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Abstract

A quantity known as the Kemeny constant, which is used to mea-
sure the expected number of links that a surfer on the World Wide
Web, located on a random web page, needs to follow before reaching
his/her desired location, coincides with the more well known notion of
the expected time to mixing, i.e., to reaching stationarity of an ergodic
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Markov chain. In this paper we present a new formula for the Kemeny
constant and we develop several perturbation results for the constant,
including conditions under which it is a convex function. Finally, for
chains whose transition matrix has a certain directed graph structure
we show that the Kemeny constant is dependent only on the common
length of the cycles and the total number of vertices and not on the
specific transition probabilities of the chain.

Keywords: Nonnegative matrices, group inverses, directed graphs, Markov
chains, stationary distribution vectors, stochastic matrices, mean first pas-
sage times.
AMS Classification: 15A51, 15A09, 15A12, 15A48, 05C20

1 Introduction

Consider the World Wide Web. One can ask the following question: If we
have a random surfer, who, perhaps having become lost, is located at a ran-
dom web page, what is the expected number of links that the surfer must
follow before reaching his/her desired location? Levene and Loizou [22] have
shown that this expectation is given by a quantity which they call the Ke-
meny constant. This quantity is the same as the quantity known as the
expected time to mixing, i.e., to reaching stationarity of an ergodic Markov
chain which has been explored by Hunter [14] and others. In this paper
we shall investigate various properties of the Kemeny constant such as its
behavior under perturbations in the transition probabilities of the chain.

The plan of this paper is as follows. In Section 2 we shall present various
preliminaries leading to known representations of the Kemeny constant, for
example, via the mean first passage times of the chain and its stationary
probabilities or via the group generalized inverse A# of A = I −T , where T
is the transition matrix of the chain. In Section 3 we shall find a new repre-
sentation for the Kemeny constant using the inverses of the (n−1)× (n−1)
principal submatrices of A and the diagonal entries of A#.

In Section 4 we shall relate the Kemeny constant to a certain condition
number for Markov chains known as κ6(T ) in the list of condition numbers
in the papers of Cho and Meyer [6, 7]. We mention that condition numbers
for Markov chains are used to measure the error in the computation of its
stationary distribution vector. In Section 5 we shall consider the effect upon
the Kemeny constant of various low rank perturbations of the transition ma-
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trix of a chain. We shall also consider conditions under which the Kemeny
constant is a convex function of the perturbation.

In the final part, Section 6, of this paper we shall consider the Kemeny
constant of a Markov chain whose transition matrix has a certain directed
graph structure. For example, if each cycle in the graph has the same length
and every pair of cycles intersect, then we shall show that the Kemeny
constant is dependent only on the common length of the cycles and the
total number of vertices and not on the specific transition probabilities of
the chain.

2 Preliminaries Leading To The Kemeny Constant

To introduce the Kemeny constant, we shall require preliminary notions from
finite Markov chains. Let {Xk}∞k=0 be a finite–state homogeneous ergodic
Markov chain on the n states S1, . . . ,Sn. For 1 ≤ i, j ≤ n, the mean first
passage time from state Si to state Sj , denoted by mi,j , is the expected
number of time steps to reach state Sj for the first time when initially the
chain is in state Si. Formally, for 1 ≤ i, j ≤ n, mi,j is given by:

mi,j = E(Fi,j) =
∞∑

k=1

kPr(Fi,j = k),

where Fi,j is the random variable representing the smallest number of time–
steps for reaching state Sj for the first time, given that the system was
initially in state Si. That is:

Fi,j = min{` ≥ 1 : X` = Sj |X0 = Si}.

The matrix M = (mi,j) is called the mean first passage matrix of the chain.

Let T ∈ Rn,n be the transition matrix of a finite–state homogeneous
ergodic Markov chain, so that T is a nonnegative and irreducible matrix.
Put A = I−T . For j = 1, . . . , n, let Aj denote the (n−1)×(n−1) principal
submatrix of A obtained by deleting its j–th row and column. Then Aj is
a nonsingular and diagonally dominant M–matrix. In particular, A−1

j is a
nonnegative matrix. Let

M j = [m1,j , . . . ,mj−1,j ,mj+1,j , . . . ,mn,j ]T
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be the j–th column of the mean first passage matrix with the j–th entry
deleted. An expression for the mean first passage times in terms of the row
sums of A−1

j is as follows (see e.g., [6], [11], [8]):

M j = A−1
j e, (2.1)

where e ∈ Rn−1 denotes the vector of all ones.

Next, for A ∈ Rn,n, the group inverse of A if it exists, is the unique
matrix A# satisfying the matrix equations AA#A = A, A#AA# = A#,
and AA# = A#A. (We note in passing that the group inverse exists if and
only if rank(A) = rank(A2).) Let A = I−T , where T is the transition matrix
belonging to the finite homogeneous ergodic Markov chain mentioned above.
In [24], Meyer found the following expression for the mean first passage
matrix M in terms of the group inverse A# and the stationary distribution
vector π = [π1, . . . , πn]T of the chain:

M = (I −A# + JA#
d )


1
π1

. . .
1

πn

 , (2.2)

where J is the n×n matrix of all ones and A#
d is the diagonal matrix whose

entries are the corresponding diagonal entries of A#.

