THE CENTRALIZER OF A SUBGROUP IN A GROUP ALGEBRA

SUSANNE DANZ, HARALD ELLERS, AND JOHN MURRAY

If R is a commutative ring, G is a finite group, and H is a subgroup of G, then the centralizer algebra $R G^{H}$ is the set of all elements of $R G$ that commute with all elements of H. The algebra $R G^{H}$ is a Hecke algebra in the sense that it is isomorphic to $\operatorname{End}_{R H \times G}(R G)=\operatorname{End}_{R H \times G}\left(1_{\Delta H}{ }^{H \times G}\right)$. The authors have been studying the representation theory of these algebras in several recent and not so recent papers [4], [5], [6], [7], [10], [11], mainly in cases where G is p-solvable and H is normal, or when $G=S_{n}$ and $H=S_{m}$ for $n-3 \leq m \leq n$. Part of the original motivation was to see whether there might be a "weight conjecture" for these algebras, one that would simultaneously generalize Alperin's weight conjecture and Brauer's First Main Theorem on Blocks. This idea is explained in more detail in in [4], [5], and [6]. Also, when H is a p-subgroup these algebras play an important role in Green's approach to modular representation theory and in Puig's theory of points. Along the way, several fairly basic and general questions have come up. This paper mainly consists of counterexamples to conjectures that one might be led to make based on the evidence in our earlier papers.

When coefficients belong to an algebraically closed field F of characteristic 0 , or of characteristic p where $p \nmid|G|$, the representation theory of a centralizer algebra $F G^{H}$ is easy to understand.
(i) The algebra $F G^{H}$ is semisimple.
(ii) If S is a simple $F H$-module and T is a simple $F G$-module such that $\operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right) \neq 0$, then the $F G^{H}$-module $\operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right)$ is simple. (The space of homomorphisms is an $F G^{H}$-module via the multiplication $(a \varphi)(v)=a(\varphi(v))$ for all $a \in F G^{H}, \varphi \in \operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right)$, and $v \in S$.)
(iii) Every simple $F G^{H}$-module arises in this way, and appears just once as S and T run through all possibilities.
(iv) The center of $F G^{H}$ is generated as an F-algebra by the centers of $F G$ and FH.
(v) Every primitive central idempotent of $F G^{H}$ has the form $e f$, where e is a primitive central idempotent of $F G$ and f is a primitive central idempotent of $F H$.

If the characteristic of the field does divide $|G|$, then $F G^{H}$ is not semisimple, because the one-dimensional space spanned by $\sum_{g \in G} g$ is a nilpotent two-sided ideal. It is natural to ask whether items (ii), (iii), (iv), and (v) are still true in the non-semisimple case. As we will see, none of them is true in general. However, some of the counterexamples were not easy to find. Asking whether they are true or close to true in particular cases has been a useful approach. For example, we show in [4] that (ii), (iii), (iv), and (v) are all true when $G=S_{n}$ and $H=S_{n-1}$. In the preprint [7], we show that (v) is true when $G=S_{n}$ and $H=S_{n-2}$ or S_{n-3}.

From now on, F is a field of characteristic p. For any subset A of G, we let $A^{+}=\sum_{g \in A} g \in F G$. There is a basis for $F G^{H}$ consisting of all elements of the form C^{+}, where C is an orbit for the conjugation action of H on G.

Question 1. Is $F G^{H}$ a symmetric algebra?
This is not true in general. Take $H=G$ so that $F G^{H}=\mathrm{Z}(F G)$. If G has more p-regular classes than blocks, $\mathrm{Z}(F G)$ is not symmetric. The Reynolds ideal, $\operatorname{Soc}(F G) \cap \mathrm{Z}(F G)$ is spanned by the p-regular section sums (see (39) in [9]). So $\operatorname{Soc}(\mathrm{Z}(F G))$ has dimension greater than or equal to $l(F G)$, the number of simple modules. On the other hand, the dimension of $\operatorname{Hd}(\mathrm{Z}(F G))$ equals the number of p-blocks.

Question 2. If S is a simple $F H$-module and T is a simple $F G$-module such that $\operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right) \neq 0$, is $\operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right)$ a simple $F G^{H}$-module?

