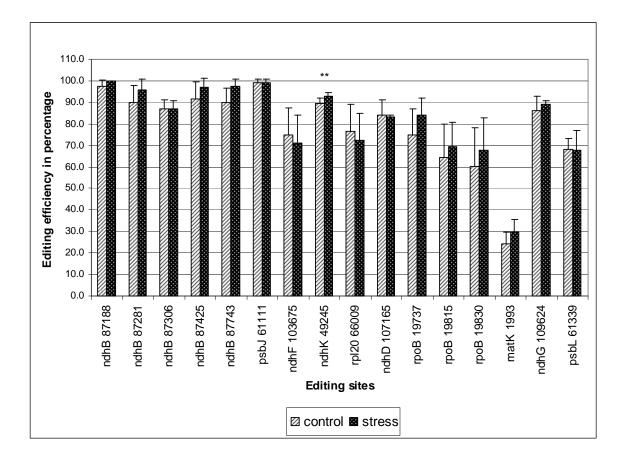
Table 3.9: The difference in editing efficiencies obtained by the Colony-screen method and the Trace-file method derived from specific samples for several different editing sites within the ndhB and ndhF transcript.

3.3.1.2 The editing efficiency within various transcripts in cultivars 'Cashel' and 'New Zealand'

Initially the RNA editing events were examined in two genotypes of *Lolium perenne* L. that were known to differ in their response to drought. The drought responses of Cv. 'Cashel' and Cv. 'New Zealand' were previously determined using the *in vivo* PEG-induced drought stress system (Foito et al. 2009). This study showed that these specific genotypes showed a clear difference in response, namely Cv. 'Cashel' was classified as drought susceptible and Cv. 'New Zealand' as drought tolerant.


Leaf samples of these plants were taken at 0 hours, 4 hours, 24 hours and 168 hours after initiation of drought stress, after which mRNAs were extracted, for subsequent use in this study. A range of 28 editing sites were analysed, however only 16 editing sites exhibited partial editing. The editing sites shown in Table 3.10 showed 100% editing in all samples tested. These sites were not used for any further analysis.

Editing site: trans	script – genome pos	sition	
<i>petB</i> – 72259	rps8 – 76422	<i>ndhA</i> – 112355	<i>ycf</i> - 43599
<i>ndhB</i> – 85696	<i>rpoC2</i> – 28731	<i>ndhA</i> – 112778	
<i>ndhB</i> – 86347	<i>atpA</i> – 35112	<i>rpl2</i> – 82031 (133217)	
<i>ndhB</i> – 86341	<i>ndhA</i> – 111250	<i>ycf</i> – 42700	


 Table 3.10: Editing sites that showed complete editing in all samples tested.

3.3.1.3 Editing pattern differences between drought stressed and non-stressed plants

The efficiency of partially edited editing sites were analysed for difference between drought stress treated genotypes and non-stressed treated genotypes using the trace-file method. A representative example of editing over time is shown in Fig. 3.4, there were no obvious differences observed over time for RNA editing efficiency. There were some fluctuations, but they appeared to be random. Furthermore no difference was observed overall between treatments for all editing sites for either cultivar tested, except for the RNA editing site at genome position 49245 within the *ndhK* transcript in cultivar 'Cashel' (see Fig. 3.5). There was a statistical difference observed, however this seems to be attributed to coincidental low standard deviation (Cv. 'Cashel' see Fig. 3.5 and Table 3.11, Cv. 'New Zealand' see Fig. 3.6 and Table 3.12).

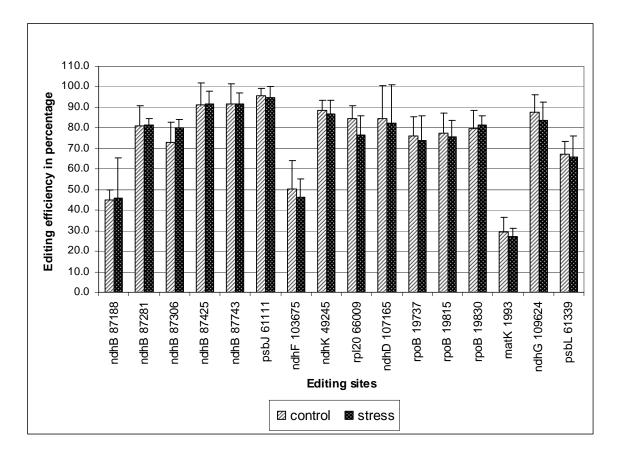

Fig. 3.4: Editing efficiency over time after stress induction for editing site 87281 within the *ndhB* transcript.

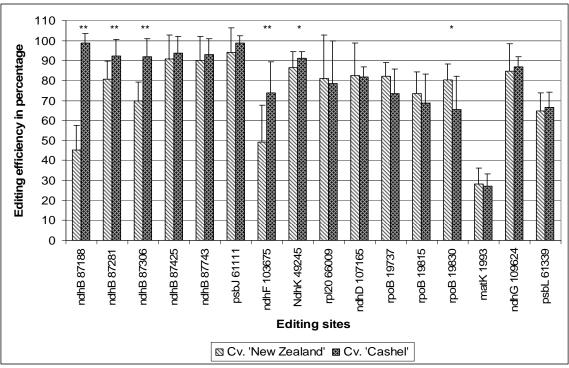
Fig. 3.5: Editing efficiency of sites in different transcripts in cultivar 'Cashel' for drought stressed and non-stressed plants. Error bars represent the standard deviation of the mean. Statistical differences in editing efficiency between stressed versus non-stressed plants calculated with a *t*-test (two-tailed distribution, equal variance, on arcsine transformed values). ^{**}: Editing sites with a statistical difference at P<0.05.

Table 3.11: Editing efficiency of sites in different transcripts in cultivar 'Cashel' for drought stressed and non-stressed plants. The standard deviation is shown between brackets. P-values are based on a *t*-test (two-tailed distribution, equal variance) on arcsine transformed editing percentages. ** = statistically difference at P<0.05

Editing	site (gene and genome position)	Non-stressed plants	Drought stressed plants	P-values
ndhB	87188	97.3 (± 3.2)	100 (± 0.0)	0.15
ndhB	87281	90.1 (± 7.6)	95.7 (± 5.2)	0.13
ndhB	87306	86.9 (± 4.3)	86.9 (± 3.6)	1.00
ndhB	87425	91.5 (± 8.2)	97.2 (± 3.9)	0.17
ndhB	87743	89.8 (± 6.9)	97.3 (± 3.4)	0.05
psbJ	61111	99.3 (± 1.4)	99.1 (± 1.8)	0.93
ndhF	103675	74.7 (±12.9)	71.1 (±12.8)	0.61
NdhK	49245	89.4 (± 2.8)	92.8 (± 1.6)	0.01**
rpl20	66009	76.5 (±12.4)	72.4 (±12.4)	0.67
ndhD	107165	84.0 (± 7.0)	83.2 (± 1.0)	0.78
rpoB	19737	74.8 (±12.4)	84.0 (± 7.9)	0.27
rpoB	19815	64.5 (±15.3)	69.4 (±11.5)	0.68
rpoB	19830	60.1 (±18.2)	67.6 (±15.0)	0.59
matK	1993	24.4 (± 5.3)	29.9 (± 5.7)	0.20
ndhG	109624	86.3 (± 6.6)	89.1 (± 1.8)	0.48
psbL	61339	68.4 (± 4.8)	67.9 (± 9.3)	0.95

Fig. 3.6: Editing efficiency of sites in different transcripts in cultivar 'New Zealand' for drought stressed and non-stressed plants. Error bars represent the standard deviation of the mean. Statistical differences in editing efficiency between stressed versus non-stressed plants calculated with a *t*-test (two-tailed distribution, equal variance, on arcsine transformed values).

<i>Editing site (gene and genome position)</i>		Non-stressed plants	Drought stressed plants	P-values
ndhB	87188	45.1 (± 4.7)	46.0 (±19.6)	0.70
ndhB	87281	81.0 (±10.1)	81.5 (± 2.9)	0.89
ndhB	87306	72.9 (±10.0)	80.4 (± 3.9)	0.43
ndhB	87425	91.1 (±10.7)	91.8 (± 6.0)	0.81
ndhB	87743	91.6 (±10.0)	91.9 (± 5.3)	0.81
psbJ	61111	95.9 (± 3.5)	94.7 (± 5.5)	0.85
ndhF	103675	50.1 (±14.1)	46.4 (± 8.8)	0.61
NdhK	49245	88.8 (± 4.9)	86.6 (± 6.8)	0.48
rpl20	66009	84.6 (± 6.3)	76.6 (± 9.2)	0.20
ndhD	107165	84.6 (±16.1)	82.5 (±18.8)	0.89
rpoB	19737	76.4 (± 9.0)	73.8 (±12.0)	0.81
rpoB	19815	77.5 (± 9.9)	75.8 (± 7.8)	0.76
rpoB	19830	79.5 (± 9.2)	81.4 (± 4.4)	0.78
matK	1993	29.5 (± 7.0)	27.3 (± 3.9)	0.60
ndhG	109624	87.8 (± 8.4)	83.9 (± 8.9)	0.50
psbL	61339	67.3 (± 6.3)	65.9 (±10.3)	0.84


Table 3.12: Editing efficiency of sites in different transcripts in cultivar 'New Zealand' for drought stressed and non-stressed plants. The standard deviation is shown between brackets. P-values are based on a *t*-test (two-tailed distribution, equal variance) on arcsine transformed editing percentages.

3.3.1.4 Editing pattern differences between cultivars 'Cashel' and 'New Zealand'

Editing sites were analysed using the trace-file method, to determine differences in editing between the drought tolerant cultivar 'New Zealand' and drought susceptible cultivar 'Cashel' as shown in Fig. 3.7 and Table 3.13. The RNA editing efficiency for four different editing sites was significantly different between the two cultivars at P<0.01. All of these editing sites were within genes, which are part of the NDH complex. These were the editing sites on genome positions 87188, 87281 and 87306 within the *ndhB* transcript, and genome position 103675 within the *ndhF* transcript. Another two RNA editing sites were statistically different but to a lesser extent (P<0.05), these are the sites

at genome position 49245 within the *ndhK* transcript, and position 19830 within the *rpoB* transcript.

Partial editing of these particular sites was observed before in root and callus tissue in *Zea mays*, however not in leaf tissue (Peeters and Hanson 2002). The occurrence of partial editing in the transcripts, which encode part of the NDH complex is interesting, because of the involvement of the NDH complex in response to stress (Burrows et al. 1998; Ibanez et al. 2010).

Fig. 3.7: Editing efficiency of sites in different transcripts in cultivars 'New Zealand' and 'Cashel'. Statistical differences in editing efficiency between cultivars 'Cashel' and 'New Zealand' were calculated with a *t*-test (two-tailed distribution, unequal variance, on arcsine values) Error bars represent the standard deviation of the mean.

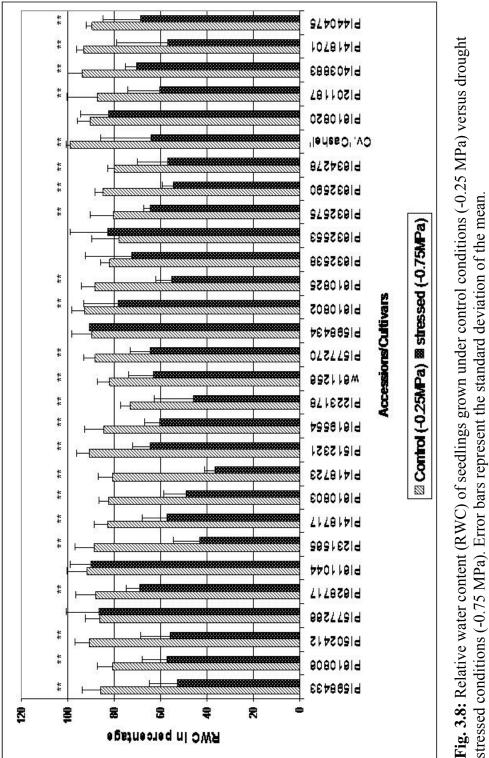
- * : Editing sites with a statistical difference at P<0.05
- **: Editing sites with a statistical difference at P<0.01

Table 3.13: Editing efficiencies for editing sites within various genes for cultivar 'Cashel' and cultivar 'New Zealand'. The standard deviation is shown between brackets. P-values are based on a *t*-test (two-tailed distribution, unequal variance, on arcsine transformed values).

Editing sites (gene, genome position)		Cv. 'Cashel'	Cv. 'New Zealand'	P-values
ndhB	87188	98.6 (± 4.8)	45.2 (±12.4)	<0.01**
ndhB	87281	92.2 (± 8.3)	80.7 (± 9.1)	<0.01**
ndhB	87306	91.8 (± 9.4)	69.9 (± 9.5)	<0.01**
ndhB	87425	93.8 (± 8.4)	90.7 (±12.2)	0.51
ndhB	87743	93.1 (± 7.7)	90.3 (±11.8)	0.57
psbJ	61111	99.0 (± 3.6)	94.1 (±12.4)	0.05
ndhF	103675	73.8 (±15.6)	49.2 (±18.3)	<0.01**
NdhK	49245	91.1 (± 3.2)	86.5 (± 8.1)	0.01*
rpl20	66009	78.6 (±21.1)	80.9 (±22.0)	0.63
ndhD	107165	81.6 (± 5.3)	82.6 (±16.3)	0.55
rpoB	19737	73.3 (±12.6)	82.3 (± 6.9)	0.68
rpoB	19815	68.7 (±14.4)	73.3 (±10.9)	0.68
rpoB	19830	65.3 (±16.8)	80.3 (± 7.9)	0.02*
matK	1993	27.2 (± 6.1)	28.3 (± 7.9)	0.45
ndhG	109624	86.8 (± 5.1)	84.5 (±13.8)	0.9
psbL	61339	66.4 (± 7.7)	64.9 (± 8.8)	0.67

*: Editing site with a statistical difference at P<0.05 **: Editing sites with a statistical difference at P<0.01

3.3.2 In vitro PEG-induced system to evaluate drought tolerance


29 accessions of *Lolium perenne* L. were ordered from the GRIN database, based on differences in their winter hardiness response (Hulke et al. 2007; Hulke et al. 2008). Five to seven separate seedlings (each a distinct genotype) of each accession were exposed to stressed conditions (both -0.75 MPa and -0.9 MPa) and non stressed conditions (-0.25 MPa) as described in section 3.2.7.

3.3.2.1 Evaluation of accessions of *Lolium perenne* L. on drought tolerance using an *in vitro* PEG-induced system.

After 13 days of treatment, the RWC (Fig. 3.8, Table 3.14 and Fig. 3.9, Table 3.15) and total dry weights (Fig. 3.10, Table 3.16 and Fig. 3.11, Table 3.17) were determined for each seedling, these results were pooled together to obtain a ranking in response to drought stress. The results obtained reflected the population of the accession, rather then a single genotype within a cultivar.

3.3.2.2 Relative water content

The RWC values under control conditions were in the range of 73% to 99%, whereas under stressed conditions these values dropped as was expected under drought stress (Fig. 3.8, Table 3.14 and Fig. 3.9, Table 3.15). The extent of reduction reflected how well the plants coped with water deficit. The lowest RWC value, which was observed under stressed conditions, was 45.7% in accession PI223565 at a -0.75 MPa water potential of the medium (Fig. 3.8, Table 3.14). Unexpectedly the RWC values under stressed conditions at -0.9 MPa water potential of the medium, was less dramatic (Fig. 3.9, Table 3.15). If an accession has no significant reduction in relative water content (RWC) under stressed conditions compared to control conditions, this accession can be considered drought tolerant. On the other hand, if there was a significant reduction in RWC then the accession can be considered drought susceptible.

