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Abstract

The aim of this article is to answer a question posed by Merris in
European Journal of Combinatorics, 24(2003)413−430, about the pos-
sibility of finding split nonthreshold graphs that are Laplacian integral,
i.e., graphs for which the eigenvalues of the corresponding Laplacian
matrix are integers. Using Kronecker products, balanced incomplete
block designs, and solutions to certain Diophantine equations, we show
how to build infinite families of these graphs.

Keywords: Split graph, threshold graph, semiregular graph,
Laplacian integral graph, block design.

1 Basic notions

Let G = (V, E) be a simple graph such that, for i, j = 1, 2, . . . , n, vi ∈
V is a vertex, {vi, vj} ∈ E is an edge and its degree sequence is π(G) =
(d1, d2, · · · , dn), where di is the degree of vi. If all the vertices of G have the
same degree, the graph is regular, while G is biregular if its degree sequence
is constituted by only two distinct values. A graph G is bipartite if its
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vertices can be partitioned into two sets in such a way that no edge joins
two vertices in the same set.

The Laplacian matrix of G is L(G) = D(G)-A(G), where A(G) is the ad-
jacency matrix of G and D(G) is the diagonal matrix of the vertex degrees.
The spectrum of L(G), ζ(G) = (µ1, . . . , µn−1, µn), is the sequence of eigen-
values of L(G) displayed in non-increasing order: µ1 ≥ . . . ≥ µn−1 ≥ µn. It
is well-known that L(G) is a positive semidefinite and singular matrix, so
µn = 0. When each element of ζ(G) is an integer, G is called a Laplacian
integral graph.

A graph G is a cograph, also known as a decomposable graph if and only
if no induced subgraph of G is isomorphic to P4, [4]. These graphs can be
constructed from isolated vertices by a sequence of operations of unions and
complements. When a graph is not a cograph, it is called indecomposable.
In [8], it is proved that any cograph is Laplacian integral. A graph G is
a threshold graph if and only if it does not have an induced subgraph iso-
morphic to one of the forbidden graphs P4, C4 or 2K2. Among the many
interesting properties of threshold graphs is the fact that they are uniquely
determined by their Laplacian spectra (see Theorem 6.1 of [6]). Because
threshold graphs are cographs, their Laplacian eigenvalues are all integers.
A split graph is one whose vertex set can be partitioned as the disjoint union
of an independent set and a clique (either of which may be empty). It is
shown in [2] that a graph is split if and only if it does not have an induced
subgraph isomorphic to one of the following three forbidden graphs: C4,
C5, and 2K2. It follows from the definition that the complement of a split
graph, as well as every induced subgraph of a split graph, is split, [9]. Based
on the characterizations above, no nonthreshold split graph is a cograph.
In a recent paper, Grone and Merris [7], demonstrate the existence of an
infinite number of indecomposable Laplacian integral graphs. This result
strengthens the interest of the following open problem posed by Merris in
his paper [9]: There appear, on the other hand, to be many nondecompos-
able Laplacian integral graphs, and one might think that the natural place to
look for them would be among those graphs closest to the thresholds. Yet,
preliminary explorations have not yielded a single nonthreshold, Laplacian
integral, split graph. Why are they so difficult to find?

The question above motivates our investigation of graphs with those
characteristics. Specifically, in this paper we look for nonthreshold split
graphs that are Laplacian integral. We construct infinite families of such
graphs, thus partially answering Merris’s question.
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In the next section, we build biregular split graphs from regular or biregu-
lar bipartite graphs. This allows us to obtain a characterization of Laplacian
integral biregular split graphs. In Section 3, we use a generalization of the
balanced incomplete block design in order to get Theorem 3.1, the main
result of this paper. It shows how to obtain an infinite family of biregular
split nonthreshold Laplacian integral graphs, for each generalized block de-
sign. This section ends with two example of these graphs, one of them with
52 vertices, 714 edges and the maximal clique with the size 28. A note on
the complements of biregular split nonthreshold Laplacian integral graphs
is presented in the Section 4. In the last section, we show how to obtain
biregular split nonthreshold Laplacian integral graphs that are cospectral
and nonisomorphic.

