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Gaussian Beam Mode Analysis of Standing Waves
Between Two Coupled Corrugated Horns

Neil Trappe, J. Anthony Murphy, Member, IEEE, Stafford Withington, Member, IEEE, and Willem Jellema

Abstract—In this paper we present the theoretical analysis of
the effects of standing waves between coupled horn antennas that
can occur in terahertz quasi-optical systems. In particular we il-
lustrate the approach for the case of two coupled horn antennas as
the distance between them is varied. The full mode matching scat-
tering matrix approach is based on combining a standard wave-
guide mode description of the horn antenna and a quasi-optical
Gaussian beam description of the free space propagation. Track is
kept of both the backward and forward going components of the
propagating fields. We compare theoretical predictions with actual
experimental test results for a quasi-optical system operating at a
frequency of 0.480 THz.

Index Terms—Gaussian beam mode analysis, quasioptical sys-
tems, standing waves.

1. INTRODUCTION

HE now standard theoretical framework for quasi-optical

beam guide systems based on Gaussian beam mode anal-
ysis [1] can be successfully extended to include partial reflec-
tions and standing waves in THz optical systems fed by horn
antennas. Propagation in the uniform waveguide and beamguide
sections of the system can be accurately described in terms of
the corresponding modes, with the effects of any discontinuities
modeled using a mode matching approach [2]. By combining
free space propagation using Gaussian Beam Mode Analysis
[3] with waveguide modes in the horn, complete optical sys-
tems can be analyzed [4]. The horn is regarded as a combina-
tion of a large number of waveguide segments in succession,
which match the horn profile. At each junction power is scat-
tered between adjacent modes. In the modal view of propagation
waveguide modes are transformed at the horn aperture to free
space Gaussian modes that subsequently propagate through the
optics. Laguerre-Gaussian modes are most convenient for free
space propagation when the horn feeds possess a high degree of
cylindrical symmetry. The techniques available within Gaussian
Beam Mode theory [3] to describe beam guide systems include
effects such as truncation [5].
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II. THEORY

The characteristics of a section of the horn-quasi-optical
system are represented by a scattering matrix that describes the
redistribution of power between adjacent modes (equivalent to
waveguide modes or free space modes). The mode coefficients
of the forward and backward propagating modes at the input
and output planes of any subsection or even the optical system
as a whole are related through the usual scattering matrix
relationships, as for example in [2]. Each part of the system
is analyzed separately to determine the appropriate scattering
matrix for the subsection and these are then cascaded, where
the cascaded matrix elements are of the usual form, again
for example as in [2]. A horn antenna can be regarded as a
tapered waveguide with nonconstant diameter along the axis of
propagation.

At the horn aperture transverse electric (TE) and transverse
magnetic (TM) waveguide modes are transformed to free space
modes (Gaussian Beam modes). The transformation matrix re-
quires the computation of the appropriate overlap integrals. The
transverse electric field E; ¢, at the mouth of the horn can be
written as a linear sum of TE and TM modal fields. If one is con-
sidering conical horns (both smooth walled and corrugated), fed
with a single TE;; mode polarized in the x direction, then the
waveguide segments are cylindrical and the appropriate TE and
TM modes eTF and e™ can be written in the form [4]
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where pq; in (1) represents the [th zero of J(z), and p]; repre-

sents the /th zero of .Jj (z). The modes are normalized in such a

2
way as to make the integral [, |e;rE/ TM| 27rdr equal to unity.

