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1 The univariate approach to wave forecasting

This report aims to collect and present the main results and conclusions due
to the work done by the author on the problem of forecasting the ocean wave
elevation at a specific point of the sea surface based on past observations col-
lected at the same point. The problem is strictly connected to the real time
control, on a wave by wave basis, of a Wave Energy Converter (WEC), which
can, potentially, significantly increase its efficiency and energy capture ability,
but that is well known to be described by non-causal relationships in the time
domain [1],[2],[3].

The wave elevation η(k), observed at a particular point with a certain sam-
pling frequency, is treated as a pure univariate time series, so that the forecasting
problem consists of determining the prediction η̂(k + l/k) a number of steps, l,
ahead based on all the information up to the current sampling instant k. All
the solutions proposed so far in the literature deal with the problem by try-
ing to reconstruct the wave field at a certain point of the sea surface based on
one or more distant measurements [4],[5],[6],[7], as shown in figure 1(b). This
approach, however, requires complex numerical models and a large enough ar-
ray of measurements in order to properly deal with the non-linearities of wave
propagation, including wave refraction and multidirectionality.

Alternatively, the solution discussed here, based only on local measurements
of the wave elevation (or of any other related quantity of interest, such as the
wave excitation force), as illusrtrated in figure 1(a), allows for certain significant
advantages:

⇑ multidirectionality and all the associated complications need not to be
considered;

⇑ the wave propagation laws do not need to be modelled and no simplify-
ing assumptions (e.g. linearity, dispersion relationship) are then required
about them;

⇑ if the considered point corresponds to the position of the WEC, the radi-
ated waves do not affect the measurements;

⇑ all the well established theory about univariate time series forecasting may
be exploited;

⇑ no additional instrumentation around the device is required (cheap solu-
tion).

Its validity, however, is limited by the possibility to effectively estimate the
wave elevation at the point where the device is located (this problem and some
related implications are briefly discussed in section 3.1).

The available data and its detailed analysis through different tools is pre-
sented in section 2. Then the actual solution to produce the predictions is
proposed in the methodology of section 3 and evaluated on real wave data in
the results section 4. Some other possible forecasting models, for which re-
sults were not produced, and motivations for their unsuitability are discussed
in section 5. Conclusions are finally presented in section 6.
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Figure 1: Two main approaches to wave forecasting

2 Data analysis

The data available comes from different locations.
The Irish Marine Institute provided real observations from a data buoy lo-

cated in Galway Bay, on the West Coast of Ireland (at approximately 53o13′N, 9o18′W ).
These observations consist of 20 minute records sets for each hour, collected at
a sampling frequency of 2.56Hz, for parts of years 2007 and 2008. The loca-
tion is sheltered from the Atlantic Ocean so that the wave height magnitude is
generally small, which makes it not an ideal site for full size WECs, though a
wave energy test site has been established there for 1/4-scale prototypes.

Wave elevation time series are also available from the Atlantic Ocean at
the Pico Island, in the Azores archipelago, at approximately 38o33′N, 28o34′W .
They are collected in the form of two contiguous 30 minute record sets for each
hour, with a sampling frequency of 1.28Hz (that is 2304 samples for each set).

2.1 Wave spectra

The main tool for a first analysis of waves is their spectral distribution, the
wave spectrum, which shows how the energy is distributed across the different
frequency components of the wave, assumed to be completely independent of
each other. Although offering limited time-averaged information (a Wavelet
transform would offer a more complete information in the time domain, refer to
section 2.2) it is still very valuable in order to provide some overall characteristics
of the sea conditions in different situations and at different locations.

A first analysis, which is interesting to carry out over the available hourly
data sets, concerns the distribution of the significant wave height Hs and the
peak and mean radian frequency of the spectrum, respectively ωpeak and ωmean,
and to assess if their behaviors are correlated to each other in some way. The
significant wave height is a measure of the mean energy contained in the wave,
while ωpeak and ωmean can be a way to represent where the spectrum (and
so the energy) of the wave is more concentrated. From figure 2, it is clear
how high energy wave systems present a much narrower spread of ωpeak and
ωmean, centered at a low frequency (about 1 rad/s for the Galway Bay data,
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even lower for the wave systems from Pico), which means that the energy is
more concentrated at the low frequencies and the spectral distribution has a
well defined narrow peak (swell). The lower the energy, on the other hand, the
more the distance between the peak and the mean frequency, which denotes
a much flatter spectrum where the high frequency wind waves have a similar
energy content to the low frequency swell. The sample spectra of figure 3 are
particularly illustrative in this respect.

2.2 Non-stationarity and the Wavelet transform

A better and more complete understanding of the energy distribution in the
waves can only be be achieved through an analysis in both the frequency domain
and the time domain, that is something like a continuous evolution of the wave
spectrum over time. An interesting tool that has been successfully applied to
this proposal is the Wavelet transform (references [8],[9]), which shows a good
resolution both in time and frequency, thus making the application of the short-
term Fourier transform, where only a compromise between time and frequency
resolutions can be obtained, less attractive for waves analysis.

Wavelets have been successfully implemented in signal and image process-
ing, ordinary and partial differential equation theory, numerical analysis and
communication theory [9]. On the other hand, the application of the wavelet
transform to ocean engineering and oceanography is not frequent. This is mostly
due to the fact that not all such applications provide quantitative results, so
that the wavelet transform has been regarded has an interesting tool to produce
colorful pictures, yet purely qualitative results [9].

The Wavelet transform of a signal, x(t), is defined from the following ex-
pression:

WT (t, b) =
∫ +∞

−∞
x(t)g∗(t; τ, b)dτ (1)

Here, g∗(t; τ, b) is the complex conjugate of a continuously translated and dilated
mother wavelet function g(t):

g(t; τ, b) =
1√
b
g

(
t− τ
b

)
(2)

where t is the translation parameter, corresponding to the position of the wavelet
as it is shifted through the signal, b is the scale dilation parameter determining
the width of the wavelet. At low frequencies (high value of scale b), the frequency
resolution is better but the time resolution is poor (more ambiguity regarding
the exact time). On the other hand, at higher frequencies (low scale b), the
frequency resolution is poorer and the time resolution is better. This main
characteristic of the Wavelet transform, which is due to the fact that the signal is
multiplied with a window whose width is changed as the transform is computed
for each spectral component [9], is a significant improvement to the Short Term
Fourier Transform (STFT), where the window is constant and an appropriate
compromise has to be made between time and frequency resolution. In fact,
a finer time resolution at higher frequencies is important because the signal
is changing faster, while a poorer time resolution at low frequencies can be
acceptable because the signal is changing more slowly.
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Figure 2: Correspondence between significant wave height Hs, peak frequency
ωpeak and mean frequency ωmean at the locations: (a) Galway; (b) Pico.
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Figure 3: Typical high and low energy spectra at the locations: (a) Galway; (b)
Pico.
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A correspondence between the scale value b and the Fourier period T can be
found, and it depends on the specific mother wavelet, g(t), chosen. In the case
of the very common Morlet wavelet, the following expression can be derived [9]:

b =
c+
√
c2 + 2

4π
T , αT (3)

where c is a parameter defining the Morlet mother wavelet, also having the
nature of a frequency in some sense. Note that the physical dimension of b is
the time (seconds). Expression (3) can then be used to have physical meaning
(the frequency) of the scale dimension of the transform WT (t, b), which can
then become a WT (t, f) or WT (t, ω) in a very straightforward way.

Figures 4 and 5 show the Wavelet transform for some wave elevation data
sets, respectively from Galway Bay and from Pico. Although, as mentioned, it
is not easy to derive any quantitative result from them, it is still possible to
get some interesting information out of them. Note, in fact, how the different
frequency components of the Fourier spectrum may appear in different moments
so that, in the short term, the bandwidth of the wave signal could actually be
much narrower than what the Fourier transform suggests.

2.3 Linearity analysis

Ocean waves, like most systems in the real world, are not linear, and it would
be helpful and valuable to quantify how far from linearity they are so that, in
the particular case of wave forecasting, a proper model can be chosen. Linearity
in the case of waves means linear superposition of harmonic components (sines
and cosines).

The emerging of non-linearities in waves manifests itself, in the first instance,
by a non-Gaussian distribution of the wave elevation time series around its mean
value (zero, the water surface level), due to the presence of higher and narrower
peaks than troughs (modelled by quadratic, cubic, ... and so on, terms of
the linear harmonic components, according to Stokes theory [10]). The degree
of asymmetry depends on the significance of the water depth with respect to
the wavelength (the difference between the greatest elevation and the greatest
depression is minimum for h >> λ and maximum for shallow water). This non-
linearity is expected, therefore, to be more consistent at the high energy and
low frequency components of the waves when the water depth is not sufficiently
large. A higher order statistical analysis, through the indices of kurtosis and
skewness, would be useful to assess the extent of this non-linearity. Skewness and
kurtosis, in fact, can determine the degree of Gaussianity of the distribution of
the wave elevation around the mean water surface level, and statistical analysis
of the time history of wave records indicates that the wave profiles are normally
distributed apart some very small deviations on rare occasions [11].

