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Abstract

Allogeneic mesenchymal stem or stromal cells (MSCs) are proposed as cell therapies for degenerative, inflam-
matory, and autoimmune diseases. The feasibility of allogeneic MSC therapies rests heavily on the concept that
these cells avoid or actively suppress the immunological responses that cause rejection of most allogeneic cells
and tissues. In this article the validity of the immune privileged status of allogeneic MSCs is explored in the
context of recent literature. Current data that provide the mechanistic basis for immune modulation by MSCs are
reviewed with particular attention to how MSCs modify the triggering and effector functions of innate and
adaptive immunity. The ability of MSCs to induce regulatory dendritic and T-cell populations is discussed with
regard to cell therapy for autoimmune disease. Finally, we examine the evidence for and against the immune
privileged status of allogeneic MSCs in vivo. Allogeneic MSCs emerge as cells that are responsive to local signals
and exert wide-ranging, predominantly suppressive, effects on innate and adaptive immunity. Nonetheless,
these cells also retain a degree of immunogenicity in some circumstances that may limit MSC longevity and
attenuate their beneficial effects. Ultimately successful allogeneic cell therapies will rely on an improved un-

derstanding of the parameters of MSC—immune system interactions in vivo.

Introduction

APARADIGM SHIFT HAS OCCURRED in our concept of how
cell therapies utilizing mesenchymal stem cells (MSCs)
mediate their beneficial effects. It is now appreciated that,
although MSCs can be described as having trilineage differ-
entiation potential and express a particular collection of sur-
face markers, their effector function is based less on in situ
differentiation, trans-differentiation, or fusion and more on
paracrine effects and cross-talk with other cells present within
diseased tissues. This concept of a trophic (“nourishing”) ef-
fect of MSCs can be traced back to work carried out by Caplan
and co-workers (Haynesworth et al., 1996; Caplan and Dennis,
2006) and is also linked to earlier literature demonstrating the
ability of bone marrow stromal cells to support hematopoiesis
(Friedenstein et al., 1974). More recently, the identification of a
perivascular origin for MSCs from multiple organs has further
enhanced the view of MSCs as cells with supportive and
trophic functions during perturbations of tissue integrity
(Sacchetti et al., 2007; Crisan et al., 2008; Caplan, 2009).

These insights are of particular significance to the devel-
opment of MSCs as modulators of localized tissue inflam-

mation and as therapeutic agents for immune-mediated
diseases. Beginning approximately 10 years ago with in vitro
co-culture experiments and progressing, more recently, to
sophisticated in vivo models of immune/inflammatory dis-
ease, a clear and compelling profile of MSCs has developed
as potent modifiers of a wide range of targets within the
innate and adaptive arms of the immune system (Barry et al.,
2005; Uccelli et al., 2008). The recognized clinical potential of
MSC immunomodulatory effects now encompasses acute
myocardial ischemia, stroke, kidney injury, inflammatory
bowel disease, graft-versus-host disease (GVHD), multiple
sclerosis, diabetes mellitus, and organ transplantation (Uc-
celli et al., 2008; Caplan, 2009). Initial clinical trials have been
completed or are underway in several of these areas (An-
krum and Karp, 2010). One important concept that has car-
ried through from basic and preclinical studies to human
clinical trials is that of the immune privileged status of MSCs
transferred into an allogeneic host (Heng et al., 2009). Stated
in its simplest form, this concept implies that allogeneic
MSCs (allo-MSCs) fail to activate the innate or elicit the
adaptive cellular (T-cell) or humoral (B-cell/antibody) im-
mune responses that typically result in rapid rejection of
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allogeneic cells and organs transplanted into a host in the
absence of additional immunosuppressive therapy (Kahan,
2003). This would imply that allo-MSCs, prepared and stored
in advance for “off-the-shelf” therapy, are of equal efficacy to
individually prepared autologous MSC (auto-MSC) cultures
and can be repeatedly administered without losing potency
because of immune sensitization. A further extrapolation of
some of the current literature would also suggest that allo-
MSCs promote active immunological tolerance to “donor”
major histocompatiblity complex (MHC) and other alloan-
tigens—a property that could specifically enhance their
therapeutic value in organ and tissue transplantation.

Although early, uncontrolled clinical case series provided
exciting evidence of therapeutic benefits, the resulting opti-
mism for off-the-shelf allo-MSC therapy has become tem-
pered by the outcomes of recent, larger clinical trials in
which allo-MSC products proved disappointing in terms of
efficacy despite achieving safety endpoints (Ankrum and
Karp, 2010). Thus, the time is right to ponder the route
ahead for MSC-based cell therapies—particularly those
based upon the large-scale expansion of cells from allogeneic
donors. Most immunologists treated early descriptions of
non-rejection of allo-MSCs or xenogeneic MSCs with some
suspicion, but it is now the case that many thousands of
patients have safely received allo-MSC therapies, and a large
body of preclinical data has accumulated in support of the
capacity of MSCs to modulate diverse immune processes
in vivo (Uccelli et al., 2008). Despite this, the more recent
clinical results indicate that a more critical analysis of the
interaction between allogeneic cell therapies and the recipi-
ent immune system will be essential for the rational devel-
opment of commercially attractive MSCs and MSC-like
products in the future (Ankrum and Karp, 2010).

