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Abstract

We show that Mach bands and a number of other low-level brightness illu-
sions can be accounted for by assuming that the perceptual system performs simple
Bayesian inference using a Gaussian image prior with noisy retinal gangion cells.
This theory accounts for phenomena which have proven problematic for simple
energy-based and lateral-interaction models while avoiding the complexities of
mid-level vision theories that involve the estimation of structure and albedo.

1 Introduction

Hartline shared the 1967 Nobel Prize in Physiology and Medicine for his discovery of
lateral inhibition in the retina (Hartline et al., 1956). This physiological phenomenon
was interpreted as performing “sharpening of contrast so that forms stand out more
clearly” (Bernhard, 1967), and accounting for low-level brightness illusions such as
Mach bands (Ratliff, 1965). Ernst Mach himself proposed a Laplacian derivative op-
erator as an explanation of these phenomena, following Ewald Hering. More recent
theories of lateral inhibition in the retina eschew “contrast enhancement” as an expla-
nation and are instead based on coding theory under the normative assumption that the
retina attempts to encode images so as to maximize fidelity while transmitting them
through the optic nerve (Atick and Redlich, 1990b,a). This theory and its elaborations
(Atick et al., 1992; Linsker, 1993; Li, 1996) have enjoyed enormous success at ac-
counting for receptive field properties. They do however assume that the rest of the
brain knows the point-spread function of the retina, and therefore, in contrast to simple
retinal lateral inhibition models, do not predict that percepts will correspond to simply
applying the retinal transfer function to the image.

For this and other reasons, lateral inhibition in the retinais no longer taken seriously
as an explanation of brightness illusions by experts in thatarea, although it does con-
tinue to dominate survey courses and textbooks. Modern brightness illusion theories
fall into three classes, none of which ascribes a direct roleto retinal effects. The first,
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so-called energy-based models, are the philosophical descendent of the retinal lateral
inhibition theory. These assume that a post-retinal relaxation process constructed to
minimize a conflict (or energy) measure leads to brightness percepts. This relaxation
process in the end results in (cortical) lateral inhibition. Such energy-based models
have elaborate architectures carefully tuned to the phenomena they attempt to explain.

The second class, constancy models, are cast at a higher level of abstraction and
hold that brightness and color illusions result from mechanisms the visual system uses
to obtain stable veridical percepts in the face of varying illumination (Adelson, 2000,
1993; Sun and Perona, 1996a,b). Constancy models have excellent explanatory power
for a broad class of images, particularly those with apparent transparency or geometric
structure, but when faced with low-level brightness illusions such as Mach bands and
simultaneous contrast effects they resort to special pleading concerning non-veridical
geometric structure and albedo supposedly inferred by mid-level visual processes.

The third, physiological models, start with measurements of physiological activ-
ity in visual areas during presentation of an ensemble of stimuli that includes stimuli
known to produce illusions and show that the measured neuronal activity, interpreted
using a posited representation, are consistent with known percepts (Albright, 1994,
1995; Rossi et al., 1996; Rossi and Paradiso, 1996; Newsome et al., 1989). Although
such work elucidates mechanism and representation, it is predictive only to the extent
that the neurophysiology is fully understood.

The study of motion perception has revealed a rich set of seemingly counterin-
tuitive non-veridical percepts. These motion illusions are well explained by a recent
theory which posits that the visual system performs optimalperceptual inference in
estimating motion, and that this processing necessarily takes into account both signal
and noise (Weiss et al., 2002). Here we introduce a theory philosophically similar to
the constancy and optimal motion estimation theories. The theory proposed here ex-
tends the optimal perception hypothesis to encompass low-level brightness illusions
without invoking complex priors that involve three-dimensional structure, grouping,
illumination, transparency, or albedo.

2 Methods

Van Beers et al. (2002) posit that“neural signals are corrupted by noise and this
places limits on information processing”in the context of sensorimotor control. In
this section we calculate such a limit in a perceptual systemby finding the optimal
Bayesian reconstruction of an image presented to the retinaunder a set of assumptions
concerning noise between transduction and transmission along the optic nerve, and
using a simple generic prior.