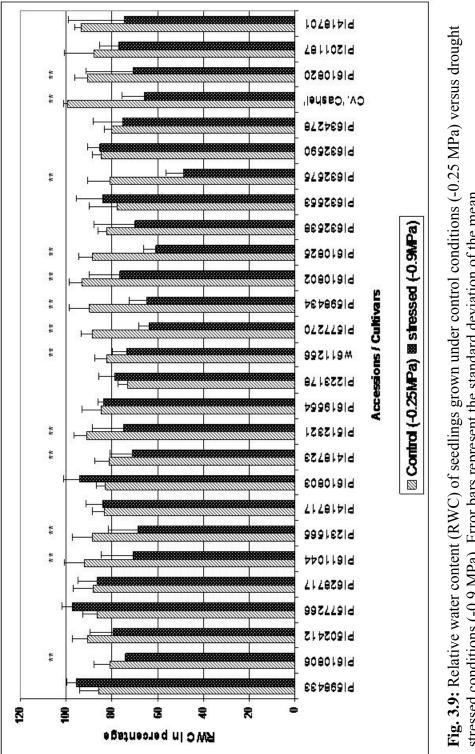
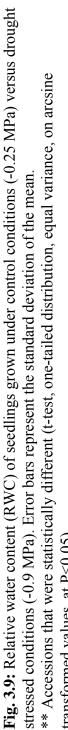
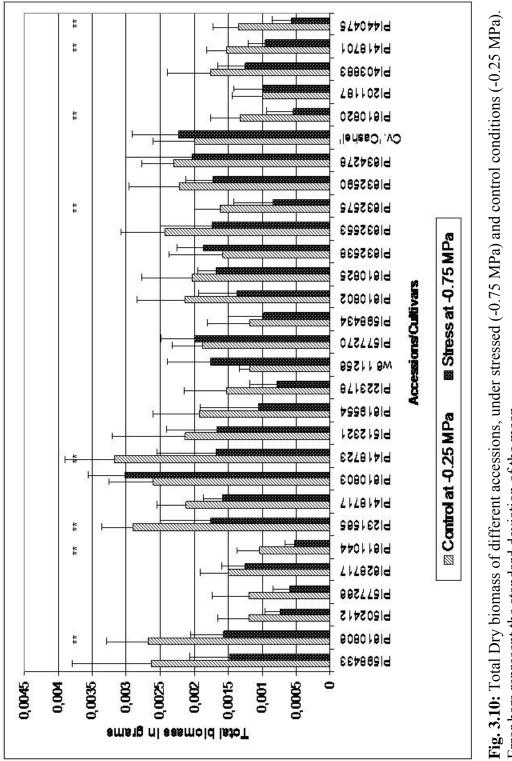




Table 3.14: Relative water content of seedlings subjected to control conditions (-0.25 MPa) and stressed conditions (-0.75MPa). Between brackets are given the standard deviations. P-values are given based on a *t*-test (one-tailed distribution, equal variance) on arcsine transformed values. ¹: Too few samples to perform a *t*-test. ^{**}: RWC in stressed conditions was significantly lower then RWC in control conditions at

Accession	Control (-0.25MPa)	Stress (-0.75MPa)	P-value
PI598433	85.7(± 8.3)	52.7(±12.2)	<0.01**
PI610806	80.8(± 6.7)	57.4(±10.4)	<0.01**
PI502412	90.7(± 6.3)	55.9(±13.1)	<0.01**
PI577266	86.4(± 6.1)	86.6(±14.2)	0.34
PI628717	88.0(± 8.8)	69.0(± 6.1)	0.01**
PI611044	91.8(± 8.7)	90.1(± 9.0)	0.40
PI231565	88.6(± 8.6)	43.5(±11.0)	<0.01**
PI418717	82.9(± 5.7)	57.4(±10.4)	<0.01**
PI610803	82.7(± 4.1)	49.0(± 9.5)	<0.01**
PI418723	81.0(± 6.2)	36.8(± 4.4)	<0.01**
PI512321	90.8(± 5.5)	64.5(± 7.6)	<0.01**
PI619554	84.6(± 8.2)	60.6(± 6.7)	0.01**
PI223178	73.2(± 4.2)	45.7(±17.4)	0.01**
w611256	82.1(± 5.3)	63.2(±10.8)	<0.01**
PI577270	88.2(± 5.0)	64.5(± 8.7)	<0.01**
PI598434	89.7(± 8.6)	90.7(± ¹)	1
PI610802	92.9(± 5.7)	78.5(±14.9)	0.05
PI610825	88.5(± 5.9)	55.4(± 6.6)	<0.01**
PI632538	82.2(± 3.8)	72.7(±19.7)	0.28
PI632553	77.8(±11.8)	82.9(±16.1)	0.18
PI632575	80.6(±10.0)	64.5(± 3.2)	0.01**
PI632590	84.9(± 3.5)	54.5(± 5.2)	<0.01**
PI634278	80.1(± 3.0)	57.1(±12.9)	0.01**
Cv. 'Cashel'	99.2(± 1.8)	64.0(±22.0)	<0.01**
PI610820	90.4(± 5.5)	82.5(±12.0)	0.13
PI201187	87.7(±12.7)	60.3(±13.7)	0.01**
PI403883	93.8(± 6.1)	70.5(± 4.8)	0.02**
PI418701	93.4(± 2.7)	56.9(±22.0)	0.01**
PI440475	89.8(± 2.2)	68.7(±16.3)	0.02**

P<0.05

transformed values, at P<0.05)


Table 3.15: Relative water content of seedlings subjected to control conditions (-0.25 MPa) and stressed conditions (-0.9 MPa). Between brackets are given the standard deviations. P-values are given based on a *t*-test (one-tailed distribution, equal variance) on arcsine values. ¹: Too few samples to perform a *t*-test. ^{**}: RWC in stressed conditions was significantly lower then RWC in control conditions at

Accessions	Control (-0.25MPa)	Stress (-0.9MPa)	P-value
PI598433	85.7(± 8.3)	95.4(± 4.1)	0.04**
PI610806	80.8(± 6.7)	$73.9(\pm^{1})$	1
PI502412	90.7(± 6.3)	79.3(±10.1)	0.05
PI577266	86.4(± 6.1)	97.2(± 4.7)	0.01**
PI628717	88.0(± 8.8)	86.4(± 8.5)	0.46
PI611044	91.8(± 8.7)	70.6(± 7.6)	0.01**
PI231565	88.6(± 8.6)	68.4(±12.9)	0.01**
PI418717	82.9(± 5.7)	83.7(± 7.5)	0.42
PI610803	82.7(± 4.1)	93.9(± 7.1)	0.01**
PI418723	81.0(± 6.2)	71.0(± 9.7)	0.05
PI512321	90.8(± 5.5)	74.7(±13.6)	0.02**
PI619554	84.6(± 8.2)	83.6(± 2.3)	0.34
PI223178	73.2(± 4.2)	78.5(± 6.9)	0.10
w611256	82.1(± 5.3)	73.5(± 6.3)	0.01**
PI577270	88.2(± 5.0)	63.7(± 4.4)	<0.01**
PI598434	89.7(± 8.6)	64.9(± 7.5)	<0.01**
PI610802	92.9(± 5.7)	76.4(±13.4)	0.03**
PI610825	88.5(± 5.9)	60.6(± 5.6)	<0.01**
PI632538	82.2(± 3.8)	69.9(±17.7)	0.14
PI632553	77.8(±11.8)	83.7(±11.9)	0.19
PI632575	80.6(±10.0)	48.7(± 7.5)	<0.01**
PI632590	84.9(± 3.5)	85.1(± 5.3)	0.45
PI634278	80.1(± 3.0)	75.1(±13.2)	0.31
Cv. 'Cashel'	99.2(± 1.8)	65.5(±10.2)	<0.01**
PI610820	90.4(± 5.5)	70.4(±20.8)	0.03**
PI201187	87.7(±12.7)	76.6(± 8.5)	0.08
PI418701	93.4(± 2.7)	74.5(±24.5)	0.07

P<0.05

3.3.2.3 Total dry biomass

The effect of water deficit was overall reflected by a reduction of total dry biomass under stressed conditions. Differences in the reduction of dry biomass were observed between accessions, some had a significant reduction illustrating drought susceptibility, whereas other accessions had no clear reduction in dry biomass, indicating drought tolerance (see Fig. 3.10 and Table 3.16, Fig. 3.11 and Table 3.17).

**: statistical differences between treatments (t-test, two-tailed distribution, unequal variance, P<0.05).

Table 3.16: Total Dry biomass of different accessions, subjected to control conditions (-0.25 MPa) and stressed conditions (-0.75 MPa). Between brackets are given the standard deviations. P-values are given base on a *t*-test (two-tailed distribution, unequal variance). ** = Total dry biomass in stressed conditions was significantly lower then in control conditions at P<0.05.

Accession / Cultivar	Dry biomass of plants after	Dry biomass of plants	P values
	control conditions	after stress conditions	
	(-0.25MPa) (g)	(-0.9MPa) (g)	
PI598433	0.00264(±0.0012)	0.00148(±0.0006)	0.10
PI610806	0.00268(±0.0006)	0.00156(±0.0005)	0.01**
PI502412	0.00120(±0.0005)	0.00074(±0.0002)	0.09
PI577266	0.00120(±0.0005)	0.00060(±0.0002)	0.07
PI628717	0.00150(±0.0004)	0.00126(±0.0003)	0.34
PI611044	0.00104(±0.0003)	0.00052(±0.0001)	0.02**
PI231565	0.00290(±0.0005)	0.00176(±0.0007)	0.02**
PI418717	0.00212(±0.0004)	0.00158(±0.0003)	0.05
PI610803	0.00260(±0.0007)	0.00302(±0.0005)	0.31
PI418723	0.00318(±0.0007)	0.00168(±0.0009)	0.02**
PI512321	0.00214(±0.0011)	0.00166(±0.0008)	0.44
PI619554	0.00192(±0.0007)	0.00106(±0.0008)	0.12
PI223178	0.00152(±0.0006)	0.00078(±0.0004)	0.06
w6 11256	0.00118(±0.0002)	0.00176(±0.0006)	0.11
PI577270	0.00188(±0.0004)	0.00200(±0.0005)	0.70
PI598434	0.00118(±0.0006)	0.00098(±0.0005)	0.60
PI610802	0.00214(±0.0007)	0.00136(±0.0005)	0.09
PI610825	0.00204(±0.0007)	0.00168(±0.0003)	0.35
PI632538	0.00158(±0.0008)	0.00186(±0.0004)	0.51
PI632553	0.00244(±0.0006)	0.00174(±0.0008)	0.16
PI632575	0.00162(±0.0004)	0.00084(±0.0006)	0.04**
PI632590	0.00222(±0.0007)	0.00172(±0.0004)	0.23
PI634278	0.00231(±0.0005)	0.00204(±0.0010)	0.59
Cv. 'Cashel'	0.00200(±0.0006)	0.00224(±0.0007)	0.63
PI610820	0.00132(±0.0004)	0.00054(±0.0004)	0.02**
PI201187	0.00100(±0.0004)	0.00098(±0.0004)	0.94
PI403883	0.00176(±0.0006)	0.00126(±0.0004)	0.21
PI418701	0.00153(±0.0003)	0.00095(±0.0003)	0.03**
PI440475	0.00135(±0.0004)	0.00058(±0.0003)	0.02**

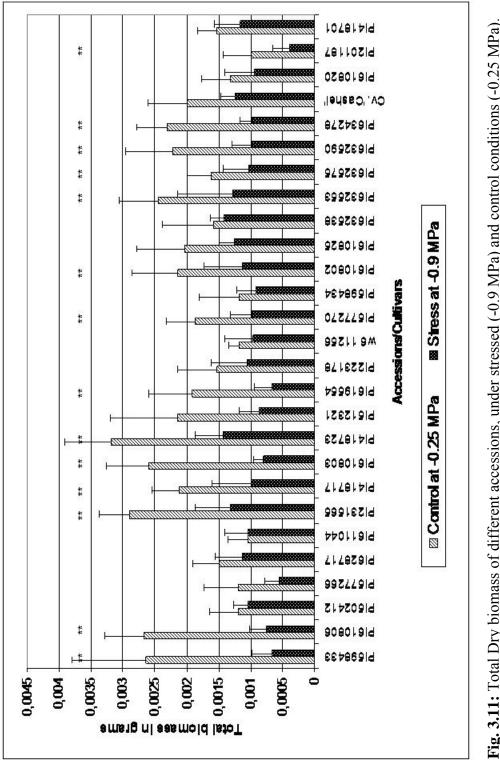


Fig. 3.11: Total Dry biomass of different accessions, under stressed (-0.9 MPa) and control conditions (-0.25 MPa). Error bars represent the standard deviation of the mean.

**: statistical differences between treatments (t-test, two-tailed distribution, unequal variance, P<0.05).

Table 3.17: Total Dry biomass (in g) of different accessions, subjected to control conditions (-0.25 MPa) and stressed conditions (-0.9 MPa). Between brackets are given the standard deviations. P-values are given base on a *t*-test (two-tailed distribution, unequal variance).

Accession / Cultivar	Dry biomass of plants during	Dry biomass of plants during	Р
	control conditions (-0.25MPa)	stress conditions (-0.9MPa)	values
	(g).	(g)	
PI598433	0.00264(±0.0012)	0.00066(±0.0003)	0.02**
PI610806	0.00268(±0.0006)	0.00076(±0.0003)	<0.01**
PI502412	0.00120(±0.0005)	0.00104(±0.0002)	0.51
PI577266	0.00120(±0.0005)	0.00056(±0.0002)	0.05
PI628717	0.00150(±0.0004)	0.00114(±0.0004)	0.20
PI611044	0.00104(±0.0003)	0.00104(±0.0004)	1.00
PI231565	0.00290(±0.0005)	0.00132(±0.0006)	<0.01**
PI418717	0.00212(±0.0004)	0.00100(±0.0006)	0.01**
PI610803	0.00260(±0.0007)	0.00080(±0.0002)	<0.01**
PI418723	0.00318(±0.0007)	0.00144(±0.0004)	<0.01**
PI512321	0.00214(±0.0011)	0.00086(±0.0003)	0.05
PI619554	0.00192(±0.0007)	0.00066(±0.0003)	0.01**
PI223178	0.00152(±0.0006)	0.00106(±0.0006)	0.26
w6 11256	0.00118(±0.0002)	0.00096(±0.0005)	0.35
PI577270	0.00188(±0.0004)	0.00098(±0.0003)	0.01**
PI598434	0.00118(±0.0006)	0.00092(±0.0003)	0.44
PI610802	0.00214(±0.0007)	0.00114(±0.0006)	0.04**
PI610825	0.00204(±0.0007)	0.00126(±0.0002)	0.08
PI632538	0.00158(±0.0008)	0.00142(±0.0002)	0.69
PI632553	0.00244(±0.0006)	0.00128(±0.0009)	0.04**
PI632575	0.00162(±0.0004)	0.00102(±0.0004)	0.04**
PI632590	0.00222(±0.0007)	0.00098(±0.0003)	0.02**
PI634278	0.00231(±0.0005)	0.00098(±0.0002)	<0.01**
Cv. 'Cashel'	0.00200(±0.0006)	0.00124(±0.0002)	0.15
PI610820	0.00132(±0.0004)	0.00094(±0.0005)	0.22
PI201187	0.00100(±0.0004)	0.00040(±0.0002)	0.04**
PI418701	0.00153(±0.0003)	0.00117(±0.0004)	0.27

unequal variance). ** = Total dry biomass after stressed conditions was significantly lower then after control conditions at P<0.05.

3.3.2.4 Overview of results for drought response, based on both RWC and total dry

biomass evaluation

In table 3.18, an overview of the results is given, separated by accession and test. Based on the results obtained with the PEG-infused *in vitro* system, accessions were selected that were drought susceptible, drought tolerant or intermediate in response (see Table 3.18, red annotated accessions). These cultivars were subsequently assessed with an *in vivo* drought stress experiment to confirm these findings.

Table 3.18: Overview of accessions and their response to drought stress, based on RWC	
and total dry biomass.	

+ = result indicating drought tolerance, - = result indicating drought susceptibility
Red annotated accessions were chosen for an <i>in vivo</i> drought stress experiment.

Cultivar	RWC	Dry weight	RWC	Dry weight	Overall response
	-0.75	-0.75 MPa	-0.9	-0.9 MPa	
	MPa		MPa		
PI 577266	+	+	+	+	Drought tolerant
PI 632538	+	+	+	+	Drought tolerant
PI 502412	-	+	+	+	Moderately drought tolerant
PI 628717	-	+	+	+	Moderately drought tolerant
PI 223178	-	+	+	+	Moderately drought tolerant
PI 598434	+	+	-	+	Moderately drought tolerant
PI 632553	+	+	+	-	Moderately drought tolerant
PI 632590	-	+	+	-	Intermediate
PI 634278	-	+	+	-	Intermediate
Cv. 'Cashel'	-	+	-	+	Intermediate
PI 598433	-	+	+	-	Intermediate
PI 610820	+	-	-	+	Intermediate
PI 611044	+	-	-	+	Intermediate
PI 418717	-	+	+	-	Intermediate
PI 610803	-	+	+	-	Intermediate
PI 418701	-	-	+	+	Intermediate
PI 201187	-	+	+	-	Intermediate

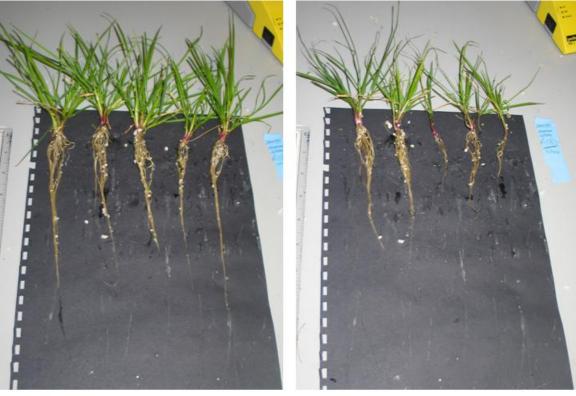
Cultivar	RWC	Dry weight	RWC	Dry weight	Overall response
	-0.75	-0.75 MPa	-0.9	-0.9 MPa	
	MPa		MPa		
PI 512321	-	+	-	+	Intermediate
PI 619554	-	+	+	-	Intermediate
W6 11256	-	+	-	+	Intermediate
PI 610825	-	+	-	+	Intermediate
PI 610802	-	+	-	-	Moderately drought
					susceptible
PI 577270	-	+	-	-	Moderately drought
					susceptible
PI 440475	-	-	n.a.	n.a.	Drought susceptible
PI 610806	-	-	-	-	Drought susceptible
PI 231565	-	-	-	-	Drought susceptible
PI 418723	-	-	-	-	Drought susceptible
PI 632575	-	-	-	-	Drought susceptible

Table 3.18 continued..

n.a.: not analysed

3.3.3 In vivo PEG-induced system to evaluate drought tolerance

3.3.3.1 Evaluation of accessions of *Lolium perenne* L. on drought stress response using an *in vivo* PEG-induced system.


Eleven accessions were selected based on initial results from the *in vitro* PEG-infused system (see Table 3.18, red annotated accessions), another cultivar 'New Zealand' was added to this experiment as this was described as a drought tolerant accession (Foito et al. 2009). Unfortunately not all accessions managed to propagate enough tillers, to accumulate a sufficient number of clones, therefore in the end nine accessions were assessed with this system as described in section 3.8.2. These accessions and cultivars

were Cv. 'New Zealand', Cv. 'Cashel', PI231565, PI610825, PI201187, PI418701, PI611044, PI632553 and PI223178.

After the exposure to the stress treatment, three factors were assessed to determine drought response. Firstly the growth was recorded using pixel detection (see 3.3.3.2), secondly the relative water content (RWC) was recorded (see 3.3.3.3) and thirdly the root dry weights were analysed (3.3.3.4). The results were subsequently analysed for statistical differences.