Further, in [24], an expression for A# in terms of A−1
n and the stationary

distribution vector is given. In particular, let B be the leading (n−1)×(n−1)
principal submatrix of A#. Then

B = A−1
n + βW −A−1

n W −WA−1
n , (2.3)

where β := uT A−1
n e, W = euT , and π = [u πn]T is the stationary distribu-

tion vector of T .

We are now ready to introduce the Kemeny constant. For our n–state
homogeneous ergodic Markov chain, several authors have shown that for the
expressions

n∑
j=1

mi,jπj , i = 1, . . . , n, (2.4)

all have a common value independent of i, see e.g., Kemeny and Snell [15],
Grinstead and Snell [10], Levene and Loizou [22], and Hunter [14]. Fol-
lowing their analysis of the expected time of exiting a random site, and
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entering another desired site, Levene and Loizou call this common value for
the chain Kemeny constant. For a finite state, homogeneous, and ergodic
chain Markov chain with a transition matrix T , we shall denote by K(T ) its
Kemeny constant.

In [14, Theorem 2.4] Hunter shows that the quantity which we call here
the Kemeny constant is given by

K(T ) = 1 + trace(A#), (2.5)

which can be deduced from (2.2). The fundamental matrix of the chain is
defined by Z = (A + eπT )−1. Notice that the fundamental matrix Z and
the group inverse A# are related by Z = A# + eπT . Thus,

K(T ) = trace(Z). (2.6)

Let λ2, . . . , λn be the eigenvalues of T other than 1. As the nonzero
eigenvalues of A# are the reciprocals of the nonzero eigenvalues of A = I−T ,
we immediately have that:

K(T ) = 1 +
n∑

i=2

1
1− λi

. (2.7)

In the next section we shall develop yet another representation for the
Kemeny constant.

3 A New Representation For The Kemeny Con-
stant

In this section we obtain a new representation for the Kemeny constant for
the transition matrix T of a finite–state homogeneous ergodic Markov chain.

Proposition 3.1 Let T be the transition matrix of an n–state ergodic Markov
chain and let A = I − T . Let K(T ) be the Kemeny constant associated with
the chain. Then for any j = 1, . . . , n,

K(T ) = trace
(
A−1

j

)
−

A#
j,j

πj
+ 1, (3.8)

where Aj is the (n−1)×(n−1) principal submatrix of A obtained by deleting
the j–th row and column and π = [π1, . . . , πn]T is the stationary distribution
vector of T .
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Proof. Without loss of generality we can assume that j = n. Then for
i, j = 1, . . . , n − 1 with i 6= j, on using (2.2), we obtain the well–known
relation that

mi,jπj = A#
j,j −A#

i,j . (3.9)

Now using (2.3) we get that:

A#
i,j =

(
A−1

n

)
i,j

+ βπj − (A−1
n e)iπj −

n−1∑
k=1

πk(A−1
n )k,j , (3.10)

and

A#
j,j = (A−1

n )j,j + βπj − (A−1
n e)jπj −

n−1∑
k=1

πk(A−1
n )k,j . (3.11)

But then from (3.9)–(3.11) we have that:

mi,jπj = (A−1
n )j,j − (A−1

n )i,j + πj [(A−1
n e)i − (A−1

n e)j ]

and hence, using (2.1), it follows that:

mi,jπj = (A−1
n )j,j − (A−1

n )i,j + πj [min −mjn], (3.12)

for all i, j = 1, . . . , n − 1 with i 6= j. Summing over j = 1, . . . , n − 1 with
j 6= i yields that:∑

j 6=i mi,jπj = trace(A−1
n )− (A−1

n e)i + mi,n
∑

j 6=i πj −
∑

j 6=i πjmj,n

= trace(A−1
n )−mi,n + mi,n(1− πi − πn)−

∑
j 6=i πjmj,n

= trace(A−1
n )− πimi,n −mi,nπn −

∑
j 6=i πjmj,n.

Thus,

mi,nπn +
n−1∑
j = 1
j 6= i

mi,jπj = trace(A−1
n )− πimi,n −

n−1∑
j = 1
j 6= i

πjmj,n,

or, equivalently,

n∑
j = 1
j 6= i

mi,jπj = trace(A−1
n )−

n−1∑
j=1

πjmj,n. (3.13)

6



The result follows since the left hand side of (3.13) is equal to K − 1 and
the relation

n∑
j = 1
j 6= k

πjmj,k =
A#

k,k

πk
, k = 1, . . . , n (3.14)

is a consequence of (2.2). �

As a remark, we relate (3.8) in Proposition 3.1 to group inverses of
M–matrices with uniform diagonal entries. These were considered by Kirk-
land and Neumann in [17]. In one of the results they give a necessary and
sufficient condition for the Laplacian of an undirected weighted n–cycle to
possess a group inverse with uniform diagonal. A consequence of Propo-
sition 3.1 is the following equivalent condition in terms of the sum of the
diagonal entries of the matrices A−1

j , j = 1, . . . , n.