Several questions present themselves for which definitive
answers remain elusive: (1) What is the hierarchy of the
immune suppressive functions of MSCs? (2) How much re-
dundancy exists among the many suppressive processes
that have been identified to date? (3) What are the limits of
MSC immune modulation? (4) Are cellular and humoral
components of the allo-immune response equally suppressed
by MSCs? (5) Can the longevity and efficacy of allo-MSC
therapies be enhanced through further suppression of allo-
immune responses? In this article we consider the major
mechanisms that convey immune modulatory properties to
MSCs and examine the evidence for and against the immune
privileged status of allo-MSCs in vivo. Along the way we
discuss disease targets for which MSCs may be most suitable
and highlight the hurdles that remain to be overcome in
translating the promising laboratory studies into mainstream
clinical practice.

MSC Suppression of Innate Inmunity

The first encounter for any cell therapy upon delivery is
with the components of the innate immune system that
provide an effective antimicrobial defense but also a barrier
to allogeneic and xenogeneic transplantation. It is clear that
allo-MSCs (and indeed some xenogeneic MSCs) avoid acute
and hyperacute rejection mechanisms normally mediated
through the complement system. This is achieved through
secretion of Factor H (Tu et al., 2010) and most likely sup-
ported by MSC expression of the complement control pro-
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teins CD55, CD46, and CD59 (Komoda et al., 2010) (B.P.M.,
unpublished data). Thus MSCs are protected from frontline
deletion mechanisms operating in other tissue and cell
transplant scenarios. However, MSCs are not inert to innate
immune signaling, and there is evidence that MSCs are re-
cruited by the anaphylatoxins C3a and Cba (Schraufstatter
et al., 2009), suggesting that they are attracted to and acti-
vated at sites of tissue damage rather than deleted.

The interaction of MSCs with natural killer (NK) cells has
received little attention to date, particularly in the in vivo
setting. Initial in vitro observations suggested that human
MSCs were not susceptible to lysis by freshly isolated allo-
geneic NK cells and that MSCs inhibited NK cell secretion of
interferon (IFN)-y (Rasmusson et al., 2003; Aggarwal and
Pittenger, 2005). Subsequently, it has been demonstrated
that, although human MSCs suppress proliferation, surface
receptor expression, and effector functions of NK cells via
prostaglandin E, (PGE,) and 2,3-indoleamine dioxygenase,
they can be lysed by activated NK cells (Poggi et al., 2005;
Sotiropoulou et al., 2006; Spaggiari et al., 2006, 2008). In the
case of MSC interactions with neutrophils, the experimental
evidence is even more limited. Of interest, however, is that
Raffaghello et al. (2008) recently reported that human bone
marrow-derived MSCs inhibited both apoptosis and the
oxidative burst of resting and activated neutrophils while
preserving their phagocytic and chemotactic functions. Al-
though more work needs to be done in this area, the results
fit with a model whereby MSCs modify (“reprogram”) the
functional properties of innate immune mediators in a
manner that can both protect the MSC from frontline dele-
tional mechanisms and broadly suppress a range of poten-
tially destructive inflammatory pathways.

Recent studies of the influence of ligands of Toll-like re-
ceptors (TLRs) have reinforced the concept of MSCs as cells
responsive to and modulatory of innate immunity (Pevsner-
Fischer et al., 2007; Liotta et al., 2008; Tomchuck et al., 2008;
Opitz et al., 2009; Z.J. Wang et al., 2009). It is now clear that
MSCs express a range of TLRs and that signaling via these
receptors influences migration, survival, differentiation, and
immunosuppressive capacity. Some studies have observed
that MSC immune modulation can be downregulated by
TLR3 and TLR4 ligands (Liotta et al., 2008; Romieu-Mourez
et al., 2009) but enhanced by IFN-y (English et al., 2007). This
suggests that MSCs may be particularly effective in sup-
pressing chronic inflammation seen in autoimmunity (not
driven by pathogens) without impairing inflammatory re-
sponses essential to antimicrobial defense (where TLR Ii-
gands would be abundant). There is also evidence, however,
that TLR ligation in MSCs results in altered patterns of in-
duction of cytokines and other inflammatory mediators that
may, under some conditions, further enhance MSC immune
suppressive properties (Tomchuck et al., 2008; Lombardo
et al., 2009). In the future, it will be interesting to determine
whether this increased attraction of innate immune cells by
TLR-activated MSCs represents a barrier to therapeutic im-
mune modulation or, in fact, facilitates anti-inflammatory
cell—cell interactions. Overall, the impact of TLR ligation on
MSC functions (and immunogenicity) in vivo is incompletely
understood at present and may prove to be a key modifiable
factor for optimizing the clinical benefits of allo-MSCs.

Another important element of the influence of MSCs on
innate immunity relates to the interaction with monocytes
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and monocyte-derived inflammatory cells. Evidence is ac-
cumulating that monocytes and macrophages may be “pro-
grammed” by their surrounding microenvironment either to
mediate potent, locally destructive and lytic effects (perhaps
appropriate for immediate clearance of dead cells and pre-
vention of infection at a site of injury) or to produce a range
of anti-inflammatory, pro-regenerative factors (indicative of
a central role in the resolution and repair phase of tissue
injury) (Tesar, 2008; Stout et al., 2009; Geissmann et al., 2010).
Several recent studies have provided direct evidence that
MSCs are involved in this programming (Ohtaki et al., 2008;
Kim and Hematti, 2009; Nemeth et al., 2009). Most notably,
Nemeth et al. (2009) demonstrated convincingly that both
auto- and allo-MSCs reduced mortality from sepsis in a
mouse model through a direct interaction with macrophages
in the lung that resulted in enhanced production of inter-
leukin (IL)-10 and was mediated by a complex monocyte/
MSC cross-talk involving TLRs, tumor necrosis factor (TNF),
nitric oxide, and PGE,. Taken together with the previously
discussed literature on MSC interactions with the comple-
ment system, NK cells, neutrophils, and ligands for pattern
recognition receptors or TLRs, these studies paint a striking
picture of the complexity of MSC cross-talk with the innate
immune system and of the rich potential for harnessing these
effects for therapeutic benefits.