3.3.3.2 Pixel detection to record growth differences between plants exposed to different treatments

After two weeks in stressed or non-stressed conditions, plants were removed and assessed for their phenotypical differences. Photographs were taken (see Fig. 3.12 - 3.14), and subsequently analysed for root and shoot development using the pixel detection method with the help of Adobe Photoshop 5.5 (see section 3.2.9.1). Differences in shoot and root development were documented and shown in sections 3.3.3.2.1 and 3.3.3.2.2

PI 610825 control

PI 610825 stress

Fig. 3.12: Photographs taken of accession PI 610825 after different treatments (left: hydroponics without addition of PEG to mimic optimal conditions, right: hydrophonics with additions of PEG to mimic drought stress conditions)

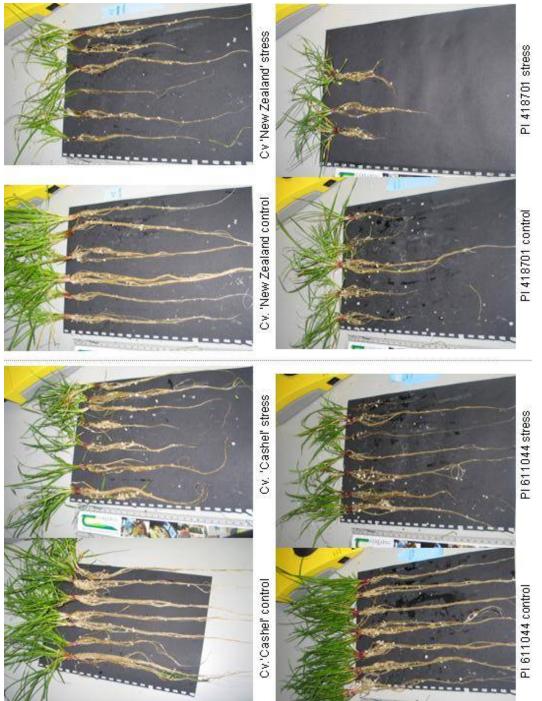


Fig. 3.13: Photographs taken of Cv. 'Cashel', Cv. 'New Zealand', accession PI 611044 and accession PI 418701 after different treatments (left: hydroponics without addition of PEG to mimic optimal conditions, right: hydrophonics with additions of PEG to mimic drought stress conditions)

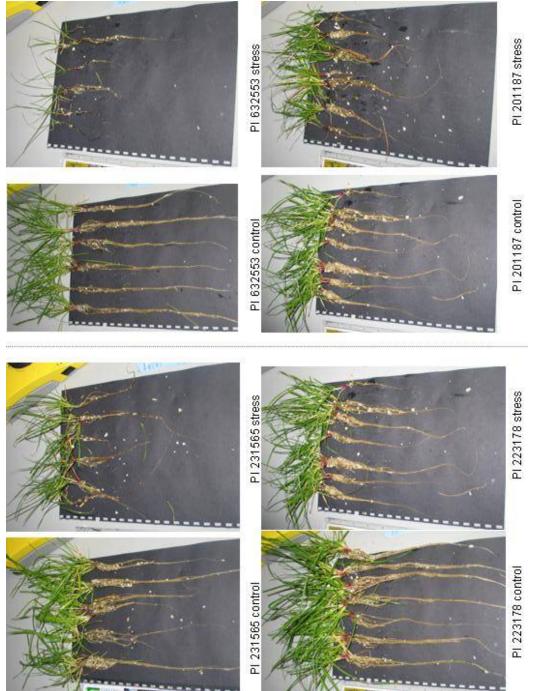


Fig. 3.14: Photographs taken of accession PI 231565, accession PI 632553, accession PI 223178 and accession PI 201187 after different treatments (left: hydroponics without addition of PEG to mimic optimal conditions, right: hydrophonics with additions of PEG to mimic drought stress conditions)

3.3.3.2.1 Root development differences after exposure to drought stress and control conditions

Photographs were analysed using pixel detection. The increase in root biomass under drought stress reflects an adaptive response involving an increase in root length to reach water deeper in the soil (van den Berg and Zeng 2006). Accessions PI611044, PI632553, PI223178, PI201187 and PI231565 showed a significant decrease in root development after exposure to drought stress compared to control conditions, indicating that these accessions are drought susceptible. Accession PI418701 seemed to have a slight increase in root growth during drought stress, compared to control conditions, suggesting a drought tolerance response. However this could not be proven statistically. Accession PI610825 and cultivars 'Cashel' and 'New Zealand' showed an apparent reduction in root development during stress, but this was not statistically significant (See Fig. 3.15 and Table 3.19).

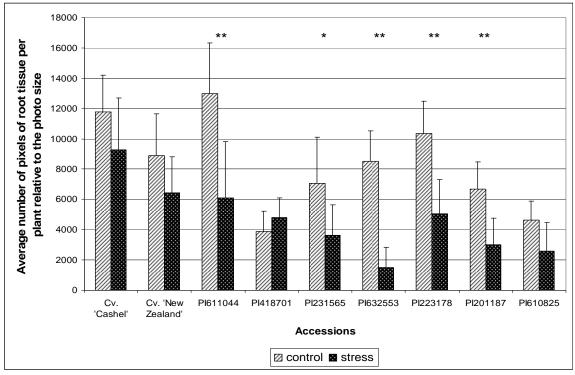


Fig. 3.15: Mean root biomass per plant based on pixel detection separated per accession. Statistical differences in number of pixels between stressed and unstressed treatments were calculated according to a *t*-test (two-tailed distribution, unequal variance) Error bars represent the standard deviation of the mean.

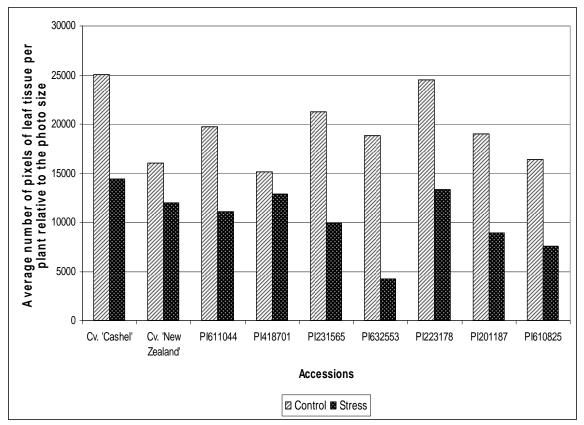

**: statistical differences at P<0.01, *: statistical difference at P<0.05.

Table 3.19: The mean root biomass per plant based on pixel detection; between brackets the standard deviations are presented. The pixel number has been converted to circumvent photo size differences. P-values are given for the t-test (two-tailed distribution, unequal variance). **: Statistical difference between control and stressed conditions at P<0.01 *: Statistical difference between control and stressed conditions at P<0.05.

Accession/Cultivar	Mean root biomass based on	Mean root biomass based on	P value
	pixel values under control	pixel values under stress	
	condition (pixels)	conditions (pixels)	
Cv. 'Cashel'	11769(± 2450)	9281(± 2392)	0.07
Cv. 'New Zealand'	8879(± 2776)	6440(± 1758)	0.15
PI611044	12988(± 3343)	6107(± 3688)	<0.01 **
PI418701	3880(± 1343)	4810(± 1268)	0.40
PI231565	7068(± 3042)	3621(± 1997)	0.02 *
PI632553	8526(± 1997)	1508(± 1343)	<0.01 **
PI223178	10366(± 2122)	5047(± 2246)	<0.01 **
PI201187	6676(± 1794)	3005(± 1758)	<0.01 **
PI610825	4616(± 1285)	2608(± 1872)	0.09

3.3.3.2.2 Shoot development differences after exposure to drought stress and control conditions

The pixel detection method was used to determine the leaf biomass difference between accessions. However this could not be applied to separate clones within accessions, as the leaf material overlapped with each other. The average leaf biomass based on pixels per plant was calculated by taking the total number of pixels divided by the number of plants. For this reason no statistical analyses could be performed. Results show that accession PI418701 and cultivar 'New Zealand' had a slight decrease in leaf development under stress conditions, indicating a drought tolerant response for this specific clone within this accession or cultivar. All the other accessions and cultivars had a clear decrease in biomass production during stress conditions (see Fig. 3.16 and Table 3.20), conferring a drought susceptible response. This type of response was previously observed to correlate with drought response (Foito et al. 2009).

Fig. 3.16: Average leaf biomass per plant, derived from total leaf biomass, based on pixel detection per cultivar/accession. No statistical analyses could be performed.

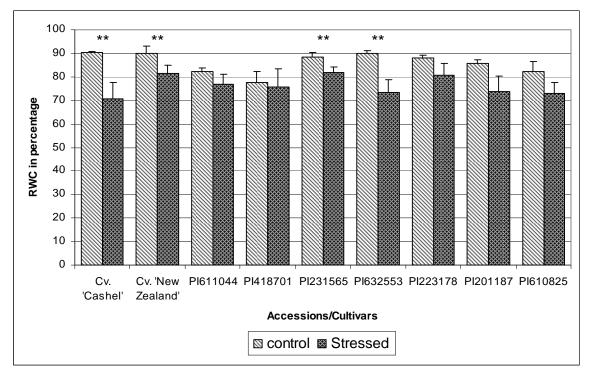

Accession/Cultivar	Mean leaf biomass based on pixel	Mean leaf biomass based on pixel
	values under control conditions	values under stress conditions
Cv. 'Cashel'	25076	14433
Cv. 'New Zealand'	16029	12015
PI611044	19708	11086
PI418701	15123	12915
PI231565	21273	9925
PI632553	18820	4275
PI223178	24541	13374
PI201187	19025	8883
PI610825	16440	7556

Table 3.20: Average leaf biomass per plant, based on pixel detection. The pixel number has been converted to circumvent photo size differences.

3.3.3.3 Results of drought response using the RWC and Root dry biomass.

3.3.3.1 Relative water content

There was a statistical difference in relative water content between stressed and nonstressed plants for Cv. 'Cashel, Cv. 'New Zealand', accession PI231565 and accession PI632553 (see Fig. 3.17 and Table 3.21). This indicates that these particular clones of these accessions were susceptible to drought stress.

Fig. 3.17: Relative water content after two weeks exposure to drought stress compared to control conditions. Error bars represent the standard deviation of the mean.

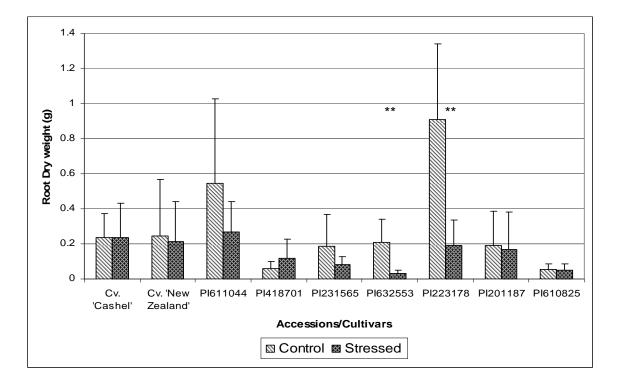

^{**}: statistical difference between stressed and unstressed treatments according to a *t*-test (one-tailed distribution, equal variance on arcsine transformed values) at P < 0.05.

Table 3.21: Relative water content (RWC) values derived from plants subjected to control and stressed conditions. P values are based on a *t*-test (one-tail distribution, equal variance) on arcsine transformed values. **: statistical difference between control and stressed plants at P<0.05.

Cultivar / Accession	RWC Control treatment	RWC stress treatment	P values
Cv. 'Cashel'	90.3(±0.4)	70.8(±6.7)	<0.01**
Cv. 'New Zealand'	90.0(±3.0)	81.5(±3.3)	0.04**
PI611044	82.1(±1.9)	76.7(±4.2)	0.14
PI418701	77.8(±4.6)	75.7(±7.8)	0.41
PI231565	88.4(±2.1)	82.0(±2.2)	0.02**
PI632553	90.1(±1.3)	73.4(±5.6)	<0.01**
PI223178	87.9(±1.5)	80.7(±5.0)	0.08
PI201187	85.6(±1.7)	73.7(±6.8)	0.05
PI610825	82.1(±4.2)	73.1(±4.5)	0.09

3.3.3.3.2 Root dry biomass

There was a statistical difference in root dry biomass between treatments for accession PI632553 and accession PI223178 (See Fig. 3.18 and Table 3.22). This indicates that clones of these accessions were more susceptible to drought then the other accessions. Accession PI418701 had a slight increase in root dry biomass however this could not be statistically proven.

Fig. 3.18: The mean root dry biomass per accession. Error bars represent the standard deviation of the mean.

**: Accessions, which had a statistical difference in dry root biomass (*t*-test, two tailed distribution, unequal variance P<0.05) between stressed and non-stressed conditions.

Table 3.22: Root dry biomass (in g) for both treatments for different accessions / cultivars. P values are based on a *t*-test (two-tailed distribution, unequal variance) between treatments. **: Statistical difference between control conditions and stresses conditions at P<0.05.

Cultivars /	Root dry biomass under	Root dry biomass under	P values
Accessions	after control conditions	after stress conditions	
	(g)	(g)	
Cv. 'Cashel'	0.24(±0.14)	0.24(±0.20)	1.00
Cv. 'New Zealand'	0.25(±0.32)	0.21(±0.23)	0.84
PI611044	0.55(±0.48)	0.27(±0.17)	0.19
PI418701	0.06(±0.04)	0.12(±0.11)	0.47
PI231565	0.19(±0.18)	0.08(±0.04)	0.22
PI632553	0.21(±0.13)	0.03(±0.02)	0.02**
PI223178	0.91(±0.43)	0.19(±0.14)	<0.01**
PI201187	0.19(±0.20)	0.17(±0.21)	0.86
PI610825	0.06(±0.03)	0.05(±0.04)	0.79

The reduction or increase in root dry biomass under stress conditions could also be visualized differently, Fig.3.19 and Table 3.23 show that accession PI418701 had an almost 100% increase in root biomass compared to control conditions, whereas accession PI632553 had the most dramatic reduction in root biomass.

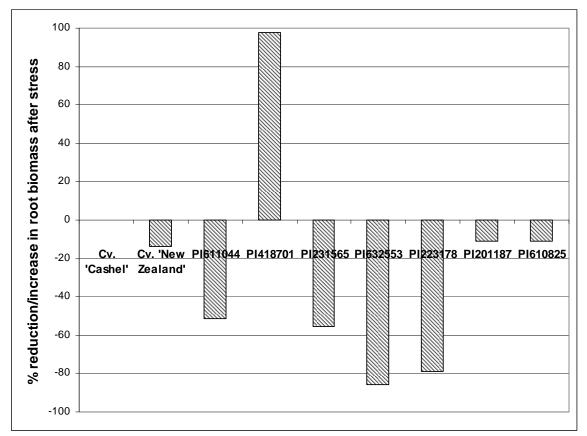


Fig. 3.19: Reduction/Increase of root dry biomass after stress, compared to the control.

Cultivars / Accessions	Reduction/increase of root dry biomass
	after stress, in comparison to control
	conditions in percentage.
Cv. 'Cashel'	0
Cv. 'New Zealand'	- 14
PI611044	- 51
PI418701	+ 98
PI231565	- 55
PI632553	- 86
PI223178	- 79
PI201187	- 11
PI610825	- 11

Table 3.23: Reduction/increase of root dry biomass after stress, in comparison to control conditions in percentage.

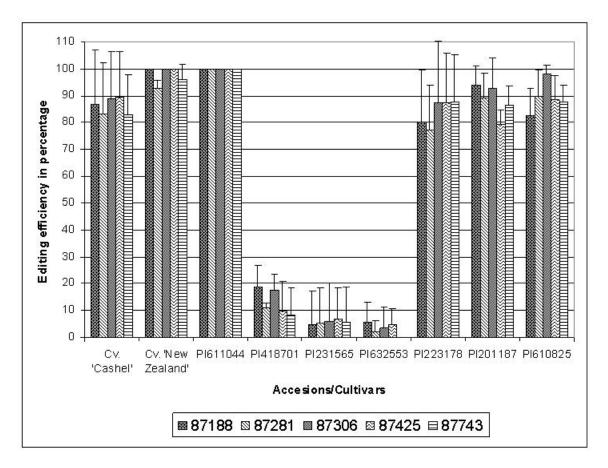
3.3.3.4 Overview of results after analyses of plants exposed to drought stress with the *in vivo* PEG induced system.

The results obtained from the phenotypical analyses and the analytical analyses were combined to determine how each accession was affected by drought stress. The responses are ranked in Table 3.24.

Accession PI418701 was not subject to negative effects under drought stress, so the clones of this accession could be considered drought tolerant. Cultivar 'New Zealand' was only mildly affected by drought. Accession PI610825 had an intermediate negative response under drought stress. The following cultivars and accessions had an increasing drought susceptible response, Cv. 'Cashel', PI231565, PI201187, PI611044, PI223178 and PI632553.

Table 3.24: Overall review of the results for the *in vivo* drought stress experiment. + = No difference in response between stressed and non-stressed conditions I = Moderate difference in response between stressed and non-stressed conditions - = Distinct difference in response between stressed and non-stressed conditions Overall response was scored by taking the average of +'s, I's and -'s.

Accession/Cultivar	Phenotypical	Phenotypical	Relative	Root dry	Overall
	assessment of	assessment of	water	biomass	
	shoot	root	content		
	development	development			
Accession PI418701	+	+	Ι	+	+ 3
Cv. 'New Zealand'	+	+	-	Ι	+ 1
Accession PI610825	-	+	Ι	Ι	0
Cv. 'Cashel'	-	+	-	Ι	- 1
Accession PI231565	-	Ι	-	Ι	- 2
Accession PI201187	-	-	Ι	Ι	- 2
Accession PI611044	-	-	Ι	Ι	- 2
Accession PI223178	-	-	Ι	-	- 3
Accession PI632553	-	-	-	-	- 4


3.3.4 Assessment of RNA editing efficiency within the *ndhB* and *ndhF* transcripts of accessions with various drought tolerance responses.

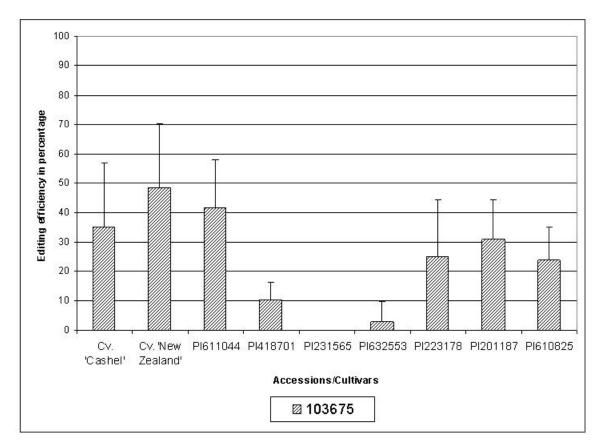
Tissue derived from the *in vivo* PEG induced system were analysed for RNA editing events using the trace-file method.

3.3.4.1 RNA editing efficiency in the *ndhB* trancript of accessions of *Lolium perenne*

L. tested in the *in vivo* PEG-induced drought stress experiment

There were no statistical significant differences in RNA editing within accessions between stressed and non-stressed clones for any of the analysed editing sites. However there were differences between accessions for editing efficiencies. For the editing sites within the *ndhB* transcript the editing efficiencies of Cv. 'Cashel', Cv. 'New Zealand', accessions PI611044, PI223178, PI201187 and PI610825 were statistically different (P<0.05) in comparison with the editing efficiencies of accessions PI418701, PI231565 and PI632553. (See Fig. 3.20 and Table 3.25). The observed differences were dramatic. Some accessions showed almost complete editing, while other accessions almost completely lacked editing at these sites.