Proposition 3.2 Let A = I − T , where T is an n × n irreducible doubly
stochastic matrix. Then A# has uniform diagonal entries if and only if
trace(A−1

j ) is constant for j = 1, . . . , n.

Proof. Since T is doubly stochastic, πj = 1
n for j = 1, . . . , n. The result

now follows from (3.8). �

4 Relation of the Kemeny Constant to Condition
Numbers for Markov Chains

Let T ∈ Rn,n and T̂ = T − E be transition matrices for two arbitrary,
but fixed, finite–state homogeneous ergodic Markov chains and denote their
stationary distribution vectors by π and π̂, respectively. A function κ(·) is
called a condition number for Markov chains with respect to the norm pair
(α, β) if for the vector norm ‖ · ‖α and the matrix norm ‖ · ‖β,

‖π − π̂‖α ≤ κ(T )‖E‖β.

In [14, Theorem 5.1], Hunter shows that κ(T ) = K(T )− 1 is a condition
number for Markov chains with respect to the norm pair (1,∞). Various
condition numbers were investigated in the works of Cho and Meyer, see
[6, 7], who were able to order 7−8 different condition numbers according to
their magnitude. One of the eight condition numbers, due to Seneta [27], is

κ6(T ) =
1
2

max
1≤i,j≤n

n∑
s=1

|A#
i,s −A#

j,s|,
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which, like K − 1, is a condition number with respect to the norm pair
(1,∞). In Kirkland, Neumann, and Sze [19] it has been shown that κ6(T )
is optimal with respect to the norm pair (1,∞) in the sense that there is
no other condition number with respect to the pair (1,∞) whose value at
some T is less than κ6(T ). We next show the connection between K(T ) and
κ6(T ).

Theorem 4.1 Suppose that T ∈ Rn,n is a transition matrix of a finite–
state homogeneous ergodic Markov chain with π as its stationary distribution
vector. Then

K(T ) ≥ n + κ6(T )
1 + κ6(T )

,

with equality holding if and only if

T = −κ6(T )I + (1 + κ6(T ))eπT .

Furthermore, if κ6(T ) < 1, then

K(T ) ≤ n− κ6(T )
1− κ6(T )

,

with equality holding if and only if

T = κ6(T )I + (1− κ6(T ))eπT .

Proof. Label the non–Perron eigenvalues of T as λ2, . . . , λn, and recall that

K(T ) = 1 +
n∑

j=2

1
1− λj

= 1 +
n∑

j=2

<
(

1
1− λj

)
.

Fix an index j between 2 and n. Writing λj = xj + iyj , we have

<
(

1
1− λj

)
=

1− xj

(1− xj)2 + y2
j

≥ 1
1 + κ6(T )

,

the last inequality follows from the fact that xj ≥ −κ6(T ). Thus we find
that

K(T ) ≥ 1 +
n− 1

1 + κ6(T )
=

n + κ6(T )
1 + κ6(T )

.

Note also that K(T ) = n+κ6(T )
1+κ6(T ) if and only if λj = −κ6(T ), j = 2, . . . , n.

In that case, it follows from Theorem 2.7 in [18] that, associated with the
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eigenvalue −κ6(T ), there are n − 1 linearly independent eigenvectors. Re-
ferring to the decomposition of T in terms of orthogonal idempotents, there
is a matrix E such that eπT + E = I and T = eπT − κ6(T )E. It follows
readily that this is equivalent to

T = −κ6(T )I + (1 + κ6(T ))eπT .

Suppose next that κ6(T ) < 1. Then for each j = 2, . . . , n, we have

<
(

1
1− λj

)
≤ 1

|1− λj |
≤ 1

1− |λj |
≤ 1

1− κ6(T )
.

Hence we find that

K(T ) ≤ 1 +
n− 1

1− κ6(T )
=

n− κ6(T )
1− κ6(T )

,

as desired. Note also that K(T ) = n−κ6(T )
1−κ6(T ) if and only if λj = κ6(T ), for j =

2, . . . , n. In that case, as above we find that there is a matrix E such that
eπT + E = I and T = eeT + κ6(T )E. This in turn yields that

T = κ6(T )I + (1− κ6(T ))eπT .

�

5 Perturbation and convexity of the Kemeny con-
stant

In this section, we consider elementary row and column perturbations on
a transition matrix of a Markov chain and determine the effects of such
perturbations on the Kemeny constant of the chain. In particular, we are
interested in determining whether a given perturbation of the transition
probabilities will result in a decrease in K(T ), the mixing time of the chain.

We will first consider these two types of elementary perturbations:

Type I: T = T + erh
T , where er = [0 . . . 0 1 0 . . . 0]T is the unit vec-

tor in Rn with zeros everywhere except for a 1 in the r–th position, and
h = [h1, . . . , hn]T is any zero sum vector in Rn such that T remains an ir-
reducible transition matrix. Notice that in this perturbation only the r–th
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row of T is changed.