Given the nth-order central moments, µn, of a certain random variable x:

µn = E{(x− µ)n} (4)

where E{·} is the expectation operator and µ is the mean E{x} of the random
variable x, then the two indices of kurtosis, κ, and skewness, γ, are given by
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Figure 4: Wavelet transform for three different data sets from Galway Bay
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(a)

(b)

Figure 5: Wavelet transform for three different data sets from the Pico Island.
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[12]:

γ =
µ3

σ3
(5)

κ =
µ4

σ4
(6)

where σ2 ≡ µ2 is the 2nd-order central moment. The skewness measures the
asymmetry of the distribution: γ = 0 denotes a symmetric distribution, other-
wise, if γ > 0, the distribution is more concentrated around a value greater than
the mean and viceversa if γ < 0. The kurtosis represents a degree of peakedness
as compared to a Gaussian distribution, in which case κ = 3: if κ > 3 the
distribution is termed leptokurtic (sharp peak), otherwise, if κ < 3, it is termed
platykurtic (mild peak) [12].

Figures 6 and 7 show this analysis for the two locations of Galway Bay and
the Pico Island. As expected, higher energy data sets show a slight deviation of
the indices of skewness and kurtosis from the normality condition, particularly in
the case of the Galway Bay, where the water depth is smaller (nearly 20m), while
in the Pico Island only very high energy waves move away from normality, as
shown in the detailed wave distribution of figure 7(c). From a wave energy point
of view, although the interest is obviously focused on high energy waves, the
non-symmetry effect may not be an issue if deep water locations are considered.

There is, however, another possible non-linearity, which unfortunately is
less quantifiable and can only be analysed through visual inspection. This is
due to the interactions occurring between different harmonic components of the
wave system, which are neglected in the classical linear wave theory and in the
Fourier-Wavelet analysis. A higher order analysis through the Bispectrum (refer
to Ochi [11]) revealed to be quite effective in order to detect these interactions;
however, as said, a real quantification would be hard to carry out and probably
not really significant. This non-linearity is known to be more present in wind
waves, which represent high frequency and low energies wave systems and are
less interesting from a wave energy point of view. A low-pass filtering of the
wave elevation time series, in particular, may help to reduce their effect so that
they should not be taken into account by the forecasting model.

Figures 8 and 9 represent the bispectra calculated for some significant data
sets from the Galway Bay and the Pico island, respectively. The off-diagonal
components appear if an interaction between the two corresponding frequencies
exists, and it is evident how they usually are strong for high frequency wind
waves interacting with swell (as in figure 8(c)) or for broad spectra resulting
from the superposition of different wave systems (figures 8(a) and 9(b)). The
bispectrum is, on the other hand, much more concentrated around the diagonal
for narrow banded swell systems, as can be noted from figures 8(b) and 9(a).

2.4 Predictability measure

As the focus of this study is on the multi-step-ahead prediction of the wave
elevation (or of any connected quantity), one of the striking questions is this:
Is there any chance to predict future values of a given signal? Usually, we
design a predictor for a special signal or problem and then measure the resulting
prediction quality. If there is no a priori knowledge on the optimal predictor,
the achieved prediction gain will depend strongly on the particular prediction
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Figure 6: Galway bay Gaussianity analysis
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Figure 8: Bispectrum of some data sets in Galway Bay
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model used. Here, it is argued that, for prediction feasibility analysis, it is not
necessary to design any predictors; we just have to know how much information
about future signal values can be obtained from the past [13].

A simpler measure of predictability than the very general approach proposed
in the literature (based on the mutual information notion [13],[14],[15],[16]) will
be adopted here, which supposes that a linear relationship exists that relates
the future values of the wave elevation to the past. This is, of course, a limiting
assumption but it is still very valuable to provide at least a qualitative study
over the predictability of the wave elevation.

In particular, a predictability index R2(l) is estimated, defined as the ratio
of the variance of the optimal l-step-ahead prediction, η̂(k+l/k), to the variance
to the real wave elevation, η(k):

R2(l) ,
E{η̂(k + l/k)2}
E{η(k)2}

= 1− σ̂2
l

E{η(k)2}
(7)

where it is supposed that the wave elevation η(k) has a zero mean and the
optimal l-step-ahead prediction error variance is defined as σ̂2

l , E{ê(k+l/k)2}.
A very efficient algorithm for the estimation of R(l)2, under the assumption

of a linear univariate time series, was proposed in [17] and it is adopted here
for the analysis of the available wave data. Figure 10 shows the estimated
predictability index R2(l), for a forecasting horizon of 50 samples of different
wave systems at the two locations of Galway Bay and Pico Island. As expected
from any real-world time series, it is a non-increasing function of the prediction
horizon. All the wave systems considered for the Galway Bay location, figure
10(a), show a relatively poor predictability, which dies out very quickly after
2 − 4 seconds (5 − 10 samples), with a slightly better behavior of the narrow
banded (although low energy) wave system and of the high energy one. A much
better predictability (index R2 is relatively high for more than 5 seconds) results
for high energy and narrow banded wave systems at Pico Island, figure 10(b),
mostly due to the smaller influence of the non-linearities analysed in section 2.3,
consisting of either asymmetry in the wave distribution or non-linear interactions
between different frequency components.

In a wave energy context, however, one might be interested in forecasting
only the high energy components, so that a low-pass filter can be applied to the
time series and a focus would be put exclusively on the low frequency compo-
nents.

In figure 11, the estimated predictability index R(l)2 is shown for the pre-
filtered wave systems at Galway Bay and when different cut-off frequencies, ωc,
are applied. It is clear, by comparison with figure 10, how the overall predictabil-
ity significantly improves with respect to the non-filtered waves. Moreover, the
smaller the cut-off frequency, i.e. the lower the frequencies we limit the analy-
sis to, the better the predictability of the time series, when a swell at the low
frequencies is present, and more accurate predictions, further in the future, can
be expected. Figure 11(c), in fact, referring to the wind waves system of figure
3(a), shows only a significant improvement for the highest cutoff frequency con-
sidered, ωc = 2 rad/s. This shall, however, not be a big issue in a wave energy
context, when these wave systems are not of interest for their very low energy
content and their high frequency content (as compared to lower frequency dy-
namics of wave energy converters).
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Figure 12 depicts the situation for the Pico Island wave elevation data sets.
In this case, the narrow banded swell and the low energy mixed wave systems
of figures 12(a) and 12(b) derive the best improvement from considering only
the low frequency swell. The same improvement is not achieved for the wide
banded swell system of figure 12(c), whose spectrum can be seen in figure 3(b),
and is also more strongly affected by the non-linearities analysed in section 2.3,
in particular the non-Gaussianity.

Note that this analysis does not depend on any actual forecasting technique
that might be implemented, so that the prediction accuracy will also depend on
the chosen method, but some sort of upper bound for the attainable accuracy,
irrespective of the utilised algorithm, is set here (although limited to the range
of the possible linear forecasting models).

2.5 Choice of cut-off frequency

From the analysis carried out in the previous sections, particularly in 2.1 and 2.4,
it emerged how low frequency components are the most interesting from a wave
energy point of view and, at the same time, with respect to high frequency wave
components, have a more regular behavior so that they are predictable more
accurately and further into the future. It was stated, therefore, that one might
focus the forecasting algorithm exclusively on the low frequency components,
completely neglecting the rest of the signal.

If it is considered, however, that the prediction shall be utilised by a con-
troller in order to improve the WEC ability to extract energy from the waves, we
may expect that the energy contained in the frequency components neglected
by the forecasting procedure represents a loss of extracted energy. That is,
the controller is not able to improve the system response to those frequency
component not considered in the prediction algorithm. Note that very high
frequencies may be lost anyway due to the lowpass filtering dynamics of the
WEC device itself but, in general, this depends on its operating principle and
its design parameters.

The choice of the cut-off frequency of the prediction system can therefore
be seen as a compromise between the accuracy improvement in the forecasts
(which should improve the energy extraction of the WEC) and the loss of the
energy carried by higher frequency components of the incident wave.

If the exact relationship between extracted energy and prediction accuracy
was known, then a cost functional quantifying the compromise may be calculated
and an optimal cut-off frequency may be found. Of course, such a function
depends on so many variables (kind of device, control architecture, sea state,
etc...) that it would be very hard and, at the same time, not really worth getting
a real and complete model of it.

A rough quantification of this cost functional may, however, be carried out at
this stage by making no assumptions neither on the forecasting algorithm nor on
the device. It can be still a very valuable approach, in the author’s opinion, as
it would not require any significant effort or accurate knowledge of the problem.
It can, moreover, be easily extended and become more and more accurate as
new pieces of information are known about the overall problem and are then
included in the cost functional. For the moment, it will be supposed that the
energy extracted by a general non-specified device equals the energy contained
in the forecasted wave weighted by the accuracy of the prediction. The accuracy
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Figure 11: Predictability of some wave elevation data sets from Galway Bay
when low-pass filtering with different cut-off frequencies ωc is applied.
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Figure 12: Predictability of some wave elevation data sets from Pico Island
when low-pass filtering with different cut-off frequencies ωc is applied.
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Figure 13: Energy extracted by the Wave energy converters thanks to the wave
prediction and dependant on the cutoff frequency

of the prediction, here, is substituted with the achievable accuracy as given by
a predictability index such as the one of equation (7).

The theoretical absorbed energy, Ea, is then calculated as:

Ea = Pr × (Etot − Eneg) (8)

where Eneg is the energy neglected by the prediction algorithm, Etot is total
energy in the waves and 0 ≤ Pr ≤ 1 is a measure of the predictability. In figure
13 it is clear how the cut-off frequency is a compromise between prediction ac-
curacy and energy cutoff, and if the functional (8) would be exact or reasonably
accurate, it can be chosen at the maximum of the Ea curve.

The quantitative results here presented are not really significant because
of the many simplifying (and also unrealistic) assumptions. It is, however, an
interesting approach to the choice of the appropriate cut-off frequency when
other parts of the problem will be better understood (utility of the prediction
for the WEC performance, prediction error influence on the control, etc...).