Fig 3.20: RNA-editing efficiency within the *ndhB* transcript of editing sites located on plastid genome positions 87188, 87281, 87306, 87425 and 87743. Error bars represent the standard deviation of the mean.


Table 3.25: Editing efficiency in percentage of editing sites within the *ndhB* transcript, including grouping for statistical differences based on a *t*-test (two-tailed distribution, equal variance, on arcsine transformed values at P<0.05). ¹ = not enough replicates to do statistical analyses.

Cultivar - Editing site	Editing efficiency at	Editing efficiency at	Editing efficiency at
	site: 87188 in %	site: 87281 in %	site: 87306 in %
Cv. 'Cashel'	86.8(±20.5) ^{a,b}	83.4(±19.0) ^a	89.0(±17.7) ^a
Cv. 'New Zealand'	100.0(± 0.0) ^a	92.7(± 3.2) ^a	100.0(± 0.0) ^a
Accession PI611044	$100.0(\pm 0.0)^{-1}$	$100.0(\pm 0.0)^{1}$	100.0(± 0.0) ¹
Accession PI418701	18.6(± 8.2) ^c	11.2(± 1.5) ^b	17.5(± 6.1) ^{b,c}
Accession PI231565	5.0(±12.2) ^d	5.3(±13.0) ^{b,c}	5.9(±14.4) ^c
Accession PI632553	5.5(± 7.6) ^d	2.0(± 4.4) ^c	3.5(± 7.8) ^{c,d}
Accession PI223178	80.1(±19.5) ^b	77.5(±16.6) ^a	87.3(±22.9) ^{a,b}
Accession PI201187	93.9(± 7.0) ^{a,b}	89.3(± 9.2) ^a	92.7(±11.3) ^a
Accession PI610825	82.7(±10.0) ^b	89.8(± 9.7) ^a	98.3(± 2.9) ^a

Cultivar - Editing site	Editing efficiency at	Editing efficiency at site:	
	site: 87425 in %	87743 in %	
Cv. 'Cashel'	89.4(±17.0) ^a	83.0(±14.9) ^a	
Cv. 'New Zealand'	100.0(± 0.0) ^a	96.2(± 5.4) ^a	
Accession PI611044	$100.0(\pm 0.0)^{1}$	$100.0(\pm 0.0)^{1}$	
Accession PI418701	9.7(± 9.7) ^b	8.5(± 9.8) ^b	
Accession PI231565	6.9(± 11.4) ^b	5.4(± 13.2) ^b	
Accession PI632553	4.9(± 5.9) ^b	$0.0(\pm 0.0)^{b}$	
Accession PI223178	87.5(± 18.3) ^a	87.7(± 17.3) ^a	
Accession PI201187	79.4(± 5.1) ^a	86.5(± 7.1) ^a	
accession PI610825	88.3(± 9.0) ^a	87.8(± 6.3) ^a	

3.3.4.2 RNA editing efficiency in the *ndhF* transcript of accessions of *Lolium perenne* L. tested in the *in vivo* PEG-induced drought stress experiment

The known editing site at genome position 103675 within the *ndhF* transcript showed a similar difference between accessions as was evident for the *ndhB* editing sites, however the editing efficiency of accessions PI223178 and PI610825 were not statistically different (P<0.05) from the efficiency of accession PI418701 (See Fig. 3.21 and Table 3.26).

Fig. 3.21: RNA-editing efficiency of the editing site within the *ndhF* transcript located on plastid genome position 103675. Error bars represent the standard deviation of the mean.

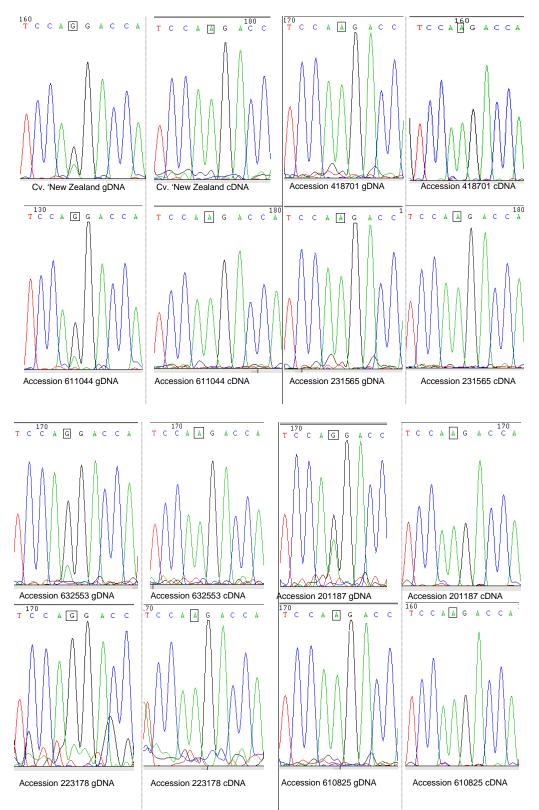
Cultivar - Editing site	Editing efficiency at site 103675 in %		
Cv. 'Cashel'	35.3(±21.6) ^a		
Cv. 'New Zealand'	48.5(±21.7) ^a		
Accession PI611044	41.8(±16.1) ^a		
Accession PI418701	10.1(± 6.3) ^{b,c}		
Accession PI231565	0.0(± 0.0) ^d		
Accession PI632553	2.8(± 6.8) ^{c,d}		
Accession PI223178	25.1(±19.2) ^{a,b}		
Accession PI201187	30.9(±13.6) ^a		
Accession PI610825	23.9(±11.1) ^{a,b}		

Table 3.26: Editing efficiency in percentages of editing site 103675 within the *ndhF* transcript, including grouping for statistical differences based on a *t*-test (two-tailed distribution, equal variance, on arcsine transformed values at P < 0.05).

3.3.5 Assessment of relationship between drought stress response and RNA editing efficiency within the *ndhB* and *ndhF* transcripts

There was no correlation between drought tolerance and editing efficiencies for editing sites within the *ndhB* and the *ndhF* genes (See Table 3.27). For example, accessions PI418701 and PI632553 had similar editing patterns, while their drought response was distinctly different. The opposite was shown for two different clones (genotypes) of cultivar 'New Zealand', these showed a distinctly different editing pattern, while the drought stress response was similar (See Table 3.27).

Editing efficiency of	Editing efficiency of	Drought
editing sites within	editing sites within	stress
the ndhB gene	the ndhF gene	response
Low	Moderately low	Tolerant
Moderately high	High	Tolerant
High	High	Tolerant
High	Moderately high	Moderately
		tolerant
High	High	Intermediate
Low	Low	Intermediate
High	High	Intermediate
High	High	Intermediate
High	Moderately high	Moderately
		susceptible
Low	Low	Susceptible
High	High	Susceptible
	editing sites within the ndhB gene Low Moderately high High High Low High High Low	editing sites within the ndhB geneediting sites within the ndhF geneLowModerately lowModerately highHighHighModerately highHighHighHighHighHighHighLowLowHighHighLowLowLowLowLowLowLowLowLowLowLowLowHighHighHighHigh


Table 3.27: Editing efficiency in relationship to drought tolerance for the tested clones of different accessions.

3.3.6 RNA editing of *Lolium perenne* L. accession-specific Single nucleotide polymorphism (SNP)

During analyses of the trace-files for the *ndhF* fragment a transition single nucleotide polymorphism (SNP) appeared for some accessions at genome position 103515. The conserved gDNA nucleotide was a thymine (T) in Cv. 'Cashel' and accessions PI418701, PI231565 and PI610825. However in Cv. 'New Zealand' and accessions PI611044, PI632553, PI223178 and PI201187 the thymine nucleotide at genome position 103515 was present in conjunction with a cytosine (C) (See Table 3.28 and Fig. 3.22). The SNP results in an amino-acid change from Serine to Proline. However at the mRNA level, this nucleotide was converted back to the Uracil (U), reconstituting the amino-acid Serine.

Accession /	Origin	Nucleotide	Nucleotide	Percentage	Percentage
Cultivar		1	2	nucleotide 1	nucleotide 1 at
				at the gDNA	the cDNA level
				level	
Cv. 'Cashel'	Ireland	Т	С	100%	100%
Cv. 'New	New	Т	С	31%	100%
Zealand'	Zealand				
Accession	Russia	Т	С	21%	100%
PI611044					
Accession	Former	Т	С	100%	100%
PI418701	Yugoslavia				
Accession	Libya	Т	С	100%	100%
PI231565					
Accession	Italy	Т	С	20%	100%
PI632553					
Accession	Greece	Т	С	15%	100%
PI223178					
Accession	Netherlands	Т	С	15%	100%
PI201187					
Accession	Switzerland	Т	С	100%	100%
PI610825					

Table 3.28: The ratio of the Single nucleotide polymorphism on position 103515 within the plastid genome, for different accessions/cultivars of *Lolium perenne* L.

Fig. 3.22: Trace-files of gDNA and cDNA of tested accessions, showing the single nucleotide polymorphism (SNP) on genome position 103515 marked by a box, which is subsequently edited back.

Diekmann et al. (2009) found seven other SNP's within the plastid genome of *Lolium perenne* L. that could potentially be editing sites. Three of these were located within coding sequences, these were the SNP at genome position 65631 within the *rps18* transcript, the SNP at genome position 37506 within the *psaB* transcript and the SNP at genome position 19560 within the *rpoB* transcript. All three sites were assessed for SNP presence within each accession / cultivar. Only for the SNP within the *psaB* transcript a difference in composition within and between accessions was observed. Cultivar 'New Zealand' only contained the Thymine nucleotide, whereas accession PI223178 contained both the nucleotides thymine and cytosine at this genome position, all remaining accessions exclusively showed the cytosine nucleotide (See Table 3.29). However when RNA editing was assessed on any of these sites, only the conserved nucleotide observed within the gDNA was present, indicating the absence of RNA editing at any of these SNP's.

Cultivars /	SNP at 19560 within rpoB		SNP at 65631 within rps18		SNP at 37506 within psaB	
accessions						
	Т	С	Т	С	Т	С
Cv. 'Cashel'	100%	0%	0%	100%	0%	100%
Cv. 'New	100%	0%	0%	100%	100%	0%
Zealand'						
Accession	100%	0%	0%	100%	0%	100%
PI611044						
Accession	100%	0%	0%	100%	0%	100%
PI418701						
Accession	100%	0%	0%	100%	0%	100%
PI231565						
Accession	100%	0%	0%	100%	0%	100%
PI632553						
Accession	100%	0%	0%	100%	58%	42%
PI223178						
Accession	100%	0%	0%	100%	0%	100%
PI201187						
Accession	100%	0%	0%	100%	0%	100%
PI610825						

Table 3.29: Reported SNP's and their presence within different accessions / cultivars

3.4 Discussion

To test the accuracy of the trace-file method for determining the editing efficiency, the results obtained from the trace-file method were compared to the results obtained from the established colony-screen method. The difference in observed editing between these methods was in the range of 0.8% to 10.8%, while the average difference between methods was 5.7%. These results indicate that the trace-file method can be used confidently to distinguish differences in editing efficiencies between samples.

Editing efficiency experiments conducted on specific clones from cultivars 'Cashel' and 'New Zealand' showed there was no significant difference in editing efficiency in respect to treatment within each cultivar. However editing efficiency comparisons conducted on specific clones from cultivars 'Cashel' and 'New Zealand', showed a clear difference among both genotypes in editing efficiency at editing sites within the *ndhB* gene at genome positions 87188, 87281 and 87306. Another editing site within the *ndhF* gene showed a clear difference in editing efficiency at genome position 103675, between cultivars 'New Zealand' and 'Cashel'. These results are based on clones of a single seed, which were either drought tolerant (Cv. 'New Zealand'), or drought susceptible (Cv. 'Cashel'). Perennial ryegrass is an outbreeding species leading to high heterogeneity and heterozygosity within populations. Therefore these results may not represent the editing efficiency for the entire range of genotypes within each cultivar.

To verify if the editing efficiency was related to the drought tolerance, two different drought stress experiments were conducted on a number of accessions of *Lolium perenne*

L. obtained from the GRIN database. The initial drought stress experiment (*in vitro* PEG induced system), showed clear differences in drought response between accessions, and based on these results a range of accessions were selected to verify these findings. To confirm the drought response of these accessions, clones were propagated and tested under drought stress using the *in vivo* PEG induced system. The results obtained from the second test (*in vivo* PEG induced system) differed from those of the first test (*in vitro* PEG induced system), this could be explained by genotypic variation, due to the use of clones in the *in vivo* experiment compared to a range of seedlings within each accession used in the *in vitro* experiment. Nevertheless to explore the relationship between RNA editing behaviour and drought tolerance, the results obtained from the *in vivo* PEG induced system could be used, by using these specific clones for RNA editing analyses.

The editing efficiency for the editing sites within the *ndhB* and *ndhF* were evaluated within the accessions tested for drought tolerance, and subsequently compared to the respective drought tolerance of these clones. These results indicate there is no correlation between drought tolerance and editing efficiency within the *ndh* genes. The findings of this study are in contrast to another study (Casano et al. 2000) where the NDH complex was involved in drought stress resistance. Casano et al. (2000) demonstrated that expression levels of plastid NDH complex genes were up regulated during drought stress (a situation which causes photo oxidative stress) and play a role in reducing plastoquinone (PQ) in conjunction with superoxide dismutase (SOD) and hydroquinone peroxidise (Casano et al. 2000; Abdeen et al. 2010). This information, in concurrence with this new data, suggests that although the NDH complex is involved in circumventing

oxidative stress, the RNA editing alone of the involved transcripts is not the determining factor for regulation of this complex. Nevertheless very low editing efficiencies were observed within certain accessions, the lowest editing efficiency was a mere 5%. This may indicate that these genes are upregulated, in such a way that the editing *trans*-factors are not able to edit the majority of the transcripts. Despite this, there are apparent sufficient functional transcripts available for correct assembly of the complex to counter oxidative stress.

Another explanation could be that another pathway is more prominently involved with countering oxidative stress. This pathway could be the PGR5/PGRL1-dependent route, also known as the non-NDH pathway (Rumeau et al. 2007; Suorsa et al. 2009). The involvement of this pathway with cyclic electron transfer was shown to be important under near optimal conditions in *Arabidopsis* (Munekage et al. 2004). A recent publication showed that components of the PGR5/PGRL1 route were upregulated during drought stress, whereas a component of the NDH complex *ndhH* was not affected during drought stress in *Arabidopsis*, indicating the importance of the PGR5/PGRL1 pathway (Lehtimäki et al. 2010).

The observed differences in RNA editing efficiencies are most likely due to different expression levels of the proteins involved in the editing of these specific editing sites. These could potentially be genotype specific and unrelated to environmental stimuli. Another possibility could be the difference in amount of transcripts of ndhB and ndhF

available for editing. If there are fewer transcripts available, then the editing efficiency might increase. Both these explanations could contribute to the observed effects.

Other studies have identified certain *trans*-factors that are essential for editing of certain sites, however this does not exclude the possibility that other proteins may be involved in the editing machinery, as is implied by Chateigner-Boutin et al. (2008). The editing machinery can be limited by the least available protein within that editing complex. This was demonstrated when chimeric RNA was expressed containing the editing site of *psbL* in tobacco chloroplasts, this led to a significant decrease in the editing efficiency of the endogenous *psbL* RNA. This competitive effect of the transgene was specific to the *psbL* gene, with other editing sites being properly edited, indicating depletion of the *psbL*-specific *trans*acting factor (Chaudhuri et al. 1995).

Some proteins which bind to specific *cis*-factors surrounding the editing sites have been identified. These belong to the pentatricopeptide repeat protein (PPR) family. This large family of proteins is believed to be involved in RNA maturation in plastids and mitochondria (Shikanai 2006). Other unknown proteins within the editing complex could have a general function, and if knocked-out, could potentially impair the whole editing machinery. An example is the CP31 protein in tobacco, when this protein was knocked out, editing within the *psbL* transcript was completely absent, while editing in the *ndhB* gene was partially impaired. Unfortunately other proteins comprising of the editing complex acting on plastid transcripts have yet to be identified. Due to the lack of information regarding all the *trans*-factors involved within the *ndhB* and *ndhF* genes and

the lack of sequence data to find homologs within perennial ryegrass of known *trans*factors, the regulation and accumulation of these proteins could not be tested during this project.

Lastly a novel single nucleotide polymorphism was found at plastid genome position 103515 within the *ndhF* gene in certain accessions, which was post-transcriptionally edited back to the conserved nucleotide. To our knowledge this phenomenon has not been observed previously, although these editing events could easily have been missed, due to the low percentage of secondary nucleotides in these specific genome locations at the DNA level. Within the Lolium perenne L. plastid genome, seven other SNP's were identified before, which could potentially be editing sites as well, three of these sites reside within coding regions, namely at genome position 19560 within the *rpoB* transcript, position 37506 within the *psaB* transcript, and position 65631 within the *rps18* transcript. (Diekmann et al. 2009). After analyses of nine accessions and cultivars for these SNPs, no subsequent RNA editing was observed. Therefore it indicates that within the perennial ryegrass plastid genome only the SNP within the ndhF coding region was edited, although the possibility exists that other not tested accessions could exhibit editing in the three other analysed sites. The occurrence of this phenomenon could be an evolutionary intermediate, where the loss of an editing site is in progress due to a reversion of a point mutation. However due to the polyploidy of the plastid genome in each cell, the chances of getting a complete reversion of the point mutation are small, and might take numerous generations to achieve, similar to population curves. Once achieved, the RNA editing

mechanism for this site is not required anymore, resulting in a gradual loss of editing capacity.