The input to the model presented here is a one-dimensional discrete signal (corre-
sponding, for example, to one row of an image) which represents the lightness of the
stimulus. The intensity range of the pixels is centered at zero (representing mid-level
gray). Negative values correspond to darker tones, and positive values to lighter tones.

The transformation of the stimulusx at our one-dimensional annular retina is mod-
eled as

y = Φx + η (1)

2



M.A.P.

Figure 1: Transformation and inference process. The stimulus (left) is convolved with
theMexican hatvector to produced a new signal (middle). The brain has to guess the
original pattern (here using amaximum a-posterioriestimation approach) from a noisy
version of the transformed signal.

whereΦ is a circulant matrix andη is the noise due to transduction and transmission.
Each row ofΦ corresponds to a shifted version of aMexican hat-shaped vector1defined
by

φ(k) = a(b − k2)e−k2/2 (2)

wherea determines the power of the signal andb defines the area ratio between the
positive and negative lobes. This transformation thus corresponds to convolving the
input with a Mexican hat function. We assume that the noiseη is white, Gaussian,
zero-mean, and uncorrelated with the input signal. The covariance matrix is simply
Cη = σ2

ηI, whereI is the identity matrix.
Giveny as the signal received from the retina, we assume that the brain knows how

to estimate the stimulusx that maximizes the posterior probability

p(x|y) ∝ p(y|x)p(x) (3)

We assume a zero-mean white Gaussian prior on stimuli, with diagonal covariance
matrixCx = σ2

xI

p(x) ∝ e−xT C−1

x
x/2 (4)

Given our simple assumptions the likelihood can be written as

p(y|x) ∝ e−(y−Φx)T C−1

η (y−Φx)/2 (5)

The estimated stimulusx which maximizes the consequent log-posterior

log p(x|y) = −
1

2σ2
η

(y − Φx)T (y − Φx) −
1

2σ2
x

xTx − const. (6)

must then satisfy the linear equation

(σ−2
η ΦTΦ + σ−2

x I)x = σ−2
η ΦT y (7)

1Expression (2) defines a wave centered at zero, with effective support(−5, 5). The vector used in
the model consists of a discrete shifted version of this wave, with sampling step depending on the desired
effective width.
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Figure 2: Optimal perceptual inference for 3 different patterns. The top row (a) presents
the stimuli as images. The middle row (b) shows the transformed pattern after being
convolved with the Mexican hat function. The actual width ofthe Mexican hat is
shown on the top-left corner of each plot. The bottom row (c) presents the inferred
pattern (solid) for each stimulus (dotted).

which is equivalent to the Wiener filter for the deconvolution of a noisy signal. Figure 1
shows an example of the transformation and inference process for a strip of a natural
image.

For the simulations presented in the next section, we used the parameter values
a = 0.15 and b = 1.1 for the Mexican hat transformation (see eq. 2). This value
of b makes the total area of the two negative side lobes equal to 82% of the area of
the positive central lobe. The Gaussian prior had standard deviationσx = 1 and the
standard deviation of the ganglion cell noise wasση = 0.1.

The stimuli consist of 256 pixels, with the maximum lightness set toσx. The
effective support (non-zero region) of the Mexican hat signal used for these simulations
is approximately one tenth of the length of the input pattern(see figure 2, top-left corner
of each plot in the middle row).

3 Results

We applied this simple cartoon model of the retina to the three most popular one-
dimensional brightness illusion stimuli. None involve overt mid-level visual elements
like perceived transparency or obvious geometric structure. Figure 2 shows the stimuli
along with the inferred pattern following the retinal transfer function (without any noise
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actually being injected) and Bayesian reconstruction.
Changes in the simulation parameters result in the following qualitative behavior. If

the variance of the noise increases (approaching the value of the variance of the prior)
the inferred signal is pulled toward zero. In contrast, if the variance of the noise is very
small, the reconstructed pattern becomes closer to the original stimulus.

