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We compute the entanglement entropy, in the real space, of the ground state of the integer Quantum Hall
states for three different domains embedded in the cylinder, the disk and the sphere. We establish the validity
of the area law with a vanishing value of the topological entanglement entropy. The entropy per unit length of
the perimeter depends on the filling fraction, but it is independent of the geometry.
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In recent years the notion of entanglement has become a
new tool for analyzing the quantum states that arise in
condensed-matter systems.1 This notion has brought a quan-
tum information perspective to traditional problems and
techniques in the field, such as quantum phase transitions,
numerical simulation methods, and renormalization group. A
generic measure of entanglement is given by the von Neu-
mann entropy SA of the reduced density matrix of a part A of
the total system. This quantity measures the amount of quan-
tum entanglement of the subsystem A with its environment,
usually denoted as B. For finite systems, one has that SA
=SB, so this quantity reflects a property shared by A and B. If
the quantum state has a finite correlation length, then heuris-
tic arguments implies that the entropy is proportional to the
area of the common boundary between A and B. This state-
ment is known as the area law, and it seems to be a universal
property satisfied by the quantum states appearing in Ref. 2
�see Ref. 2 for some rigorous results�. There are logarithmic
violations of this law in critical one dimensional systems,
and some higher dimensional fermionic systems, but the
former ones can be understood using conformal field theory.3

Particularly interesting are the two dimensional systems
with topological order, where the entropy law becomes SA
=cL−�+O�1 /L�, where L is the length of the boundary, c is
a nonuniversal constant and � is a quantity called topological
entanglement entropy.4 The excitations of these systems are
anyons and it turns out that � is the logarithm of the total
quantum dimension of these anyons. The paradigmatic sys-
tem with �abelian� anyons is the fractional Quantum Hall
�FQH� state with filling fraction 1 /m, for which �= 1

2 log m.
The area, or rather, perimeter law of the FQH states has been
the target of several recent studies,5–7 in order to confirm its
validity and to compute the value of � predicted in Ref. 4
�see Refs. 5 and 8 for the study of the entanglement entropy
for particle partitioning�. Reference7 uses Chern-Simons
theory, finding the predicted value of �, however the linear
behavior of SA, is not captured, due to the purely topological
nature of this theory. There are numerical studies using the
Laughlin wave function5 and exact diagonalization,6 for fill-
ing fractions �=1 /3,1 /5 and the �=5 /2 Pfaffian state. The
approaches of Refs. 5 and 6 use the orbital basis for the
Landau levels. The close relationship of this basis to the
spatial partitioning of the blocks leads to an area law of the
form SA=c�lA−�+O�1 / lA�, where lA is the number of Lan-
dau orbitals in the block A. The numerical values of � com-
puted in the spherical geometry5 and the torus geometry6

agree, within some precision, with their theoretical values,
despite of the fact that the systems analyzed are not very
large. We remark that the previous form of the area law in
the orbital basis holds only in the case of fractional fillings.
For integer fillings the orbital partitioning entropy is actually
zero since the ground state is simply a product state in that
basis.

In this Brief Report we address the problem of computing
the entanglement entropy SA directly in real space, for the
Integer Quantum Hall states with ��1, in three different
domains: strips in the cylinder, annulus in the disk and
casquettes in the sphere. The reason for choosing integer
filling fractions is that the ground state is given by free fer-
mions, where standard techniques for computing entangle-
ment entropies are available.9 We find the area law SA
�c�L−�, with �=0 in agreement with general arguments.4

The nonuniversal constant c� is computed analytically for �
=1 and numerically up to �=5. We also analyze the cross-
over from thin to large blocks, finding that the onset of the
area law occurs when the width of the boundary is larger that
a correlation length. The blocks, whose entropy we have
computed, are adapted to the standard gauge choices used to
analyze the geometries of the cylinder, the disk and the
sphere.