Type II: T = T + ehT , where h = [h1, . . . , hn]T is any zero sum vector in
Rn such that T remains an irreducible transition matrix.

5.1 Type I perturbations

In order to state our main result concerning the effect of Type I perturbations
on the Kemeny constant, we need to recall the so called entrywise column
diagonal dominance property of inverses of diagonally dominant matrices
which is originally due to Metzler [23] and which has been further extended
by Fiedler and Ptak in [9]:

Lemma 5.1 (See, for example, [2, Lemma 3.14, page 254]) Let A be a
nonsingular M–matrix of order n whose row sums are all nonnegative; that
is, Ae ≥ 0. Then the entries of A−1 satisfy

(A−1)i,i ≥ (A−1)k,i, for all i, k = 1, . . . , n.

We can now state our first perturbation result:

Theorem 5.2 Let T be an irreducible and stochastic matrix with station-
ary distribution vector π = [π1, . . . , πn]T . Let T = T + erh

T , where h =
[h1, . . . , hn]T is any vector in Rn such that T is still irreducible and stochas-
tic, and let π = [π1, . . . , πn]T be the stationary distribution vector for T .
Put A = I − T, A = I − T and suppose that M = (mi,j) and M = (mi,j)
are the associated mean first passage matrices of T and T , respectively. Then

(i) mi,r = mi,r, for all i 6= r,

and

(ii) mi,j ≥ mi,j ⇐⇒ πj ≤ πj , for all i, j 6= r.

Proof. Without loss of generality, assume that r = n. Otherwise, perform
a symmetric permutation on the rows and columns of T , interchanging the
roles of the indices r and n.
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Since the rows of T and T coincide except for the n–th row, An = An.
Using (2.1) we now obtain that:

mi,n = (A−1
n e)i = (A−1

n e)i = mi,n, for i 6= n.

This proves (i). Next, for i, j = 1, . . . , n − 1, from (3.12), (2.2), and since
(A−1

n )i,j = (A−1
n )i,j , we have that:

mi,j −mi,j =


[
(A−1

n )j,j − (A−1
n )i,j

] [ 1
πj
− 1

πj

]
, i 6= j

1
πj
− 1

πj
, i = j.

(5.15)

Thus, (ii) holds in the case that i = j. Finally, suppose that i 6= j. Since
Ae = 0 and A is an irreducible M–matrix, then An is a nonsingular diago-
nally dominant M–matrix. Hence, by Lemma 5.1,

(A−1
n )j,j ≥ (A−1

n )i,j . (5.16)

Combining (5.16) and the first part of (5.15) yields that

mi,j ≥ mi,j ⇐⇒ πj ≤ πj ,

and the proof is complete. �

Notice that if T is perturbed by a Type I perturbation, say in the r–th
row, then using Proposition 3.1 and the fact that Ar = Ar, the Kemeny
constants K = K(T ) and K = K(T ) obey the following relation:

K −K =
A#

r,r

πr
− A

#
r,r

πr
. (5.17)

This leads us to our second result on Type I perturbations:

Theorem 5.3 Let T be an irreducible and stochastic matrix with stationary
distribution vector π = [π1, . . . , πn]T . Let T = T + erh

T be a Type I pertur-
bation of T and suppose that K = K(T ) and K = K(T ) are the respective
Kemeny constants. Then:

K ≤ K ⇐⇒
∑
i6=r

(πi − πi)mi,r ≥ 0. (5.18)
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Proof. By (i) in Theorem 5.2, mi,r = mi,r, for i 6= r. Combining this with
(5.17) and (3.14) we get that:

K −K =
∑
i6=r

πimi,r −
∑
i6=r

πimi,r =
∑
i6=r

(πi − πi)mi,r,

gives (5.18). �

5.2 Type II perturbations

Since formula (2.7) expresses the Kemeny constant in terms of the eigenval-
ues other than 1 of T , it is logical to ask to what extent can we perturb T
while maintaining control over the change in its eigenvalues? We begin with
the following well known perturbation result:

Lemma 5.4 (Brauer [3] ) Let T be an irreducible and stochastic matrix and
let h be any vector in Rn. Then the eigenvalues of T + ehT are given by

1 + hT e, λ2, . . . , λn,

where λ2, . . . , λn are the eigenvalues of T other than 1.

A direct consequence of the above lemma is that a Type II perturbation
leaves unchanged the spectrum of the transition matrix and hence also the
Kemeny constant for the chain.

Theorem 5.5 Let T = T +ehT be a Type II perturbation of T and let K(T )
and K(T ) be the respective Kemeny constants. Then K(T ) = K(T ).

Proof. The result is immediate by the preceding lemma due to the fact
that a Type II perturbation requires the entries of h to sum to 0. �

The equality in (3.14) gives a practical interpretation for the ratios
A#

j,j

πj
, j = 1, . . . , n. Since for a given j,

∑n
k=1 πkmk,j is the weighted average

of the mean first passage times into Sj from any other state, the expression
A#

j,j

πj
can be thought of as a measure of such an average mean first passage

time into state Sj from any other state.