2 Characterization of Laplacian integral biregular
split graphs

This section is devoted to proving Theorem 2.2, which gives necessary and
sufficient conditions for a biregular split graph to be Laplacian integral.
First, we review some concepts and introduce a new one, the splitness of a
split graph, which is useful in the characterization of bipartite split graphs.

Definition 2.1. Let H = (V, E) be a bipartite graph with a vertex partition
V = V1 ∪ V2 such that each vertex in V1 has degree x and each vertex in
V2 has degree y. If x 6= y, we say that H is an (x, y)-semiregular graph,
or simply semiregular and, if x = y, we say that H is a y-regular bipartite
graph, or simply regular bipartite. In both cases, this partition is called a
degree partition of H. Although in the second case we can have more than
one partition, in the first one, one degree partition is unique.

It is interesting to note that every semiregular graph is bipartite bireg-
ular, but the converse is not necessarily true. For example, P4 is bipartite
biregular, but it is not semiregular.

Definition 2.2. A graph G = (V,E) is a split graph if there is a partition
of V = V1 ∪ V2 such that the induced subgraph < V1 > is a complete graph
and V2 is an independent set. Such a partition, which may not be unique, is
referred to as a split partition set of V .

Example 2.1. The split graph G showed in Figure 1 has split partitions V
= {1, 2, 3} ∪ {4, 5}, V = {1, 2, 3, 4} ∪ {5} and V = {1, 2, 3, 5} ∪ {4}.
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Figure 1: G is a 4,3)-biregular split graph

Theorem 2.1. Let G be a (t, y)-biregular connected split graph, where t >
y > 0. Then V = Vt ∪ Vy, where Vt = {v ∈ V | d(v) = t} and Vy =
{v ∈ V | d(v) = y}, is a split partition set of V .

Proof: Let G be a (t, y)-biregular connected split graph where t > y > 0.
Consider a split partition set of V = U1∪U2 such that the induced subgraph
< U1 > is a maximal clique and U2 is an independent set. Note that, since
G is connected, there is a vertex v ∈ U1 such that d(v) > |U1| − 1. So,
t > |U1| − 1. Since < U1 > is a maximal clique and t > y, it follows
that y ≤ |U1| − 1. Moreover, each vertex in U2 has degree y, for U2 is an
independent set. So U2 ⊆ Vy. If all vertices in U1 have degree t then U1 =
Vt, U2 = Vy and the result follows. In the case that not every vertex of U1

has degree t, then there is some vertex in U1 with degree y. So, we can take
U = {u ∈ U1 | d(u) = y}, a non-empty subset of U1 and also V1 = U1 − U
and V2 = U2 ∪ U . Since U1 induces a clique, then y ≥ |U1| − 1 and, as
y ≤ |U1| − 1, we have y = |U1| − 1. So, if u ∈ U then u is not adjacent
to any vertex of U2. Since all vertices of U2 have degree y, we have that
y ≤ |U1| − |U |. So, |U | = 1 and V2 is an independent set. It follows that
V = V1 ∪ V2 is a split partition set of V such that V1 = Vt and V2 = Vy,
where y = |U1| − 1. ¥

Definition 2.3. Let G be a (t, y)-biregular connected split graph, where
t > y > 0. The split partition set V = Vt ∪ Vy is called the split degree
partition (or sdp) of the graph G.

Example 2.2. The biregular split graph G in Figure 1 has split degree par-
tition V = {1, 2, 3} ∪ {4, 5}.
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Corollary 2.1. Let G be a (t, y)-biregular connected split graph, where
t > y > 0. There is a unique bipartite graph H which is either the maxi-
mal semiregular spanning subgraph of G, or the maximal regular spanning
subgraph of G such that there is a degree partition that is the split degree
partition of G.

Proof: Let G be a (t, y)-biregular connected split graph where t > y > 0
and consider its split degree partition V = Vt ∪ Vy. Let H be the bipartite
graph obtained from G taking off all edges between the vertices in Vt. If
t > y + |Vt| − 1, H is the maximal semiregular spanning subgraph of G.
Otherwise, H is the maximal regular bipartite spanning subgraph of G. In
both cases, the degree partition of H is the sdp of G. Clearly, H is the
unique bipartite spanning subgraph of G satisfying these properties.¥

Definition 2.4. Let G be a (t, y)-biregular connected split graph, where
t > y > 0. We define the splitness of G to be the bipartite graph H which
is either the maximal semiregular spanning subgraph of G, or the maximal
regular spanning subgraph of G such that its degree partition is the split
degree partition of G.