Let us consider the Landau model for a particle in a cyl-
inder of size Lx�Ly. The one particle wave function in the
lowest Landau level �LLL�, in the gauge A=B�0,x�, is �in
units of the magnetic length � equal to one�

�ky
�x,y� =

1

�1/4Ly
1/2eikyye−�x − ky�2/2. �1�

On the cylinder, the identification of the wave function along
the y direction implies

ky =
2�n

Ly
, −

n0

2
+ 1 � n �

n0

2
. �2�

The number of LLLs, n0, is obtained imposing that the par-
ticle lives in the strip �x��Lx /2, which yields n0=

LxLy

2� . This
value also gives the total number of quantum fluxes through
the box. The electron operator can be written as

	�x,y� = �
ky

�ky
�x,y�cky

+ higher LLs, �3�

where cky
is the fermionic destruction operator of the LLL

labeled by ky. The extra term in Eq. �3� involves the remain-
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ing Landau levels, which are empty for filling fraction �=1.
Later on, we shall take them into account when considering
higher filling fractions �. The ground state for �=1 is given
by

�
0� = �ky
cky

† �0� , �4�

where �0� is the Fock vacuum. The two-point fermion cor-
relator in this state is

Cr,r� = �
0�	†�x,y�	�x�,y���
0� . �5�

Using Eqs. �3� and �4� one finds

Cr,r� = �
ky

�ky

� �x,y��ky
�x�,y�� , �6�

and plugging Eq. �1�

Cr,r� =
1

�1/2Ly
�
ky

eiky�y�−y�e−1/2��x − ky�2+�x� − ky�2�. �7�

The sum in Eq. �7� is over the n0 values of ky given in Eq.
�2�. In the limit Lx ,Ly→� correlator �6� becomes

Cr,r� =
1

2�
e−1/4�x − x��2−1/4�y − y��2−i/2�x+x���y−y��, �8�

and it is short range with a correlation length proportional to
the magnetic length �=1.

We want to compute the entanglement entropy, SD, of the
state 
0, in the strip

D:−
lx

2
� x �

lx

2
, 0 � y � Ly . �9�

This entropy is given by the formula SD=TrDc
�
0��
0�,

where Dc is the complement of D in the cylinder. The com-
putation of SD is done in two steps.9 First one restricts the
correlation matrix Cr,r�, to the domain D, i.e.,

C̃r,r� = Cr,r�, r,r� � D . �10�

Next, one diagonalizes C̃r,r�, i.e.,

	
D

d2r�C̃r,r�fm�r�� = 
mfm�r� . �11�

The entropy SD is obtained by means of

SD = �
m

H�
m� , �12�

where H�x�=−x log x− �1−x�log�1−x�. Eigenvalue problem
�11� can be rather difficult for a generic domain D; however,
for strip �9� this task simplifies. The basic observation is that

C̃r,r� only depends on the difference y−y�, which suggests
the ansatz

fm�r� = e−i�mygm�x� . �13�

Plugging Eq. �13� into Eq. �11�, and taking the limit Ly
→� one gets

e−1/2x2+�mx−�2
Am = 
mgm�x� , �14�

where

Am = 	
−lx/2

lx/2 dx

�1/2e−1/2�x2+�mx�gm�x� . �15�

For a nonvanishing eigenvalue 
m, Eq. �14� fixes the func-
tion gm�x�, up to an overall factor. Plugging Eq. �14� into Eq.
�15�, the constant Am drops, and one gets the eigenvalue


m = 	
−lx/2

lx/2 dx

�1/2e−�x − �m�2
. �16�

On the other hand, if 
m=0, Eq. �14� yields Am=0, which
becomes a condition for the function gm. However, vanishing
eigenvalues do not contribute to entropy �12�, so the solution
of Am=0 is not required. Recalling that function �13� is de-
fined on domain �9�, one obtains a quantization condition
similar to Eq. �2�

�m =
2�m

Ly
, ,−

n0

2
+ 1 � m �

n0

2
. �17�

In fact, the eigenfunctions fm of C̃r,r� coincide with the con-
jugate of the LLL eigenfunctions �ky