2.6 Choice of the sampling frequency

In general, if the spectrum of a signal has a limited support [0 ωm], then
all the information is maintained if the signal is discretised with any sampling
radian frequency ωs ≥ ωm/π. Lower sampling frequencies give raise to the
aliasing phenomenon, thus causing the sampled time series not to be uniquely
representative of the original signal.

If a wave elevation time series is low-pass filtered before the prediction, this
means that it can be sampled without any loss of information with ωs ≥ ωc/2,
where ωc is the cut-off frequency of the filter (assuming an ideal filter with
instantaneous transition). Intuitively, a certain time span of the wave elevation
signal is represented by fewer samples if the sampling frequency is lower. It
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Figure 14: Estimated predictability for a wave elevation time series from Pico
Island, when different sampling frequencies are adopted.

may be, therefore, that the choice of the sampling frequency could affect the
performance of a prediction algorithm, in particular its forecasting horizon in
terms of seconds.

In theory, the information that the past of a signal has about its future, will
not be affected by the sampling frequency, if aliasing is avoided. Therefore, a
proper forecasting model that manages to extract all the information to pro-
duce the prediction, should not perform differently by changing the sampling
frequency. Figure 14 shows, in fact, how the predictability of a certain wave
elevation data set is not affected by a change in the sampling frequency, when
this is greater than the Nyquist frequency.

In practice, however, when performing the prediction, some differences might
arise, so it is interesting to assess the effect of the sampling frequency on the
prediction accuracy of the forecasting models that will be presented in section
3. This analysis will be carried out in section 4.5.

3 Methodology

Here a range of possible forecasting models is presented. Firstly, in section
3.1, some considerations are given about how the wave elevation can be actu-
ally measured at the same point of the sea where a device is located. Then,
the models are presented in section 3.2, and a methodology to derive proper
confidence intervals along with the predictions is proposed in section 3.3.

3.1 Getting the observations of the signal to predict

The prediction of the incident wave (or any related physical quantity) on a
WEC, based only on its past history, presents the main issue of getting the
actual measurement of the signal being predicted. In the case of the incident
wave elevation, there is no direct access to it at the actual point where the device
is located (the device being an oscillating body or an oscillating water column).

There is, however, a concrete possibility of estimating the variable of inter-
est from the measurements of other more accessible variables. The accuracy
of this estimation will, of course, depend on the accuracy of the mathemati-
cal/numerical model relating the measures to the signal to be deduced. Some
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considerations relevant to this problem will be provided here for a general os-
cillating body in single mode of motion.

A basic approximation of the equations of motion of a WEC is given by the
following expression:

[m+m(∞)] ẍ+
∫ t

0

k(t− τ)ẋ(τ)dτ + Sx = fe(t) + fext(x, ẋ, t) (9)

where x(t) is the displacement of the body along the considered degree of free-
dom, m and m(∞) are the mass and added mass of the body, k(t) is the im-
pulse response function relating the oscillation velocity of the body to its radi-
ation force, S is the buoyancy coefficient, fe(t) is the wave excitation force and
fext(x, ẋ, t) represents any external, for example provided by the power take-off
system.

1. If the measurements of the body motion are available, together with an
accurate model of the system, the excitation force fe(t) can directly be
estimated from equation (9). The records of this estimate, f̂e(t), can then
be utilised to provide predictions of its future behavior. Alternatively, the
excitation force can be used to derive the actual incident wave elevation
and the forecasting problem could be focused on the latter. Note, however,
that the excitation force and the wave elevation, η(t), are related by a non-
causal relationship:

fe(t) =
∫ +∞

−∞
h(t)η(t− τ)dτ (10)

with h(t) 6= 0 for t < 0, so predictions of the wave elevation are also
required to estimate the current excitation force f̂e(t). Consider also that
it is the wave excitation force that is actually required in order to compute
an optimal reference for the optimal control of the system.

2. If the total wave force fw(t) is measured instead, by means for example of
pressure transducers on the body surface, then the excitation force could
be determined through the following expression:

fe(t) = fw(t) +
∫ t

0

k(t− τ)ẋ(τ)dτ + Sx− fext(x, ẋ, t) (11)

which still needs the motion measurements in order to calculate the radi-
ation and the buoyancy forces. Note that equation (11) directly derives
from (9) if we consider that the total force fw(t) ≡ [m+m(∞)] ẍ.

For the oscillating bodies, therefore, it seems reasonable to focus on the mea-
surement and prediction of the wave excitation force, rather than the incident
wave elevation. In this view, the approach followed in this report to forecast
the wave elevation is, however, still valuable, particularly in view of the lowpass
filtering applied to the signal prior to the prediction. The wave excitation force,
in fact, is nothing else than the wave elevation filtered by the dynamics of the
body (which obviously has a lowpass characteristics).
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3.2 Forecasting models

3.2.1 Cyclical models

From linear wave theory [2], a real ocean sea state may be modelled as a linear
superposition of waves with different frequencies and propagating in different
directions:

η(x, y, t) =
∫ +∞

0

dω∫ +π

−π
A(ω, β) cos(ωt− kx cosβ − ky sinβ + ϕi(ω))dβ (12)

where k is the wave number and β represents the direction of propagation in the
x-y plane. If a specific location (x0, y0) is considered, the following simplified
expression can then be obtained:

η(x0, y0, t) =
∫ +∞

0

dω

∫ +π

−π
A(ω, β) cos(ωt+ φ(ω, β)) (13)

where the directionality information is obviously lost and the constant terms
kx0 cosβ and ky0 sinβ are included in the phase φ(ω, β).

From this knowledge about the real process it is quite straightforward to
choose, as a forecasting model for the wave elevation, a simple cyclical model,
where the frequency domain is of course discretised [18],[19]:

η(t) =
m∑
i=1

ai cos(ωit) + bi sin(ωit) + ζ(t) (14)

An error ζ(t) has been introduced and the phase and amplitude information for
each harmonic component is now contained in the parameters ai and bi.

The model (14) is completely characterised by the parameters ai,bi and by
the frequencies ωi. It could then be fitted to the data through some non-linear
estimation procedure (the model is non-linear in the frequencies) and utilised to
predict the future behavior of the wave elevation time series. It needs, however,
to be adapted to the time variations of the wave spectrum (amplitudes and
phases of the frequency components are non-constant), so that a first approach
[19] has been considered, where the frequencies are chosen in the model design
phase and then kept constant during its utilisation and estimation. In this way
the model becomes perfectly linear in the parameters ai,bi and can be easily
estimated and on-line adapted to the spectral variations of the sea.

The problem of choosing the frequencies can be divided in two sub-problems:

1. Choice of the range: This is a quite easy matter, as statistical information
about the location can be utilised to properly define an upper and lower
bound for the range. At this point, one may decide to include the range
of higher frequencies where the low energy wind waves are, or to simply
consider a narrower range including only the swell.

2. Distribution of the frequencies in the range: A robust choice would be
a constant spacing between the frequencies over all the range, but a more
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efficient non-homogeneous distribution was also proposed in [19]. The lat-
ter however suffers from the problem of specificity, so that if the wave
spectrum changes the frequencies might not be appropriate any more. If
the frequencies are kept constant, then it would not be a proper choice.

Once the frequencies are determined, a model for the amplitudes has to be
chosen. In [18], [19] it was pointed out how they have to be adaptive to the
wave, as constant amplitudes gave very poor results. Two adaptive models are
proposed here, in particular:

Structural model: based on Harvey’s structural model [20], the model (14)
is expressed in the following discrete time form:

η(k) =
m∑
i=1

ψi(k) + ζ(k) (15)[
ψi(k + 1)
ψ∗i (k + 1)

]
=
[

cos(ωiTs) sin(ωiTs)
− sin(ωiTs) cos(ωiTs)

] [
ψi(k)
ψ∗i (k)

]
+
[
wi(k)
w∗i (k)

]
, i = 1, ...m

(16)

where it can be verified that ψi(0) = ai and ψ∗i (0) = bi. From equation
(16), then, the following state space form, which is more familiar to work
with, is easily derived:

x(k + 1) = Ax(k) + w(k)
η(k) = Cx(k) + ζ(k)

(17)

where

x(k) , [ψ1(k) ψ∗1(k) ... ψm(k) ψ∗m(k)]T ∈ R2m×1 (18)

w(k) , [w1(k) w∗1(k) ... wm(k) w∗m(k)]T ∈ R2m×1 (19)

A , diag

{[
cos(ωiTs) sin(ωiTs)
− sin(ωiTs) cos(ωiTs)

]}
∈ R2m×2m (20)

C , [1 0 1 0 . . . 1 0] ∈ R1×2m (21)

Dynamic Harmonic Regression (DHR): Introduced by Young [21], it ex-
presses a cyclical model of the type of eq. (14), where the ai and bi
parameters evolve according to a Generalised Random Walk:[

xi(k + 1)
x∗i (k + 1)

]
=
[
α β
0 γ

] [
xi(k)
x∗i (k)

]
+
[
δ 0
0 1

] [
εi(k)
ε∗i (k)

]
xi = ai for i = 1, . . . m

xi−m = bi for i = m+ 1, . . . 2m

(22)

where x∗i models a slope for the evolution of each parameter xi. The
disturbance terms εi and ε∗i are still assumed to be Gaussian noises and
introduce the variability in the model. A particular form of (22) was
implemented in this study where the dynamic matrices are chosen in order
to represent Harvey’s local linear trend [20]:[

xi(k + 1)
x∗i (k + 1)