Chapter 4:

General discussion

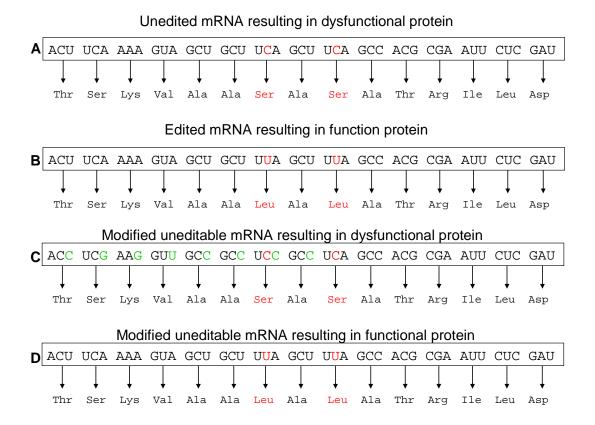
Due to the predicted climate change, the production of forage grasses may become a problem in Europe. Specifically in the east of Ireland the yield will decrease due to summer drought, unless artificial irrigation is implemented (Holden and Brereton 2002). To counter the detrimental effects of drought stress, it is paramount that studies are performed to improve in the long term drought tolerance in grasses.

One of the complexes that is known to be involved with drought response is the plastidial NDH complex (Casano et al. 2000; Quiles 2006; Ibanez et al. 2010). The NDH complex is one of the components of the chlororespiration pathway that interacts with the photosynthetic electron transport, involving the non-photochemical reduction and oxidation of the plastoquinone pool (Bennoun 1982). This complex consists of eleven subunits that are encoded by the plastome (ndhA-ndhK) and three putative nuclearencoded subunits (Casano et al. 2004). Two of the plastid-encoded subunits, *ndhB* and *ndhF* harbour several RNA editing sites. In this study it was shown that the editing efficiencies of some of these sites vary greatly within accessions of the species Lolium perenne L. As a consequence in some accessions this would lead to an accumulation of dysfunctional subunits of the NDH complex. Several previous studies showed that inactivation of one of the subunits would result in the disappearance of the entire NDH complex (Burrows et al. 1998; Horvath et al. 2000). A similar effect could be expected when unedited transcripts are translated. Therefore a low efficiency of RNA editing in a NDH subunit would suggest a reduced NDH activity. However a direct relationship between RNA editing within the *ndhB* and *ndhF* transcripts and drought response was not observed.

The interpretation of these results can be multifaceted concerning the involvement of RNA editing in drought tolerance. Some accessions of perennial ryegrass with a drought tolerant response could have an overall elevated transcript accumulation for this complex, resulting in a larger number of transcripts targeted by the corresponding RNA editing trans-factor, which could potentially result in a lower efficiency in RNA editing. Other accessions with a similar drought response, could have less transcript accumulation, resulting in a higher editing efficiency. These alternatives can lead to an equal amount of edited transcripts used for translation. Essentially RNA editing can have a regulatory function in respect to accumulation of functional transcripts. For instance if the accumulation of transcripts involved with the NDH complex is too high, RNA editing efficiency could be lowered to reduce the number of edited transcripts, hence affecting the accumulation of correct subunits of the NDH complex. Alternatively, the effect could be in the opposite direction: stimulating the production of functional NDH complex, by increasing the RNA editing efficiency. The observed differences of RNA editing efficiencies in this study could also be explained by different expression levels of the *trans*-factors. The expression levels of these *trans*-factors could essentially be caused by growth conditions or different parameters like endogenous genetic differences between accessions. Despite the increasing number of trans-factors being identified, many transfactors are still unknown (Hammani et al. 2009). Furthermore the mechanism of targeting of these *trans*-factors to specific editing sites is not entirely clear, although a limited range of sequences surrounding the editing sites play an important role in targeting (Hayes et al. 2006). The possibility of RNA editing being an important factor in drought

tolerance can therefore not be excluded. Because of the many parameters involved with the RNA editing machinery, more studies need to be performed to assess these possibilities.

It is also possible that any effect of the efficiency of RNA editing in the NDH transcripts on drought response is masked by other factors which have a more pronounced role in the defence against drought stress. These factors could include scavenging enzymes that counter oxidative stress (Mittler et al. 2004), or a NDH independent pathway, like the PGR5/PGRL1-dependent route (Rumeau et al. 2007; Suorsa et al. 2009). Under near optimal growth conditions this pathway was shown to be important for cyclic electron transfer in *Arabidopsis* (Munekage et al. 2004). Lehtimäki et al. (2010) found in *Arabidopsis*, components of the PGR5/PGRL1 route that were upregulated during drought stress, whereas a component of the NDH-complex *ndhH* was not influenced by the same stress, indicating the importance of the PGR5/PGRL1 pathway under certain conditions (Lehtimäki et al. 2010).


During this study one other feature was observed, namely a SNP that was edited. Both SNPs and RNA editing are common in plastids, however the occurrence of both mechanisms at the same position was a novel discovery. The occurrence of this combination could be an evolutionary intermediate, where the loss of an editing site is in progress due to a reversion of a point mutation. However due to the polyploidy of the plastid genome in each cell, the chances of getting a complete reversion of the point mutation are small, and might take numerous generations to achieve. Once this is achieved, the RNA editing mechanism for this site is not required anymore, which could result in a gradual loss of editing capacity for this site.

During this project an attempt was made to develop a protocol for plastid transformation of *Lolium perenne* L.. However no transformants were recovered despite extensive evaluation of all the involved parameters. There can be several causes that prevented the recovery of transplastomic plantlets. These include the possible low expression of the selectable marker gene *aphA-6* in conjunction with a less then optimal selection regime. Furthermore the choice of genotype could have a large impact on the efficiency of the transformation process. Nevertheless further adjustments to the presented protocol could provide the means to achieve plastid transformation in this species. Graminaceous species remain particularly recalcitrant to plastid transformation, and at least two other teams experienced in plastid transformation have invested effort in the development of a procedure for *Lolium* species without success (Gray, personal communication, Altpeter, personal communication)

Further investigations by means of plastid transformation regarding the involvement of RNA editing on drought stress could not be performed in *Lolium perenne* L.. However in future projects it would be intriguing to test the relevance of RNA editing in relationship with drought by plastid transformation; this could be performed in other species where readily available plastid transformation protocols exist, like tobacco (Svab and Maliga 1993). *Arabidopsis* would also be an interesting target species, because of the available genome data present for this species in conjunction with known *trans*-factors; however

the plastid transformation efficiency for this species was reported to be very low (Sikdar et al. 1998).

Plastid transformation could be used to elucidate the involvement of RNA editing in the functionality of the NDH complex. This can be tested with a gene-replacement approach as illustrated in Fig. 4.1. Transcripts derived from unedited mRNA would result in a dysfunctional protein (Fig. 4.1A), while transcripts derived from edited mRNA would result in functional protein (Fig. 4.1B). Both situations can be mimicked in such a way, without the interference of RNA editing. For instance, the endogenous *ndhB* gene can be substituted by a modified version containing specific point mutations, the resulting transcripts would be rendered uneditable, while being translated into dysfunctional protein (see Fig 4.1C). On the other hand a modified version of this gene can be used, which would contain point mutations resulting in a protein structure similar to an edited protein (See Fig 4.1D). The absence of one functional component of the NDH complex tends to result in the absence of the entire complex (Horvath et al. 2000). If this "unedited" version would result in absence of the complex, it would show the importance of editing and its possible regulatory function.

Fig. 4.1: An overview of four possible transcripts parts within the *ndhB* gene **A**: Unedited form of mRNA, translatable into dysfunctional protein **B**: Edited form of mRNA, translatable into functional protein **C**: mRNA from an uneditable modified *ndhB* gene, resulting in a dysfunctional protein, **D**: mRNA from an uneditable modified *ndhB* gene, resulting in a functional protein. Red annotated nucleotides are RNA editing sites, green annotated nucleotides are modifications to prevent editing in that transcript.

Having a working protocol for plastid transformation for perennial ryegrass would also open up a powerful avenue for improving environmental stress tolerance, by overexpressing ROS scavenging enzymes within the plastid compartment. The effectiveness of this approach was recently demonstrated in our laboratory with the model species tobacco (Le Martret et al. submitted). This study demonstrated that overexpression of the ROS scavenging enzymes GR, DHAR and GST provided cold and salt tolerance, while co-expression of DHAR:GR or GST:GR conferred paraquat tolerance. Beside the possibility to counter environmental stresses by plastid engineering, this technology also offers the possibility to improve other traits. For instance perennial ryegrass can be a prime candidate in Ireland as crop for biofuel production (Smyth et al. 2009). At the moment most biofuels are produced in maize and sugarcane, however biofuels have had bad press coverage in recent years. This is mainly due to habitat destruction in tropical countries and the negative effect on food production. In Ireland beef and sheep production is highly self sufficient, therefore the effect on food production is not a direct concern if grasses were to be used for biofuel production. Furthermore habitat destruction is not an issue in this case (Smyth et al. 2009). Perennial ryegrass has a significant yield and biomethanol has a very good energy balance, however improvements in this would benefit the biofuel industry. To accomplish this, genetic engineering can be used, for instance by increasing the polysaccharide content or by increasing the overall biomass production (Sticklen 2008). These properties might be elevated by means of plastid transformation.

Development of a plastid transformation protocol for perennial ryegrass could have a large impact on the improvement of this crop, whether in stress tolerance or for other applications. The prime advantage of gene containment in this outbreeding crop, alongside the possibility to engineer pathways by gene-stacking and over expression of transgenes, would make it an invaluable new technology to assist in breeding programs for improvements in this crop.

- Abdeen, A., Schnell, J. and Miki, B. (2010). "Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3." <u>BMC Genomics</u> 11: 69.
- Altpeter, F. and Posselt, U. K. (2000). <u>Improved plant regeneration from cell suspensions</u> of commercial cultivars, breeding- and inbred lines of perennial ryegrass (*Lolium perenne* L.). Munich, ALLEMAGNE, Elsevier.
- Altpeter, F., Xu, J. and Ahmed, S. (2000). "Generation of large numbers of independently transformed fertile perennial ryegrass (*Lolium perenne* L.) plants of forage- and turf-type cultivars." <u>Molecular Breeding</u> 6(5): 519-528.
- Bajaj, S., Ran, Y., Phillips, J., Kularajathevan, G., Pal, S., Cohen, D., Elborough, K. and Puthigae, S. (2006). "A high throughput *Agrobacterium tumefaciens*-mediated transformation method for functional genomics of perennial ryegrass (*Lolium perenne* L.)." <u>Plant Cell Rep</u> 25(7): 651-9.
- Barrs and Weatherley (1962). "A re-examination of the relative turgidity technique for estimating water deficits in leaves. ." <u>Australian Journal of Biological Sciences</u> **15**: 413-428.
- Bateman, J. M. and Purton, S. (2000). "Tools for chloroplast transformation in *Chlamydomonas*: expression vectors and a new dominant selectable marker." <u>Mol</u> <u>Gen Genet</u> **263**(3): 404-10.
- Baumgartner, B. J., Rapp, J. C. and Mullet, J. E. (1993). "Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (*Hordeum vulgare*) chloroplast development (evidence for selective stabilization of *psbA* mRNA)." <u>Plant Physiol</u> 101(3): 781-791.
- Ben-Shlomo, H., Levitan, A., Shay, N. E., Goncharov, I. and Michaeli, S. (1999). RNA Editing Associated with the Generation of Two Distinct Conformations of the Trypanosomatid Leptomonas collosoma 7SL RNA. 274: 25642-25650.
- Bendall, D. S. and Manasse, R. S. (1995). "Cyclic photophosphorylation and electron transport." <u>Biochimica et Biophysica Acta (BBA) - Bioenergetics</u> 1229(1): 23-38.
- Bennoun, P. (1982). "Evidence for a respiratory chain in the chloroplast." <u>Proc Natl Acad</u> <u>Sci U S A</u> **79**(14): 4352-6.
- Birch, R. G. (1997). "PLANT TRANSFORMATION: Problems and Strategies for Practical Application." <u>Annu Rev Plant Physiol Plant Mol Biol</u> **48**: 297-326.
- Bock, R. (2001). "Transgenic plastids in basic research and plant biotechnology." J Mol Biol **312**(3): 425-38.

- Bock, R. (2007). "Towards Plastid Transformation in Maize." <u>Isb News Rep.</u> 2007(12): 4-7.
- Bock, R., Kossel, H. and Maliga, P. (1994). "Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype." <u>Embo J</u> **13**(19): 4623-8.
- Bock, R. and Maliga, P. (1995). "In vivo testing of a tobacco plastid DNA segment for guide RNA function in *psbL* editing." <u>Mol Gen Genet</u> **247**(4): 439-43.
- Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B. and et al. (1988). "Chloroplast transformation in *Chlamydomonas* with high velocity microprojectiles." <u>Science</u> 240(4858): 1534-8.
- Brennicke, A., Marchfelder, A. and Binder, S. (1999). "RNA editing." <u>FEMS Microbiol</u> <u>Rev</u> 23(3): 297-316.
- Burrows, P. A., Sazanov, L. A., Svab, Z., Maliga, P. and Nixon, P. J. (1998). "Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes." <u>Embo J</u> 17(4): 868-76.
- Cai, W., Ji, D., Peng, L., Guo, J., Ma, J., Zou, M., Lu, C. and Zhang, L. (2009). LPA66 Is Required for Editing *psbF* Chloroplast Transcripts in Arabidopsis. **150**: 1260-1271.
- Campbell, N. A. (1996). "Biology." (Fourth edition).
- Carrer, H. and Maliga, P. (1995). "Targeted Insertion of Foreign Genes into the Tobacco Plastid Genome without Physical Linkage to the Selectable Marker Gene." <u>Nat</u> <u>Biotech</u> **13**(8): 791-794.
- Casano, L. M., Lascano, H. R., Martín, M. and Sabater, B. (2004). "Topology of the plastid Ndh complex and its NDH-F subunit in thylakoid membranes." Biochemical Journal **382**: 145-155.
- Casano, L. M., Martin, M. and Sabater, B. (2001). Hydrogen Peroxide Mediates the Induction of Chloroplastic Ndh Complex under Photooxidative Stress in Barley. 125: 1450-1458.
- Casano, L. M., Zapata, J. M., Martin, M. and Sabater, B. (2000). "Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase." J Biol Chem 275(2): 942-8.

- Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C., Tondelli, A. and Stanca, A. M. (2008). "Drought tolerance improvement in crop plants: An integrated view from breeding to genomics." <u>Field Crops Research</u> 105(1-2): 1-14.
- Cerutti, H., Osman, M., Grandoni, P. and Jagendorf, A. T. (1992). "A homolog of Escherichia coli RecA protein in plastids of higher plants." <u>Proc Natl Acad Sci U</u> <u>S A</u> **89**(17): 8068-72.
- Chateigner-Boutin, A. L. and Hanson, M. R. (2003). "Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar cis-elements." <u>Nucleic Acids Res</u> **31**(10): 2586-94.
- Chateigner-Boutin, A. L., Ramos-Vega, M., Guevara-Garcia, A., Andres, C., de la Luz Gutierrez-Nava, M., Cantero, A., Delannoy, E., Jimenez, L. F., Lurin, C., Small, I. and Leon, P. (2008). "CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts." <u>Plant J</u> 56(4): 590-602.
- Chaudhuri, S., Carrer, H. and Maliga, P. (1995). "Site-specific factor involved in the editing of the *psbL* mRNA in tobacco plastids." <u>Embo J</u> 14(12): 2951-7.
- Conner, A. J., Glare, T. R. and Nap, J. P. (2003). "The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment." <u>Plant J</u> **33**(1): 19-46.
- DAFF (2010a). "Grass and Clover Recommended List Varieties for Ireland 2010."
- DAFF (2010b). "Department of Agriculture, Fisheries and Food: Fact Sheet on Irish Agriculture August 2010."
- Dale, P. J. (1983). "Protoplast culture and plant regeneration of cereals and other recalcitrant crops." <u>Lect Proc: Experientia suppl. Birkh/iuser, Basel Boston</u> <u>Stuttgart</u>: 31-41.
- Dalton, S. J., Bettany, A. J. E., Timms, E. and Morris, P. (1998). "Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures." <u>Plant Science</u> 132(1): 31-43.
- Dalton, S. J., Bettany, A. J. E., Timms, E. and Morris, P. (1999). "Co-transformed, diploid *Lolium perenne* (perennial ryegrass), *Lolium multiflorum* (Italian ryegrass) and *Lolium temulentum* (darnel) plants produced by microprojectile bombardment." <u>Plant Cell Reports</u> 18(9): 721-726.

- Daniell, H, Krishnan, M, McFadden and B, F. (1991). <u>Transient expression of beta-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli</u>. Berlin, ALLEMAGNE, Springer.
- Daniell, H., Datta, R., Varma, S., Gray, S. and Lee, S. B. (1998). "Containment of herbicide resistance through genetic engineering of the chloroplast genome." <u>Nat</u> <u>Biotechnol</u> 16(4): 345-8.
- Daniell, H., Khan, M. S. and Allison, L. (2002). "Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology." <u>Trends Plant Sci</u> 7(2): 84-91.
- Daniell, H., Streatfield, S. J. and Wycoff, K. (2001). "Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants." <u>Trends Plant Sci</u> 6(5): 219-26.
- Davis, S. J. and Vierstra, R. D. (1998). "Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants." <u>Plant Mol Biol</u> **36**(4): 521-8.
- De Marchis, F., Wang, Y., Stevanato, P., Arcioni, S. and Bellucci, M. (2009). "Genetic transformation of the sugar beet plastome." <u>Transgenic Res</u> 18(1): 17-30.
- Diekmann, K., Hodkinson, T. R., Wolfe, K. H., van den Bekerom, R., Dix, P. J. and Barth, S. (2009). "Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (*Lolium perenne* L.)." <u>DNA Res</u> 16(3): 165-76.
- DuBell, A. N. and Mullet, J. E. (1995). "Differential Transcription of Pea Chloroplast Genes during Light-Induced Leaf Development (Continuous Far-Red Light Activates Chloroplast Transcription)." <u>Plant Physiol</u> **109**(1): 105-112.
- Duff, R. J. and Moore, F. B. (2005). "Pervasive RNA editing among hornwort *rbcL* transcripts except *Leiosporoceros*." J Mol Evol **61**(5): 571-8.
- Dyer, T. A. and Bowman, C. M. (1979). "Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants." <u>Biochem J</u> 183(3): 595-604.
- Endo, T., Shikanai, T., Takabayashi, A., Asada, K. and Sato, F. (1999). "The role of chloroplastic NAD(P)H dehydrogenase in photoprotection." <u>FEBS Lett</u> 457(1): 5-8.
- Fiebig, A., Stegemann, S. and Bock, R. (2004). "Rapid evolution of RNA editing sites in a small non-essential plastid gene." <u>Nucleic Acids Res</u> 32(12): 3615-22.
- Foito, A., Byrne, S. L., Shepherd, T., Stewart, D. and Barth, S. (2009). "Transcriptional and metabolic profiles of *Lolium perenne* L. genotypes in response to a PEGinduced water stress." <u>Plant Biotechnol J</u> 7(8): 719-32.