In the next proposition it is shown that if the transition matrix is per-
turbed by uniformly increasing the entries of the j–th column by ε > 0
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and then uniformly decreasing the entries of the i–th column by the same
amount, then the “average” mean first passage time into state j will not
decrease and the “average” mean first passage time into state i will not
increase.

Proposition 5.6 Let T = T + εe(ei − ej)
T , where T is a stochastic and

irreducible matrix and suppose that ε > 0 is chosen so that T remains an
irreducible transition matrix. Suppose that π = [π1, . . . , πn]T and π =
[π1, . . . , πn]T are the respective stationary distribution vectors of T and T .
Then

A
#
j,j

πj
≥

A#
j,j

πj
, (5.19)

and
A

#
i,i

πi
≤

A#
i,i

πi
. (5.20)

Proof. We begin by noticing that by the assumptions of the theorem, T is
obtain from T via a Type II perturbation. Let Tj and T j be the respective
(n−1)× (n−1) principal submatrices of T and T obtained by deleting their
j–th row and column. Then

T j = Tj + εeeT
i

and hence, as ε > 0, we can write that:

Aj = I − T j

= I − (Tj + εeeT
i )

= Aj − εeeT
i

≤ Aj .

Thus Aj and Aj are nonsingular M–matrices satisfying Aj ≤ Aj and from
M–matrix theory we have that:

A
−1
j ≥ A−1

j . (5.21)

Now using Proposition 3.1 we see that:

K(T )−K(T ) = trace
(
A
−1
j −A−1

j

)
+

(
A#

j,j

πj
−

A
#
j,j

πj

)
. (5.22)
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The left-hand side of (5.22) is zero by Theorem 5.5 and thus (5.19) follows
from (5.21).

The proof of (5.20) is similar.
�

We list two more types of perturbations on T that lead to a reduction in
the mixing time K for the chain. In both cases, the representation of K(T )
in (2.7) is used.

Theorem 5.7 Let T be a symmetric, stochastic and irreducible matrix, and
suppose that T = T −E, where E is a positive semidefinite matrix such that
T remains stochastic and irreducible. Let K = K(T ) and K = K(T ) be
their associated Kemeny constants. Then K ≤ K.

Proof. Let λi and λi, i = 2, . . . , n, be the eigenvalues of T and T
respectively, that are different from 1. Then by a theorem of Weyl [12,
Corollary 4.3.3], λi ≤ λi, i = 2, . . . , n. It follows that

n∑
i=2

1
1− λi

≤
n∑

i=2

1
1− λi

,

hence K ≤ K by (2.7). �

Corollary 5.8 Let M = (mij) and M = (mij) be the mean first passage
matrices associated with T and T respectively in the theorem above. Then

n∑
j=1

mij ≤
n∑

j=1

mij .

Proof. First note that since T is symmetric, so is T . Let π = [π1, . . . , πn]T

and π = [π1, . . . , πn]T be the respective stationary distribution vectors for
T and T . Since T and T are symmetric and stochastic, π = π = 1

ne and
so πj = πj = 1

n , for j = 1, . . . , n. From Theorem 5.7, K ≤ K and thus,∑n
j=1 mijπj = K ≤ K =

∑n
j=1 mijπj . The result now follows. �

Let T be a stochastic and irreducible matrix and suppose that 0 ≤ α ≤ 1.
Suppose further that v = [v1, . . . , vn]T is a positive probability vector, i.e.,
vj > 0, for all j and vT e = 1. Let

T = αT + (1− α)evT . (5.23)
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Then T remains a stochastic and irreducible matrix. Lemma 5.4 is next
used to find the eigenvalues of T in terms of the eigenvalues of T . First, the
eigenvalues of T are given in the following lemma and we shall need them
in subsequent results:

Lemma 5.9 (Serra–Capizzano [5, Theorem 2.1]) Let T be stochastic and
irreducible, and let T be as in (5.23). Let σ(T ) = {1, λ2, . . . , λn} be the set
of eigenvalues of T . Then the spectrum of eigenvalues of T is given by

σ(T ) = {1, αλ2, . . . , αλn}.

Lemma 5.9 leads to the following perturbation results for the Kemeny
constant:

Theorem 5.10 Let T be an n × n irreducible and stochastic matrix with
nonnegative spectrum σ(T ) = {1, λ2, · · · , λn}. Suppose that T = αT +
(1 − α)evT , where 0 ≤ α ≤ 1, and v is a positive probability vector. Then
K(T ) ≤ K(T ).

Proof. By Lemma 5.9, the eigenvalues of T are given by
σ(T ) = {1, αλ2, · · · , αλn}. Since 0 ≤ α ≤ 1 and the λi’s are nonnegative,
αλi ≤ λi, i = 2, · · · , n. It follows that

n∑
i=2

1
1− αλi

≤
n∑

i=2

1
1− λi

and hence K(T ) ≤ K(T ) by (2.7). �

We note the if the assumption that T has nonnegative spectrum is re-
moved in Theorem 5.10, the conclusion K(T ) ≤ K(T ) no longer follows.