Example 2.3. Figure 2 shows the splitness of the (4,3)-biregular split graph
G shown in Figure 1.

Figure 2: The splitness of G in Figure 1

From Corollary 2.1, we note that each biregular split graph is obtained
from a semiregular or a regular bipartite graph H, its splitness, by choosing
one of the sets, either V1 or V2, and adding all the possible edges between
their elements. Conversely, a semiregular bipartite or a regular bipartite
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graph H can be obtained from a biregular split graph taking off all edges in
the clique determined by its sdp.

The following example illustrates the fact that every (x, y)-semiregular
graph generates two non-isomorphic biregular split graphs.

Example 2.4. The semiregular graph K2,3 generates two biregular split
graphs which are shown in Figure 3. Its adjacency matrix can be written
as

A =




0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0




.

Figure 3: Biregular split graphs generated by K2,3

Remark 2.1. The adjacency matrix of the splitness H of a split biregular
graph G = (V, E), such that its sdp is V = V1 ∪ V2 with | V1 |= p and
| V2 |= q, has the form

A(H) =
(

0 X

XT 0

)
,

where X is a (0, 1)-submatrix of order p×q. Moreover, there are parameters
x, y such that Xsatisfiesthefollowingequalities :X1q = x1p; XT1p = y1q

and 1T
pX1q = px = qy, where Ip is the identity matrix of order p and 1q is

the vector of order q with all elements equal to 1.

Henceforth, we denote the p× p all ones matrix by Jp, and the p× q all
ones matrix by Jp,q.
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Corollary 2.2. A graph G is split biregular if, and only if, its Laplacian
matrix has the form

L(G) =
(

(p + x)Ip − Jp 0
0 yIq

)
−A =

(
(p + x)Ip − Jp −X

−XT yIq

)
, (2.1)

where A is the adjacency matrix of the splitness of G, and where the sdp
V = V1 ∪ V2 is such that p =| V1 | and q =| V2 |.
Proof: The statement follows directly from Theorem 2.1. ¥

Finally, we present the main result of this section, a characterization
theorem of biregular split Laplacian integral graphs.

Theorem 2.2. Let G be a connected biregular split graph with Laplacian
matrix given by (2.1) in Corollary 2.2. If X = Jp,q, then the Laplacian
spectrum of G is 0 with multiplicity 1, p with multiplicity q − 1, and p + q
with multiplicity p. If X 6= Jp,q, let r denote the rank of X, and for each
nonzero eigenvalue τ of XXT , let mτ be equal to the maximum number
of linearly independent τ -eigenvectors of XXT that are orthogonal to 1p.
Then the Laplacian spectrum of G is as follows: 0 with multiplicity 1; y
with multiplicity q − r; p + x with multiplicity p− r; x + y with multiplicity
1; and for each nonzero eigenvalue τ of XXT , the roots of the equation
µ2 − (p + x + y)µ + (p + x)y − τ, each with multiplicity mτ .

Proof: If X = Jp,q then G = (Kp ∪Kq) and the result follows. Now suppose
that X 6= Jp,q. Note that x + y is an eigenvalue of L(G) with

(
x1p

−y1q

)

as its eigenvector. Further, if Ker(X) 6= {0} and w is a nonzero vector in
Ker(X) then

u =
(

0
w

)

satisfies

L(G)u =
(−Xw

yIqw

)
= y

(
0
w

)
= yu.

In this case, y is an eigenvalue of L(G) with multiplicity equal to q − r.
Similarly, if z is a non-zero vector in Ker(XT ) then z is orthogonal to 1p,
since G is connected and X1q = x1p. Then, for

v =
(

z
0

)
,
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L(G)v = (p+x)v. So, p+x is an eigenvalue of L(G) with multiplicity equal
to p− r.

