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ABSTRACT 

A new method for the analysis of inharmonic instrumental tones 
is presented. The method exploits an equation derived from the 
well-know inharmonic series equation, where the inharmonicity 
coefficient is balanced with the frequencies and numbers of any 
two partials extracted from a pseudo-harmonic series. A serial 
search for increasingly deviating spectral peaks is aided with the 
integrated refinement of increasingly reliable inharmonicity co-
efficient and fundamental frequency estimates. This firsthand 
approach to the problem of evaluating inharmonic spectra brings 
about an unprecedented level of simplicity, efficiency and accu-
racy. 

1. INTRODUCTION 

As opposed to the solutions of the wave equation, the frequen-
cies of the modes of vibration of actual instrumental strings are 
not exact integer multiples of the fundamental frequency. In fact, 
material stiffness imparts an additional, curvature-related restor-
ing force, which raises higher frequency components above their 
“ideal” harmonic position. 

In mathematical terms, the relation between the kth partial fk 
and the fundamental frequency f0 of a spectrum featuring such 
inharmonicity can reliably be expressed as 
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where � is the so-called Inharmonicity Coefficient (IC). The lat-
ter can itself be related to physical parameters of a plain string 
(i.e. not wounded) after the equation 
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where Q is the material’s elasticity modulus, d the diameter, T 
the tension and l the length of the string [1]. 

While inaudible in most plucked- and hit-string instruments, 
this acoustical effect is perceptually noticeable on such instru-
ments featuring sufficiently thick strings in their lower end. In 
the case of the piano, for instance, the effect is so conspicuous it 
cannot be ignored during the tuning process. Also, in sound syn-
thesis, the proper emulation of instruments featuring audible in-
harmonicity necessarily requires the comprehension of the phe-
nomenon. In any case, it is desirable to possess the means of 
measuring the inharmonicity of tones. 

2. MEDIAN-ADJUSTIVE TRAJECTORIES 

To help the reader situate the proposed method of Median-
Adjustive Trajectories (MAT), the next section opens with a 
chronological overview of the main existing methods for auto-
matically estimating the analytical values of � and f0. The pro-
posed method is thereafter explained in detail. 

2.1. Previous methods 

Ever since it has been considered, the problem of automatically 
estimating the inharmonicity coefficient has been approached 
indirectly. In 1994, Galembo and Askenfelt pointed out that the 
one peak produced in the cepstra and Harmonic Product Spectra 
of inharmonic tones features distinctive width, by the interpreta-
tion of which it is possible to derive an estimate for � [2]. Thence 
was cleverly suggested to take account of the “partial stretch” 
caused by inharmonicity in the frequency-axis rescaling process, 
leading to the expression for the Inharmonic Product Spectrum 
(IHPS) 
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where fs is the audio sampling rate, p is the spectrum compres-
sion factor, P is the order of the IHPS, and F(�), the Fourier 
transform of the signal at the angular frequency �. 

The aim there was to obtain as high and narrow a peak as 
possible, implying accordingly accurate estimates of � and f0. 
Practically, the IHPS can be implemented by the means of a non-
uniform Fourier transform, evaluating 
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for a number of f0 and � values across their respective range of 
possibilities. In (4), x[n] and w[n] are the nth samples of the dis-
crete analysed signal x and window function w, respectively. 

An alternative method, the Inharmonic Comb Filter (ICF), 
was presented in 1999 by the same authors [3]. Here, (1) is used 
to make the notches of a frequency-domain comb filter coincide 
with the peaks of an inharmonic spectrum, as illustrated in Fig. 1. 
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Figure 1: Inharmonic comb-filtered spectrum 

 
As in the case of the IHPS, f0 and � are swept across their re-

spective, user-estimated range of realistic values. For each com-
bination, the sum of the values of the accordingly comb-filtered 
power spectrum is evaluated. The f0 and � couple yielding the 
least sum is finally taken as the best estimate. 

The major inconvenient of both above-presented methods is 
the necessity of evaluating the IHPS/ICF for a number of f0 and � 
combinations. In [3], for instance, � is given an initial value of 
300�10-6, while f0 is varied logarithmically between 20 and 
200Hz in 200 steps to get a rough fundamental frequency esti-
mate. Secondly, f0 is linearly varied in 30 steps across +/−10% 
the previously obtained estimate, and at each step, � is varied 
between 0 and 0.001 in 200 logarithmic steps. Thirdly, f0 and � 
are both varied in 30 linear steps around +/−5% the estimates 
obtained in the previous run. Altogether, this brings the power 
spectrum to be comb-filtered and summed 7,100 times. 