]
=
[
1 1
0 1

] [
xi(k)
x∗i (k)

]
+
[
1 0
0 1

] [
εi(k)
ε∗i (k)

]
(23)
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for i = 1, 2, ... 2m. A state space form, then, can easily be derived,
resulting in the following model:

x(k + 1) = Ax(k) + ε(k)
η(k) = C(k)x(k) + ζ(k)

(24)

where

x(k) , [x1(k) x∗1(k) ... x2m(k) x∗2m(k)]T ∈ R4m×1 (25)

ε(k) , [ε1(k) ε∗1(k) ... ε2m(k) ε∗2m(k)]T ∈ R4m×1 (26)

A , diag

{[
1 1
1 0

]}
∈ R4m×4m (27)

C(k) , [cos(ω1Ts) 0 . . . cos(ωmTs) 0

sin(ω1Ts) 0 . . . sin(ωmTs) 0] ∈ R1×4m
(28)

Both the models have the advantage of a state space representation, which is
particularly suited to the application of the Kalman filter for a recursive on-line
adaption. The initialisation is provided through means of regular least squares
on a number of past observations and then the Kalman filter is applied on-
line, once a proper covariance matrix for the state and output disturbances is
provided. When the estimate of the model’s parameters, x̂(k/k), is available at
any instant k, the l-steps-ahead prediction η̂(k+ l/k), based on the information
up to k, is obtained through the free evolution of the model:

η̂(k + l/k) = C(k + l)Alx̂(k/k) (29)

There are, however, some strong limitations to this approach with cyclical
models[18],[19], that will be highlighted also in the results, section 4:

⇑ The use of constant frequencies requires, for the sake of robustness, a dense
and complete set, which adds considerable complexity to the model, and

⇑ It is not clear how to choose the covariance matrices for the Kalman filter
implementation

In the next section 3.2.2, it will be shown how AR models implicitly overcome
these difficulties in a very effective, and simple, way.

3.2.2 Auto Regressive (AR) models

As a pure time series problem is under study, there is the advantage of the
existence of a well established theory, from the time series field, which it is
possible to utilise. In a comparison with the cyclical models, where the a priori
knowledge that we have about the real system is explicitly taken into account,
it is particularly interesting to analyse the properties of classical AR models.

The wave elevation η(k) is supposed to be linearly dependent on a number
n of its past values:

η(k) =
n∑
i=1

aiη(k − i) + ζ(k) (30)

25



where a disturbance term ζ(k) has been included. If the parameters ai are esti-
mated and the noise is supposed to be Gaussian and white, the best prediction
of the future wave elevation η̂(k + l/k) at instant k is then given by:

η̂(k + l/k) =
n∑
i=1

âi(k)η̂(k + l − i/k) (31)

where, obviously, η̂(k + l − i/k) ≡ η(k) if k + l − i ≤ k (i.e. the information is
already acquired and there is no need for prediction).

The properties of such a very simple forecasting model become clearer if an
explicit solution of the difference equation (31) is provided [22]:

η̂(k + l/k) =
n∑
i=1

bi(k)fi(l) (32)

Here, the coefficients bi(k) depend only on the forecasting origin (so they stay
constant at each instant for the complete prediction time horizon) and are a
function of the initial conditions (the past n observations), whereas fi(l) are
functions of the lead time l and, in general, they include damped exponential
and damped sinusoidal terms completely determined by the roots pi of the
transfer function ϕ(z) describing equation (30) in the Z-domain:

η(z) =
ζ(z)
ϕ(z)

,
ζ(z)∏n

i=1(z − pi)
(33)

The general shape of the prediction function is therefore completely determined
by the poles, pi, while the particular realisation of this general structure is
determined, at each sampling instant, by the past values of the time series. It
is particularly interesting to analyse the shape of the forecasting function (32)
in the case of m/2 (when m is even) couples of complex-conjugate poles, pi and
p∗i :

η̂(k + l/k) =
m/2∑
i=1

ci(k)|pi|l sin(∠pik + ϕi(k)) (34)

Thus, an AR model with only complex-conjugate poles is implicitly a cyclical
model, where the frequencies are related to the phase, ∠pi, of each pole and
the amplitudes and phases of the harmonic components are related to the last
n observations of each time instant k, so that they adapt to the observations.

Note, then, that an adaptivity mechanism is already present even if the AR
model parameters are only estimated once on a batch data set. A classical
estimation approach is to minimise the squared errors sum, which has a linear
solution provided by regular least squares. Only the frequencies, in this case, are
fixed, while amplitudes and phases are automatically updated on the basis of the
recent past information. A further degree of adaptivity can be introduced with
an on-line estimation of the AR model parameters, ai, which would introduce
an on-line adaptivity of the frequencies as well. If we express equation (30) in
vectorial form:

η(k) = ψ(k)Tϑ(k) + ζ(k) , (35)

where

ψ(k) , [η(k − 1) η(k − 2) . . . η(k − n)]T ∈ Rn×1 (36)

ϑ(k) , [a1(k) a2(k) . . . an(k)]T ∈ Rn×1 , (37)
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then a general recursive estimation of the time-varying parameters vector, ϑ(k),
is given as:

ϑ̂(k + 1) = ϑ̂(k) +K(k)
[
η(k + 1)− ψ(k)T ϑ̂(k)

]
(38)

as a combination of free evolution and innovation. How the gain vector K(k) ∈
Rn×1 is chosen depends on which specific estimation algorithm is utilised. The
most common approaches are the recursive least squares with forgetting factor
and the Kalman Filter, which are outlined in the following subsections:

Recursive Least Squares (RLS): With this approach the following func-
tional is minimised:

J(ϑ(k)) =
k∑
j=1

λk−j [η(j)−ψ(j)ϑ(k)]2 , (39)

where more weight, via the forgetting factor λ < 1, is given to recent
observations according to an exponential law. The recursive algorithm for
the optimal value of ϑ(k) that minimises the functional J(ϑ(k)) respects
the general form of equation (38), with the gain K(k) given as:

K(k) = P (k)ψ(k) (40)

P (k) =
P (k − 1)

λ+ ψT (k)P (k − 1)ψ(k)
(41)

The forgetting factor λ is typically chosen in the range [0.97, 0.995].
The matrix P (k) ∈ Rn×n represents the covariance matrix of the estimate
ϑ̂(k):

P (k) ≡ E{ϑ̂(k)ϑ̂T (k)} (42)

It is interesting to introduce also the information matrix R(k) ∈ Rn×n,
defined as:

R(k) , ψ(k)ψ(k)T+λψ(k−1)ψ(k−1)T+. . .+λk−1ψ(1)ψ(1)T+R(0) = . . .

. . . = λR(k − 1) + ψ(k)ψ(k)T (43)

, which can also be shown to correspond to [23]:

R(k) ≡ P (k)−1 (44)

One main problem of recursive least squares with a forgetting factor is
that, if the measurements do not add new information to the system, that
is ψ(k) is approximately zero for a certain time. Therefore, the information
matrix decreases until it can get close to the null matrix (or only some of
its eigenvalues tend to zero). A the same time, dome of the elements of
the corresponding gain K(k) may significant increase. When ψ(k), then,
increases in magnitude, the estimate ϑ̂(k) can experience a very large
growth, known as the phenomenon of blow-up.
Some regularisation solutions have been proposed to cope with this prob-
lem [24]. One possibility is to monitor the matrix P (k) (R(k)), and reset
its values to acceptable ones when its eigenvalues assume too large (small)
values [23]. Another approach may be a variable forgetting factor, based
on the state of the process (steady or transient) [23], or regularisation of
the information matrix R(k) [25].
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Kalman Fitler: If the evolution of the state vector ϑ(k) is assumed to be a
random walk:

ϑ(k) = ϑ(k − 1) + ε(k) (45)

where ε(k) is a Gaussian random process, then the Kalman Filter may be
applied, resulting in the recursive form of (38), where the gain K(k) is
now given by [26]:

K(k) = Q(k)ψ(k) (46)

with

Q(k) =
P (k − 1)

R2 + ψT (k)P (k − 1)ψ(k)
(47)

P (k) = P (k − 1) +R1 −
P (k − 1)ψ(k)ψ(k)TP (k − 1)
R2 + ψT (k)P (k − 1)ψ(k)

(48)

where R1(k) = E{ε(k)ε(k)T } and R2 = E{ζ(k)2}. Here, P (k) still repre-
sents the covariance matrix of the estimate ϑ̂(k).

3.2.3 Sinusoidal extrapolation and the Extended Kalman Filter

The main problem with the cyclical model is the choice of the frequencies, that
must be kept constants in order for the model to be linear in the parameters.
Efficient linear algorithms for the recursive estimation of the cycles amplitudes
(and phases) can therefore be exploited. This means that the accuracy of the
model is strictly connected to its capacity to cover as much as possible of the
typical range of frequencies where the wave systems at the considered location
are mostly concentrated. This approach lacks of efficiency and requires a much
more complex method then what would actually be required. In reality few
regular waves in the typical range will be active at each time instant.

A more intelligent solution, then, would be to consider a few (or even one)
cyclical component with an adaptive frequency which is updated on-line with
the real observations.