- Folling, M., Pedersen, C. and Olesen, A. (1998). "Reduction of nuclease activity from Lolium protoplasts: effect on transformation frequency." <u>Plant Science</u> 139(1): 29-40.
- Freyer, R., Kiefer-Meyer, M. C. and Kossel, H. (1997). "Occurrence of plastid RNA editing in all major lineages of land plants." Proc Natl Acad Sci U S A **94**(12): 6285-90.
- Fromm, H., Edelman, M., Aviv, D. and Galun, E. (1987). "The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts." <u>Embo J</u> 6(11): 3233-7.
- Gamborg, O. L., Miller, R. A. and Ojima, K. (1968). "Nutrient requirements of suspension cultures of soybean root cells." <u>Exp Cell Res</u> 50(1): 151-8.
- Gibbs, S. P. (1981). "The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae." <u>Annals of the New York Academy of Sciences</u> **361**(1): 193-208.
- Grant, J. J. and Loake, G. J. (2000). "Role of reactive oxygen intermediates and cognate redox signaling in disease resistance." <u>Plant Physiol</u> **124**(1): 21-9.
- Grant, O. M., Chaves, M. M. and Jones, H. G. (2006). "Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions." <u>Physiologia Plantarum</u> 127(3): 507-518.
- Gray, M. W. and Covello, P. S. (1993). "RNA editing in plant mitochondria and chloroplasts." Faseb J 7(1): 64-71.
- Hammani, K., Okuda, K., Tanz, S. K., Chateigner-Boutin, A.-L., Shikanai, T. and Small, I. (2009). A Study of New Arabidopsis Chloroplast RNA Editing Mutants Reveals General Features of Editing Factors and Their Target Sites. 21: 3686-3699.
- Handeler, K., Grzymbowski, Y. P., Krug, P. J. and Wagele, H. (2009). "Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life." <u>Front Zool 6</u>: 28.
- Hayes, M. L., Reed, M. L., Hegeman, C. E. and Hanson, M. R. (2006). "Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript *in vivo* and *in vitro*." <u>Nucleic Acids Res</u> 34(13): 3742-54.
- Heifetz, P. B. (2000). "Genetic engineering of the chloroplast." <u>Biochimie</u> 82(6-7): 655-66.

- Hinnen, A., Hicks, J. B. and Fink, G. R. (1978). "Transformation of yeast." <u>Proc Natl</u> <u>Acad Sci U S A</u> 75(4): 1929-33.
- Hinshaw, J. E. and Miller, K. R. (1989). "Localization of light-harvesting complex II to the occluded surfaces of photosynthetic membranes." J Cell Biol **109**(4 Pt 1): 1725-31.
- Hiroko, S. and Tadashi, T. (2006). *Agrobacterium tumefaciens* mediated transformation of forage-type perennial ryegrass (*Lolium perenne* L.). **52:** 95-98.
- Hirose, T. and Sugiura, M. (1996). "*Cis*-acting elements and *trans*-acting factors for accurate translation of chloroplast *psbA* mRNAs: development of an *in vitro* translation system from tobacco chloroplasts." <u>Embo J</u> **15**(7): 1687-95.
- Hirose, T. and Sugiura, M. (1997). "Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast *ndhD* mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes." <u>EMBO J</u> 16(22): 6804-6811.
- Hirose, T. and Sugiura, M. (2001). "Involvement of a site-specific *trans*-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast *in vitro* RNA editing system." <u>Embo J</u> 20(5): 1144-52.
- Hohl, M. and Schopfer, P. (1991). "Water relations of growing maize coleoptiles : Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure." <u>Plant Physiol</u> 95(3): 716-22.
- Holden, N. M. and Brereton, A. J. (2002). "An assessment of the potential impact of climate change on grass yield in Ireland over the next 100 years." <u>Irish Journal of</u> <u>Agricultural and Food Research</u> 41(2): 213-226.
- Horvath, E. M., Peter, S. O., Joet, T., Rumeau, D., Cournac, L., Horvath, G. V., Kavanagh, T. A., Schafer, C., Peltier, G. and Medgyesy, P. (2000). "Targeted inactivation of the plastid *ndhB* gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure." <u>Plant Physiol</u> 123(4): 1337-50.
- Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H. and Hu, Z. M. (2003). "Chloroplast transformation in oilseed rape." <u>Transgenic Res</u> 12(1): 111-4.
- Hu, L., Wang, Z. and Huang, B. (2010). "Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species." <u>Physiol Plant</u> 139(1): 93-106.

- Huang, F. C., Klaus, S. M., Herz, S., Zou, Z., Koop, H. U. and Golds, T. J. (2002). "Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection." <u>Mol Genet Genomics</u> 268(1): 19-27.
- Hübschmann, T. and Börner, T. (1998). "Characterisation of transcript initiation sites in ribosome-deficient barley plastids." <u>Plant Molecular Biology</u> **36**(3): 493-496.
- Hulke, B., Watkins, E., Wyse, D. and Ehlke, N. (2008). "Freezing tolerance of selected perennial ryegrass (*Lolium perenne* L.) accessions and its association with field winterhardiness and turf traits." <u>Euphytica</u> 163(1): 131-141.
- Hulke, B. S., Watkins, E., Wyse, D. and Ehlke, N. (2007). Winterhardiness and Turf Quality of Accessions of Perennial Ryegrass (*Lolium perenne L.*) from Public Collections. 47: 1596-1602.
- Ibanez, H., Ballester, A., Munoz, R. and Quiles, M. J. (2010). "Chlororespiration and tolerance to drought, heat and high illumination." <u>J Plant Physiol</u> 167(9): 732-8.
- Joarder, O. I., Joarder, N. H. and Dale, P. J. (1986). "In vitro response of leaf tissues from *Lolium multiflorum* a comparison with leaf segment position, leaf age and in vivo mitotic activity." <u>TAG Theoretical and Applied Genetics</u> **73**(2): 286-291.
- Joersbo, M. and Okkels, F. T. (1996). "A novel principle for selection of transgenic plant cells: positive selection." <u>Plant Cell Reports</u> **16**(3): 219-221.
- Johnston, S. A. (1990). "Biolistic transformation: microbes to mice." <u>Nature</u> **346**(6286): 776-777.
- Kahlau, S. and Bock, R. (2008). "Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein." <u>Plant Cell</u> 20(4): 856-74.
- Karcher, D. and Bock, R. (1998). "Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing." <u>Nucleic Acids Res</u> **26**(5): 1185-90.
- Karcher, D. and Bock, R. (2002). "Temperature sensitivity of RNA editing and intron splicing reactions in the plastid *ndhB* transcript." <u>Current Genetics</u> **41**(1): 48-52.
- Karcher, D. and Bock, R. (2009). "Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme." <u>Rna</u> 15(7): 1251-7.
- Katz, Y. S. and Danon, A. (2002). "The 3'-untranslated region of chloroplast *psbA* mRNA stabilizes binding of regulatory proteins to the leader of the message." J Biol <u>Chem</u> 277(21): 18665-9.

- Kavanagh, T. A., O'Driscoll, K. M., McCabe, P. F. and Dix, P. J. (1994). "Mutations conferring lincomycin, spectinomycin, and streptomycin resistance in <i>Solanum nigrum</i> are located in three different chloroplast genes." <u>Molecular and General Genetics MGG</u> 242(6): 675-680.
- Khan, M. S. and Maliga, P. (1999). "Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants." <u>Nat Biotechnol</u> **17**(9): 910-5.
- Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987). "High-velocity microprojectiles for delivering nucleic acids into living cells." <u>Nature</u> 327(6117): 70-73.
- Knoblauch, M., Hibberd, J. M., Gray, J. C. and van Bel, A. J. (1999). "A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes." <u>Nat Biotechnol</u> 17(9): 906-9.
- Kobayashi, Y., Matsuo, M., Sakamoto, K., Wakasugi, T., Yamada, K. and Obokata, J. (2008). "Two RNA editing sites with *cis*-acting elements of moderate sequence identity are recognized by an identical site-recognition protein in tobacco chloroplasts." <u>Nucleic Acids Res</u> 36(1): 311-8.
- Kofer, W., Eibl, C., Steinmüller, K. and Koop, H.-U. (1998). "PEG-mediated plastid transformation in higher plants." <u>In Vitro Cellular & Cellular & Developmental Biology</u> <u>- Plant</u> 34(4): 303-309.
- Koop, H. U., Steinmuller, K., Wagner, H., Rossler, C., Eibl, C. and Sacher, L. (1996).
 "Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation." <u>Planta</u> 199(2): 193-201.
- Kotera, E., Tasaka, M. and Shikanai, T. (2005). "A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts." <u>Nature</u> **433**(7023): 326-330.
- Krens, F. A., Molendijk, L., Wullems, G. J. and Schilperoort, R. A. (1982). "In vitro transformation of plant protoplasts with Ti-plasmid DNA." <u>Nature</u> 296(5852): 72-74.
- Kudla, J., Igloi, G. L., Metzlaff, M., Hagemann, R. and Kossel, H. (1992). "RNA editing in tobacco chloroplasts leads to the formation of a translatable *psbL* mRNA by a C to U substitution within the initiation codon." <u>Embo J</u> **11**(3): 1099-103.
- Kugita, M., Kaneko, A., Yamamoto, Y., Takeya, Y., Matsumoto, T. and Yoshinaga, K. (2003). The complete nucleotide sequence of the hornwort (*Anthoceros formosae*) chloroplast genome: insight into the earliest land plants. **31:** 716-721.

- Kumar, S., Dhingra, A. and Daniell, H. (2004). "Stable transformation of the cotton plastid genome and maternal inheritance of transgenes." <u>Plant Molecular Biology</u> **56**(2): 203-216.
- Kuroda, H. and Maliga, P. (2001b). "Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs." <u>Nucleic Acids Res</u> 29(4): 970-5.
- Kuroda, H. and Maliga, P. (2001c). "Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts." <u>Plant</u> <u>Physiol</u> **125**(1): 430-6.
- Kuroda, H. and Maliga, P. (2003). "The plastid clpP1 protease gene is essential for plant development." <u>Nature</u> 425(6953): 86-9.
- Lawlor, D. W. (1970). "Absorption of polyethylene glycols by plants and their effects on plant growth." <u>New Phytologist</u> 69(2): 501-513.
- Lawlor, D. W. and Cornic, G. (2002). "Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants." <u>Plant Cell Environ</u> 25(2): 275-294.
- Lazar, M. D., Collins, G. B. and Vian, W. E. (1983). "Genetic and environmental effects on the growth and differentiation of wheat somatic cell cultures." Journal of <u>Heredity</u> **74**(5): 353-357.
- Le Martret, B., Poage, M., Shiel, K., Nugent, G. D. and Dix, P. J. (submitted). "Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance." <u>Plant Biotechnology Journal</u>
- Lee, S. M., Kang, K., Chung, H., Yoo, S. H., Xu, X. M., Lee, S. B., Cheong, J. J., Daniell, H. and Kim, M. (2006). "Plastid transformation in the monocotyledonous cereal crop, rice (*Oryza sativa*) and transmission of transgenes to their progeny." <u>Mol</u> <u>Cells</u> 21(3): 401-10.
- Lehtimäki, N., Lintala, M., Allahverdiyeva, Y., Aro, E.-M. and Mulo, P. (2010). "Drought stress-induced upregulation of components involved in ferredoxindependent cyclic electron transfer." Journal of Plant Physiology 167(12): 1018-1022.
- Leinonen, I., Grant, O. M., Tagliavia, C. P., Chaves, M. M. and Jones, H. G. (2006). "Estimating stomatal conductance with thermal imagery." <u>Plant Cell Environ</u> **29**(8): 1508-18.

- Lelivelt, C. L., McCabe, M. S., Newell, C. A., Desnoo, C. B., van Dun, K. M., Birch-Machin, I., Gray, J. C., Mills, K. H. and Nugent, J. M. (2005). "Stable plastid transformation in lettuce (*Lactuca sativa* L.)." <u>Plant Mol Biol</u> 58(6): 763-74.
- lgloi, G. L. and Kössel, H. (1992). The transcriptional apparatus of chloroplasts, Taylor & Francis. **10:** 525 558.
- Li, W., Ruf, S. and Bock, R. (2010). "Chloramphenicol acetyltransferase as selectable marker for plastid transformation." <u>Plant Mol Biol</u>.
- Li, X. G., Duan, W., Meng, Q. W., Zou, Q. and Zhao, S. J. (2004). "The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance." <u>Plant Cell Physiol</u> 45(1): 103-8.
- Lopez-Juez, E. and Pyke, K. A. (2005). "Plastids unleashed: their development and their integration in plant development." Int J Dev Biol **49**(5-6): 557-77.
- Lopez-Serrano, M., Del Campo, E. M., Sabater, B. and Martin, M. (2001). "Primary transcripts of *ndhD* of Liliaceae and Aloaceae require editing of the start and 20th codons." J Exp Bot 52(354): 179-80.
- Lührs, R. and Lörz, H. (1987). "Plant regeneration in vitro from embryogenic cultures of spring- and winter-type barley (*Hordeum vulgare* L.) varieties." <u>TAG Theoretical and Applied Genetics</u> **75**(1): 16-25.
- Maas, H. M., Jong, E. R., Rueb, S., Hensgens, L. A. M. and Krens, F. A. (1994). "Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (*Lolium perenne* L.)." <u>Plant Molecular Biology</u> 24(2): 401-405.
- Mahendran, R., Spottswood, M. S., Ghate, A., Ling, M. L., Jeng, K. and Miller, D. L. (1994). "Editing of the mitochondrial small subunit rRNA in *Physarum polycephalum*." <u>Embo J</u> 13(1): 232-40.
- Maier, R. M., Zeltz, P., Kossel, H., Bonnard, G., Gualberto, J. M. and Grienenberger, J. M. (1996). "RNA editing in plant mitochondria and chloroplasts." <u>Plant Mol Biol</u> 32(1-2): 343-65.
- Maliga, P. (2004). "Plastid transformation in higher plants." <u>Annu Rev Plant Biol</u> 55: 289-313.
- Mauro, M. C., Toutain, S., Walter, B., Pinck, L., Otten, L., Coutos-Thevenot, P., Deloire, A. and Barbier, P. (1995). "High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene." <u>Plant Science</u> 112(1): 97-106.

- McCabe, M. S., Power, J. B., de Laat, A. M. and Davey, M. R. (1997). "Detection of single-copy genes in DNA from transgenic plants by nonradioactive Southern blot analysis." <u>Mol Biotechnol</u> 7(1): 79-84.
- McFadden, G. I. (2001). "Primary and secondary endosymbiosis and the origin of plastids." Journal of Phycology **37**(6): 951-959.
- Mereschkowsky, C. (1905). "Uber Natur und Ursprung der Chromatophoren im Planzenreiche." <u>Biologisches Centralblatt</u> 25: 593-604.
- Mexal, J., Fisher, J. T., Osteryoung, J. and Reid, C. P. (1975). "Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations." <u>Plant</u> <u>Physiol</u> 55(1): 20-4.
- Michel, B. E. and Kaufmann, M. R. (1973). "The Osmotic Potential of Polyethylene Glycol 6000." <u>Plant Physiology</u> 51(5): 914-916.
- Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004). "Reactive oxygen gene network of plants." <u>Trends in Plant Science</u> **9**(10): 490-498.
- Møller, I. M. (2001). "Plant mitochondria and oxidative stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species." <u>Annu Rev</u> <u>Plant Physiol Plant Mol Biol</u> **52**: 561-591.
- Monde, R. A., Schuster, G. and Stern, D. B. (2000). "Processing and degradation of chloroplast mRNA." <u>Biochimie</u> 82(6-7): 573-82.
- Morden, C. W., Wolfe, K. H., dePamphilis, C. W. and Palmer, J. D. (1991). "Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes." <u>Embo J</u> **10**(11): 3281-8.
- Muhlbauer, S. K., Lossl, A., Tzekova, L., Zou, Z. and Koop, H. U. (2002). "Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation." <u>Plant J</u> 32(2): 175-84.
- Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K., Endo, T., Tasaka, M. and Shikanai, T. (2004). "Cyclic electron flow around photosystem I is essential for photosynthesis." <u>Nature</u> 429(6991): 579-82.
- Munns, R., James, R. A., Sirault, X. R., Furbank, R. T. and Jones, H. G. (2010). "New phenotyping methods for screening wheat and barley for beneficial responses to water deficit." <u>J Exp Bot</u> 61(13): 3499-507.
- Nakae, A., Tanaka, T., Miyake, K., Hase, M. and Mashimo, T. (2008). "Comparing methods of detection and quantitation of RNA editing of rat glycine receptor alpha3." <u>Int J Biol Sci</u> 4(6): 397-405.

- Neckermann, K., Zeltz, P., Igloi, G. L., Kossel, H. and Maier, R. M. (1994). "The role of RNA editing in conservation of start codons in chloroplast genomes." <u>Gene</u> **146**(2): 177-82.
- Neuhaus, H. E. and Emes, M. J. (2000). "Nonphotosynthetic Metabolism in Plastids." Annu Rev Plant Physiol Plant Mol Biol **51**: 111-140.
- Newell, C. A. and Gray, J. C. (2005). "Regeneration from leaf-base explants of *Lolium perenne* L. and *Lolium multiflorum* L." <u>Plant Cell, Tissue and Organ Culture</u> **80**(2): 233-237.
- Newman, S. M., Boynton, J. E., Gillham, N. W., Randolph-Anderson, B. L., Johnson, A. M. and Harris, E. H. (1990). "Transformation of chloroplast ribosomal RNA genes in *Chlamydomonas*: molecular and genetic characterization of integration events." <u>Genetics</u> 126(4): 875-88.
- Noctor, G. and Foyer, C. H. (1998). "Ascorbate and glutathione: Keeping Active Oxygen Under Control." <u>Annu Rev Plant Physiol Plant Mol Biol</u> **49**: 249-279.
- Nugent, G. D., Coyne, S., Nguyen, T. T., Kavanagh, T. A. and Dix, P. J. (2006). "Nuclear and plastid transformation of *Brassica oleracea* var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts." <u>Plant Science</u> 170(1): 135-142.
- Nye, P. H. and Tinker, P. B. (1977). "Solute movement in the soil–root–system." <u>Studies</u> in ecology, University of California Press. **4**: 8-13.
- O'Neill, C., Horvath, G. V., Horvath, E., Dix, P. J. and Medgyesy, P. (1993).
 "Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems." <u>Plant J</u> 3(5): 729-38.
- Oey, M., Lohse, M., Kreikemeyer, B. and Bock, R. (2009). "Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic." <u>Plant J</u> **57**(3): 436-45.
- Okuda, K., Chateigner-Boutin, A.-L., Nakamura, T., Delannoy, E., Sugita, M., Myouga, F., Motohashi, R., Shinozaki, K., Small, I. and Shikanai, T. (2009). Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in Arabidopsis Chloroplasts. 21: 146-156.
- Okuda, K., Myouga, F., Motohashi, R., Shinozaki, K. and Shikanai, T. (2007). Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. **104:** 8178-8183.