Rauhala, Lehtonen and Välimäki addressed in 2006 the need 
for a far more efficient algorithm [4]. The method uses a peak 
detection where the peak-detection frequency bands are centred 
on estimates for the partial frequencies fk. The latter are obtained 
from the substitution into (1) of estimates for � and f1, 
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The trend of the frequency differences between the estimated 

and measured inharmonic series is considered: a positive trend 
suggests too great a � estimates, and vice-versa. The estimate is 
accordingly adjusted in an iterative peak-detection process, and 
thus made to converge towards a precise estimate.  

2.2. Median-Adjustive Trajectories (MAT) 

As suggested by Alexander Galembo’s Inharmonic Calcula-
tor [5], the IC can be expressed in terms of the frequency and 
number of any two partials of a series. This is done by express-
ing f0 in terms of the mth partial fm as 

 

 
20

1 mm

f
f m

β+
= , (6) 

 
and then substituting (6)  into (1), yielding 
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Now we solve for �, 
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Thus, any couple of partials of a spectrum known to belong to 
the series stemming from the fundamental frequency, and whose 
numbers are known, can provide with an estimate of �. The diffi-
culty resides in finding partials when � remains unknown, espe-
cially at high partial indexes, as the kth partial of an inharmonic 
series deviates by k((1+�k2)0.5-1) times the fundamental fre-
quency. Fig. 2 illustrates such deviation in the example of a bass 
guitar open E with fundamental frequency f0 � 20.6356Hz and IC 
� � 3.9602�10-4. For values of � that substantial, this frequency 
stretch renders unreliable the detection of pseudo-harmonics us-
ing frequency bands centred on integer multiples of the funda-
mental frequency. 

 

Figure 2: A Bass Guitar example of partial frequency de-
viation as multiple of the fundamental frequency. 

 
On the other hand, the deviation caused by realistic inhar-

monicity values on the first two partials is trivial. In the previous 
example, for instance, the deviation of those does not exceed one 
thousandth of the fundamental frequency. 

The present method takes advantage of this fact. Here, we es-
timate the frequencies of the two prominent peaks within narrow 
peak-detection frequency band, respectively centered around f0,ET 
and 2f0,ET (f0,ET is the user-input, Equal-Temperament fundamen-
tal frequency). Thereafter, those values and corresponding peak 
numbers are substituted into (8) for the calculation of the first 
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entry of an array B of � estimates. This estimate is used in (6), in 
turn with each of the above-mentioned partial frequencies, to 
calculate the first two entries of another array of estimates Fo. 
The arrays’ medians are finally substituted into (1) in place of � 
and f0 to obtain a frequency estimate for the next partial. This 
estimate is used as the centre frequency of the peak-detection 
frequency band of the next “partial step”. 

Fig. 3 pictures the first three steps of the method in detail, 
and can be regarded as a pictorial aid to the implementation of 
the algorithm, to be used with equations (1), (6) and (8) at hand. 

 

 
 

Figure 3: Median-Adjustive Trajectory method 
 

As the figure suggests, there is a potential triangle number 
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of � estimates for K measured partial frequencies, along with K f0 
estimates. 

Another way of interpreting the procedure is to visualise a 
trajectory of the form (1) for a continuous k, on either sides of 
which are picked up the closest peaks. The frequency informa-
tion related to those peaks feeds back into (1) to adjust the trajec-
tory and progress further into the spectrum. Fig. 4 shows such a 
trajectory at three different stages of its adjustment, during the 
analysis of a C#3 of a hammered dulcimer (with a 69.0789Hz 
fundamental frequency). As it is more convenient for visualiza-
tion, the ordinate axis here represents the derivative of the fre-
quency series for a continuous k, 
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As for the measured frequencies (circles), they were substituted 
in (10) using (6). 

 

Figure 4: Three states of a median-adjustive trajectory 

 
The peak-detection process can be carried as far as the series 

features sufficient energy to raise peaks above the threshold of 
noise. It was empirically determined most convenient to use the 
average of the magnitude spectrum as the value against which to 
compare the magnitude of each newly detected peak. Fig. 5 gives 
an idea of the level of such a threshold within the spectrum of a 
mandolin’s G3. This magnitude threshold check, introduced in 
the peak detection loop, allows the latter to stop when no more 
significant partials are found. 

2.3. Refinement of the partial frequency estimates 

The accuracy of the � estimate is necessarily dependent on 
the accuracy of the spectral analysis. It is therefore desirable to  
use long window sizes, at least of 214 (16,384) samples for a CD-
quality sample rate (44,100Hz). Also, when dealing with instru-
ments such as the piano, which feature courses of strings (i.e. 
two or more strings are coupled to increase the volume of each 
note), windows of 215, or even 216 samples enhance the chances 
of making the distinction between parallel series. 
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Figure 5: Magnitude spectrum average used as peak de-
tection threshold 

 
Meanwhile, regardless of the size of the window, it is possi-

ble to refine the DFT-quantised frequency of a peak standing on 
a discrete-frequency axis. For example in [4], a continuous peak 
is imagined between the detected discrete-frequency maximum 
and its immediate neighbours. Assuming the shape of a second-
order polynomial, the frequency value at which the correspond-
ing first-order gradient is nil is taken as a better estimate as to 
where the frequency component actually stands. 