MSC Influence on Dendritic Cells

Dendritic cells (DCs) play a critical role in adaptive im-
munity acting as the primary antigen-presenting cell to ini-
tiate antigen-specific CD4™ helper T cells. This function has
been extensively reviewed elsewhere (Steinman and Ban-
chereau, 2007), but a simplified summary is useful to convey
the importance of the MSC-DC interaction. There are a va-
riety of specialized DC subsets with considerable flexibility
in development such that precursors with myeloid or lym-
phoid characteristics can be identified. Some lymphoid tis-
sues generate conventional but non-migratory DC locally
from precursors also found in bone marrow (Naik ef al.,
2007), whereas conventional migratory DCs are generated in
the bone marrow from hematopoietic pro-DC precursors
often via a monocytic intermediate (Fig. 1). On differentia-
tion, conventional bone marrow—-derived DCs expressing the
ayfo integrin (CD11c:CD18) and C-C chemokine receptor
(CCR) 6 migrate to peripheral tissues (Fig. 1) (Cook et al.,
2000; Kucharzik et al., 2002; Osterholzer et al., 2005). Such
immature DCs (iDCs) can be found within skin (Langerhans
cells), interstitial and epithelial tissues where they express
tissue-anchoring E-cadherin and perform sentinel functions.
iDCs have the capacity to take up antigen through phago-
cytosis and macropinocytosis and to process antigen for
loading onto MHC class II molecules; thus iDCs can be
considered to perform antigen acquisition functions in the
periphery (Steinman and Nussenzweig, 2002; Steinman and
Banchereau, 2007). On antigen encounter, iDCs undergo a
process termed maturation that sees a remarkable alteration
in biological activity, to become mature DCs (mDCs). mDCs
downregulate CCR6 and E-cadherin but express CCR7, re-
sulting in chemotaxis to local secondary lymphoid tissues
such as the lymph nodes to fulfill their role in antigen display
to the adaptive immune system (Iwasaki and Kelsall, 2000).
Maturation is accompanied by the expression of the naive
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FIG. 1. MSCs modulate DC function. DCs are the primary

initiators of adaptive T-cell immunity by acting as profes-
sional antigen-presenting cells; consequently they contribute
to allogeneic cell rejection. In vitro studies suggest that allo-
geneic MSCs interfere with immature DC generation and
maturation through contact-dependent and -independent
processes resulting in a tolerogenic phenotype. Color images
available online at www liebertonline.com/hum.

T-cell chemoattractant C-C chemokine ligand (CCL) 18 and
upregulation of MHC class II and the co-stimulatory mole-
cules CD80 and CD86, among others (Masten ef al., 1997).
Thus the mDC in the lymph node is in “antigen presentation
mode” and ideally placed to initiate and expand antigen-
specific CD4" helper T cells (Fig. 1). This process is essential
to initiate adaptive immunity against foreign antigen, but of
course if DCs derive from a non-MHC identical transplanted
organ, graft, or transfusion, then conventional DCs will
promote T-cell-mediated alloreactivity and consequent re-
jection (Morelli and Thomson, 2003). Conversely, antigen
presentation in the absence of costimulation (CD80/CD86,
etc.) can result in T-cell non-responsiveness or anergy, and
DCs with immature or semi-mature phenotypes are now
thought to play a role in peripheral tolerance induction
(Turnquist and Thomson, 2008). These processes are thus
essential to the initiation of alloreactivity, autoimmunity, and
tolerance.

A distinct lineage of plasmacytoid DCs (pDCs) can also be
derived from a common proDC precursor (Naik et al., 2007;
Shortman and Naik, 2007) and are identified by expression of
CXCR3 and BDCA-2 (human) or Siglec-H (mouse). Although
pDCs appear to be less effective in supporting the expansion
of naive antigen-specific T cells, they play an important role
in sustaining conventional DC production of IL-12 and in the
detection and amplification of antiviral responses through
TLR7 and TLRY, leading to type I IFN production and pro-
inflammatory cytokine release (Liu, 2005; Zucchini et al.,
2008).

Given the central role of DCs in allogeneic rejection and
the powerful allosuppressive influence of MSCs, it is not
surprising that the interaction of MSCs with DCs has been
the focus of much attention. Clearly MSCs modulate differ-
ent aspects of DC function in vitro (Zhang et al., 2004; Djouad
et al., 2007; English et al., 2008; Zhang et al., 2009), and this
has a functional counterpart in vivo (H. Li et al., 2008; Popp
et al., 2008; Rossignol et al., 2009; Li et al., 2010). It is worth-
while separating the functions related to DC generation
and DC maturation as these events may occur in different


http://www.liebertonline.com/action/showImage?doi=10.1089/hum.2010.156&iName=master.img-000.jpg&w=238&h=146

1644

anatomical locations and concern distinct biological func-
tions. First, it is clear that MSCs influence DC development.
This is not surprising as both MSCs and many DC precursors
are bone marrow residents and MSCs play a role in condi-
tioning the niche for hematopoiesis (Dazzi et al., 2006; Sac-
chetti ef al., 2007; Morikawa et al., 2009). At the level of
development, MSC co-culture strongly inhibits the initial
differentiation of monocytes to iDCs in vitro (Beyth et al.,
2005; Nauta et al., 2006a). This effect is reversible (Beyth et al.,
2005) and can be replicated by MSC-derived soluble factors,
including PGE; and IL-6 (Djouad et al., 2007). It is interesting
that MSCs seem to have differential effects on the generation
of conventional DCs (suppression) and pDCs (no suppres-
sion) (Chen ef al., 2007). The implications of these observa-
tions require careful interpretation, but it may indicate that
MSCs have suppressive effects that can be bypassed when
antiviral responses are required for protection—an interpre-
tation supported by recent work (Karlsson et al., 2008).