We propose, therefore, to model the wave elevation as a single cyclical com-
ponent as in the Harvey structural model, equation (16), but with a time-varying
frequency ω(k):

[
ψ(k + 1)
ψ∗(k + 1)

]
=
[

cos(ω(k)Ts) sin(ω(k)Ts)
− sin(ω(k)Ts) cos(ω(k)Ts)

] [
ψ(k)
ψ∗(k)

]
+
[
ε(k)
ε∗(k)

]
η(k) = ψ(k) + ζ(k)

(49)

where ε(k), ε∗(k) and ζ(k) are random disturbances and η(k) is the wave ele-
vation.

Along with the components ψ(k) and ψ∗(k), the frequency ω(k) also needs
to be estimated. A state vector x(k), composed of the quantities that need to
be estimated, is then defined as:

x(k) , [ψ(k) ψ∗(k) ω(k)]T ∈ R3×1 (50)
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The system (49) can then be redefined in terms of x(k) as:
 ψ(k + 1)
ψ∗(k + 1)
ω(k + 1)

 =

 cos(ω(k)Ts) sin(ω(k)Ts) 0
− sin(ω(k)Ts) cos(ω(k)Ts) 0

0 0 1

 ψ(k)
ψ∗(k)
ω(k)

+

 ε(k)
ε∗(k)
κ(k)


η(k) = ψ(k) + ζ(k)

(51)
In (51) a model for the adaptivity of the frequency ω(k) has been introduced,
where a simple random walk is proposed, driven by the additional white noise
κ(k). The model, of course, is non-linear in the frequency and an explicit state
space structure cannot be formulated, so the following form is adopted:{

x(k + 1) = f(x(k), w(k))
η(k) = [1 0 0]x(k) + ζ(k)

(52)

where f(x(·), w(·)) ∈ R3×1 is a vectorial non linear function and w(k) , [ε(k) ε∗(k) κ(k)]T ∈
R3×1 is the vectorial form of the state disturbance.

The optimal estimate (in the sense of minimising the variance) for x(k),
based on the observations Zk−1 = {η(0), · · · η(k − 1)}, is known to be given by
the conditional mean value:

x̂(k/k − 1) = E{x(k)/Zk−1} (53)

An explicit expression which is usable in practise is difficult to obtain, though,
because of the non-linearity of the system. It is well known, however, that a very
efficient algorithm for linear (and Gaussian) systems can be adopted, which is
the Kalman filter. However, an application of the latter to non-linear problems
can also be found in literature, known as the Extended Kalman Filter (EKF).

The EKF assumes that the discrete time steps (Ts in our case) are sufficiently
small to permit the prediction equations to be approximated by a linearised
form, based on the truncation of the Taylor expansion of the model (52) at the
first order [27]:

x(k + 1) ≈ f(x(k), w) +
[
d

dx
f(x(k), w(k))

]
x(k)=x(k)

(x(k)− x(k)) (54)

where x(k) represents an opportune working point for the state of the system,
whose variation is supposed to be small within the time step Ts considered.
Based on this approximation, the following state space form can be derived for
the model (52): {

x(k + 1) ≈ A(k)x(k) + F (k) + w(k)
η(k) = Cx(k) + ζ(k)

(55)

where

A(k) ,

[
d

dx
f(x(k), w(k))

]
x(k)=x(k)

∈ R3×3 (56)

F (k) , f(x(k), w)−A(k)x(k)R3×1 (57)

C , [1 0 0] R1×3 (58)
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The iterative equations for computing the gain K(k) of the Kalman filter
[26] can directly be derived from this linear state space form (55), where the
operating point at each step is set as the optimal one step-ahead estimate of the
state,x(k) = x̂(k + 1/k), which is updated based on the non linear equation:

x̂(k + 1/k) = f(x̂(k/k), [0 0 0]T ) (59)
x̂(k + 1/k + 1) = x̂(k + 1/k) +K(k) [η(k + 1)− Cx̂(k + 1/k)] (60)

The direct extension to an n-frequencies model may be given by the follow-
ing:

x(k) =

x1(k + 1)
. . .

xn(k + 1)

 =

 f1(x1(k),w1(k))
. . .

fn(xn(k),wn(k))


η(k) = [1 0 0 . . . 1 0 0] x(k) + ζ(k)

(61)

As will be shown in the results of section 4.3, this model has the problem that
the Kalman filter would update all the frequencies in the same way, which makes
it not really effective.

3.2.4 Neural networks

It was shown in section 2.3 how the non-linearities appearing in the big low
frequency waves, due to the relatively small water depth, are not really relevant.
It is however interesting, in the authors opinion, looking at a comparison of
the other models with a most widespread tool for time series modelling and
forecasting such as neural networks.

In spite of either the great modelling capability and the easiness of building
up a suitable structure, neural networks have the great disadvantage of offering
a model completely enclosed in a black box where any analysis and properties
evaluation is prevented. So, while in the cyclical and AR models an analysis of
the estimated parameters and frequencies and their variations in an adaptive
structure can provide indications about the real process behavior and its main
characteristics, this would not be possible with neural networks.

For the problem under study, a non-linear relationship of the following type
is created through a multilayer perceptron [28]:

η(k) = NN(η(k − 1), η(k − 2), . . . η(k − n)) (62)

so that the dependance between the current wave elevation and n past values
is realised. The model is then trained through the back propagation algorithm
on a set of batch data and utilised for multi-step-ahead prediction.

This is, of course, not the only possibility and many others could be consid-
ered. For example, a priori knowledge about the process (which would always
be a more appropriate approach) may be included and a non-linear relationship
of the following type may be considered instead:

η(k) = NN(cos(ω1Tsk + ϕ1), . . . cos(ωnTsk + ϕn)) (63)

but some of the limitations outlined in section 3.2.1, when cyclical models where
considered, due to an appropriate choice of the frequencies, are still present.

In section 4.4 results will be shown and compared with the cyclical and
AR models, for different neural network topologies, with two hidden layers and
different numbers of inputs (regression order n).
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3.3 Confidence intervals

The predictions alone, as computed by any of the models presented through
section 3.2.1 to 3.2.4, do not give a complete enough information about the
future of the signal, because they are inevitably affected by an estimation error,
so that it would be fundamental to have an indication about the entity of this
error and about the confidence that we can put in the forecasts computed by
the prediction algorithm. If the l-steps ahead prediction error is Gaussian:

ê(k + l/k) = η(k + l)− η̂(k + l/k) ∼ ℵ
(
0, σ2

l

)
(64)

then the variance is all we need in order to define its probability distribution
and we can assume a certain confidence interval where the error is contained
with a probability α, as follows:

− zα
2
≤ ê(k + l/k) ≤ +zα

2
(65)

Here zα
2

is the value of the probability distribution such that:

P{ê(k + l/k) ≥ +zα
2
} = P{ê(k + l/k) > −zα

2
} =

1− α
2

(66)

where P{·} is the probability function:

P{ê(k + l/k) ≤ z} ,
∫ z

−∞
p(y)dy (67)

As the distribution of the forecasting error is considered to be zero-mean Gaus-
sian, the probability density function p(·) assumes the following structure:

p(ê(k + l/k)) =
1√

2πσl
e
−
ê(k + l/k)2

2σ2
l (68)

The estimate of the variance σ2
l could be calculated from the specific model

parameters and its estimation algorithm, which however is not really easy and
also could be misleading if the model is not accurate enough. A more straight-
forward alternative, however, is adopted at this stage, where the estimate of the
variance of the forecasting error is based on the past history of the predictions:

σ̂2
l =

1
N − 1

N∑
k=1

[
ê(k + l/k)2

]
(69)

where N is the number of past observations available.
The estimate can also be recursively updated as soon as new observations

become available [29]:

σ̂2
l (k+ l) =

k + l − 2
k + l − 1

σ̂l(k+ l−1)+
1
k

[η(k+ l)− η̂(k+ l/k)]2 (k+ l ≥ 2) (70)

An iterative estimation where more weight is given to the recent past can be
obtained through an exponential forgetting, represented by a forgetting factor
λ < 1 [29]:

σ̂2
l (k + l) =

2λ− 1
λ

σ̂2
l (k + l − 1) + (1− λ)[η(k + l)− η̂(k + l/k)]2 (71)
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4 Results

The possible forecasting models proposed in section 3 were tested on some sig-
nificant sample data sets, appropriately chosen among all those available (refer
to section 2) as representative of different sea conditions. In particular, refer to
figure 15, one wide banded and one narrow banded sea state from the two sites
(Galway Bay and Pico) are considered. Then, a situation where wind waves
predominate is picked up from the Galway Bay data and a very high energy
wave system, where the sea bottom slightly affects the wave symmetry (this
was analysed through higher order spectral analysis and skewness and kurtosis
indices, sectino 2), is chosen from the Pico Island data. For each of the data
sets two different cutoff frequencies are applied in the lowpass filtering prepro-
cessing of the data, based on their spectral shape. Each of the data sets is split
up into a training and validation set. For the Galway bay data, training and
validation consists of two consecutive data sets of 3072 samples each (20 min-
utes at a sampling frequency of 2.56Hz). In the case of the Pico Island data,
because the consecutive data sets are actually contiguous in time, training and
validation data consist of 4 consecutive sets each (9216 samples, equivalent 2
hours at a sampling frequency of 1.28Hz), and the validation data follows the
training data continuously in time.

The prediction accuracy is measured with the following goodness-of-fit index,
which depends on the forecasting horizon l:

F(l) =
(

1− ||η(k + l)− η̂(k + l/k)||2
||η(k)||2

)
· 100 (72)

Here || · ||2 is the Euclidean norm operator (root sum squared) over all the
sampling instants k of the simulation, η(k+l) is the wave elevation and η̂(k+l/k)
is its prediction based on the information up to instant k. A 100% value for
fit(l) means that the wave elevation time series is perfectly predicted l steps
into the future.