One can interpret Theorem 5.10 to say that if T1 is an n× n irreducible
and stochastic matrix with a nonnegative spectrum and T2 = evT , with
v ∈ Rn a positive probability vector, then K[αT1 + (1 − α)T2] ≤ K(T1)
for 0 ≤ α ≤ 1. This suggests that we consider the question of convexity
of the Kemeny constant. We can prove the following result from which it
will follow that, indeed, even under the conditions of Theorem 5.10, we have
that:

K[αT1 + (1− α)T2] ≤ αK(T1) + (1− α)K(T2), for all α ∈ [0, 1].
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Theorem 5.11 Let T1 be an n×n irreducible and stochastic matrix and let
T2 = evT , where v ∈ Rn is a positive probability vector. If

σ(T1) ⊆ [0, 1] ∪ {z ∈ C : 3π/4 ≤ arg(z) ≤ 5π/4},

then, for 0 ≤ α ≤ 1,

K[αT1 + (1− α)T2] ≤ αK(T1) + (1− α)K(T2). (5.24)

Proof. Let σ(T1) = {1, λ2, . . . , λn} satisfy the assumption in the theorem.
Now by(2.7),

K(T1) = 1 +
n∑

k=2

1
1− λk

. (5.25)

Since rank T2 = 1, (2.7) implies that

K(T2) = n. (5.26)

Next, by Lemma 5.9 and again using (2.7) we can write that

K ([αT1 + (1− α)T2]) = 1 +
n∑

k=2

1
1− αλk

,

and the left hand side of (5.24) can be written

1 +
n∑

k=2

(
1 +

αλk

1− αλk

)
.

On the other hand, the right hand side of (5.24) is equal to

α

(
1 +

n∑
k=2

1
1− λk

)
+ (1− α)n = 1 +

n∑
k=2

(
1 +

αλk

1− λk

)
(5.27)

by (5.25) and (5.26). Thus, (5.24) holds if we can prove that
n∑

k=2

(
αλk

1− αλk

)
≤

n∑
k=2

(
αλk

1− λk

)
, (5.28)

for 0 ≤ α ≤ 1. Notice that
n∑

k=2

(
αλk

1− λk

)
−

n∑
k=2

(
αλk

1− αλk

)
=

n∑
k=2

αλk

(
1

1− λk
− 1

1− αλk

)

=
n∑

k=2

α(1− α)λ2
k

(1− λk)(1− αλk)
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is real and so it suffices to show that the real part of each term λ2
k

(1−λk)(1−αλk)

is nonnegative for all α ∈ [0, 1]. It is clearly true if λk ∈ [−1, 1). Suppose λk

is a complex number in {z ∈ C : 3π/4 ≤ arg(z) ≤ 5π/4}. Write λk = λ =
x + iy. Then −1 < x < 0 and x2 ≥ y2 and therefore,

<
(

λ2
k

(1− λk)(1− αλk)

)
= <

(
λ2(1− λ)(1− αλ)
|1− λ|2|1− αλ|2

)

= <
(

α|λ|4 − (1 + α)λ|λ|2 + λ2

|1− λ|2|1− αλ|2

)

=
α|λ|4 − (1 + α)x|λ|2 + (x2 − y2)

|1− λ|2|1− αλ|2
≥ 0.

�

The inequality (5.24) also holds when both T1 and T2 are symmetric
doubly stochastic matrices.

Theorem 5.12 Suppose T1 and T2 are two n × n irreducible symmetric
doubly stochastic matrices. Then for 0 ≤ α ≤ 1,

K[αT1 + (1− α)T2] ≤ αK(T1) + (1− α)K(T2).

Proof. We begin by recalling that the map A 7→ trace(A−1) is strictly
convex on the set of the positive definite matrices, see, for example, Horn
and Johnson [12, Problem 7.6.2]. Since both (I−T1 +Jn) and (I−T2 +Jn),
where Jn = 1

neet, are positive definite,

trace([α(I − T1 + Jn) + (1− α)(I − T2 + Jn)]−1)

≤ α trace[(I − T1 + Jn)−1] + (1− α)trace[(I − T2 + Jn)−1]. (5.29)

By (2.6) and the fact that T1, T2, and αT1 + (1 − α)T2 have the common
stationary distribution vector 1

ne, the right hand side of (5.29) equals

K[αT1 + (1− α)T2] = trace([I − (αT1 + (1− α)T2) + Jn]−1)

while the left hand side of (5.29) becomes αK(T1) + (1 − α)K(T2). The
result therefore follows. �

We mention that there are counter–examples showing that (5.24) does
not hold for general irreducible and stochastic T1 and T2.
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6 The Kemeny constant for certain digraphs

Recall that the directed graph, or digraph, D of an n× n matrix B = (bi,j),
consists of n vertices which can be conveniently labeled 1, . . . , n, and di-
rected edges with a directed edge connecting vertex i with vertex j if and
only if bi,j 6= 0. A strongly connected digraph is a digraph in which there is a
sequence of directed edges, a walk, linking any two vertices. Finally, a cycle
in the graph is a sequence of directed edges which starts and ends at the
same vertex, and passes through distinct intermediate vertices. Similarly, a
path is a sequence of directed edges which passes through distinct interme-
diate vertices.