The major function of DCs in the epithelial tissues is to act
as sentinels and, upon maturation, to initiate cell-mediated
immunity. There are now consistent data from several
sources showing that MSCs modulate or interfere with DC
maturation in both the mouse and the human (Zhang ef al.,
2004; Djouad et al., 2007; Jung et al., 2007; English et al., 2008;
Magatti et al., 2009; van den Berk ef al., 2009; Zhang et al.,
2009). DCs exposed to maturation factors such as lipopoly-
saccharide or TNF-a co-cultured with MSCs failed to show
regular upregulation of maturation markers such as MHC
class II, CD40, or CD86 costimulatory molecules (Djouad
et al., 2007; English et al., 2008). Similar effects have been seen
with MSCs from amniotic, umbilical cord, or adipose sources
(Wang et al., 2008; Magatti et al., 2009; van den Berk et al.,
2009; M. Wang et al., 2009).

The encounter of DCs with MSCs abrogates the capacity of
antigen-pulsed DCs to support cognate CD4" T-cell prolif-
eration (English et al., 2008). This extends to allo-recognition
as well. Allo-MSCs suppress DCs from presenting (MHC-
derived) allo-antigen, thus suppressing a major pathway of
allo-recognition (English et al., 2008). MSCs also prevent loss
of iDC E-cadherin expression, prevent upregulation of
CCR7, and inhibit chemotactic ability of DCs (English ef al.,
2008). Thus MSCs suppress maturation marker expression,
antigen presentation capability, and capacity to respond to
lymph node-derived chemotactic signals—the three cardinal
features of conventional DC maturation. Unlike suppression
of T-cell proliferation in mixed lymphocyte reaction (MLR),
both contact-dependent and soluble factors contribute to this
immunomodulatory phenomenon. The contact-dependent
signal appears to involve members of the Notch-Jagged
signaling pathway (Y.P. Li et al., 2008; Zhang et al., 2009) (L.
Tobin, personal communication), whereas MSC-derived IL-6
contributes to the soluble signal (Djouad et al., 2007; English
et al., 2008) (Fig. 1).

The consequence of this immune modulation is that DCs
may display an altered profile of cytokine expression (Ag-
garwal and Pittenger, 2005) with reduced IL-12 (Zhang et al.,
2004; Jiang et al., 2005) or increased IL-10 (Aggarwal and
Pittenger, 2005) production, adopt a tolerogenic capacity (H.
Li et al., 2008; Y.P. Li et al., 2008; Popp et al., 2008), and
become capable of an indirect suppression through induction
of regulatory T (Treg) cells (Beyth et al., 2005). The functional
significance of MSC modulation of DCs in vivo is difficult to
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assess, and there is an urgent need for more focus on this
topic. However, MSCs can alter the migratory property of
DCs to delay the development of murine lethal acute GVHD
(H. Li et al., 2008) and can suppress DC function during
allogeneic islet transplant in a diabetic model (Kim et al.,
1997). These characterizations of MSC function have con-
siderably extended our understanding of MSC-mediated
immune suppression beyond the limited understanding
achievable from MLR studies to suggest that DC modulation
is a major pathway of MSC immune suppression.

MSC Induction of Treg Cells

There are numerous mechanisms by which the adaptive
immune system achieves tolerance to self-antigen, and un-
derstanding these offers an opportunity to develop new in-
terventions against autoimmunity and to prevent rejection of
allografts. The central mechanism of tolerance is the deletion
of self-reactive lymphocytes in the thymus (T cells) and the
bone marrow (B cells) (Peterson et al., 2008; Irla et al., 2010).
The mechanisms of peripheral tolerance support central tol-
erance, and among these are suppressor actions mediated by
a group of cells loosely termed Treg cells. This term en-
compasses a variety of cells of different phenotypes and
lineages, including Trl cells, T-helper (Th) 3 cells, CDs*
suppressor cells, NK-like cells, and some yéT cell populations
(Tang and Bluestone, 2008). The two principal suppressor
populations are considered to be CD4" CD25"&" FOXP3*
T cells that develop in the thymus (sometimes called natural
Treg) and T cells that can develop from naive T cells in the
periphery (termed inducible or adaptive Treg). The latter
may also express the FOXP3 transcription factor. A full dis-
cussion of the role of Treg cells is not possible in the current
context, but there is abundant evidence that Treg cells play a
central role in suppressing a range of autoimmune disease
and that loss of functional FOXP3 results in fatal multiorgan
autoimmunity (Brunkow et al., 2001; Lin et al., 2005; Lahl
et al., 2007).

Treg cells achieve suppression by multiple mechanisms
involving specific cytokines and other factors, but the prin-
cipal processes are via bystander suppression and so-called
infectious tolerance (Fig. 2) (Jonuleit et al.,, 2002). In by-
stander suppression, antigen-activated Treg cells express
cytokines such as IL-10, transforming growth factor (TGF)-f,
and IL-35 that suppress local effector T cells irrespective of
antigen specificity (Fig. 2) (Masteller et al., 2005; Babu et al.,
2006; Walsh et al., 2009). In contrast, during infectious tol-
erance, activated Treg cells condition the host to promote
further Treg cell populations of broader specificity (Shevach
et al., 1998; Cobbold et al., 2009; Miao et al., 2009). Infectious
tolerance can be adoptively transferred between animals and
can persist beyond the lifespan of the original clone. In-
fectious tolerance is therefore of intense interest in the con-
text of transplantation and for cell therapy to prevent or treat
autoimmune conditions such as type 1 diabetes (Han et al.,
1996; Zelenika et al., 2001; Waldmann et al., 2006).