Note that the quantity F(l) has a direct correspondence with the variance of
the prediction error, that, as discussed in section 3.3, is utilised to characterise
confidence intervals of the forecasts. In particular, if σ̂2

l is an estimate of the
l-step ahead prediction error, then:

σ̂2
l =

(
1− fit(l)

100

)
||η(k)||2 (73)

4.1 Cyclical models

The two structures for the cyclical models outlined in section 3.2.1, Harvey’s
structural model and the Dynamic Harmonic Regression (DHR), where tested
against the data sets of figure 15. The frequencies of the models were chosen
as constantly spaced in a range between 0.3 rad/s (practically no waves appear
below this frequency at the considered locations) and the applied cutoff fre-
quency ωc, and different spacings dω are compared. Another critical choice for
the models are the initial mean value and covariance matrix of the state for the
Kalman Filter algorithm, and the variance of the output equation disturbance,
specifically ζ(k) in equations (16) and (24). Initial expected value and covari-
ance matrix of the state vector are determined from regular least squares on
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Figure 15: Data sets utilised to test the models of section 3.2: (a) Galway; (b)
Pico.
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the training data. The variance of the output disturbance ζ(k), namely σ2
ζ , on

the other hand, is determined by trial and error, a reasonable value found to be
σ2
ζ = 1.

Figure 16 shows the performance of different cyclical models on the Galway
Bay data sets, when the lowest cutoff frequency is considered. The accuracy is
above 50% only for predictions more than 2− 3 seconds into the future (around
5−8 samples) and drops down particularly quickly for the sea state constituted
by mostly wind waves, figure 16(c). Slightly better results are obtained for the
Pico Island data, figure 17, when the F(l) is above 50% until even 5−6 seconds
ahead (around 6−8 samples), although this is not the case for the wide-banded
sea state in figure 17(a). In all the cases, the Harvey models give better results,
which improve by decreasing the frequency spacing, that is by considering a
model with a more dense range of frequencies. The main problem of these
models, however, lies in their complexity: a spacing of dω = 0.01 with a range
[0.3, 1.2] rad/s generates a state space model of order 182 for Harvey’s cyclical
model and order 364 for the Dynamic Harmonic Regression (DHR) model. This
sets a strict limit, in practical applications, on how small the spacing can be.

Some sample detailed time series plots are shown in figure 18, representing
the predicted wave with a certain fixed lead time against the real filtered wave.
Note that a 90% confidence interval is also shown, and it is calculated under the
assumptions that the forecasting error is Gaussian. Its variance is estimated
in real time according to equation (70). Figure 19 shows that, effectively, in
nearly 70% of the cases, the error distribution has a kurtosis < 3.01 and a
skewness < 0.05, which means it is very close to Gaussian.
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Figure 16: Prediction accuracy of cyclical models on wave data from Galway
Bay
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Figure 17: Prediction accuracy of cyclical models on wave data from Pico Island
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Figure 18: Some time series details of the multi-step ahead wave prediction, and
its 90% confidence, with cyclical models
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4.2 Auto-Regressive models

Before presenting the actual results achieved with static and adaptive AR mod-
els for the problem of wave forecasting, given in sections 4.2.2 and 4.2.3, the
estimation procedure is described in detail, because the nature of the problem
makes it different from the usual applications. The choice of an appropriate
model order is, in fact, performed through the application of slightly modified
standard criteria on the basis of a multi-step ahead prediction error, instead of
the normally adopted one-step ahead prediction error, section 4.2.1.

4.2.1 Choice of model order

An indication about the appropriate order n of an AR model to predict the
wave elevation, can be obtained through minimisation of the classical criteria
Akaike Information Criterion (AIC), proposed by Akaike [30], and Bayesian
Information Criterion (BIC), proposed by Schwarz [31]:

AIC = log(σ̂2
ζ ) + r

2
N

(74)

BIC = log(σ̂2
ζ ) + r

log(N)
N

(75)

where σ̂2
ζ is the estimate of the variance of the disturbance ζ(k), as in equation

(30), r = n+ 1 is the number of parameters of the model and N is the number
of observations utilised in the estimation procedure.

Because, however, we are interested in multi-step ahead predictions, the
two criteria are evaluated also with respect to the variance of the l-step ahead
prediction error, σ̂2

l :

AICl = log(σ̂2
l ) + r

2
N

(76)

BICl = log(σ̂2
l ) + r

log(N)
N

(77)

Figures 20 and 21 show the resulting values of the two indices for a range of
AR models (from n = 1 to n = 50) applied to the different data sets, respectively
of Galway Bay and of the Pico Island. As expected the answers are different
depending on the lead time (i.e. forecasting horizon) considered. So, accurate
predictions very far in the future require relatively high order models (more
than order 30), while good predictions for mid-range lead times, between 5 and
20 samples, can be obtained with reduced order AR models (order between 12
and 20). The model order depends also on the spectral range considered and on
the specific sea state or location but, in general, an order slightly higher than 30
would be a good choice for any situation. In the following, therefore, a number of
AR models are chosen based on these results, with the orders n = 12, 16, 24, 32.

4.2.2 Static AR models

For a proper comparison with the cyclical models results discussed in section
4.1, the performance, in terms of F(l), of different order AR models on the
same sea states is shown in figure 22, for the Galway Bay data, and in figure
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Figure 20: AICl and BICl, for some l, evaluated for the Galway bay data sets
when different cutoff frequencies ωc are considered.
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(a) Hs ≈ 0.77 m, ωc = 1.6 rad/s
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(b) Hs ≈ 2.51 m, ωc = 1 rad/s
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(c) Hs ≈ 5.92 m, ωc = 1 rad/s
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(d) Hs ≈ 0.77 m, ωc = 1.2 rad/s
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(e) Hs ≈ 2.51 m, ωc = 0.7 rad/s
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(f) Hs ≈ 5.92 m, ωc = 0.7 rad/s

Figure 21: AICl and BICl, for some l, evaluated for the Pico island data sets
when different cutoff frequencies ωc are considered.
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23, for the Pico Island data, using constant parameter AR models. In any case,
the AR models significantly outperform any of the considered cyclical models.
PredictionS with an accuracy of more than 70% are obtained, in the case of
Galway Bay, for a forecasting horizon of up to 15 seconds, and for almost 20
seconds in the case of the narrow-banded sea state, as seen in figure 22(b). The
sea state composed mostly of wind waves still presents some difficulties with
respect to the others, as seen in figure 22(c), but its wave energy significance
is quite poor, and the prediction accuracy is still around 70% for almost 10
seconds into the future.

Even better results are obtained for the narrow-banded high energy sea states
of the Pico Island (see figures 23(b) and 23(c)), where an accuracy of more than
90% is maintained for predictions up to 20 seconds in the future, even with
lower order models with n = 26 and n = 24, as it was expected from the AICl
and BICl criteria for the Pico data, plotted in figure 21(e).

The same time series plots as for the cyclical models are shown in figure
24 for comparison, along with the confidence of the predictions. Note that the
assumption of Gaussianity for the prediction error is even stronger in this case,
as it can be seen from figure 25.

4.2.3 Adaptive AR models

The results shown so far considered only static AR models estimated through a
one-off batch least squares parameters estimation on a fixed training data set.
From the discussion about AR models in section 3.2.2, we know that they can
be seen as cyclical models, where the frequencies are strictly dependant on the
parameters, so that they might not be suitable to model all the different sea
states that may occur at a certain location. Fore example, consider figure 26,
where the estimated AR model spectrum is shown against the training wave
data spectrum, 26(a), and against the spectrum of the initial waves, 26(b), and
of the final part of the wave data, 26(c), of the validation set. It can be seen
how the AR model spectrum can become unrepresentative of the actual current
wave climate, and so it might need to be able to track its variations. As regards
the actual prediction results, the accuracy of the model seems to be quite robust
to lots of changes in the spectral shape, but the models have not been tested
long enough to give a definitive answer.

One solution to this problem might be to simply implement a recursive
estimation algorithm to adapt the AR model to each new observation, through
recursive least squares or through the Kalman filter, as explained in section
3.2.2. Results obtained with this approach, however, are not as good as if the
parameters are kept constant after a batch estimate.

We have shown that static AR models keep a great accuracy for the full
2 hours of simulation, once they are trained on the basis of the previous 2
hours data, even if the sea state undergoes some major changes. Therefore,
one practical possibility might be to run a batch estimation of the AR model,
through least squares, every certain amount of time (e.g. every 2 hours) so to
be sure that the model is always valid for the current sea state. The real-time
adaptivity of the AR model does not seem, therefore, to be a crucial problem
to solve at the moment and is not further investigated here.
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Figure 22: Prediction accuracy of AR models on wave data from Galway Bay
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Figure 23: Prediction accuracy of AR models on wave data from Galway Bay
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Figure 24: Some time series details of the multi-step ahead wave prediction, and
its 90% confidence, with AR models

45



0 0.05 0.1 0.15 0.2 0.25 0.3
3

3.02

3.04

3.06

3.08

3.1

skewness

ku
rt

os
is number of points with

skewness < 0.05
kurtosis < 3.01

≈ 96%

number of points with
skewness < 0.1
kurtosis < 3.02

≈ 97%

Figure 25: Distribution of skewness and kurtosis of the l-step ahead prediction
error, over several l and for different fixed AR models over all the considered
data sets from both Pico and Galway
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Figure 26: AR spectrum compared to wave spectra, which are amplified accord-
ingly for clarity of exposition.