This not true in general. To construct a counterexample, we will use the following proposition.
Proposition 1. Let P be a normal p-subgroup of G such that $C_{G}(P) \subseteq P$. Let V be the principal FP-module. Let U be a simple $F G$-module. If $\operatorname{Hom}_{F P}\left(V, U \downarrow_{P}\right)$ is a simple $F G^{P}$-module, then U has dimension 1 as a vector space over F.
Proof. Since V is the unique simple $F P$-module, it follows from Clifford's Theorem that P acts trivially on U. Pick a non-zero element v of V. It is easily checked that the map $\phi \mapsto \phi(v)$ gives an isomorphism $\operatorname{Hom}_{P}(V, U) \cong U \downarrow_{F G^{P}}$ as modules over $F G^{P}$. Hence $U \downarrow_{F G^{P}}$ is simple.

Next, we show that $U \downarrow_{F C_{G}(P)}$ is simple. Let W be an $F C_{G}(P)$-submodule of U. We claim that W is also an $F G^{P}$-submodule of $U \downarrow_{F G^{P}}$. To see this, let C be an orbit of the conjugation action of P on G. Since P acts trivially on U, every element of C acts the same way on U. Because $|C|$ is a power of p, it follows that C^{+}acts as 0 on U unless $C=\{x\}$ for some $x \in C_{G}(P)$.

Since $C_{G}(P) \subseteq P$, and $U \downarrow_{F C_{G}(P)}$ is simple, it follows that U has dimension 1 as a vector space over F.

It is now easy to construct a counterexample. Let P be an elementary abelian p group of order p^{2}. Let $K=\mathrm{SL}(2, p)$, acting on P by ordinary matrix multiplication. Let G be the semidirect product of K and P. We have $C_{G}(P) \subseteq P$; it therefore follows from Proposition 1 that for any simple $F G$-module U with $\operatorname{dim}_{F}(U)>1$, $\operatorname{Hom}_{F P}\left(V, U \downarrow_{P}\right)$ is not simple as an $F G^{P}$-module. It is easy to find such a module In the book [2], Alperin exhibits all simple FK-modules. They have dimensions $1,2, \ldots, p$. Any one of these inflated by the projection $G \rightarrow K$ is a simple $F G$ module.

It can, however, easily happen that for a particluar pair G, H, the answer to Question 2 is positive, even when $F G^{H}$ is not semisimple. For example, Kleshchev's branching rule shows that if $G=S_{n}$ and $H=S_{n-1}$, then the answer to Question 2 is positive.
Question 3. Is every simple $F G^{H}$-module isomorphic to $\operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right)$ for some simple $F H$-module S and simple $F G$-module T?

This is not true in general. The following counterexample was communicated to us by Burkhard Külshammer.

If this were true, then it would imply that $l\left(F G^{H}\right)$, the number of simple $F G^{H_{-}}$ modules is less than or equal to the product $l(G) l(H)$. In order to construct a counterexample to this inequality, let us take H to be a p-subgroup of G, so that $l(H)$ equals one. Then $l\left(F G^{H}\right)$ is at least as big as $l\left(\mathrm{C}_{G}(H)\right)$; this follows from the fact that the Brauer homomorphism with respect to H maps $F G^{H}$ onto $F \mathrm{C}_{G}(H)$. So a positive answer to Question 3 would imply $l(G) \geq l\left(\mathrm{C}_{G}(H)\right)$.

As a counterexample, take G to be the dihedral group of order 80 and H a subgroup of G of order 5 , and F of characteristic 5 . Then $G / O_{5}(G)$ is a dihedral group of order 16 and has 7 simple modules in characteristic 5 , four of dimension 1 and 3 of dimension 2. On the other hand, $C_{G}(H)$ is a cyclic group of order 40 and has 8 simple modules in characteristic 5 .

As a weak form of Question 3, we ask the following.
Question 4. Is every simple $F G^{H}$-module a composition factor of a module of the form $\operatorname{Hom}_{F H}\left(S, T \downarrow_{H}\right)$, where S is a simple $F H$-module and T is a simpleFGmodule?

The answer is positive, as we now show. This line of argument was suggested by R. Boltje, B. Külshammer, M.Linckelmann, and L.L.Scott.