For free space coupling to a conical horn it is most appropriate
to employ the Associated Laguerre-Gaussian set because of
the cylindrical symmetry of the system. For a wave travelling
in the positive z direction these have a general form given by
(2) [3], where « is an integer representing the degree of the
Laguerre polynomial. W and R have their usual significance
and arctan(mW?2/AR) is the zero order phase slippage [3]. The
waveguide modes of a conical horn will clearly couple only to
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Each waveguide mode field is transformed to the corre-
sponding free space mode using

efl :ZTO

WO+ T2 W2[cos26i +sin2¢j]  (3)

nm n

where T, and T?2,, are given by
70, = / (w23)". (e$) rdrds (4a)
A
T2, = / (02n)". (e) rdrd¢ (4b)
A

where n represents the unit vector n = cos 2¢i + sin 2¢j. The
overall horn aperture field e, is given by

€total

= BJUDi+ B0 [cos 24 + sin 2¢5].  (5)

Clearly using (5), the coefficients B® and B? for the Laguerre
modes of degree 0 and 2 can be written as

=3 T, An S T2, A, (6)

Incorporating this transformation to free space into the modal
matching technique, described in (4), the matrix will have the
S11

form
B Sl o T+
[51= [521 522} N {T 0 } )

where Tt represents the conjugate transpose of 7. The trans-
formation matrix [T'] can be regarded as the [S21] matrix com-
ponent of a scattering matrix [S] that transforms the waveguide
to beam guide modal descriptions of the propagating fields at
the plane of the horn aperture. As reversing the direction from
free space to waveguide the [S12] = [S21]7 ™, where T repre-
sents a conjugate transpose. For a horn whose aperture is wide
compared to the wavelength of the incident radiation (several
wavelengths wide) it can be assumed that there is no appreciable

and B2 =
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Fig. 1. Two corrugated horns matched by an ideal lens. The standing wave
profile is observed by measuring the transmitted power in the waveguide of the
receiving horn (S»; for the system).

reflection of the waveguide modes at the aperture. This implies
that [S11] = [0], as only the highest order modes, which con-
tribute little to the beam, will have a guide impedance appre-
ciably different from that of free space. Also, free space radia-
tion propagating in the negative direction toward the horn and
which misses the horn mouth is not reflected again and is con-
sidered lost, thus [S22] = [0]. The cross section of the reflected
beam that overlaps with the horn will be coupled to the wave-
guide modes by the [S72] matrix.

In certain situations when the waveguide is only a few wave-
lengths across it is possible to include the effect of the reflection
at the horn aperture by modeling the final step to free space as
a waveguide step to a large waveguide. This approach is more
computationally intensive as the number of waveguide modes
required to describe the field increases, since the mode set is
defined by a guide with a diameter equal to the larger guide.

III. EXAMPLES

We now apply the above theory to two specific examples.
In the first case, an ideal optical system is placed between the
horns. In effect the phase curvature of the first horn field is trans-
formed to fit the phase curvature of the second horn and the free
space fundamental mode component of the two beams are per-
fectly matched. This setup is illustrated in Fig. 1, where we as-
sume the phase transformer is a perfect lossless thin dielectric
lens. As the aperture separation is increased, the focal length of
the lens is also adjusted to correctly transform the phase curva-
ture. This simple model is representative of heterodyne receivers
where a local oscillator (LO) source is matched to the detector
horn via an optical system and so this model has important im-
plications for system design.

In a second example, we consider the case where the two
horns face each other with no intermediate optics. As the dis-
tance z is incremented the radiated power from the first horn
is not focused to the aperture of the second horn, but spreads
diffractively. This second example is relevant for near field mea-
surements of horn antenna patterns using a scanning horn, where
a standing wave may be set up on axis between the horns. Ad-
ditionally, standing wave effects were explored experimentally
in a test setup. We compare the results obtained with the model
predictions.

Case A: Quasi-Optically Coupled Horns: In this example
the modal matching technique is used to predict the overall
transmission and reflection properties [4] of the setup illustrated
in Fig. 1. To keep track of the free space beam mode parameters,
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Fig.2. Theoretical far-field plots in the E-plane and H-plane of the horns. Also
shown is the cross-polar power in the D plane.

the classical ABCD matrix technique is used [6]. What is of in-
terest is the amount of power coupled between the waveguide
sections of each horn. Thus, to observe the transmission prop-
erties of the entire optical system between the two waveguides,
the corresponding total cascaded S; matrix is computed as a
function of the distance z between the horns. The waveguide
radii are limited to allow only the TE;; to propagate there, as
would be the normal case. For efficiency we limit the number of
modes to 20 waveguide modes (10 TE and 10 TM) within the
horn structure and 20 freespace Gaussian modes (10 Laguerre
of degree 0 and 10 modes of degree 2).