46



0 2 4 6 8 10 12 14 16 18 20
0

50

100

forecasting horizon [s]

fi
t [

%
]

Galway Bay

 

 

H
s
 ≈ 2.31 m, ω

cut
 = 1.2 rad/s

H
s
 ≈ 0.31 m, ω

cut
 = 1 rad/s

H
s
 ≈ 0.34 m, ω

cut
 = 1 rad/s

(a)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

forecasting horizon [s]

fi
t [

%
]

Pico Island

 

 

H
s
 ≈ 0.77 m, ω

cut
 = 1.2 rad/s

H
s
 ≈ 1.05 m, ω

cut
 = 0.7 rad/s

H
s
 ≈ 5.92 m, ω

cut
 = 0.7 rad/s

(b)

Figure 27: Prediction accuracy of single component cyclical model with variable
frequency estimated through the Extended Kalman Filter

4.3 Sinusoidal extrapolation through EKF

In section 3.2.3, the possibility to deploy a harmonic model with a single vari-
able frequency adapted on-line with the observations by means of the Extended
Kalman Filter, was described. The advantages of this approach are its simplic-
ity (state variable only of dimension 3: frequency, amplitude and phase) and
the straightforward physical meaning of the model components. However, as
is shown in the results of figure 27, it offers acceptable predictions only in the
case of narrow-banded sea states, while it is completely inaccurate in other sit-
uations. This is of course due to the fact that the model is capable of tracking
only a single dominant frequency in the waves. The approach is, though, a very
interesting one and it would become an important solution if a proper way to
integrate multiple frequencies is found. In section 3.2.3, in fact, it was stated
that a pure superposition of single frequency sub-models of this kind is not an
attractive solution, because the Kalman Filter weights the innovation of all the
single frequencies with the same Kalman gain, as it can be seen in figure 28,
so that the prediction effectiveness of the model drops significantly. A different
modelling of the multiple frequency components is required so that the Kalman
Filter is able to estimate them according to different dynamics.
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Figure 28: Frequencies of a two components cyclical model, estimated through
the Extended Kalman Filter. The data set utilised is from Pico Island, Hs =
1.05m, from the spectrum represented in figure 28.
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4.4 Neural networks

Several architectures for a feedforward neural network were compared using the
wave data of figure 15. Only structures with 1 linear output neuron and 2 hidden
layers, made of a number of non-linear neurons (hyperbolic tangent sigmoid
transfer function is applied) varying between 3 and 7 each, were considered.
Several orders of regression n (i.e. the number of inputs of the network) were
also considered, ranging from 12 to 32, based on the results relative to the linear
AR models.

Figures 29 to 32 show F(l) obtained using some of the structures. The
first thing to notice is that, like all the other forecasting models considered, the
neural networks perform much better for narrow-banded sea states (figures 30
and 32). None of the considered structures, though, achieves the same level
of accuracy as the AR models, for relatively long forecasting horizons (more
than 6− 7 seconds). In the case, however, of the highly non-linear sea state of
Galway Bay, Hs ≈ 0.34m, mostly consisting of wind waves, figure 31 shows how
neural networks give a much better accuracy, F(l) ≈ 100% than the AR models,
70% < F(l) < 80%, as from figure 22(c)) for up to 6 second ahead predictions.
This kind of sea state, however, has a very low importance from a wave energy
perspective, so that a significantly better behavior in such situations can not be
really considered as a major decision variable in favor of neural networks.

In figure 33, some detailed prediction on two data sets are represented along
with the confidence interval, determined under the assumption of Gaussian pre-
diction error, according to the methodology outlined in section 3.3. Note, how-
ever, that these confidence intervals are not really accurate as most of the times
the true signal lies outside. This is due to the fact that the prediction error, in
this case, unlike for AR models, is not really close to having a Gaussian distri-
bution, as it can be seen from the distribution of skewness and kurtosis of the
prediction error, shown in figure 34.

The conclusion is that neural networks, with respect to AR models, do not
seem to be capable to offer an improvement in wave forecasting, sufficient to jus-
tify their adoption. It has to considered, in fact, that neural networks also intro-
duce a much higher computational burden and represent a completely black-box
approach with no physical meaning of its components.
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Figure 29: Prediction accuracy of neural networks
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Figure 30: Prediction accuracy of neural networks
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Figure 31: Prediction accuracy of neural networks
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Figure 32: Prediction accuracy of neural networks
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Figure 33: Some screenshots of the multi-steps ahead wave prediction, and its
90% confidence, with neural networks
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Figure 34: Distribution of skewness and kurtosis of the l-step ahead prediction
error, over several l and for different neural networks over all the considered
data sets from both Pico and Galway
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4.5 Effects of sampling frequency on prediction

Following the discussion in section 2.6, it is interesting to analyse how the sam-
pling frequency of the wave elevation time series can affect the results achieved
with some of the models tested throughout this section. In 2.6 it was pointed
out how a model capable of extracting all the information about the future
evolution from past observations, shall not be affected by changing the sam-
pling frequency, because, within the limits allowed by the Nyquist theorem, the
amount of information in the signal does not change.

Figure 35 confirms this view, as regards AR models and neural networks,
with their ability to predict not affected by a change in the sampling frequency.
It can be concluded that reducing the sampling frequency does not increase the
forecasting horizon achievable with these prediction algorithms.

55



0 2 4 6 8 10 12 14 16 18 20
0

50

100

forecasting horizon [s]

fi
t [

%
]

Galway Bay,
H

s
 ≈ 0.31 m, ω

cut
 = 1 rad/s

Nyquist freq: ω
cut

/π ≈ 0.318 Hz

 

 

AR(32), f
s
=2.56 Hz

AR(32), f
s
=1.28 Hz

AR(32), f
s
=0.853 Hz

AR(32), f
s
=0.64 Hz

AR(32), f
s
=0.512 Hz

(a)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

forecasting horizon [s]

fi
t [

%
]

Pico Island,
H

s
 ≈ 1.05 m, ω

cut
 = 0.7 rad/s

Nyquist freq: ω
cut

/π ≈ 0.223 Hz

 

 

AR(32), f
s
 = 1.28 Hz

AR(32), f
s
 = 0.64 Hz

AR(32), f
s
 = 0.427 Hz

AR(32), f
s
 = 0.32 Hz

AR(32), f
s
 = 0.256 Hz

(b)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

forecasting horizon [s]

fit
 [%

]

Pico Island,
H

s
 ≈ 1.05 m, ω

cut
 = 0.7 rad/s

Nyquist freq: ω
cut

/π ≈ 0.223 Hz

 

 

NN(32) 5−5−1, f
s
=1.28 Hz

NN(32) 5−5−1, f
s
=0.64 Hz

NN(32) 5−5−1, f
s
=0.427 Hz

NN(32) 5−5−1, f
s
=0.32 Hz

NN(32) 5−5−1, f
s
=0.256 Hz

(c)

Figure 35: Prediction accuracy of AR models and neural networks when the
sampling frequency of the data is decreased
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5 Further possibilities

Some other possible wave forecasting models were considered along with the ones
presented in section 3. Gaussian Processes are discussed in section 5.1, and it
will be pointed out how they share some of the properties of cyclical models
with fixed frequencies, so that they are not seen as a viable solution. Then, the
properties of ARMA models are analysed in section 5.2 and the reasons why
they were not considered, as compared to AR models, are discussed.

5.1 Gaussian Processes

Assuming that a certain function underlies the observed data sets, in our case a
function relating the past and future values of the wave elevation time series, the
idea behind a Gaussian Process (GP) model is to place a prior directly on the
space of functions [32], without assuming any particular function parametrisa-
tion. The only hypothesis assumed is that this prior is considered to be Gaussian
and is completely specified by its mean and covariance function.

In particular, the prior distribution, P (y), of the function y performing the
input-output mapping is given as a zero-mean (a mean value different from
zero would not affect any of the following considerations) Gaussian process with
covariance matrix Q, denoted as ℵ(0, Q):

P (y) ∼ ℵ(0, Q) (78)

Denoting the input by {un}, n = 1, ...N and the corresponding target values
by {tn}, n = 1, ...N , and assuming that each target value tn differs by additive
Gaussian white noise of variance σ2

ε from the corresponding function value y(xn),
then the target values follow a Gaussian prior distribution as well:

P (t) ∼ ℵ(0, C) (79)

C =̂Q+ σ2
ε I (80)

where I is an identity matrix of the same dimension as Q.
By means of the covariance matrix C, it is then possible to infer a target

y(xN+1), given all the observed targets TN = [t1, ..., tN ]T , according to the
relationship:

P (tN+1/TN ) =
P (tN+1, TN )
P (TN )

(81)

where P (tN+1/TN ) is the probability of tN+1 conditioned on all the observations
TN and P (tN+1, TN ) is the joint probability density.