 

Figure 6: An example of partial frequency estimation 
with quadratic fit. 

 
Alternatively, the use of Complex Spectral Phase Evolution 

(CSPE) [6] offers a significant frequency refinement for all com-
ponents detected in the Fourier analysis, and can be integrated in 
the algorithm without so much as a handful of extra lines before 
the peak detection loop. Here, the Fourier analysis is performed 
twice, the second time upon a one-sample shift of the same dis-
crete signal. The product of the time-shifted spectrum with the 
complex conjugate of the initial spectrum conveniently isolates 
the actual frequencies of the detected components. 

Let us express a segment of N samples of a complex signal 
x[n] as the sum of N frequency components, each of complex 
amplitude ak and angular frequency �k, 
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The signal’s one-sample shifted version, x’[n], can likewise be 
expressed as 
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Now we express the Fourier series X[p] of x[n], 
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We take the component frequencies �k to deviate from being 
harmonics of the analysis’ fundamental frequency by �k radians 
per sample, i.e. �k = 2�k/N + �k. Thus we can reformulate (13) as 
 

 [ ] ( )
��

−

=

−

=

−
=

1

0

1

0

21 N

n

nj
N

k

npk
N

j

k
kee

N
p ε

π

aX . (14) 

 
Meanwhile, 
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Thus, on the condition that the components are exact multiples of 
the analysis’ fundamental frequency (implying � = 0), we can 
write 
 
 [ ] pp aX = , (16) 

 
and likewise, 
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By taking the product of the time-shifted spectrum X’[p] with the 
conjugate of the original spectrum, X*[p], we obtain 
 

 [ ] [ ] [ ] pjeppp ω−∗ =⋅ 2XXX' , (18) 

 
and therefore can extract the desired frequency taking 
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Equations (16) and (17) strictly hold only when the fundamental 
frequency of the analysed signal is an integer multiple of the nat-
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ural frequency of the analysis, in which case, ironically, any fre-
quency refinement is unnecessary. However, the method allows 
room for error, as will verify the following tests. 

 
The estimates of the quadratic fit were compared with those 

of the CSPE. A sequence (fc) of twenty centre frequencies, equal-
ly spaced between the excluded limits of 0Hz and the Nyquist 
frequency, was created: 

 

 ( ) 20,...,1,
41

== c
f

cf s
c

 (20) 

 
For each c, 100 random, fc-centered frequency values were 

generated: 
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i.e. the frequencies fr,c vary randomly around fc within one fre-
quency bin of the Fourier analysis of size N to come. Those fre-
quencies were used to generate equally many discrete pure tones 
as follows: 
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The Quadratic Fit (QF) and CSPE techniques were used to 

get frequency estimates for each of those pure tones. For each 
centre frequency, the RMS of the error of the 100 estimates was 
computed as 
 

 ( )[ ]crcrc YfRMS ,,QF, QFRMS −= , (23) 

 ( )[ ]crcrc YfRMS ,,CSPE, CSPERMS −= . (24) 

 
Those error RMS values are presented graphically in Fig. 7. 

 

 

Figure 7: Accuracy comparison of quadratic fit (top) and 
CSPE (bottom) frequency refinements 

 
The error RMS of the quadratic fit estimate exhibits little, ir-

relevant accuracy fluctuation across the frequency domain. On 
the other hand, it appears that the accuracy of the CSPE is highly 
dependent on frequency. At a quarter of the sampling frequency, 
the CSPE error RMS curve exhibits a minimum of 10-9, which is 
108 lesser than for the quadratic fit refinement. The CSPE exacti-
tude falls off dramatically on either side of that frequency. Yet it 
was found to remain almost a hundred times lesser than the quad-
ratic fit error RMS at the lower musical extreme of 20Hz. 

2.4. Peak detection faithfulness 

A major advantage of the proposed method, stemming from 
the firsthand accuracy of its partial frequency estimates, is its 
potential to work with extremely narrow peak-detection fre-
quency bands. In [4], large such bands opposed little protection 
against the intrusion into the measurements of peaks belonging 
to other series such as parallel series, or series of longitudinal 
vibrations. 

Fig. 8 shows a good example of how such partials can over-
shadow sought-for peaks, as well as the extent to which narrow 
peak-detection frequency bands reduce this risk. The analysed 
tone is a Steinway F2, with a fundamental frequency of 43.46Hz 
and 1.18�10-4 inharmonicity value. Here, the frequency bands 
span 4 analysis bins across, which represents here one 16th of the 
fundamental frequency, and one 12th of the bandwidth used in 
the PFD method [4]. 