The wavelength chosen for the analysisis A = 1 mm, the two
horns are of the same design with a slant length of 40 mm, an
aperture radius of 4 mm and 3 corrugations per wavelength. This
theoretical horn produces good symmetry between the E and H
plane. A theoretical far-field pattern to illustrate the symmetric
FE and H cuts is shown in Fig. 2. The low cross-polar levels
associated with this particular horn design indicate that it is of
an optimal design.

Fig. 3 illustrates the standing wave profile calculated as
the distance between the two horns is incremented in steps of
A/50 between z = 0 to 25 mm. This is the power coupling
P31|S21(TE1; — TE11)|? plotted as a function of z, the dis-
tance between the two apertures. Physically this corresponds to
the power reaching the waveguide section of the receiving horn
and carried by the fundamental TE;; mode, the only mode that
can propagate in the waveguide there.

As can be seen in Fig. 3 the estimated power coupling P,
between the two horns appears to have standing wave features.
In effect, this optical setup acts like as a lossy cavity with some
power trapped within the system. It is noticable in Fig. 4, where
the coupling is shown when the horns are only seperated by dis-
tances up to 5 mm, that the features are seperated by increments
in z of A/2, illustrating cavity behavior in the system.

Also shown in Fig. 3 is the calculated power coupling be-
tween the two horns, when the aperture fields are approximated
by the usual truncated Bessel function of order zero with the
appropriate phase curvature term to represent the slant length of
the horns (E = Jy(2.405r /a) exp(—jkr?/2L), where a is the
radius of the guide, L is the slant length [7]). Using a technique,
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Fig. 3. Power coupling between two corrugated horns as the distance between

the apertures is incremented from the apertures touching to a distance of 25 mm.
Also shown is the average power coupling between the horns with no reflections
included.
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Fig. 4. The power coupling between two corrugated horns as the distance is
varied from 0 to 5 mm, highlighting the cavity resonances separated by A/2
distances. Also shown (thick line) is the power coupling between the horns
calculated using a simple truncated Bessel model.

described in detail in [8], the mode coefficients are calculated
for each horn (A,,, B,,) and the horn to horn power coupling 7
can be calculated for this ideal optical system using

2
n=>"(AmB;,)exp (j(2m + 1)Adoo)| , (8)

m

where A¢gg the refers to the total phase slippage between the
horn apertures. It can be seen from Fig. 3 that the overall power
coupling calculated using the full modal description of the horns
matches closely the coupling calculated using the more basic
description of the system with reflection not included.

The assumption made in the results shown in Figs. 3 and 4
is that all the radiation reaching the waveguide of the horns is
transmitted and no power is reflected at the waveguide of the
horn. In real systems of course, there may be a detection device
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Fig. 5. Power coupling between two corrugated horns as the distance is varied

from 0 to 25 mm, including an extra reflection at the waveguide in the horn to
represent reflections at the some waveguide device.

placed in the receiver waveguide, and this might not absorb all
incident radiation but reflect a portion of the power back out
into the horn. A similar situation may occur in the source due
to a multiplier diode, for example. To include this effect in the
computational model we approximate the detection or source
device mismatch by a simple partially reflecting sheet in the
waveguide which have certain reflection and transmission co-
efficients. In this simple model some of the power carried by
the fundamental TE;; mode is reflected back to the corrugated
horn while a fraction is also transmitted down the waveguide
(actually representing detected power by the detection device
or radiated power by the source device).