In this section we shall investigate the Kemeny constant of Markov chains
with an underlying digraph such that the constant is only dependent on the
graph structure and not on the actual transition probabilities. For this
purpose let D be a strongly connected digraph on n vertices and let ΣD

denote the set of all stochastic matrices of order n whose digraph is contained
in D. We begin with the following lemma which finds necessary conditions
for the dependency of the Kemeny constant only on the digraph.

Lemma 6.1 Let D be a strongly connected digraph on n vertices. Suppose
that there is γ such that for all irreducible T ∈ ΣD, K(T ) = γ. Then

(a) all cycles in D have the same length, say k;

(b) every pair of cycles in D intersect in at least one vertex;

(c) (I − T )# exists for all T ∈ ΣD;

(d) For all T ∈ ΣD, K(T ) = 2n−k+1
2 .

Proof. (a) Fix a cycle C of D. Let T ∈ ΣD be a (0, 1)–matrix such that the
arcs of C correspond to nonzero entries in T and such that C is the unique
cycle in the digraph of T , and such that the vertices which are not on C are
not on any cycle in the digraph of T . One can construct such a T as follows.
For each vertex i not on C, let di denote the length of a shortest path from
i to a vertex of C, and let p denote the maximum of the dis. Partition the
vertices of D not on C as S1, . . . , Sp, where Sj = {i|di = j}, j = 1, . . . , p.
Note that for each i ∈ S1, there is a vertex m(i) on C such that i → m(i) is
an arc of D. Similarly, for each j = 2, . . . , p and each vertex i ∈ Sj , there is
a vertex m(i) ∈ Sj−1 such that i → m(i) is an arc of D. It is readily verified
(by induction on p, for example) that subgraph D̂ of D formed from the
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arcs of C and the arcs i → m(i) as i ranges over the vertices not on C, has
exactly one cycle, namely C. We may then take T to be the (0, 1) adjacency
matrix of D̂.

Let k be the length of the cycle C. Then T can be written as a
2 × 2 block triangular matrix, with one diagonal block of order k which
is equal to AC , the adjacency matrix of C, and where the other diag-
onal block is of order n − k and is triangular with all diagonal entries
zero. It now follows that (I − T )# exists, and from the fact (see [16])
that (I − AC)# has all diagonal entries equal to k−1

2k , we find that that
trace(I − T )# = k−1

2 + n − k = 2n−k−1
2 . Hence, for every ε > 0 there is an

irreducible B ∈ ΣD such that
∣∣trace(I −B)# − 2n−k−1

2

∣∣ < ε; it now follows
that γ = 2n−k+1

2 . Observe that if D contains a cycle of length m 6= k, an
analogous argument yields γ = 2n−m+1

2 , a contradiction. Thus, all cycles in
D have length k.

(b) Suppose that D contains two cycles C1 and C2 that do not share any
vertices. Let T ∈ ΣD be a (0, 1) matrix such that the arcs of C1 and C2

correspond to nonzero entries in T , while the vertices of the digraph not on
C1 and C2 are not on any cycle. (Such a T can be constructed in a manner
analogous to that described in the proof of a) above.) Then the eigenvalues
of T consist of the k-th roots of unity, each of algebraic multiplicity two, and
0 of algebraic multiplicity n − 2k. Further, there is an irreducible matrix
B ∈ ΣD whose spectrum is arbitrarily close to that of T . For such a B, the
spectrum of I −B consists of the algebraically simple eigenvalue 0, a small
positive eigenvalue r close to 0, and n − 2 other eigenvalues with positive
real parts. It follows that there is an irreducible matrix B ∈ ΣD such that
trace(I − B)# ≥ 1

r > 2n−k−1
2 , contrary to our assumption. Hence any two

cycles of D must intersect.

(c) Since every pair of cycles in D share a vertex, we see that if T ∈ ΣD

is reducible, then it has a single essential class of indices, so that 1 is an
algebraically simple eigenvalue of T . Thus, (I−T )# exists for each T ∈ ΣD.
Finally, (d) follows from continuity. �

We say that a digraph D has property S(k) if every vertex of D has pos-
itive outdegree, all cycles of D intersect, and all cycles of D have length k.
Observe that for such a digraph and any T ∈ ΣD, (I − T )# exists. Further-
more, if D has property S(k), we see that there is a γ such that K(T ) = γ,
for all irreducible T ∈ ΣD if and only if K(T ) = γ, for all T ∈ ΣD.

Recall that the vertices of a strongly connected digraph D that is periodic
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with period k can be partitioned into cyclically transferring classes, namely
into sets of vertices S1, . . . , Sk, with the property that the only arcs in D
are of the form u → v, for some u ∈ Si and v ∈ Si+1, i = 1, . . . , k.

Theorem 6.2 Let D be a strongly connected digraph on n vertices with
property S(k). If there is a γ such that K(T ) = γ, for all T ∈ ΣD, then D
has the property that one of its cyclically transferring classes has cardinality
1 or, equivalently, there is a vertex of D that is on every cycle in D.