MSCs can induce Treg cells indirectly via their modulating
effects on DCs as described earlier (Zhang et al., 2004; Ag-
garwal and Pittenger, 2005; Djouad et al., 2007; English et al.,
2008; H. Li et al., 2008; Wang et al., 2008). It is now clear,
however, that MSCs can also directly induce Treg cells in the
absence of DCs (Prevosto et al., 2007). This is clearly seen
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FIG. 2. Allogeneic MSCs induce a range of regulatory T-cell
populations (simplified here as Treg). This can occur via an
indirect route requiring tolerogenic DCs or by a direct MSC-
T-cell interaction requiring cell contact and soluble factors.
Once generated, Treg may suppress allogeneic rejection
through multiple pathways including creation of a sup-
pressive microenvironment (bystander suppression) or in-
duction of further regulatory cells (infectious tolerance). The
latter effect could persist well beyond the detectable pres-
ence of MSCs. Color images available online at www
liebertonline.com/hum.

when allo-MSCs are co-cultured with purified naive CD4™"
T cells from mice in which green fluorescent protein (GFP)
has been “knocked in” to the locus for the FOXP3 gene. Co-
culture with MSCs results in nuclear GFP expression (indi-
cating activation of the FOXP3 gene) not seen in CD4" cells
cultured in the absence of allo-MSCs (L. Tobin, personal
communication). A range of studies support the hypothesis
that MSC-induced CD4" CD25"&" FOXP3" T cells actively
suppress the immune effector responses to allo-antigen (Di
Ianni et al., 2008; Nasef et al., 2008; Selmani et al., 2008;
Gonzalez et al., 2009; Madec et al., 2009). This is further
supported by the results of human clinical studies of MSCs in
the prevention of allograft rejection, GVHD, chronic in-
flammatory disease, and autoimmunity (Koc et al., 2002;
Ringden et al., 2006; van Laar and Tyndall, 2006; Uccelli et al.,
2008; Caplan, 2009; Togel et al., 2009; Tyndall and Gratwohl,
2009; Zhou et al., 2010).

There are well-described roles for soluble mediators such
as TGF-f1 and PGE; in the generation and expansion of Treg
cells from CD4"CD25~ precursors (Horwitz et al., 2002; Ya-
magiwa ef al., 2001; Zheng et al., 2002; Baratelli et al., 2005),
with TGF-f1 signaling identified as a key regulator of the
pathway that initiates and maintains FOXP3 expression and
suppressor function (Fu et al., 2004). The exact mechanisms
responsible for induction of Treg cells by allogeneic human
MSCs have been studied by several groups. Cell contact,
PGE,, and TGF-f1 appear to play complementary, non-
redundant roles (English et al., 2009; Ghannam et al., 2010).
Although cell contact, PGE,, and TGF-fi1 contribute to Treg
cell induction by MSCs, human MSCs also secrete the soluble
MHC isoform HLA-G in an IL-10- and contact-dependent
manner. Leukemia inhibitory factor and HLA-G contribute
to the expansion of CD4" CD25"8" FOXP3 " Treg cells (Nasef
et al., 2008; Selmani et al., 2008), and this may also explain the
observations that MSCs sustain Treg cell survival and the
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suppressor phenotype over time (Di Ianni et al., 2008). It is
important that Treg cells generated by MSC encounter have
been repurified and shown to further suppress alloreactivity
in the absence of the original MSCs (English et al., 2009). The
implications of these data are that MSC therapies against
autoimmunity may cast a regulatory or immunosuppressive
shadow long after the original stromal cells have declined,
reminiscent of infectious tolerance, and thus suggest a
mechanism whereby MSCs with a brief persistence in vivo
may have profound long-term effects.

The biological significance of MSC induction of CD4™ Treg
cells has also been studied in vivo. Pretransplant infusion of
MSCs prolongs the survival of a semi-allogeneic heart
transplant through the generation of Treg cells (Casiraghi
et al., 2008; Popp et al., 2008; Ge et al., 2009). Recently MSCs
were also shown to prevent autoimmune f-cell destruction
and subsequent diabetes mellitus by inducing Treg cells in
NOD mice (Madec et al., 2009) and in a similar rat model
(Boumaza et al., 2009). The latter autologous study also
showed that MSCs sustained Treg cell responses in the pe-
riphery, supporting studies described above. Infused MSCs
and rapamycin synergize to attenuate allo-immune re-
sponses and promote cardiac allograft tolerance, a process
associated with tolerogenic DC and Treg cell induction (Ge
et al., 2009). Finally, in a murine model of asthma, MSC
therapy had a beneficial therapeutic effect that was lost when
Treg cells were chemically depleted (H. Kavanagh, personal
communication). Taken together, these results extend the
very clear in vitro data to show that MSC induction of Treg
cells has functional relevance in vivo.