� , under the identification
ky =�m. Moreover, Eq. �16� can be written as the norm of Eq.
�1� over domain �9�; i.e.,


m = 	
D

d2r���m
�r��2, �18�

which means that 
m is the probability of finding the electron
in the state ky =�m in the domain D. Integrating Eq. �16�
yields


m 
 
��m,lx� =
1

2
�Erf��m +

lx

2

 − Erf��m −

lx

2

� ,

�19�

where Erf�x� is the error function. The function H�
�� , lx�� is
localized in the regions ���� lx /2, associated to the bound-
aries of D, where it can be approximated as


��,lx� �
1

2
�1 − Erf���� −

lx

2

� =

1

2
Erfc���� −

lx

2

 ,

�20�

where Erfc�x�=1−Erf�x� is the complementary error func-
tion. In the limit Ly �1, one can use Eq. �17� to write Eq.
�12� as the integral,

SD 
 S�lx,Ly� =
Ly

2�
	

−�

�

d�H�
��,lx�� . �21�

Furthermore, if lx�1, the main contribution to Eq. �21�
comes from the values of � around �lx /2, where one can
use approximation �20�. Shifting the integration variable �,
one finally obtains

S�lx,Ly� = 2ccylinderLy , �22�

where the constant ccylinder is given by
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ccylinder = 	
−�

� d�

2�
H�1

2
Erfc���
 � 0.203 290 81. �23�

Equation �22� is the area law satisfied by SD in the limit lx
�1. The absence of a constant term in Eq. �22� implies the
vanishing of the topological entropy �.4

Equations �22� and �23� were derived under the assump-
tion that lx�1, but using Eq. �12� one can estimate the value
of lx above which the area law �22� starts to be valid. In Fig.
1, we plot S�lx ,Ly� /Ly as a function of �lx, for various values
of Ly. For lx� lx,c=2 the entropy reaches a constant value
2ccylinder given by Eq. �23�, which agrees with area law �22�.
The value of lx,c is easy to understand, it means that the
width of D, along the x direction, must be bigger than two
magnetic lengths, which guarantees the existence of two
boundaries with a width of one correlation length each. Fig-
ure 1 also shows that the entropy increases linearly with �lx
for lx� lx,c, and reminds the result of Ref. 6, where the en-
tropy of the �=1 /3,1 /5 FQH states was computed for the
torus in the orbital basis. These authors found that the en-
tropy of a strip of width �, varies as ��, where � label the
orbital angular momenta. Our computation and that of Ref. 6
differ both in the basis and the filling fraction, so the previ-
ous comparison has to be taken with care.

Let us now consider the disk geometry in the Landau
gauge where the eigenfunctions of the LLL are given by

�m�z� =
zm

�2�2mm!�1/2e−�z�2/2, m = 0,1, . . . . �24�

The two-point fermion correlator is similar to Eq. �8�,

Cz,z� =
1

2�
e−1/4��z�2+�z��2+2z�z��. �25�

We want to compute the entanglement entropy in the annulus
of radii r1�r2,

D:r1 � �z� � r2. �26�

The procedure follows closely the case of the cylinder. The
eigenfunctions fm�z� of Eq. �11�, with nonzero eigenvalues

m, are given by fm�z�=�m

� �z��n=0,1 , . . .� and the eigenval-
ues are


m = 	
D

d2z��m�z��2, n = 0,1, . . . . �27�

Plugging Eq. �24� into Eq. �27� and performing the integral
over domain �26�, one finds


m�r1,r2� =
1

m!
���m + 1,

r1
2

2

 − ��m + 1,

r2
2

2

� . �28�

The entropy of the annulus is given by

S�r1,r2� = �
m=0

�

H�
m�r1,r2�� , �29�

which, for large values of r1 and r2, satisfies the area law

S�r1,r2� = 2��r1 + r2�cdisk, �30�

with cdisk=ccylinder. Equation �30� can be proved analytically
along the same lines as was done before.