Finally, we suppose that τ is a non-zero eigenvalue of XXT with a cor-
responding eigenvector u that is orthogonal to 1p. Then, for a, b ∈ R,

w =
(

a
b

)

is an eigenvector of (
p + x −τ
−1 y

)

associated with eigenvalue µ if and only if,

v =
(

au
bXT u

)

is also an eigenvector of L(G) associated with eigenvalue µ. So, for each τ
as above, the roots of µ2 − (p + x + y)µ + (p + x)y − τ = 0 are eigenvalues
of L(G). Further, the multiplicity of each root µ is equal to mτ .¥

The following is immediate.

Corollary 2.3. Let G be as in Theorem 2.2. Then G is Laplacian integral
if and only if, for each non-zero eigenvalue τ of XXT with an associated
eigenvector orthogonal to 1p, (p + x− y)2 + 4τ is a perfect square.

3 Construction of Laplacian integral biregular split
graphs

The balanced incompleted block design, BIBD, is an important combina-
torial concept, useful in several areas, especially Applied Statistics, see [1] ,
[5] and [11]. We begin this section by giving a generalization of this concept
that allows us to build an infinite family of Laplacian integral biregular split
graphs.

Definition 3.1. A generalized balanced incomplete block design, GBIBD,
is a structure consisting of a set Y = {y1, · · · , yv}, v ≥ 2, and b distinct
subsets of Y , {B1, · · · , Bb}, called blocks, such that there are parameters
r ≥ 1, λ ≥ 0, and v with 1 ≤ k ≤ v − 1 for which the following hold:

1. each element of Y belongs to r blocks;
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2. each block contains k elements; and

3. each pair of elements is simultaneously in λ blocks.

The non-negative integers (v, b, r, k, λ) are called the design parameters
and they satisfy: vr = bk and λ(v − 1) = r(k − 1). Since these equations
hold, the (v, b, r, k, λ)-generalized block design can be denoted more simply
as a (v, k, λ)- generalized block design. If v = b, we say that a corresponding
GBIBD is a symmetric generalized incomplete block design. Observe that
our generalization coincides with the usual definition, except that we allow
the cases λ = 0 and k = v − 1.

The v × b incidence matrix M of a GBIBD is given by

mij =

{
1, if yi ∈ Bj ;
0, if yi /∈ Bj .

For this matrix M , the following equations hold:

MMT = (r − λ)Iv + λJv,M1b = r1v

and
MT1v = k1b.

We note that each (v, b, r, k, λ)-generalized block design corresponds to
another block design called the complement generalized block design. In
order to obtain this complement, it is enough to take the blocks Bi = Y −
Bi, i = 1, · · · , b. It is easy to see that if M is its incidence matrix then
M = Jv,b − M . When v 6= 2, the complement of a (v, b, r, k, λ)-GBBID
has parameters (v, b, b − r, v − k, b − 2r + k). If v = 2, the GBBID is self-
complementary. Since every BIBD is a GBIBD, several examples of these
structures can be found in [1], [5] and [11]. In Example 3.1, we present an
instance of a GBIBD that is not a BIBD.

Example 3.1. Let v = b = 5 , r = k = 1 and λ = 0. We have the following
(5, 1, 0)−GBIBD with incidence matrix

M =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.
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Its complement is the (5, 4, 4)−GBIBD with incidence matrix

M =




0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0




.

Let M be the incidence matrix of a (v, k, λ)−GBIBD. For each α, β ∈
N, let X = M ⊗ Jα,β, where ⊗ is the Kronecker product of matrices. Set
p = αv and q = βb. We define the graph G(M, α, β) to be the graph on
p + q vertices whose Laplacian matrix is given by

L(G(M, α, β)) =
(

(p + x)Ip − Jp −X
−XT yIq

)
.

The next lemma shows that each (v, k, λ)−GBIBD yields an infinite family
of biregular split nonthreshold graphs.

Lemma 3.1. Let M be the incidence matrix of a (v, k, λ) − GBIBD. For
each α, β ∈ N, the graph G(M, α, β) is a biregular split nonthreshold graph.