MSC-mediated immunomodulation occurs by multiple
redundant pathways, of which CD4" Treg cell induction is
only one (English et al., 2007, 2008; Ryan et al., 2007). For
example, MSCs also induce other regulatory T-cell popula-
tions, including CD8" regulatory cells (Prevosto et al., 2007)
(H. Kavanagh, personal communication). Djouad and col-
leagues have demonstrated that MSC induction of CD8*
Treg cells was responsible for at least some immunosup-
pressive activities of MSCs in vitro (Djouad et al., 2003), and
these cells may amplify other suppressor mechanisms (Pre-
vosto et al., 2007). The outstanding questions with regard to
MSC induction of Treg cells center around the robustness of
the regulatory effect, delineation of the contribution of MSCs
to bystander or infectious tolerance, the precise identity of the
suppressor mechanisms such as the contact-dependent signal,
and the degree to which preclinical animal models translate to
human disease. Answers to these questions are imminent and
may well determine the ultimate utility of MSC therapy
against autoimmune and other immune-mediated diseases.

MSC Suppression of T-Cell and B-Cell
Effector Responses

In addition to modifying antigen presentation by DCs and
promoting the expansion of Treg cell populations, MSCs
may also directly influence effector functions of the adaptive
immune system, including Th differentiation programs and
B-cell/plasma cell activation and antibody production. These
direct interactions with the effector arms of the adaptive
immune system constitute an important additional element
of the therapeutic effect of MSCs in diseases involving dam-
aging inflammation, autoimmunity, or allograft rejection.
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In the case of Th differentiation, there has been some debate
about the modulating influence of MSCs on the T-cell subsets
induced by allogeneic, autoimmune, or other model anti-
gens. Although there have been reports that MSCs prefer-
entially reduce Thl responses to favor Th2-like cytokine
responses (Batten et al., 2006; Li et al., 2007; Wang et al., 2008;
Lu et al., 2009), this is unlikely to be a universal feature. For
instance, in the context of MSC-induced Treg cells, Th2 re-
sponses are effectively suppressed at a level sufficient to
reduce pathology in vivo (Nemeth et al., 2010; Sun et al., 2010)
(H. Kavanagh et al., personal communication). With regard
to other CD4* populations, Ghannam et al. (2010) showed
that MSCs prevented the in vitro differentiation of naive
CD4™ T cells into Th17 cells and inhibited the production of
the effector cytokines IL-17, IL-22, IFN-y, and TNF-o by fully
differentiated Th17 cells. Furthermore, under inflammatory
conditions, MSCs appear to mediate the adhesion of Th17
cells via CCR6 and exert anti-inflammatory effects through
the induction of a Treg phenotype in these cells (Ghannam
et al., 2010). These data support earlier studies showing that
MSCs ameliorate experimental autoimmune encephalitis
through suppression of CD4™ Th17 cells (Rafei et al., 2009b),
again suggesting that MSC immune modulation of T-cell
subsets is not merely a rebalancing of the Th1-Th2 axis. In
summary, there is now a considerable body of data dem-
onstrating that MSCs have potent direct suppressive influ-
ences on effector CD4+ T cells while promoting and
sustaining Treg cells.

Studies of MSC effects on B-cell function—particularly the
in vivo production of antibody during antigen-specific im-
mune responses—have been less frequent and have pro-
duced some conflicting results (Corcione ef al., 2006; Gerdoni
et al., 2007; Rasmusson et al., 2007; Comoli et al., 2008; Rafei
et al., 2008; Tabera et al., 2008; Traggiai et al., 2008; Asari et al.,
2009; Schena et al., 2010; Youd et al., 2010). Many antibody
responses are dependent on T-cell help, and so it is important
to consider the distinction between direct MSC modulation
of B cells and indirect B-cell effects resulting from suppres-
sion of DCs and T cells. In vitro experiments involving co-
culture of human MSCs with purified B-cell populations
under a variety of stimulatory conditions have predomi-
nantly shown inhibition of B-cell proliferation (via G0/G1
cell cycle arrest), differentiation, immunoglobulin produc-
tion, and chemotaxis with preserved or improved cell sur-
vival (Corcione et al., 2006; Comoli ef al., 2008; Tabera et al.,
2008). Similar observations have been reported for purified
mouse B cells and plasma cells in vitro (Rafei et al., 2008;
Asari et al., 2009; Schena et al., 2010). Mediators that have
been identified for MSC suppression of B-cell functions to
date include alternatively cleaved CCL2 (Rafei et al., 2008),
IFN-y, and PD1/PDL1 interaction (Schena et al., 2010). In
contrast, however, several groups have reported stimulatory
effects of MSCs on in vitro—activated B cells or plasma cells
from healthy humans (Rasmusson et al., 2007) or patients
with systemic lupus erythematosis (Traggiai et al., 2008). The
reasons for such apparently contradictory results are not
entirely clear but may include variability in the sources
and properties of MSCs as well as in the different antigen-
dependent and polyclonal stimuli that have been used to
activate B cells in culture.

The limited numbers of studies carried out in in vivo
models of pathogenic antibody production have also yielded
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inconsistent outcomes. MSC-mediated inhibition of antigen-
specific antibody production (including T-cell independent
antibody responses) was observed in mice by three groups
(Gerdoni et al., 2007; Rafei et al., 2008; Asari et al., 2009),
whereas others have reported failure of in vivo MSC ad-
ministration to suppress autoantibodies or increased auto-
antibody titers and disease activity in a mouse model of
systemic lupus erythematosis (Schena ef al., 2010; Youd et al.,
2010). It is interesting that there is also some experimental
evidence that pre-existing antibody responses may be sup-
pressed by MSCs through inhibition of plasma cell antibody
production (Comoli et al., 2008; Rafei et al., 2008). Taken to-
gether, the existing literature regarding MSC effects on B-cell
and plasma cell functions suggest a complex interaction that
includes both inhibitory pathways of high clinical interest
as well as the potential for stimulatory effects that could
limit the benefit of MSC-based therapies for some immune/
inflammatory diseases.