Another example which can be solved explicitly is that of
an electron moving on a sphere of radius R under the influ-
ence of a radial magnetic field created by a monopole at the
origin. In the gauge where the vector potential is given by
A=�Q /eR cot �, the wave functions of the LLLs are the
monopole harmonics,

YQ,Q,m = �2Q + 1

4�
� 2Q

Q − m

�1/2

�− 1�Q−muQ+mvQ−m,

�31�

where u=cos�� /2�e−i�/2, v=sin�� /2�ei�/2, with � and � the
polar and azimuthal angles, and 2Q the total quantum flux
traversing the sphere. The two-point fermion correlator is
given by

Cr,r� = �
m=−Q

Q

YQ,Q,m
� ��,��YQ,Q,m���,��� . �32�

Making the change n=m+Q one can write Eq. �32� as

Cr,r� =
2Q + 1

4�
�
n=0

2Q �2Q

n

�ūu��n�v̄v��2Q−n. �33�

We are interested in computing the entanglement entropy in
the spherical segment �i.e., casquette�

D:�a � � � �b �34�

bounded by the polar angles �1 and �2. The eigenfunctions of
correlator �33� in domain �34�, with nonzero eigenvalue, are
given by fm=YQ,Q,m

� , with


n = 	
�a

�b

d�	
0

2�

d��YQ,Q,n−Q�2. �35�

Performing the integral one finds,

FIG. 1. Plot of S�lx ,Ly� as a function of �lx for
Ly =20,30,40.
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n��a,�b�

= �2Q + 1��2Q

n

�B�cos2� �a

4Q + 2

,1 + n,1 − n + 2Q�

− B�cos2� �b

4Q + 2

,1 + n,1 − n + 2Q��,

�n = 0,1, . . . ,2Q� , �36�

where B�z ,n ,m� is the incomplete beta function and �a�b�
=a�b�� / �2Q+1�. The entropy of region �34� is computed
from

S��a,�b� = �
n=0

2Q

H�
m��a,�b�� . �37�

The perimeter of the casquette of angle � is given by P�

=2�R sin �, where the radius is given by R=�Q as follows
from computing the number of quantum fluxes. For large
values of Q, entropy �37� satisfies the area law

S��a,�b� = �P��a� + P��b��csphere, �38�

with csphere=ccylinder=cdisk so that the three geometries yield
the same entropy per unit length of the perimeter.

The previous results can be easily generalized for integer
filling fractions ��1. The correlation matrix Cr,r� is given
by

Cr,r� = �
n=0,�−1

�
m

�n,m
� �r��n,m�r�� , �39�

where �n,m�r� is the wave function of the state m in the nth

Landau level. The eigenfunctions of C̃r,r� are linear combi-
nations of �n,m

� �r� with n=0,1 , . . . ,�−1, and their eigenval-
ues are those of the ��� matrix,

�m�n,n�� = 	
D

d2r�n,m
� �r��n�,m�r�, n,n� = 0, . . . ,� − 1.

�40�

The entanglement entropy is computed using Eq. �12�, where
the summation runs over all the eigenvalues of �m. The area

law SD�c�L−�� remains valid, with ��=0, and a value of
c�, which depends on the filling fraction �see Fig. 2�.

In summary, we have derived in this Brief Report the area
law satisfied by the entanglement entropy of the integer
Quantum Hall states with filling fraction, �, for different
types of domains in the cylinder, the disk and the sphere. We
have computed the nonuniversal constant c� of the area law
as a function of �. The topological entanglement entropy
vanishes, in agreement with the theoretical results.4,7 For �
=1, we have found a simple interpretation of the area law. In
this case the entanglement entropy is given by the sum over
the LLL states, of the Shanon entropies associated to finding
an electron or a hole in the domain. The area law arises from
the contribution of the LLLs inside a correlation length of
the boundary of the domain. Our method allows the compu-
tation of the entanglement entropy for more complicated do-
mains. Of special interest are those with curvature singulari-
ties wether one may expect deviations from the area law.
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FIG. 2. The points denote the values of the constant c� in the
area law for integer filling fractions �=1, . . . ,5. The continuous line
is a forth order polynomial fit.
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