Proof. We proceed by induction on the number of arcs in D, and note that
the cases that D has just two arcs is readily verified.

Suppose now that for some m ≥ 2, the result holds for strongly connected
digraphs with at most m arcs, and that D has m+1 arcs. Let the sizes of the
cyclically transferring classes, say S1, . . . , Sk, be m1, . . . ,mk, respectively.
Note that it is enough to show that mi = 1, for some i. Suppose that D
has vertices u1, u2, u3 such that u1, u2 ∈ Sp and u3 ∈ Sp+1, u1, u2 → u3, and
the outdegree of u1 is at least two, say with u1 → u4, for some u4 6= u3.
Note that since all cycles in D have length k, no pair of vertices in Sp are
on a common cycle. Since u1 → u4 and D is strongly connected, there is
a shortest path from u4 to u1 in D. Evidently such a path avoids the arc
u1 → u3. Also, since u2 → u3, there is a shortest path from u3 back to
u2 necessarily that avoids the arc u1 → u3. Since all pairs of cycles in D
intersect, the cycle using the arc u1 → u4, say C1, and the cycle using the
arc u2 → u3, say C2, must intersect in a vertex v. Consider the digraph D̂
obtained by D by deleting the arc u1 → u3. Since D̂ contains a path from u1

to v and a path from v to u3, we see that D̂ is strongly connected. Note that
D and D̂ have the same cyclically transferring classes. To see this observe
that there is a path from u3 to u1 of length k− 1 in D and hence also in D̂,
so that there is a walk from u1 to u3 in D̂ of length 1 mod k. Finally, D̂
inherits property S(k) from D, and so from the induction hypothesis, some
mi must be 1, as desired.

It remains to consider the case that for each vertex u of D of outdegree
two or more, if u → v, then the indegree of v is one. In particular, for any
vertex w of indegree greater than one, if x → w, then x has outdegree one.
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It follows that if T ∈ ΣD is irreducible, than T can be written as

T =


0 T1 0 · · · 0
0 0 T2 · · · 0
...

. . . . . .
...

0
. . . Tk−1

Tk 0 · · · 0 0

 , (6.30)

where each Ti can be permuted to the form

yT
1

. . .
yT

li
1p1

. . .
1pqi


,

for some positive vectors yj , j = 1, . . . , li. Suppose that some pj ≥ 2.
Without loss of generality, we may assume that for some r ≥ 3, t1r = t2r = 1,
for some T ∈ ΣD. Write any T ∈ ΣD as

T =

0 0 eT
r−2

0 0 eT
r−2

x y T̂

 .

Noting that eT
1 − eT

2 is a left null vector for T , it follows that T is similar to
the matrix [

0 0
x− y B

]
, where B =

[
0 et

r−1

x + y T

]
.

In particular, letting D̃ be the digraph obtained from D by coalescing ver-
tices 1 and 2 into a single vertex labeled a, say, and we see that as T ranges
over ΣD, B ranges over ΣD̃. Note that no cycle in D uses both vertices 1 and
2, so each cycle in D corresponds to a unique cycle in D̃. Furthermore, D̃
is strongly connected, and has property S(k). By the induction hypothesis,
there is a vertex w of D̃ that is on every cycle in D̃. If w 6= a, it follows that
every cycle in D goes through w, as desired. On the other hand, if w = a,
then in D every cycle goes through vertex 1 or vertex 2. But since vertices
1 and 2 have outdegree one with common out-neighbor r, we can find that
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every cycle in D goes through the vertex r.

We may now assume that each pj = 1, so that each Ti has the form
yT
1

. . .
yT

li
I

 .

It follows that mi ≤ mi+1, for each i = 1, . . . , k, with mk+1 = m1. Hence,
m1 ≤ m2 ≤ · · · ≤ mk ≤ m1, so that each of the vectors yi is in fact 1 × 1.
Thus we find that each T ∈ ΣD must be a (0, 1)−matrix. Thus, each such
T is a permutation matrix, and again the conclusion follows. �

Corollary 6.3 Let D be a strongly connected digraph. There is a γ such
that each irreducible matrix T ∈ ΣD satisfies K(T ) = γ if and only if D has
property S(k) for some k, and there is a vertex of D that lies on every cycle
in D.

Proof. Suppose that D has n vertices, has property S(k) for some 1 ≤
k ≤ n, and that there is a vertex that lies on every cycle. If T is an ir-
reducible matrix in ΣD, then we may write T in cyclic form (6.30). Note
that the cyclic products TiTi+1 . . . TkT1 . . . Ti−1, i = 1, . . . , k, share the same
non-zero eigenvalues; further, since there is a vertex that lies on every cycle
of D, one of the cyclic products above must be the 1× 1 matrix [1]. It now
follows that the eigenvalues of T consist of the k-th roots of unity (each with
multiplicity 1), and 0 with multiplicity n− k. As all such T share the same
eigenvalues, we find from (2.7) that K(T ) is constant as T ranges over the
irreducible matrices in ΣD.

The converse follows from Lemma 6.1 and Theorem 6.3. �
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