It can be shown [32] that:

P (tN+1/tNtNtN ) =
1
Z
e

[
−

(tN+1−t̂N+1)2

2σ2
t̂N+1

]
(82)

t̂N+1 = kkkTC−1
N tNtNtN (83)

σ2
t̂N+1

= κ− kkkTC−1
N kkk (84)

where t̂N+1 is the mean value of the prediction at the new point xN+1 and
σ2
t̂N+1

gives the error bars on this prediction. Z is a scalar coefficient, while
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the matrix CN ∈ RN×N , the vector k ∈ RN×1 and the scalar κ come from the
following form of the covariance matrix CN+1 ∈ R((N + 1) × (N + 1)) of the
vector TN+1 = [t1, ..., tN+1]T : [

CN k
kT κ

]
(85)

The crucial aspect in building a GP model is therefore the choice of the
covariance function C[y(xi), y(xj)] from which the covariance matrix C = {Cij}
can be calculated, according to the equations:

Cij = C[y(xi), y(xj)] + δijN(xi), i, j = 1, . . . , N (86)

where N(xi) is a noise model, with δij = 1 for j = i, otherwise δij = 0.
The covariance function usually has a particular parametric structure [33],

and can result from the combination of elemental covariance functions expressing
certain peculiar characteristics, such as a trend component, a cyclical compo-
nent, etc... (a wide overview is given in [32]). The parameters in the covariance
function (termed hyperparameters), once its form has been defined, are opti-
mised with respect to the available observations through a maximum likelihood
procedure [32]. The covariance function can then be utilised to calculate the
covariance matrix CN+1 according to relation (86), by which the mean and
variance of the estimate can be found from equations (83) and (84).

The attractiveness of GPs lies in the fact that models can be determined us-
ing a relatively small number, N , of observations and the covariance functions
can be easily synthesised from standard components representing particular fea-
tures in the data. GPs perform, moreover, in a safe manner when extrapolating
outside the training data, by giving confidence intervals (on the basis of the vari-
ance of the estimate) which help to indicate where the model is unreliable (e.g.
for forecasts too far ahead in time). One more positive feature is that on-line
data addition, that is the introduction of new observations into the model, can
be performed in a really straightforward manner (see [32] for details), assuming
that it does not imply a change in the hyperparameters, thus permitting the
model to adapt to the real process evolution.

The implementation of a GP model, however, presents some numerical prob-
lems in at least two ways. First of all, the optimisation of the hyperparameters
is not a convex problem, and second (and more critical), the on-line estimation
requires an N ×N matrix inversion, which is an ill-conditioned problem. This
latter problem puts, of course, an upper limit to the quantity N of training data
which can be included in the model.

The major drawback, in our specific case of wave forecasting, is that, in
order to model the cyclical characteristics of the sea, the harmonic components
of the covariance function, and in particular their frequency, have to be per-
manently assigned in the initial hyperparameter estimation procedure, which
is the same problem of cyclical models with fixed frequencies, as articulated in
section 3.2.1. A covariance function without explicit cyclical components could
still be able to represent the harmonic behavior of the wave elevation, just like
a simple AR model without explicit seasonal components, but then the extrac-
tion of the physical characteristics of the real process from the estimated model
becomes barely possible. This particular reason led the author not to consider
Gaussian Processes among the possible candidates for a proper model for wave
forecasting.
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5.2 ARMA models

An ARMA model is the equivalent of an AR model, where the noise is not
assumed to be sequentially uncorrelated (i.e. white noise) but it is modelled by
a regression:

η(k) =
na∑
i=1

aiη(k − i) +
nc∑
i=1

ciζ(k − i) + ζ(k) (87)

and, in the Z-domain:

η(z) =
ϑ(z)
ϕ(z)

ζ(z) (88)

The shape of the forecasting function η̂(k + l/k) is the same as for an AR
model, equation (32), and it is determined only by the autoregressive part, i.e.
the poles of the corresponding transfer function. The moving average terms
change the way in which the forecast function is fitted to the past observations
and the forecasts. For a purely autoregressive model, the forecast function is
that unique curve, of the form required by ϕ(z), which passes through the na
pivotal points η(k), η(k − 1), . . . η(k − na + 1) [22]. In the presence of some
moving average terms, nc > 0, the forecast function is determined by the points
η̂(k+nc/k), . . . η̂(k+1/k), η(k), . . . η(k+nc−na+1), so that the way in which
it is fitted to the observations is modified by the moving average coefficients
through the first nc predictions.

An ARMA model would not, therefore, present significantly different mod-
elling capabilities than pure AR models. In practice, however, to obtain a
parsimonious parametrisation, it is sometimes necessary to include both autore-
gressive and moving average terms in the model [22]. In fact, a finite moving
average process can be written as an infinite autoregressive process, and vice-
versa, so that if a process were really a Moving Average (MA) of order 1, an
autoregressive model would necessarily be a non parsimonious representation of
it, and conversely for a AR of order 1 process.

As a conclusion, an ARMA model would not allow us to obtain better results
than simple AR models, but the introduction of some moving average terms may
be considered at a later stage in order to reduce the complexity of the forecasting
model.

6 Conclusion

This study was focused on the problem of short-term wave prediction, which is
a central topic in the wave energy field, in order to allow a better effectiveness
and economic viability of any WEC. A pure univariate time series forecasting
approach was followed and several possible solutions were proposed. Real data
from Galway bay and Pico island were available for testing the proposed solu-
tions, and some interesting analysis was provided in section 2. In particular,
a valuable tool for the predictability analysis, independent of any particular
solution, was proposed in section 2.4. The quantification of this predictability
showed how lower frequency waves are easier to predict and, from a wave energy
point of view, high frequency components, which carry lower energy (as revealed
by the Fourier analysis provided in section 2.1), may be filtered out to improve
the prediction.

59



The most straightforward models outlined were harmonic models where the
wave elevation is explicitly represented as a sum of sines and cosines, on the
basis of linear wave theory. It was underlined how many issues (particularly
the high complexity of the resultant models) arise due to the problem of the
choice of frequencies when they are kept constant, so that reasonable predictions
are only achieved for a maximum of 5-6 seconds in the future (even less, only
2-3 seconds, for the Galway bay data), if only low frequencies are predicted.
Cyclical models with adaptive frequencies could have been considered, but then
they become non-linear and the complexity will be even higher, so that other
solutions should be explored first.

An analysis of AR models, in section 3.2.2, highlighted how they implicitly
represent cyclical models, where the frequencies are easily estimated with linear
least squares (as they are related to the regression coefficients). The amplitudes
and phases of each harmonic component are, moreover, implicitly adaptive to
the recent observations due to the regression terms of the model, so that only
a batch estimate of the model offered very good accuracy up to 15 seconds (in
some cases even 20 seconds) predictions for the low frequency components of the
waves. It was also shown how the frequencies are automatically estimated in the
significant range of the sample spectrum of the training data set. The possibility
to adapt the model in order to track variations of the wave spectrum through
variable frequencies in the model was also analysed, and it was concluded that
no real benefit is obtained through real-time adaptive AR modelling. Because,
however, static AR models were shown to maintain their prediction ability for
long times (no performance decrease for 2 hours simulations), their adaptivity
is not seen as a main issue at the moment, and also a simple periodic batch
estimate may be a feasible solution, or the use of a set of AR models, estimated
from different sea conditions, and a switching logic deciding which one is the
more appropriate in real time.

A cyclical model with a single variable frequency was also presented in sec-
tion 3.2.3, where the real time frequency estimation is realised through the
EKF. The methodology revealed such a model to be reasonably effective for
narrow-banded sea states, with good predictions for 5-10 seconds, but it is com-
pletely ineffective for wider-banded wave systems. It is, however, a very light
and computationally simple solution (only 3 states), so that if a proper way to
integrate multiple frequencies is found, some improvement in performance may
be obtained. More work should be done in this direction, as simple aggregation
of the single frequency models resulted in some problems and poor results.

Finally, a comparison with neural networks, section 4.4, showed how, al-
though they offer an accuracy comparable with the AR models, it would not
be very appealing to further undertake this more computationally expensive di-
rection, as no significant improvement is expected. Moreover, neural networks
they do not offer any possibility of analysis and extraction of the characteristics
of the real process from the model, which would instead be very straightforward
with AR models.

As a conclusion, Auto Regressive (AR) models (or more parsimonious ARMA
models, from the discussion in section 5.2) seem to be well suited to compute
wave predictions for more than one wave period into the future, when a focus is
put on lower frequency waves. One issue, however, which was not considered at
this stage, includes the lowpass filtering preprocessing procedure applied to the
wave elevation time series. In the current work this filtering was performed of-
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fline, so that ideal zero-phase filters could be implemented. In real applications,
a certain phase distortion and a certain transition band should be considered.
This problem is not trivial to treat and is therefore left for future studies.

It is fundamental, moreover, that further work is carried out in order to
provide some indications and constraints about the required accuracy of the
forecasts (and required prediction horizon), so that the capability of the pro-
posed models can be properly judged. Such work will involve a study of the
interconnections between wave absorbers, wave excitation and the control ar-
chitecture, and will be fundamental before any further attempt to improve the
results of this work is eventually undertaken.
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Acronyms

AIC Akaike Information Criterion

AR Auto Regressive

ARMA Auto Regressive Moving Average

BIC Bayesian Information Criterion

DHR Dynamic Harmonic Regression

EKF Extended Kalman Filter

GP Gaussian Process

MA Moving Average

STFT Short Term Fourier Transform

WEC Wave Energy Converter

Nomenclature

ℵ
(
µ, σ2

)
Gaussian distribution with mean µ and variance σ2

| · | module

∠ phase

|| · ||2 Euclidean norm (root sum squared)

σ̂2
l variance of l-step-ahead prediction error

x̂(k + l/k) optimal l-step-ahead prediction of x(k) based on information until
instant k

F(l) l-step-ahead prediction goodness-of-fit

ωc cut-off frequency in rad/s

ωs sampling radian frequency in rad/s

aT vector a transposed

AICl AIC based on l-stap-ahead prediction error

BICl BIC based on l-stap-ahead prediction error

E{·} expected value

Hs significant wave height

R2(l) l-step-ahead predictability
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