First, we point out that the map $\varphi \mapsto \varphi(1)$ gives an isomorphism of $F G^{H}$ modules

$$
\operatorname{Hom}_{F H}(F H, F G) \cong F G .
$$

The positive answer to Question 4 now follows from the next proposition.
Proposition 2. Let M be an FG-module, and let N be an $F H$-module. If D is a composition factor of the $F G^{H}$-module $\operatorname{Hom}_{F H}(N, M)$, then there are a composition factor S of N and a composition factor T of M such that D is a composition factor of $\operatorname{Hom}_{F H}(S, T)$.
Proof. Let

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0
$$

be a short exact sequence of $F G$-modules. Left exactness of the functor $\operatorname{Hom}(N, \cdot)$ gives an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{F H}\left(N, M_{1}\right) \rightarrow \operatorname{Hom}_{F H}(N, M) \rightarrow \operatorname{Hom}_{F H}\left(N, M_{2}\right),
$$

where the last map is not necessarily surjective. It is easily checked that the maps are $F G^{H}$-module homomorphisms. Hence each composition factor D of $\operatorname{Hom}_{F H}(N, M)$ is also a composition factor of $\operatorname{Hom}_{F H}(N, T)$ for some composition factor T of M.

Similarly, left exactness of the functor $\operatorname{Hom}(\cdot, T)$ tells us that if

$$
0 \rightarrow N_{1} \rightarrow N \rightarrow N_{2} \rightarrow 0
$$

is a short exact sequence of $F H$-modules, then there is an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{F H}\left(N_{2}, T\right) \rightarrow \operatorname{Hom}_{F H}(N, T) \rightarrow \operatorname{Hom}_{F H}\left(N_{1}, T\right)
$$

The maps are easily checked to be $F G^{H}$-homomorphisms.
Thus, if D is a composition factor of $\operatorname{Hom}_{F H}(N, T)$, then there exists a composition factor S of N such that D is a composition factor of $\operatorname{Hom}_{F H}(S, T)$.
Question 5. Is the center of $F G^{H}$ generated as an algebra by $\mathrm{Z}(F G)$ and $\mathrm{Z}(F H)$?

The answer is negative. We will exhibit a counterexample.
If R is a suitable characteristic 0 local ring with residue field F of characteristic p, we get an algebra epimorphism $R G^{H} \rightarrow F G^{H}$ that maps $\mathrm{Z}\left(R G^{H}\right)$ into $\mathrm{Z}\left(F G^{H}\right)$. Let $\overline{\mathrm{Z}\left(R G^{H}\right)}$ be the image of this map. Since $\langle\mathrm{Z}(R G), \mathrm{Z}(R H)\rangle \subseteq \mathrm{Z}\left(R G^{H}\right)$, and $\langle\mathrm{Z}(R G), \mathrm{Z}(R H)\rangle$ maps onto $\langle\mathrm{Z}(F G), \mathrm{Z}(F H)\rangle$, we have

$$
\langle\mathrm{Z}(F G), \mathrm{Z}(F H)\rangle \subseteq \overline{\mathrm{Z}\left(R G^{H}\right)} \subseteq \mathrm{Z}\left(F G^{H}\right)
$$

If it were true that $\langle\mathrm{Z}(F G), \mathrm{Z}(F H)\rangle=\mathrm{Z}\left(F G^{H}\right)$, then it would also be true that $\overline{\mathrm{Z}\left(R G^{H}\right)}=\mathrm{Z}\left(F G^{H}\right)$. Thus in order to produce a counterexample to the conjecture $Z\left(F G^{H}\right)=\langle Z(F G), Z(F H)\rangle$, it is enough to exhibit an element of $Z\left(F G^{H}\right)$ that is not in the image of the map coming from $Z\left(R G^{H}\right)$.

For a counterexample, let $G=S_{4}, H$ the normal Klein-four subgroup containing the products of disjoint 2-cycles, and F of characteristic 2.

The conjugation action of H on G has 12 orbits. The 4 elements of H lie in singleton orbits. The two containing $(1,2,3)$ and $(1,3,2)$ have size 4 . In addition, there are 6 orbits of size 2 , with representatives $(1,2),(1,3),(1,4),(1,2,3,4)$, $(1,3,4,2),(1,4,2,3)$. Denote the orbit of g by O_{g}, and the orbit sum in $R G^{H}$ by $O_{g}{ }^{+}$, for each representative g.