The transmission and reflection coefficients r and ¢ at these
equivalent partially reflecting plane surfaces relate how much
of the incident beam is transmitted and how much is reflected.
These coefficients are related to the reflectivity R and the trans-
missivity 7" of the semi-reflecting sheets through the following:

R=|r? T=1t> )

When the system is taken to be lossless the reflectivity and
transmissivity are related by [1]

R+T=1. (10)

The semi-reflecting sheet is included in the modematching
technique using the equation

Sll
521

512
522

r t
t r

(1)

The effects of including the extra reflection in the waveguide
of the horn is illustrated in Fig. 5 and 6 over the same ranges
of between 5 and 25 mm between the horn apertures. In this
particular example the reflectivity R is set to 20%. The power
coupling between the horns has fallen as all the power cannot be
absorbed and the profile of the power coupling has changed due
to an extra reflection being included. The exact effect any real
waveguide device has on the incident beam is more difficult to
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Fig. 6. Power coupling between two corrugated horns as the distance is varied

from O to 5 mm, including an extra reflection at the waveguide in the horn to
represent reflections at some waveguide device.

1.00

0.98

Power coupling
@  truncated

0.94

Power coupling

0.92 1

0.90 T T T T
Distance between horns (mm)

Fig. 7. Power coupling between two corrugated horns as the distance is varied
from 0 to 5 mm, with 4 TV truncation (dashed line) included.

model accurately and what we have presented here is of course
a simplified alternative.

In the analysis presented thus far the ideal optical system
transmits all radiation between the two horns with no loss.
Clearly, in a real optical system the higher order freespace
modes are truncated by finite optical components (high spatial
frequency filtering). Any losses in the optics might clearly
reduce the cavity effects and therefore in order to describe a
more physically meaningful system, the number of modes al-
lowed to propagate between the horns is limited by introducing
beam truncation. In Fig. 1 this can be modeled by introducing
a circular aperture at the lens which automatically limits the
higher order modes (and throughtput) in the system. Fig. 7
compares the power coupling of the system when a truncating
aperture is included with a diameter of 4W, where W is the
local beam width parameter at the lens. It is noticable, that
when a truncating aperture is included, the cavity effects are
still evident indicating lower order modes are responsible for
these cavity effects.
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Fig. 8. Comparison of horn to horn coupling calculated using different horn
geometries.

Additionally, we analyze the power coupling profile that oc-
curs between two different horns, matched by an intermediate
optical system. Fig. 8 illustrates some examples. In the first case
a corrugated horn is coupled to a smooth walled horn having
the same aperture radius and slant length. The resonances now
occur at different inter-horn distances indicating that the geom-
etry of the horn is important. Also, we calculate the power cou-
pling between two smooth walled horns and it is noticeable that
again the profile structure is different. In each case the reso-
nances are still separated by a distance z equal to nA/2. This
clearly indicates the power coupling for each horn combination
in this optical setup is dependent on the individual horns used.
The lower average coupling between the two smooth walled
horns reflects the fact that the fields are less Gaussian.

Case B: Coupled Horns With No Intermediate Optics: We
now consider a second case where two horns are not matched
by coupling optics, but rather power is coupled directly via free
space propagation to the second horn. This example was also
investigated experimentally. We could thus compare the model
predictions with experimental results. The test setup is a near
field phase locked detection system operating at 480 GHz. The
details of the system are described in another paper [9]. Two
conical corrugated horns (whose geometry is well known) are
initially placed together aperture to aperture. Experimentally
the distance z between the horns is incremented in step sizes
of the order of A/20 and a measurement is recorded as the re-
ceiving horn travels on an accurate moving stage. The design
wavelength of the corrugated horn is 0.625 mm (480 GHz) and
the horn aperture has a radius of 2.5 mm and has a slant length
of 15.4 mm. The power coupling between the horns is shown in
Fig. 9 over an aperture separation ranging from 0 to 70 mm.