- Ovecka, M., Bobak, M. and Samaj, J. (2000). "A comparative structural analysis of direct and indirect shoot regeneration of *Papaver somniferum* L. *in vitro*." J. Plant Physiol **157**(3): 281-289.
- Passioura, J. (2006a). "Increasing crop productivity when water is scarce--from breeding to field management." <u>Agricultural Water Management</u> **80**(1-3): 176-196.

Passioura, J. B. (2006b). The perils of pot experiments. 33: 1075-1079.

- Peeters, N. M. and Hanson, M. R. (2002). "Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression." <u>Rna</u> 8(4): 497-511.
- Pfitzinger, H., Weil, J. H., Pillay, D. T. N. and Guillemaut, P. (1990). "Codon recognition mechanisms in plant chloroplasts." <u>Plant Molecular Biology</u> **14**(5): 805-814.
- Quiles, M. J. (2006). "Stimulation of chlororespiration by heat and high light intensity in oat plants." Plant, Cell & Environment **29**(8): 1463-1470.
- Robbins, J. C., Heller, W. P. and Hanson, M. R. (2009). "A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript." <u>Rna</u> **15**(6): 1142-53.
- Roberson, L. M. and Rosenthal, J. J. (2006). "An accurate fluorescent assay for quantifying the extent of RNA editing." <u>Rna</u> **12**(10): 1907-12.
- Rochaix, J.-D. (1997). "Chloroplast reverse genetics: new insights into the function of plastid genes." <u>Trends in Plant Science</u> 2(11): 419-425.
- Ruf, S., Hermann, M., Berger, I. J., Carrer, H. and Bock, R. (2001). "Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit." <u>Nat</u> <u>Biotechnol</u> 19(9): 870-5.
- Ruf, S., Karcher, D. and Bock, R. (2007). "Determining the transgene containment level provided by chloroplast transformation." <u>Proc Natl Acad Sci U S A</u> **104**(17): 6998-7002.
- Rumeau, D., Peltier, G. and Cournac, L. (2007). "Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response." <u>Plant Cell</u> <u>Environ</u> **30**(9): 1041-51.
- Rybicki, E. P. (2009). "Plant-produced vaccines: promise and reality." <u>Drug Discov</u> <u>Today</u> 14(1-2): 16-24.
- Sanford, J. C. (1990). "Biolistic plant transformation." <u>Physiologia Plantarum</u> **79**(1): 206-209.

- Sasaki, Y., Kozaki, A., Ohmori, A., Iguchi, H. and Nagano, Y. (2001). "Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants." J Biol Chem **276**(6): 3937-40.
- Sazanov, L. A., Burrows, P. A. and Nixon, P. J. (1998). "The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves." <u>FEBS Lett</u> **429**(1): 115-8.
- Serino, G. and Maliga, P. (1998). "RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme." <u>Plant Physiol</u> 117(4): 1165-70.
- Shaw, K. J., Rather, P. N., Hare, R. S. and Miller, G. H. (1993). "Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycosidemodifying enzymes." <u>Microbiol Rev</u> 57(1): 138-63.
- Shiina, T., Allison, L. and Maliga, P. (1998). "*rbcL* Transcript levels in tobacco plastids are independent of light: reduced dark transcription rate is compensated by increased mRNA stability." <u>Plant Cell</u> **10**(10): 1713-22.
- Shikanai, T. (2006). "RNA editing in plant organelles: machinery, physiological function and evolution." <u>Cell Mol Life Sci 63(6): 698-708</u>.
- Shikanai, T., Shimizu, K., Ueda, K., Nishimura, Y., Kuroiwa, T. and Hashimoto, T. (2001). "The chloroplast clpP gene, encoding a proteolytic subunit of ATPdependent protease, is indispensable for chloroplast development in tobacco." <u>Plant Cell Physiol</u> 42(3): 264-73.
- Shine, J. and Dalgarno, L. (1975). "Determinant of cistron specificity in bacterial ribosomes." <u>Nature</u> **254**(5495): 34-38.
- Sikdar, S. R., Serino, G., Chaudhuri, S. and Maliga, P. (1998). "Plastid transformation in Arabidopsis thaliana." <u>Plant Cell Reports</u> **18**(1): 20-24.
- Silhavy, D. and Maliga, P. (1998). "Plastid promoter utilization in a rice embryogenic cell culture." <u>Curr Genet</u> **34**(1): 67-70.
- Skarjinskaia, M., Svab, Z. and Maliga, P. (2003). "Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea." <u>Transgenic Res</u> 12(1): 115-22.
- Smyth, B. M., Murphy, J. D. and O'Brien, C. M. (2009). "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?" <u>Renewable and Sustainable Energy Reviews</u> 13(9): 2349-2360.

- Spangenberg, G., Zeng-yu, W., Xinli, W., Nagel, J. and Potrykus, I. (1995). "Transgenic perennial ryegrass (*Lolium perenne*) plants from microprojectile bombardment of embryogenic suspension cells." <u>Plant Science</u> 108: 209-217.
- Staub, J. M. and Maliga, P. (1992). "Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation." <u>Plant Cell</u> **4**(1): 39-45.
- Staub, J. M. and Maliga, P. (1993). "Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA." <u>Embo J</u> 12(2): 601-6.
- Stern, D. B., Radwanski, E. R. and Kindle, K. L. (1991). "A 3' stem/loop structure of the *Chlamydomonas* chloroplast *atpB* gene regulates mRNA accumulation *in vivo*." <u>Plant Cell</u> 3(3): 285-97.
- Stern, D. S., Higgs, D. C. and Yang, J. (1997). "Transcription and translation in chloroplasts." <u>Trends in Plant Science</u> 2(8): 308-315.
- Sticklen, M. B. (2008). "Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol." <u>Nat Rev Genet</u> **9**(6): 433-43.
- Sugita, M. and Sugiura, M. (1996). "Regulation of gene expression in chloroplasts of higher plants." <u>Plant Mol Biol</u> 32(1-2): 315-26.
- Sugiura, M. (1992). "The chloroplast genome." Plant Mol Biol 19(1): 149-68.
- Sugiura, M., Hirose, T. and Sugita, M. (1998). "Evolution and mechanism of translation in chloroplasts." <u>Annu Rev Genet</u> 32: 437-59.
- Suorsa, M., Sirpio, S. and Aro, E. M. (2009). "Towards Characterization of the Chloroplast NAD(P)H Dehydrogenase Complex." <u>Mol Plant</u> 2(6): 1127-40.
- Suzuki, J. Y. and Maliga, P. (2000). "Engineering of the rpl23 gene cluster to replace the plastid RNA polymerase alpha subunit with the Escherichia coli homologue." <u>Curr Genet</u> **38**(4): 218-25.
- Svab, Z., Hajdukiewicz, P. and Maliga, P. (1990). "Stable transformation of plastids in higher plants." <u>Proc Natl Acad Sci U S A</u> 87(21): 8526-30.
- Svab, Z. and Maliga, P. (1993). "High-frequency plastid transformation in tobacco by selection for a chimeric *aadA* gene." <u>Proc Natl Acad Sci U S A</u> 90(3): 913-7.
- Svab, Z. and Maliga, P. (2007). "Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment." <u>Proc Natl Acad Sci U S A</u> 104(17): 7003-8.

- Thum, K. E., Kim, M., Morishige, D. T., Eibl, C., Koop, H. U. and Mullet, J. E. (2001). "Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco." <u>Plant Mol Biol</u> 47(3): 353-66.
- Tillich, M., Lehwark, P., Morton, B. R. and Maier, U. G. (2006). The Evolution of Chloroplast RNA Editing. 23: 1912-1921.
- Tomioka, N. and Sugiura, M. (1983). "The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans." <u>Mol Gen</u> <u>Genet</u> **191**(1): 46-50.
- Toyoshima, Y., Onda, Y., Shiina, T. and Nakahira, Y. (2005). Plastid Transcription in Higher Plants, Taylor & Francis. 24: 59 81.
- van den Berg, L. and Zeng, Y. J. (2006). "Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000." <u>South African Journal of Botany</u> **72**(2): 284-286.
- van der Weele, C. M., Spollen, W. G., Sharp, R. E. and Baskin, T. I. (2000). Growth of *Arabidopsis thaliana* seedlings under water deficit studied by control of water potential in nutrient-agar media. **51:** 1555-1562.
- Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J. K. (2006). "Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status." <u>The Plant Journal</u> 45(4): 523-539.
- Verslues, P. E., Ober, E. S. and Sharp, R. E. (1998). "Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions." <u>Plant Physiol</u> **116**(4): 1403-12.
- Volaire, F. and Lelièvre, F. (2001). "Drought survival in *Dactylis glomerata* and *Festuca arundinacea* under similar rooting conditions in tubes." <u>Plant and Soil</u> 229(2): 225-234.
- Wang, P., Duan, W., Takabayashi, A., Endo, T., Shikanai, T., Ye, J. Y. and Mi, H. (2006).
 "Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress." <u>Plant Physiol</u> 141(2): 465-74.
- Wang, Q., Li, P., Hanania, U., Sahar, N., Mawassi, M., Gafny, R., Sela, I., Tanne, E. and Perl, A. (2005). "Improvement of *Agrobacterium*-mediated transformation efficiency and transgenic plant regeneration of *Vitis vinifera* L. by optimizing selection regimes and utilizing cryopreserved cell suspensions." <u>Plant Science</u> 168(2): 565-571.

- Wolf, P. G., Rowe, C. A. and Hasebe, M. (2004). "High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern *Adiantum capillus-veneris*." <u>Gene</u> **339**: 89-97.
- Wu, Y.-Y., Chen, Q.-J., Chen, M., Chen, J. and Wang, X.-C. (2005). "Salt-tolerant transgenic perennial ryegrass (*Lolium perenne* L.) obtained by *Agrobacterium tumefaciens*-mediated transformation of the vacuolar Na+/H+ antiporter gene." <u>Plant Science</u> 169(1): 65-73.
- Yu, Q. B., Jiang, Y., Chong, K. and Yang, Z. N. (2009). "AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript *accD* RNA editing and early chloroplast biogenesis in Arabidopsis thaliana." <u>The Plant Journal</u> 59(6): 1011-1023.
- Zheng, Z., Hayashimoto, A., Li, Z. and Murai, N. (1991). "Hygromycin Resistance Gene Cassettes for Vector Construction and Selection of Transformed Rice Protoplasts." <u>Plant Physiol</u> 97(2): 832-835.
- Zhou, W., Cheng, Y., Yap, A., Chateigner-Boutin, A. L., Delannoy, E., Hammani, K., Small, I. and Huang, J. (2009). "The Arabidopsis gene *YS1* encoding a DYW protein is required for editing of *rpoB* transcripts and the rapid development of chloroplasts during early growth." <u>The Plant Journal</u> 58(1): 82-96.
- Zito, F., Kuras, R., Choquet, Y., Kössel, H. and Wollman, F. A. (1997). "Mutations of cytochrome b6 in *Chlamydomonas reinhardtii* disclose the functional significance for a proline to leucine conversion by *petB* editing in maize and tobacco." <u>Plant</u> <u>Molecular Biology</u> 33(1): 79-86.
- Zou, Z., Eibl, C. and Koop, H. U. (2003). "The stem-loop region of the tobacco *psbA* 5'UTR is an important determinant of mRNA stability and translation efficiency." <u>Mol Genet Genomics</u> 269(3): 340-9.

Appendix A: Complete sequences of *Lolium perenne* L. plastid transformation vectors pIAPRvdB4 and pIAPRvdB5

pIAPRvdB4 complete sequence

	ab4 complete sequence
1	AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
61	ACGACAGGTTTCCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC
121	TCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA
181	TTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCC <mark>AAGCTTT</mark>
241	TTAGGGTGAAGTAAGACCAAGCTCATGAGCTTATTATCCTAGGTCGGAACAAATTAGTTG
301	ATAGTGATAGGATCCCTTTTTTGACGTCCCCATGTCCCCCCCC
361	GGGGATGTCAAAAGGAAAGGGATGGAGTTTTTCTCGCTTTTGGCGTAGCAGGCCTCCCTT
421	TCTTTGGGAGGCCCGCGCGACGGGCTATTAGCTCAGTGGTAGAGCGCGCCCCTGATAATT
481	GCGTCGTTGTGCCTGGGCTGTGAGGGCTCTCAGCCACATGGATAGTTCAATGTGCTCATC
541	AGCGCCTGACCCGAAGATGTGGATCATCCAAGGCACATTAGCATGGCGTACTCCTCCTAT
601	TTGAATCGGAGTTTGAAACCAAACAAACTTCTCCTCAGGAGGATAGATGGGGGCGATTCAG
661	GTGAGATCCCATGTAGATCTAACTTTCTATTCACTCGTGGGATCCGGGCGGTCCGGGGGAG
721	GGTCCACCACGGCTCCTCTCTCCGAGAATCCATACATCCCTTATCAGTGTATGGAGAG
781	CTATCTCTCGAGCACAGGTTGAGGTTCGTCCTCAATGGGAAAATGGAGCACCTAACAACG
841	CATCTTCACAGACCAAGAACTACGAGATCACCCCTTTCATTCTGGGGTGACGGAGGGATC
901	GTACCATTCGAGCCTTTTTTTCATGCTTTTCCCGGCGGTCTGGAGAAAGCAGCAATCAA
961	TAGGACTTTCCTAATCCTCCCTTACTTTCAGGAAGAACGTGAAATTCTTTTTCCTTAAAT
1021	GGGAGCAGAGCAGGTTTGAAAAAGGATCTTAGAGTGTCTAGGGTTGGGCCAGGAGGGTCT
1081	CTTAACGCCTTCCTTTTTCTGCCCATCGGAGTTATTTCCCAAGGACTTGCCATGGTAAGA
1141	GGGAGAAGGGGGAAAAAGCACACTTGAAGAGCGCAGTACAACGGGGGAGTTGTATGCTGCG
1201	TTCGGGAAGGATGAATCGCTCCCGAAAAGGAGTCTATTGATTCTCTTCCAATTGGTTGG
1261	TCGTAGGGGCGATGATTTACTTCACGGGCGAGGTCTCTGGTTCAAGTCCAGGATGGCCCA
1321	GCTGCGCCAGGGAAAAGAATAGAAGAAGCAGGTACCGCTCCCCCGCCGTCGTTCAATGAG
1381	AATGGATAAGAGGCTCGTGGGATTGACGTGAGGGGGGCAGGGATGGCTATATTTCTGGGAG
1441	CGAACTCCGGGCGAATACGAAGCGCTTGGATACAGTTGTAGGGAGGG
1501	AAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTA
1561	ATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTA
1621	CCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTA
1681	CTTTCTCTTATGGTGTTCAATGCTTTTCAAGATACCCAGATCATATGAAGCGGCACGACT
1741	TCTTCAAGAGCGCCATGCCTGAGGGATACGTGCAGGAGAGGACCATCTCTTTCAAGGACG
1801	ACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAGGGAGACACCCTCGTCAACAGGA
1861	TCGAGCTTAAGGGAATCGATTTCAAGGAGGACGGAAACATCCTCGGCCACAAGTTGGAAT
1921	ACAACTACAACTCCCACAACGTATACATCACGGCAGACAAACAA
1981	CTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATC
2041	AACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCCA
2101	CACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGT
2161	TTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAATAA <mark>GGGAGGGGGG</mark>
2221	CGGCCATGACCATGGAATTACCAAATATTATTCAACAATTTATCGGAAACAGCGTTTTAG
2281	AGCCAAATAAAATTGGTCAGTCGCCATCGGATGTTTATTCTTTTAATCGAAATAATGAAA
2341	CTTTTTTTCTTAAGCGATCTAGCACTTTATATACAGAGACCACATACAGTGTCTCTCGTG
2401	AAGCGAAAATGTTGAGTTGGCTCTCTGAGAAATTAAAGGTGCCTGAACTCATCATGACTT
2461	TTCAGGATGAGCAGTTTGAATTCATGATCACTAAAGCGATCAATGCAAAACCAATTTCAG
2521	CGCTTTTTTTAACAGACCAAGAATTGCTTGCTATCTATAAGGAGGCACTCAATCTGTTAA
2581	ATTCAATTGCTATTATTGATTGTCCATTTATTTCAAACATTGATCATCGGTTAAAAGAGT
2641	CAAAATTTTTTTTTTGATAACCAACTCCTTGACGATATAGATCAAGATGATTTTGACACTG
2701	AATTATGGGGAGACCATAAAACTTACCTAAGTCTATGGAATGAGTTAACCGAGACTCGTG
2761	TTGAAGAAAGATTGGTTTTTTCTCATGGCGATATCACGGATAGTAATATTTTTATAGATA
2821	AATTCAATGAAATTTATTTTTTAGATCTTGGTCGTGCTGGGTTAGCAGATGAATTTGTAG
2881	ATATATCCTTTGTTGAACGTTGCCTAAGAGAGGATGCATCGGAGGAAACTGCGAAAATAT
2941	TTTTAAAGCATTTAAAAAATGATAGACCTGACAAAAGGAATTATTTTTTAAAACTTGATG
3001	AATTGAATTGAGCGGCCGCACCGAAATTCAATTAAGGAAATAAAT
3061	AGGGGGGTAGTCATTTGTATAACTTTGTATGACTTTTCTCTCTTCTATTTTTTGTATTT