To What Extent Are Allo-MSCs Immunoprivileged
In Vivo?

Despite numerous clinical trials with allo-MSCs, it remains
unclear to what extent these cells elicit anti-donor immune
responses in vivo and whether efficacy is truly equivalent for
allo-MSCs compared to auto-MSCs for a given therapeutic
target. A key question is whether the inherent immune
suppressive properties of MSCs are sufficient to overcome
the potent and diverse processes of immunologic priming,
effector responses, and memory that are typically engen-
dered by allogeneic cells in a healthy individual. As re-
viewed in previous sections, many aspects of the mechanistic
basis for MSC-mediated immune modulation have been
uncovered, and at least some of these are known to be op-
erational in vivo. Furthermore, several studies have indicated
that donor-specific MSC infusion prior to or at the time of
allogeneic organ or tissue transplantation may delay rather
than hasten allograft rejection (Bartholomew et al., 2002). In
humans, donor MSCs have been reported to attenuate some
aspects of GVHD following allogeneic hematopoietic stem
cell transplantation (Lazarus et al., 2005). More recent data
from animal models also suggest that MSCs of allogeneic or
xenogeneic source can effectively protect from death due to
sepsis (Nemeth et al., 2009), neuronal loss following cerebral
ischemia (Ohtaki et al., 2008), and neurological injury in ex-
perimental autoimmune encephalomyelitis (Zappia et al.,
2005; Rafei et al., 2009b) in comparable fashion to auto-MSCs.

Although such preclinical and clinical studies provide
evidence in favor of a therapeutic benefit of allo-MSCs, the
question of whether they enjoy complete immune privilege
in vivo remains highly relevant to the true clinical and com-
mercial benefits of allo-MSC therapies in the long term. In
the majority of potential clinical applications it is not clearly
known for how long MSCs need to persist in vivo in order to
exert their maximal beneficial effects. For conditions in which
a short-lived presence of MSCs within diseased tissue is of
benefit, it is, nevertheless, likely that strong immunogenicity
of allo-MSCs will have a negative influence on the potency
and duration of treatment effect as well as the feasibility of
subsequent dosing. For clinical applications in which per-
manent MSC engraftment, prolonged therapeutic effect, or
subsequent allogeneic organ transplantation is anticipated,
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even weak in vivo immunogenicity may prove to be a for-
midable barrier to successful translation. It is important,
therefore, that basic observations regarding the effectiveness
of allo-MSCs in preclinical disease models be extended to
define the extent and limits of their immune privileged state.
Table 1 summarizes the results of several studies in which
the in vivo immunogenicity of allo-MSCs has been specifi-
cally examined or in which the therapeutic efficacies of allo-
MSCs and auto-MSCs have been directly compared in
immune competent hosts. It is important that the work car-
ried out to date has included a variety of species and ad-
ministration routes. In some studies, observations regarding
immunogenicity of allo-MSCs have been strengthened by
re-challenging recipient animals with donor allo-antigen
through strategies such as skin grafting. In others, experi-
mental observations of allo-MSC longevity in vivo provide
indirect evidence for or against immune-mediated rejection.
Finally, in a smaller number of studies, the influence of
allo-MSC number, exposure to inflammatory cytokines, or
differentiation along one or more lineages on in vivo immu-
nogenicity has been examined. Some significant inconsis-
tencies remain to be resolved, but this literature (summarized
in Table 1) does allow several provocative statements to be
made regarding the in vivo immune responses to allo-MSCs:

1. The majority of studies that have carefully analyzed
donor-specific responses in immune competent rodents,
pigs, and non-human primates following allo-MSC
administration have generated evidence of immunoge-
nicity. Notably, donor-specific antibody was observed
in all studies in which allo-antibody assays were carried
out. In several studies allo-specific responses were rel-
atively weak, whereas in others allo-MSCs proved to be
strongly immunogenic and sensitizing against subse-
quent donor antigen exposure (Table 1).

2. Immunogenicity and therapeutic immune modulation
can co-exist in vivo. In some disease models allo-MSCs
and auto-MSCs were found to be of comparable efficacy
despite eliciting anti-donor immune responses, whereas
in others, efficacy was lower for allo-MSCs compared
with auto-MSCs (Table 1). The parallel influences of
immunogenicity and suppression may be especially
beneficial for proposed therapies using MSCs against
autoimmune conditions. In these scenarios the ability of
MSCs to induce infectious tolerance may be the critical
correlate of efficacy.

3. Site of administration is an important modifier of
allo-MSC immunogenicity. Sites for which allo-MSCs
appeared to be non-immunogenic or very weakly
immunogenic included intracranial, intracerebral, intra-
articular, and implanted into skin wounds (Table 1). In
contrast, intravenous, intraperitoneal, subcutaneous,
and intramyocardial administration were sometimes
associated with detectable anti-donor immunity and
sometimes active rejection in the absence of other im-
mune suppressive therapy (Table 1).