Proof: Let X = M ⊗Jα,β, and note that we have X1q = βr1p and XT1p =
αk1q, where p = αv and q = βb. Since G(M, α, β) has Laplacian matrix

(
(p + x)Ip − Jp −X

−XT yJq

)
,

it is clear that G(M,α, β) is a biregular split graph.
It remains to prove that G(M, α, β) is a nonthreshold graph. Since the

parameters of a (v, k, λ)−GBIBD satisfy v ≥ 2 and 0 ≤ λ < r, for 1 ≤ i, i′ ≤
v there are 1 ≤ j, j′ ≤ b such that mij = mi′j′ = 1 and mij′ = mi′j = 0
in the incidence matrix M . Hence, the subgraph induced by the vertices
corresponding to indices αi, αi′, βj and βj′ is isomorphic to P4. ¥

The next theorem is the main result of this paper. It shows how we can
obtain an infinite family of biregular split nonthreshold Laplacian integral
graphs, for each generalized block design.

Theorem 3.1. Let M be the incidence matrix of a (v, k, λ)−GBIBD. There
are infinitely many Laplacian integral biregular split nonthreshold graphs of
the form G(M, α, β).
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Proof: From Lemma 3.1, for α, β ∈ N, G(M, α, β) is a biregular split non-
threshold graph. Thus, we need only show how to obtain appropriate param-
eters α and β in order to construct an infinite family of Laplacian integral
graphs. To do this, we set X = M ⊗ Jα,β, and consider two cases: λ = 0
and λ > 0.

1. Case λ = 0 :

For λ = 0, we have k = 1 = r, v = b. For each α, β ∈ N the Laplacian
matrix of G(M, α, β) can be written as

(
(αv + β)Iαv − Jβv −Iv ⊗ Jα,β

−(Iv ⊗ Jα,β)T αIβv

)
.

It is easy to see that XXT = Iv ⊗ Jα is a non-negative and reducible
matrix with only one non-zero eigenvalue, namely τ = αβ, with mul-
tiplicity equal to v. It follows from Corollary 2.3 that G(M,α, β) is
Laplacian integral if and only if, (p+x−y)2+4xy = (x+(v−1)y)2+4xy
is a perfect square, ie, if and only if the Diophantine equation

(αv + β − α)2 + 4αβ = (β + (v − 1)α)2 + 4αβ − γ2 = 0, (3.1)

is satisfied for some γ ∈ Z. Note that (α0, β0, γ0) = (v+1, v, v2+v+1)
is a particular solution of equation (3.1); thus, the split nonthreshold
graph G(M,v + 1, v) is Laplacian integral.

According to [3], the general solution of the equation (3.1) on Q is
given by

α = d[−s + (v + 1)t][(v + 1)s + (v2 + 1)t],

and
β = d(2v + 1)(v + 2)[s− v − 1

2v + 1
t][s +

v(v − 1)
v + 2

t]

where s, t ∈ Z and d ∈ Q.

In particular, for each d ∈ N, positive integer solutions of the equation
(3.1) can be obtained as follows:

(a) for s and t of the same sign, for example, s > 0 and t > 0, choose
s ∈ N such that v−1

2v+1 t < s < (v + 1)t;
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(b) otherwise, choose t < 0 < s such that v(v−1)
v+2 |t| < s < v2+1

v+1 |t|.

2. Case λ > 0 :

In this case, XXT = β((r − λ)Iv + λJv) ⊗ Jα is non-negative and ir-
reducible. This matrix has three distinct eigenvalues, τ1 = αβ kλ(v−1)

k−1 ,

τ2 = αβλ(v−k)
k−1 and τ3 = 0, provided that α ≥ 2, otherwise it has only

two distinct eigenvalues, namely τ1 and τ2.

From Theorem 2.2, G(M,α, β) is Laplacian integral if and only if,
(p + x− y)2 + 4τ2 is a perfect square. This is equivalent to having

α2(v − k)2 + 2
αβλ(v − k)(v + 1)

k − 1
+ (

βλ(v − 1)
k − 1

)2 − γ2 = 0, (3.2)

for some γ ∈ Z. Note that (α0, β0, γ0) = (λ(2v − 1), 2(k − 1)(v −
k), λ(v − k)(4v − 1)) is a particular solution of equation (3.1) and
hence the split nonthreshold graph G(M,λ(2v− 1), 2(k− 1)(v− k)) is
Laplacian integral.