 

 

Figure 8: Peak detection faithfulness of the MAT method 

 

3. COMPARISON 

Comparison tests were run which confronted the MAT method 
with the Partial Frequency Deviation (PFD) method proposed by 
Rauhala et al. in [4]. 

Sixteen fortissimo tones of a Steinway grand piano, ranging 
from C#3 to C#7 (of respective equal temperament fundamental 
frequency 34.6 and 1,108.7 Hz) in steps of major third were ob-
tained from [7]. Prior to analysis, the sound files were formatted 
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to mono-channel, 44.1 kHz sample rate. Then, in both methods’ 
cases: 

 
• The first 0.3 seconds of all tones were discarded, to 

minimise the presence of transient-related noise in 
the spectra. 

• A window size of 214 samples was adopted. 
• The algorithms were arranged to use the above-

described CSPE method for refinement of the par-
tial frequency estimates. 

• The algorithms’ respective performances were in-
dividually timed from the time-domain windowing 
of the signals until the final estimates were ob-
tained. 

• To improve the relevance of the statistics, each 
tone was analysed four times, bringing the number 
of performances up to 64. 

 
As mentioned earlier, the PFD method requires the number 

of partials to account for in the analysis to be specified. All the 
while, the number of existing partials varies widely across the 
range of subject tones. Fig. 9 exhibits the spectra of the two ex-
treme tones C#3 and C#7. 

 

 

Figure 9: Peak series of a Steinway’s C#3 (top) and C#7 
(bottom). 

 
The MAT method code was arranged to return the number of 

detected partials, to be used in the PFD in this regard. The � es-
timates for the 16 tones, as issued by either method, are se-
quenced in Fig. 10. 

To the exception of the first and second last entries, the two 
sets are consistent throughout, which denotes the validity of ei-
ther method. Also, the dramatic inharmonicity increase towards 
the upper end of the piano keyboard corroborates the measure-
ments shown in [8]. 

To measure with more precision and certainty the accuracy 
of each method, the above-presented � estimates were used in 
turn to create inharmonic test tones using additive synthesis. The 
initial phase of each sinusoid was given a random radian value in 
the interval [0 2�]. Also, because the PFD method in its first step 
detects twice as many peaks as there are relevant partials, noise 

was added to the time-domain signal to provide the spectra with 
dummy peaks. 

 
 

 

Figure 10: Compared � estimates from the PFD (circles) 
and MAT (crosses) methods. 

 
The accuracy of the peak detection proposed by the MAT 

method is such that it was deemed unnecessary to compare the 
algorithmic estimates with estimates obtained by the means of 
visual identification of the relevant serial peaks. Until now, it 
was common for such means to be resorted to, as in [4] and [9]. 

The comparison tests were implemented in Matlab, and run 
on a laptop equipped with an Intel Core 2 Duo T8100 2.1GHz 
processor and 2GB RAM. The total runtime and RMS error of 
each method, for the 64 analyses, are presented in Table 1. Put in 
perspective with similar tests produced in [5], where the PFD is 
confronted with Galembo and Askenfelt’s ICF method, the Me-
dian-Adjustive Trajectory method stands as the most efficient 
and accurate to date. 
 

Table 1: Comparison of PFD and MAT methods 

 PFD MAT PFD/MAT 
Runtime (s) 2.48 0.719 3.4492 

RMSerror 0.001067 0.00049268 2.1657 
 

4. CONCLUSION 

The leading methods for the automatic estimation of the IC and, 
in some cases, theoretical fundamental frequency of string in-
strumental tones were presented and discussed in chronological 
order. The proposed Median-Adjustive Trajectory (MAT) me-
thod, featuring a firsthand peak detection approach to the estima-
tion of those theoretical values, was thereafter described and 
schematised. The Complex Spectral Phase Evolution [6] was also 
introduced as a beneficial tool for partial frequency estimation 
refinement. Comparison of the MAT method with the PFD ex-
hibits unprecedented accuracy and computational efficiency. 
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In the future, the proposed method could be extended to ac-
count for several pseudo-harmonic series. In the tones produced 
by finely tuned courses of strings, the frequency difference be-
tween partials of corresponding indexes cannot be seen early in 
the series. When eventually the parallel series break apart, the 
method has presently no command as to which series the me-
dian-adjustive trajectory will follow, and will return IC and fun-
damental frequency estimates for one of the strings only. A sig-
nificant improvement would therefore be for the MAT method to 
be able to return as many � and f0 couples of estimates as there 
are strings involved in the production of the analysed tone. 
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