3121 CCTCCCTTTCCTTTTCTATTTGTATTTTTTTTTTTTCATTGCTTCCATTGAATTCCGTGTTCT 3181 3241 GGTAGAGCTCCGCTCTTGCAATTGGGTCGTTGCGATTACGGGTTGGCTGTCTAATTGTCC 3301 AGGCGGTAATGATAGTATCTTGTACCTGAACCGGTGGCTCACTTTTTCTAAGTAATGGGG 3361 AAGAGGACTGAAACATGCCACTGAAAGACTCTACTGAGACAAAAAGATGGGCTGTCAAAA 3421 AGGTAGAGGAGGTAGGATGGGCAGTTGGTCAGATCTAGTATGGATCGTACATGGACGATA 3481 GTTGGAGTCGGCGGCTCTCCTAGGCTTCCCTCATCTGGGATCCCTGGGGAAGAGGATCAA 3541 GTTGGCCCTTGCGAATAACTTGATGCACTATCTCCCTTCAACCCTTTGAGCGAAATGTAG 3601 CAAAAGGAAGGAAAATCCATGGACCGACCCCATTGTCTCCACCCCGTAGGAACTACGAGA 3661 3721 AAGTGGAACACATTAGCCGTCCGCTCTCTGGTTGGGCAGTAAGGGTCGGAGAAGGGCAAT 3781 CACTCGTTCTTAAAACCAGCATTCTTAAGTTTAAGATCAAAGAGTCGGGCGGAAAAAGGG 3841 GAGATCTCCCCGTTCCTGGTTCTCCTGTAGCTGGATTCCCCGGAACCACAAGAATCCTTA 3901 GAATGGGATTCCAACTCAGCACCTTTTGTTTTGAGATTTTGAGAAGAGTTGCTCTTTGGA 3961 4021 CCTCTATGGTAGAACCCGTCGGGGGGGGGCCTGAGAGGCGGTGGTTTACCCTGTGGCGGATG TCAGCGGTTCGAGTCCGCTTATCTCCAGCCCGTGAACTTAGCGGATACTATGATAGCACC 4081 4141 GAATTTTGCCAATTCAGCAGTTCGATCTATGATTTCGCATTCATGGAAGGGCGAATTCTG 4201 CAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTA 4261 TAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCC 4321 TGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAG 4381 CGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAC 4441 GCGCCCTGTAGCGCGCGCATTAAGCGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCT 4501 4561 TTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAGGGTTCCGATTTAGT 4621 GCTTTACGGCACCTCGACCCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCA 4681 TCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA 4741 CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAA 4801 GGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAAC 4861 GCGAATTTTAACAAAATTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACACGTAGAAAG 4921 CCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAA 4981 GGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGC 5041 TAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCCTCTG GTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGAT 5101 5161 GGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAAC 5221 AAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACT 5281 GGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGC 5401 CAGCGCGGCTATCGTGGCTGGCCACGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTG 5461 TCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGT 5521 CATCCCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGC 5641 CACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGG 5701 GGCTCGCCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATC 5761 TCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTT 5821 CTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGG 5881 CTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTT 5941 ACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCT 6001 TCTGAATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTT 6061 TTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGA 6121 TGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAA 6181 GATCCTTGAGAGTTTTCGCCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCT 6241 GCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCAT 6301 ACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGA 6361 TGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGC 6421 CAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT

6541 CGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAAC 6601 6661 6721 TGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC 6781 CTCCCGTATCGTAGTTATCTACACGACGGGGGGGGGCAACTATGGATGAACGAAATAG 6841 ACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTA 6901 CTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAA 6961 GATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGC 7021 GTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAAT 7081 7141 GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGT 7201 TCTTCTAGTGTAGCCGTAGTTAGGCCACCACCTTCAAGAACTCTGTAGCACCGCCTACATA 7261 CCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTAC 7321 CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGG 7381 TTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG 7441 TGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAG 7501 CGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAAACGCCTGGTATCT 7561 TTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTC 7621 AGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTT 7681 TTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG 7741 TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA 7801 GTCAGTGAGCGAGGAAGCGGAAG

Red annotated: trnI homologous region of the Lolium perenne L. plastid genome.

Dark blue annotated: full length 16S Prrn promoter from Nicotiana tabacum with the

5'UTR of rbcL of Nicotiana tabacum

Green annotated: *smGFP* – gene

Purple annotated: Ribosomal binding site from the *rbcL* gene of *Nicotiana tabacum*

Orange annotated: *aphA-6* – gene

Light blue annotated: 3'UTR of the rps16 gene of Nicotiana tabacum

Brown annotated: trnA homologous region of the Lolium perenne L. plastid genome

Black annotated: pCR2.1 backbone vector

pIAPRvdB5 complete sequence

1	AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
61	ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC
121	TCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA
181	TTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTT
241	TTAGGGTGAAGTAAGACCAAGCTCATGAGCTTATTATCCTAGGTCGGAACAAATTAGTTG
301	ATAGTGATAGGATCCCTTTTTTGACGTCCCCATGTCCCCCCCTGTGGTGTGGCGGCAT
361	GGGGATGTCAAAAGGAAAGGGATGGAGTTTTTCTCGCTTTTGGCGTAGCAGGCCTCCCTT
421	TCTTTGGGAGGCCCGCGCGACGGGCTATTAGCTCAGTGGTAGAGCGCGCCCCTGATAATT
481	GCGTCGTTGTGCCTGGGCTGTGAGGGCCTCTCAGCCACATGGATAGTTCAATGTGCTCATC
541	AGCGCCTGACCCGAAGATGTGGATCATCCAAGGCACATTAGCATGGCGTACTCCTCCTAT
601	TTGAATCGGAGTTTGAAACCAAACAAACTTCTCCTCAGGAGGATAGATGGGGCGATTCAG
661	GTGAGATCCCATGTAGATCTAACTTTCTATTCACTCGTGGGATCCGGGCGGTCCGGGGGAG
721	GGTCCACCACGGCTCCTCTCTCTCGAGAATCCATACATCCCTTATCAGTGTATGGAGAG
781	CTATCTCTCGAGCACAGGTTGAGGTTCGTCCTCAATGGGAAAATGGAGCACCTAACAACG
841	
901	GTACCATTCGAGCCTTTTTTTCATGCTTTTCCCGGCGGTCTGGAGAAAGCAGCAATCAA
961	TAGGACTTTCCTAATCCTCCCTTACTTTCAGGAAGAACGTGAAATTCTTTTTCCTTAAAT
1021 1081	GGGAGCAGAGCAGGTTTGAAAAAGGATCTTAGAGTGTCTAGGGTTGGGCCAGGAGGGTCT CTTAACGCCTTCCTTTTTCTGCCCATCGGAGTTATTTCCCCAAGGACTTGCCATGGTAAGA
1141	
1201	
1201	TTCGGGAAGGATGAATCGCTCCCGAAAAGGAGTCTATTGATTCTCTTCCAATTGGTTGG
1321	GCTGCGCCAGGGAAAAGAATAGAAGAAGCAGGTACCGCTCCCCCGCCGTCGTTCAATGAG
1321	AATGGATAAGAGGCTCGTGGGATTGACGTGAGGGGGGGGG
1441	GGAGACCACACGGTTTCCCCACTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAC
1501	ATATGGCTAGCATGAGTAAAGGAGGAGAAGAACTTTTCACTGGAGTTGTCCCCAATTCTTGTTG
1561	AATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATG
1621	CAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCAT
1681	GGCCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCAAGATACCCAGATC
1741	ATATGAAGCGGCACGACTTCTTCAAGAGCGCCATGCCTGAGGGATACGTGCAGGAGAGAGA
1801	CCATCTCTTTCAAGGACGACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAGGGAG
1861	ACACCCTCGTCAACAGGATCGAGCTTAAGGGAATCGATTTCAAGGAGGACGGAAACATCC
1921	TCGGCCACAAGTTGGAATACAACTACAACTCCCACAACGTATACATCACGGCAGACAAAC
1981	AAAAGAATGGAATCAAAGCTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTC
2041	AACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAG
2101	ACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACC
2161	ACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTAT
2221	ACAAATAAGGGAGGGGGCCGGCCATGACCATGGAATTACCAAATATTATTCAACAATTTA
2281	TCGGAAACAGCGTTTTAGAGCCAAATAAAATTGGTCAGTCGCCATCGGATGTTTATTCTT
2341	TTAATCGAAATAATGAAACTTTTTTTTTTTTAAGCGATCTAGCACTTTATATACAGAGACCA
2401	CATACAGTGTCTCTCGTGAAGCGAAAATGTTGAGTTGGCTCTCTGAGAAATTAAAGGTGC
2461	CTGAACTCATCATGACTTTTCAGGATGAGCAGTTTGAATTCATGATCACTAAAGCGATCA
2521	ATGCAAAACCAATTTCAGCGCTTTTTTTTAACAGACCAAGAATTGCTTGC
2581	AGGCACTCAATCTGTTAAATTCAATTGCTATTATTGATTG
2641	ATCATCGGTTAAAAGAGTCAAAATTTTTTTTTGATAACCAACTCCTTGACGATATAGATC
2701	AAGATGATTTTGACACTGAATTATGGGGAGACCATAAAACTTACCTAAGTCTATGGAATG
2761	AGTTAACCGAGACTCGTGTTGAAGAAAGATTGGTTTTTTCTCATGGCGATATCACGGATA
2821	GTAATATTTTTATAGATAAATTCAATGAAATTTATTTTTTAGATCTTGGTCGTGCTGGGT
2881	TAGCAGATGAATTTGTAGATATATCCTTTGTTGAACGTTGCCTAAGAGAGGATGCATCGG
2941	AGGAAACTGCGAAAATATTTTTAAAGCATTTAAAAAATGATAGACCTGACAAAAGGAATT
3001	ATTTTTTAAAACTTGATGAATTGAATTGAGCGGCCGCACCGAAATTCAATTAAGGAAATA
3061	AATTAAGGAAATACAAAAAGGGGGGGGAGTCATTTGTATATAACTTTGTATGACTTTTCTC
3121	TTCTATTTTTTGTATTTCCTCCCCTTTCCTTTTCTATTTGTATTTTTTTT
3181	CATTGAATTCCGTGTTCTTTAATTAATCTGACTCTTTCATGCATACTCCACTTGGCTCGG
3241	GGGGGATATAGCTCAGTTGGTAGAGCTCCGCTCTTGCAATTGGGTCGTTGCGATTACGGG

3301 TTGGCTGTCTAATTGTCCAGGCGGTAATGATAGTATCTTGTACCTGAACCGGTGGCTCAC 3361 TTTTTCTAAGTAATGGGGAAGAGGACTGAAACATGCCACTGAAAGACTCTACTGAGACAA 3421 AAAGATGGGCTGTCAAAAAGGTAGAGGAGGTAGGATGGGCAGTTGGTCAGATCTAGTATG 3481 GATCGTACATGGACGATAGTTGGAGTCGGCGGCTCTCCTAGGCTTCCCTCATCTGGGATC 3541 CCTGGGGAAGAGGATCAAGTTGGCCCTTGCGAATAACTTGATGCACTATCTCCCTTCAAC 3601 3661 CCCGTAGGAACTACGAGATCACCCCAAGGACGCCTTCGGCGTCCAGGGGTCACGGACCGA 3721 CCATAGACCCTGTTCAATAAGTGGAACACATTAGCCGTCCGCTCTCTGGTTGGGCAGTAA 3781 GGGTCGGAGAAGGGCAATCACTCGTTCTTAAAACCAGCATTCTTAAGTTTAAGATCAAAG 3841 AGTCGGGCGGAAAAAGGGGAGATCTCCCCGTTCCTGGTTCTCCTGTAGCTGGATTCCCCG 3901 GAACCACAAGAATCCTTAGAATGGGATTCCAACTCAGCACCTTTTGTTTTGAGATTTTGA 3961 4021 GTTATTGTCTATCGTTGGCCTCTATGGTAGAACCCGTCGGGGAGGCCTGAGAGGCGGTGG 4081 TTTACCCTGTGGCGGATGTCAGCGGTTCGAGTCCGCTTATCTCCAGCCCGTGAACTTAGC 4141 GGATACTATGATAGCACCGAATTTTGCCAATTCAGCAGTTCGATCTATGATTTCGCATTC 4201 4261 AGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACG 4321 TCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTT 4381 CGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCCAACAGTTGCGCAG 4441 CCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGGGGTGTGGTGGT 4501 ACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCCGCTCCTTTCGCTTTCTTC 4561 CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCT 4621 TTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCCAAAAAACTTGATTAGGGTGAT 4681 GGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCCTTTGACGTTGGAGTCC 4741 ACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTC 4801 TATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTG 4861 ATTTAACAAAAATTTAACGCGAATTTTAACAAAATTCAGGGCGCAAGGGCTGCTAAAGGA 4921 AGCGGAACACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCT 4981 ACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTG 5041 GGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGC 5101 CAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCT 5161 TGCCGCCAAGGATCTGATGGCGCGCAGGGGGATCAAGATCTGATCAAGAGACAGGATGAGGAT 5221 CGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCCGGCCGCTTGGGTGGAGA 5281 GGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCC 5341 5401 5461 CAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGC 5521 CGGGGCAGGATCTCCTGTCATCCCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTG 5581 ATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGA 5641 AACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATC 5701 TGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCA 5761 TGCCCGACGGCGAGGATCTCGTCGTCGTCGACCCATGGCGATGCCTGCTTGCCGAATATCATGG 5821 TGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCT 5881 ATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTG 5941 ACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATC 6001 GCCTTCTTGACGAGTTCTTCTGAATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCG 6061 TGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC 6121 GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT 6181 GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT 6241 GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGA 6301 GCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC 6361 AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC 6421 6481 CGCTTTTTTGCACAACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT 6541 GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC 6601 GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA

6721 GTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT 6781 GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC 6841 TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA 6901 6961 TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA 7021 GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC 7081 TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT 7141 TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC 7201 GCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC 7261 TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGG 7321 CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG 7381 GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA 7441 ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC 7501 GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGGGGCTTCCAGG 7561 GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG 7621 ATTTTTGTGATGCTCGTCAGGGGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTT 7681 TTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC 7741 TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG 7801 AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAG

Red annotated: trnI homologous region of the Lolium perenne L. plastid genome.

Dark blue annotated: Truncated 16S Prrn promoter from Nicotiana tabacum with the

5'TCR of gene 10 of the T7 phage

Green annotated: *smGFP* – gene

Purple annotated: Ribosomal binding site from the *rbcL* gene of *Nicotiana tabacum*

Orange annotated: *aphA-6* – gene

Light blue annotated: 3'UTR of the rps16 gene of Nicotiana tabacum

Brown annotated: trnA homologous region of the Lolium perenne L. plastid genome

Black annotated: pCR2.1 backbone vector

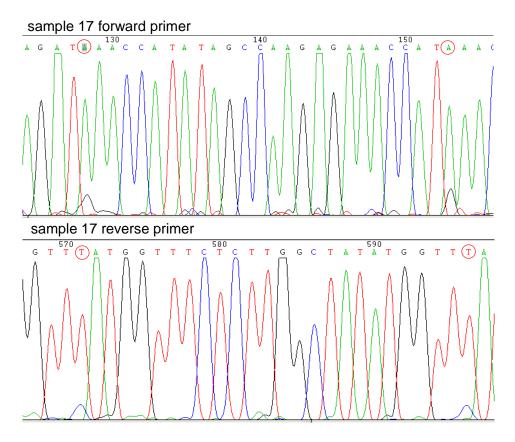


Fig. 1: Trace files of editing sites 87306 and 87281 in sample no. 17

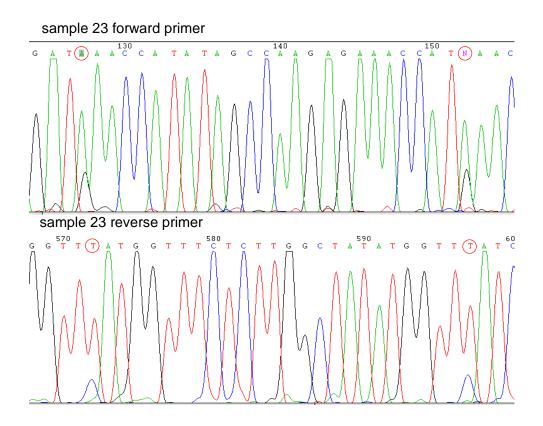


Fig. 2: Trace files of editing sites 87306 and 87281 in a sample no. 23

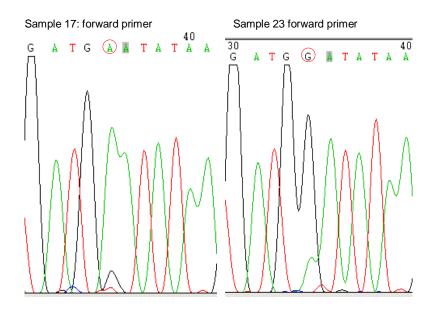


Fig. 3: Trace-files of editing site 87188 in samples no. 17 and 23

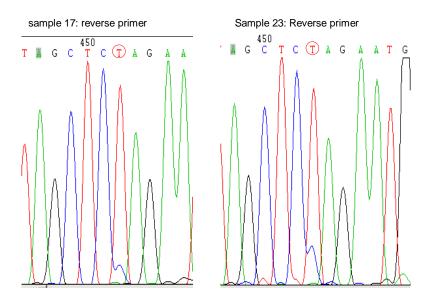


Fig. 4: Trace-files of editing site 87425 in samples no. 17 and 23

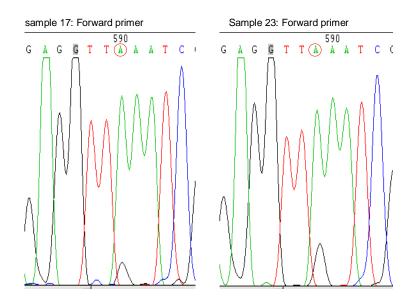


Fig. 5: Trace-files of editing site 87743 in samples no. 17 and 23.

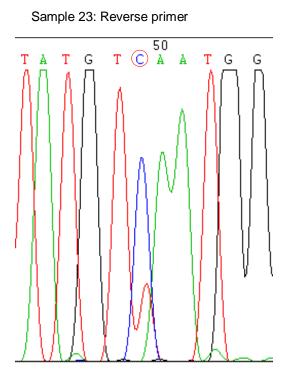


Fig. 6: Trace-file of editing site 103675 in sample no. 17