According to [3], the general solution of the equation (3.2) on Q is
given by

α = 3dλ(2v+1)(v−k)2[s− λ(v − 1)
3(v − k)(k − 1)

t][s+
λ(v − 1)(2v − 1)

(2v + 1)(v − k)(k − 1)
t],

and

β = −2d(v − k)3(k − 1)[s− λ(3v − 1)
(v − k)(k − 1)

t][s +
λv

(v − k)(k − 1)
t]

where s, t ∈ Z and d ∈ Q.

Thus, for d ∈ N, positive integer solutions of the equation (3.1) can
be obtained as follows:

(a) for s and t having the same sign, for example, s > 0 and t > 0,
choose s ∈ N such that λ(v−1)

3(v−k)(k−1) t < s < λ(3v−1)
(v−k)(k−1) t;

(b) otherwise, choose t < 0 < s such that λ(v−1)(2v−1)
(2v+1)(v−k)(k−1) |t| < s <

λv
v−k |t|. ¥

The following examples present two cases of split nonthreshold Laplacian
integral graphs. Figure 4 illustrates the case λ = 0, while Figure 5 gives an
example for which λ > 0.
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Example 3.2. Case λ = 0: Let v = 2,M = I2, α = 2 and β = 3. As
(β+(v−1)α)2 +4αβ = 72, then G(M, 2, 3) is a split nonthreshold Laplacian
integral graph. It is shown in Figure 4.

Figure 4: G(M, 3, 2) is a split nonthreshold Laplacian integral graph

Example 3.3. Case λ > 0 : Consider the (4, 2, 1)−GBIBD with incidence
matrix

M =




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


 .

The graph G(M, 7, 4), displayed in Figure 5, is a split nonthreshold
Laplacian integral graph on 52 vertices with 714 edges and the maximal clique
of size 28.

4 A note on complements

If G is a biregular split Laplacian integral graph, so is its complement, G.
This happens since the spectrum of L(G) is ζ(G) = (n−µn−1, . . . , n−µ1, 0),
where µ1 ≥ . . . ≥ µn−1 ≥ µn = 0 are the eigenvalues of L(G).

In the case λ = 0, it is easy to see that G(Iv, α, β) is isomorphic to
G(M, β, α), where M = Jv − Iv is the incidence matrix of the complement
block design.

In the case that we have an incidence matrix M for a GBIBD with λ > 0,
there may not exist another incidence matrix M̃ for a (v′, k′, λ′)−GBIBD
such that the complement of G(M, α, β) is G(M̃, α′, β′), as we can see in
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Figure 5: G(M, 7, 4) is a split nonthreshold Laplacian integral graph

Example 3.3. The Laplacian matrix of the complement of the graph in
Example 3.3 can be written as

L(G) =

(
38I24 − J24 −X
−XT 12J28

)
,

where X = M⊗ J4,7 and

M =




0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0




.

Since M is not the incidence matrix of any GBIBD, we see that G can not
be written as G(M̃, α′, β′) for any GBIBD incidence matrix M̃ .

5 Biregular split graphs with a common Laplacian
spectrum

Suppose that M is the incidence matrix of a (v, k, λ)-GBIBD, where λ > 0.
Select parameters α, β ∈ N, and form X = M⊗Jα,β. It is straightforward to
determine that the rank ofX coincides with the rank of M ; since rank(M) =
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rank(MT ) = rank(MMT ) and MMT = (r − λ)Iv + λJv, we find that the
rank of X is v. Observe that the row sums of X are equal to βλ(v−1)

k−1 , while
the column sums of X are equal to αk. As noted in the proof of Theorem
3.1, XXT = β((r − λ)Iv + λJv) ⊗ Jα, so that XXT has just two nonzero
eigenvalues: τ1 = αβ kλ(v−1)

k−1 and τ2 = αβλ(v−k)
k−1 . Observe that the quantity

mτ1 of Theorem 2.2 is 0, since τ1 is the (simple) Perron value for XXT , with
corresponding eigenvector 1αv. Similarly, we have mτ2 = v − 1. Appealing
to Theorem 2.2, we find that the spectrum (including multiplicities) of the
Laplacian matrix of the graph G(M, α, β) is completely determined by the
parameters v, k, λ, α, and β.

In particular, suppose that D1 and D2 are two GBIBDs with the same
parameters (v, k, λ), with incidence matrices M1 and M2, respectively. We
can extend the definition of isomorphism of block designs in [11] to GBIBDs
as follows: D1 and D2 are isomorphic if there are permutation matrices R
and S, of orders v and b, respectively, such that M1 = RM2S.