Overall, it is reasonable to state at this time that MSCs
have the capacity to initiate both cellular and humoral allo-
immune responses in vivo but that, in some conditions, im-
munogenicity may be considerably attenuated compared
with other allogeneic cell types because of inherent anti-
inflammatory and immune modulatory properties.
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Some additional important issues are linked to the basic
question of the in vivo immunogenicity of allo-MSCs and its
significance for their therapeutic application. First, it remains
unclear whether allo-MSC immunogenicity is altered fol-
lowing differentiation into chondrocytes, osteocytes, or other
lineages. This consideration is of particular relevance to the
use of MSCs in bone and joint disease but has been little
studied to date. Nonetheless, it has been shown in rabbits
that osteogenic cells differentiated from MSCs retained im-
munosuppressive properties in vitro and functioned as os-
teoblasts in allogeneic hosts for up to 28 days without
precipitating primary rejection or sensitizing to a subsequent
MSC-donor specific skin graft (Liu et al., 2006). Second, it is
of interest to know whether immunosuppressive therapies
currently prescribed in organ transplantation can be effec-
tively used to prevent anti-donor immune responses to allo-
MSCs in vivo without diminishing therapeutic efficacy. In
this regard, Poncelet et al. (2008) have shown, in a miniature
pig model of myocardial infarction, that the calcineurin in-
hibitor tacrolimus significantly attenuated the anti-donor
antibody response to allo-MSCs delivered directly into the
infarct. Recently, Ge ef al. (2009) also demonstrated that a
combination of allo-MSC infusion and low-dose sirolimus
(rapamycin) therapy resulted in long-term survival of fully
MHC-mismatched heart transplants in mice. As a final issue,
allo-MSCs may be deployed into sites of inflammation, rich
in pro-inflammatory mediators such as IL-1, TNF, and IFN-y.
The questions arise, therefore, whether allo-MSC immune
modulation persists and anti-donor immune responses are
enhanced in the inflamed tissue environment. Fortunately,
several advances have been made in this regard. Stimulation
of MSCs with IFN-y upregulates both MHC class I and II (Le
Blanc et al., 2003a,b), which may render these cells suscep-
tible to rejection in an immune competent host especially as
an elevated MHC class I level makes the cells vulnerable to
cytotoxic T-cell-mediated lysis in vitro (S. Schu et al., manu-
script submitted). In a mouse model of experimental auto-
immune encephalomyelitis, IFN-y increased MSC expression
of CCL2, MHC I, and MHC II, leading to loss of disease
suppression and allo-MSC rejection (Rafei et al., 2009a). In
the pig, Cho et al. (2008) have demonstrated that both T-cell
and antibody responses to allo-MSCs were enhanced in vivo
by pre-exposure of MSCs to IFN-y. Thus, there is evidence
that allo-MSC immunogenicity and rejection may be more of
a barrier to successful therapeutic application in the setting
of localized inflammation. In contrast, it is also well estab-
lished that exposure of MSCs to some inflammatory signals
(e.g., high-dose IFN-y) can enhance their suppressive effects
on T cells, monocyte/macrophages, and DCs (English et al.,
2007; Ryan et al., 2007; Polchert et al., 2008; Opitz et al., 2009).
In models of GVHD, chronic obstructive pulmonary disease,
and allergic airway disease, prestimulation of MSCs with
IFN-y improves the efficacy of cell therapy (Polchert ef al.,
2008) (B.P.M., unpublished data; H. Kavanagh et al., manu-
script submitted). Mechanistically, these observations have
been linked with IFN-y-mediated upregulation of IL-10,
TGF-f1, PGE,, and, in particular, the immune suppressive
enzyme indoleamine 2,3-dioxygenase (English et al., 2007;
Ryan et al., 2007; Popp et al., 2008; Opitz et al., 2009; Crop
et al., 2010). Although paradoxical in some senses, the liter-
ature in this area indicates that allo-MSCs introduced into a
site of existing tissue injury and inflammation engage in a
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complex, active cross-talk with the cells and mediators
around them. On the one hand, these interactions may result
in further induction of beneficial, immune suppressive fea-
tures of the MSCs, whereas, on the other hand, they may
render the MSCs more susceptible to lysis by cytotoxic T cells
and NK cells. A better recognition that these two processes
are not mutually exclusive and should be carefully studied in
parallel in the future will be an essential step toward im-
proving allo-MSC-based therapies to the point of routine
clinical use for inflammatory and immune-mediated dis-
eases.

Outlook

The field of MSC-related immune modulation has reached
an exciting juncture. Despite some lingering controversy re-
maining regarding the degree to which MSCs truly differ
from fibroblasts (Jorgensen, 2010), it has become very clear
that stromal progenitor cells from multiple sites interact
dynamically with almost every component of the immune
system and, as reviewed here, do so with predominantly
suppressive effects. The list of potential therapeutic appli-
cations continues to grow, and the use of pre-expanded allo-
MSCs appears to be the most practical and commercially
viable approach. In confronting the question of why recent
large clinical trials produced disappointing results, therefore,
it must be acknowledged that some assumptions made about
the interaction between allo-MSCs and the host immune re-
sponse in vivo may have been overly simplistic. Furthermore,
as the specific mechanisms whereby MSCs exert their bene-
ficial effects in a given disease remain poorly understood,
there are few genuine, quantifiable, correlates of efficacy
upon which to base comparisons between different sources
of MSCs. From our perspective, the literature to date sup-
ports a view that therapeutic MSCs are conditionally subject
to allo-immune responses in vivo. Furthermore, there is ex-
perimental evidence to suggest that cellular and humoral
anti-donor responses in immune competent recipients are
sufficient, in some settings, to limit MSC longevity, attenuate
beneficial effects, and sensitize to subsequent allo-antigen
exposure. It is important that the available literature also
provides reasons to believe that allo-MSCs may be truly
immune privileged at some anatomical sites or that detri-
mental anti-donor responses to allo-MSCs may be readily
controlled or even converted to donor-specific immune tol-
erance. In the future, achieving the optimal benefits of allo-
MSC therapy for each disease process will require further
careful comparisons with autologous cells coupled with a
more rigorous application of methods in transplant immu-
nology to ongoing preclinical and clinical studies.
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