4 Discussion

The results from Figure 2 are consistent with reported percepts for each of these pat-
terns. In the Chevreul/Staircase pattern the bars with homogeneous lightness are per-
ceived as ramps. Mach Bands (peaks of brightness) appear at the edges between a ramp
and a plateau. And, for the simultaneous contrast stimulus,we perceive the gray bar
on the light background as darker than the other one, even though they have the same
actual intensity.

Due to the simple linear imaging model and Gaussian prior on stimuli, the forward
process and the optimal estimation process are both linear.This means that just as
the Mexican hat function can be calculated as the impulse response function of the
forward process, we can calculate the impulse response of the full model consisting of
the composition of the forward process and the optimal estimation process. The result
is shown in Figure 3.

Changing the magnitude of the noise or the prior modifies the inference process
in the intuitively expected fashion. As the noise becomes larger the prior is weighted
more heavily, which in our case indicates that pixels at the mean lightness become
more probable. On the other hand, if the noise is small enoughthe inference consist of
inverting the retinal transfer function, obtaining a pattern nearly identical to the actual
stimulus. It is important to note that spike rates in retinalganglion cells are not high,
and the visual system must estimate image properties rapidly. Even if the retina itself
is nearly deterministic, shot noise introduces considerable uncertainty concerning the
activity level of a ganglion cell as estimated by a brief observation of its spike train.

This theory challenges the traditional edge-enhancement view of retinal lateral in-
hibition. According to the currently accepted theories, lateral inhibition in the retina is
optimized to encode Gaussian signals of limited frequency content, using an optimal
lossy encoder. Sharp edges or sudden gradient changes are exceedingly unlikely under
the Gaussian image hypothesis, and an optimal lossy encoderwill introduce greater
distortion into low probability inputs. Hence one might expect sharp edges to cause
local distortion of the estimated brightness. Far from “enhancing edges” as the tradi-
tional theory holds, lateral inhibition in the retina produces a code that performs well
on Gaussian images but poorly on images containing sharp brightness or gradient dis-
continuities.

This account of low-level brightness illusions is an optimal perception theory in
that it posits optimal interpretation of the signals that reach the brain through the optic
nerve. This differs from the optimal perception account of motion illusions (Weiss
et al., 2002), which result from optimal interpretation of the visual stimuli themselves.
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Figure 3: The retinal processing impulse response is shown (dotted line) along with the
impulse response function of the composition of the retinalprocessing and the optimal
reconstructor (solid line). In all three panelsσx = 1, while moving from left to right
ση = 0.01, 0.1, 1.0. The center panel corresponds to the simulations of Figure 2.

5 Conclusion

We have seen that a number of low-level brightness illusionscan be accounted for
by assuming that the perceptual system performs simple Bayesian inference using a
Gaussian image prior, and positing measurement noise on theoutputs of the retinal
gangion cells. This theory accounts for phenomena which have proven problematic for
simple energy-based and lateral-interaction models whileavoiding the complexities of
mid-level vision theories that involve the estimation of structure and albedo.

As in other sensory domains, a general Bayesian principle and a simple generic
prior has proven surprisingly powerful at accounting for low-level brightness illusions.

6 Future Work

Because this model is easily extensible within the Gaussianlinear framework, our
agenda is straightforward: we will retain the model’s simplicity while making firmer
contact with the physiology, in order to sharpen the model’spredictions and broaden
its range of applicability:

• Two dimensional stimuli.

• Construction of novel brightness illusions via optimization of measure of non-
veridicality.

• Calibration of the model using realistic ganglion cell receptive fields.

• Physiologically realistic levels of shot noise in ganglioncell outputs, which will
make the noise of a ganglion cell vary with its activity level.

• Inclusion of color.
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• Incorporation of physiologically plausible saturation effects, since saturation of
a neuron constitutes an additional source of noise.

• Incorporation of brightness and local contrast adaptation.

Once the simple model has been exhausted, one could considermoving beyond the
Gaussian framework by including for example an edge processin the prior.
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