The graphs G(M1, α, β) and G(M2, α, β) will share the same Laplacian
spectrum. From Corollary 2.2, it follows that G(M1, α, β) and G(M2, α, β)
are isomorphic if and only if there are permutation matrices P and Q of
orders αv and βv, respectively, such that P (M2 ⊗ Jα,β)Q = M1 ⊗ Jα,β.

We claim that this last condition holds if, and only if, D1 and D2 are
isomorphic. Certainly if there exist permutation matrices R, S such that
M1 = RM2S, then we can find permutation matrices P, Q so that P (M2 ⊗
Jα,β)Q = M1 ⊗ Jα,β.

To see the other direction of the claim, suppose that P (M2 ⊗ Jα,β)Q =
M1 ⊗ Jα,β for some permutation matrices P and Q. Observe that both
A1 ≡ M1 ⊗ Jα,β and A2 ≡ M2 ⊗ Jα,β can be partitioned as block matrices,
with each block equal to either Jα,β or the α × β zero matrix. Further,
the partitioning of the rows of A1, A2 corresponds to the sets of indices
Ui = {(i− 1)α + 1, (i− 1)α + 2, . . . , iα}, i = 1, . . . , v, while the partitioning
of the columns of A1, A2 corresponds to the sets of indices Wj = {(j−1)β +
1, (j − 1)β + 2, . . . , jβ}, j = 1, . . . , b. From the fact that both A1 and A2

are block matrices, it follows that P can be taken to be a permutation that
maps all indices in a single Ui to a common Uki , for each i = 1, . . . , v, and
Q can be take to be a permutation that maps all indices in a single Wj to
a common Wlj , for each j = 1, . . . , b. It now follows readily that there are
permuations matrices R, S such that RM2S = M1.

Now, suppose that we have λ > 0, and that D1 and D2 are nonisomor-
phic. Then for each α, β ∈ N, we find from the considerations above that
G(M1, α, β) and G(M2, α, β) are nonisomorphic graphs with the same Lapla-
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cian spectrum; moreover, if α, β are selected as in Theorem 3.1, then the
nonisomorphic graphs G(M1, α, β) and G(M2, α, β) have the same integral
Laplacian spectrum.

As an example of this kind of construction, consider the following sce-
nario. Recall that a Hadamard matrix of order 4n + 4 is a (1,−1) matrix
H such that HHT = (4n + 4)I. By an appropriate sequence of row permu-
tions, column permutations, signing of rows, and signing of columns, any
Hadamard matrix H can be put into the following form:

(
1 1T

1 H̃

)
.

It now follows readily that the matrix M = 1
2(J + H̃) is a (0, 1) matrix of

order 4n + 3 satisfying MMT = (n + 1)I + nJ. Thus M is the matrix of
a (4n + 3, 2n + 1, n) BIBD. Two Hadamard matrices H1,H2 are said to be
equivalent if H1 can be produced from H2 by an appropriate sequence of
row permutations, column permutations, row signings, and columns signing.
It follows then that for nonequivalent Hadamard matrices H1,H2 of order
4n+4, the incidence matrices M1,M2 of the corresponding (4n+3, 2n+1, n)
BIBD’s will have the property that PM2Q 6= M1 for all 4n + 3n + 3 permu-
tation matrices P and Q. Consequently, for α, β selected as in Theorem 3.1,
G(M1, α, β) and G(M2, α, β) are nonisomorphic split nonthreshold graphs
having the same integral Laplacian spectrum.

As a particular instance, it is known (see [10]) that there are exactly
five nonequivalent Hadamard matrices of order 16. These give rise to five
incidence matrices M1, . . . , M5 for (15, 7, 3) BIBD’s with the properties that
none can be generated from another by row and/or column permutations.
For each pair α, β chosen as in Theorem 3.1, this in turn gives rise to five
nonisomorphic split nonthreshold graphs, G(M1, α, β), . . . , G(M5, α, β), all
sharing a common integral Laplacian spectrum. Evidently taking different
appropriate choices of α, β will generate an infinite family of collections of
such graphs.
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