The same method of analysis as used above in case A is imple-
mented to predict the overall transmission and reflection prop-
erties of the system. In this case as no lens is included between
the horns, the power coupling levels are lower and as the dis-
tance z is increased the transmitted field expands transversely
to the propagation axis and so only part of this field can couple
to the receiving horn. A partially reflecting sheet is again used to
model the reflections due to the mixer at the waveguide section
of the horn, with R = 50%.
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Fig. 9(a) shows the measured and predicted power coupling
between the two horns as a function of horn separation over a
range of 0 to 14 mm, while Fig. 9(b) illustrates the coupling over
the complete 70 mm range, the maximum possible for the axial
translation stage in the measurement setup. As can be seen in
Fig. 9(a) and (b) the estimated power coupling P»; between the
two horns appears to have significant high @) cavity features in
contrast to the previous example, particularly when the distance
between the horns is small (0 to 5 mm). As the distance between
the apertures increases the power coupling becomes more reg-
ular and quasisinusoidal.

In the range of 4 to 10 mm, the model predicts the experi-
mental pattern with high accuracy. When the separation of the
horns is less than 4 mm, the amplitudes of the simulated standing
wave pattern appear to be too large although the erratic behavior
of its form has similar characteristics to the experimental result.
At such close distances to the horn apertures, of course, evanes-
cent and nonparaxial components of the fields will become im-
portant and the simple paraxial assumptions in the free space
mode model will not be adequate to predict exactly the behavior
of such a high @ system.

Similarly although over the horn separation range of 10 to 30
mm the model underestimates the amplitudes of the standing
wave pattern, as seen in Fig. 9(a) and (b), nevertheless the form
of the standing waves and the locations of the nodes and antin-
odes are accurately reproduced. The mixer in the waveguide at
the throat of the horn is treated in the model, as a simple dielec-
tric reflector having a constant reflectivity, which is clearly an
approximation, in particular as there will be some dependence
of the reflectivity on the amount of incident power.

The model therefore reproduces well many of the important
features of the standing wave behavior of the experimental
system and the approach can clearly be used to develop strate-
gies for reducing such effects.

Indeed, the average power coupling between the horns shows
very good agreement between the experimental and theoretical
results over the full 70 mm range, as illustrated in Fig. 9(b).
Although certain detailed features of the experimental standing
wave profile are not reproduced exactly by the model the
overall characteristic decay in the coupling is predicted very
precisely.

If one examines the scattering matrices which describe the
horn to horn coupling one finds that a small amount of power is
scattered from the TE;; mode to higher order modes as the radi-
ation propagates through the horn. These modes are only weakly
coupled to the fundamental TE;; mode and so become trapped
between the two horns since they are effectively reflected at the
second horn before reaching the throat. If the distance between
the two horns is such that the return trip is an integer number
of wavelengths resonance effects are seen. In fact, the effect is
dominated by multiple reflections of the TM1; mode.

As a further verification of the model, Fig. 10 shows the
horn power coupling calculated using a simple truncated Bessel
model for the corrugated horn compared to the full model
description used above. The overall power coupling, as the
aperture separation is increased, calculated using the two dif-
ferent techniques is seen to agree and the power coupling falls
off at the same rate with increasing distance.
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Fig. 9. Experimental power coupling compared to the analytical predictions for two aperture separation ranges (a) illustrates the comparison over a 14 mm range

and (b) over a 70 mm range.
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Fig. 10. Power coupling of a simple truncated Bessel model of the corrugated
horns (thick line) compared to model prediction calculated over a 70 mm range.

IV. CONCLUSION

In this paper, we have presented a technique for calculating
power coupling between two horns including the total trans-
mission and reflection properties of an entire optical system,
with a full electromagnetic description of the corrugated horns

involved. By extending the waveguide modal-matching tech-
nique, to describe freespace propagation, this allows multiple
reflections or standing waves to be predicted in simple optical
systems. We have applied this theory to analyze the interesting
effects observed when two corrugated horns are placed close to-
gether in transmitting and receiving mode. High () cavity effects
are observed when the horns are close together, especially when
the horn fields are not well matched by an optical system. These
effects have important consequences for heterodyne receivers of
course where the LO horn is usually imaged to the detector horn
via an optical system.

Further development of the approach is possible to under-
stand the effects of placing real optical components between the
horns. This opens up the possibility of designs with lossy aper-
tures, for example, to reduce these standing wave effects.
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