We claim that $O_{(1,2,3)}{ }^{+}$is not in $\mathrm{Z}\left(R G^{H}\right)$ but its image is in $Z\left(F G^{H}\right)$.
To see this, note first that $O_{(1,2,3)}{ }^{+}$commutes with $O_{(1,2,3)}{ }^{+}$and $O_{(1,3,2)}{ }^{+}$ and all elements of H, as it is a class sum of A_{4}. Next, $O_{(1,2,3)}{ }^{+} O_{(1,2)}{ }^{+}=$ $2\left(O_{(1,4)}{ }^{+}+O_{(1,3,4,2)}{ }^{+}\right)$, but $O_{(1,2)}{ }^{+} O_{(1,2,3)}{ }^{+}=2\left(O_{(1,3)}{ }^{+}+O_{(1,2,3,4)}{ }^{+}\right)$. Conjugating by $(1,2,3)$ and $(1,3,2)$, we get similar equations for the terms $O_{(1,2,3)}{ }^{+} O_{(1,3)}{ }^{+}$, $O_{(1,3)}{ }^{+} O_{(1,2,3)}{ }^{+}, O_{(1,2,3)}{ }^{+} O_{(1,4)}{ }^{+}$and $O_{(1,4)}{ }^{+} O_{(1,2,3)}{ }^{+}$.

Nevertheless, there are also quite a few examples for which the answer to Question 5 is positive. The paper [6] shows that the answer is positive when $G=S_{n}$ and $H=S_{n-1}$. Computer calculations done by the first author using Magma [3] have shown that the answer is positive when $G=S_{n}$ and $H=S_{m}$ for all cases with $m \leq n \leq 8$. Some of these calculations used a fairly recent theorem of Alperin [1]. Alperin shows that $\langle\mathrm{Z}(\mathbb{Z} G), \mathrm{Z}(\mathbb{Z} H)\rangle$ has finite index in $\mathrm{Z}\left(\mathbb{Z} G^{H}\right)$, where as usual \mathbb{Z} denotes the integers.

As a weak form of Question 5, one can ask the following.
Question 6. Is $\mathrm{Z}\left(F G^{H}\right)=\langle\mathrm{Z}(F G), \mathrm{Z}(F H)\rangle+\mathrm{J}\left(\mathrm{Z}\left(F G^{H}\right)\right)$?
Equivalently:
Is every block idempotent of $F G^{H}$ of the form ef, where e is a block idempotent of $F G$ and f is a block idempotent of $F H$?

The answer is negative in general, although there are many examples in which the answer is positive. The following is a counterexample, originally found by the first author using Magma [3].

The counterexample for Question 5 is not a counterexample for Question 6, as Proposition 3 below shows

Example. If $G=S_{6}, H=A_{4}$, and F is a splitting field of characteristic 5, then $\langle Z(F G), Z(F H)\rangle$ does not contain all primitive idempotents of $Z\left(F G^{H}\right)$. In particular there are block idempotents e for $F G$ and f for $F H$ such that ef is not central primitive in $F G^{H}$. The algebra ef $F G^{H}$ is not indecomposable as an F-algebra.

Proof. We take e to be the principal 5-block idempotent of $F G$ and f to be the principal 5-block idempotent of $F H$ (in fact, we have no choice here). As 5 does not divide $\left|A_{4}\right|, f$ has 5 -defect zero, hence $f F H$ is semisimple. In fact $f=(1 /|H|) H^{+}$ and $f F H \cong F$, as F-algebras (and as right $F H$-modules). Note that f is primitive in $f F H$.

Think of $f F G$ and $f F G e$ as right $F G$-modules. The first two paragraphs of the proof of Proposition 2.6 of [4] show that there is a natural injective F-algebra map ef $F G^{H} \rightarrow \operatorname{End}_{F G}(f F G e)$; the map sends efx $\in e f F G^{H}$ to multiplication on the left by efx. The proof uses the fact that f has p-defect zero and f is primitive in $f F H$ (and not just centrally primitive). In our case, the map happens to be an isomorphism. We can see this by comparing dimensions of domain and range looking at ordinary character multiplicities we see that both sides are 4-dimensional. Thus efFG ${ }^{H} \cong \operatorname{End}_{F G}(f F G e)$.

Now we analyse $f F G e$ as a right $F G$-module. The $F G$-module $f F G$ is isomorphic to the induced module $(f F H) \uparrow^{G} \cong\left(F_{H} \uparrow^{G}\right)$. However consider the chain of groups $H \leq N \leq G$, where $N=S_{4}$. Then

$$
F_{H} \uparrow^{N}=F_{N} \oplus \operatorname{sgn}_{N} \quad \text { and } \quad F_{H} \uparrow^{G}=F_{N} \uparrow^{G} \oplus \operatorname{sgn}_{N} \uparrow^{G},
$$

where F_{N} is the trivial module and sgn_{N} is the sign module.
Consider the principal 5-block $e F G$ of S_{6}. It has a cyclic defect group, and 5 irreducible characters, labelled by the partitions $[6],[4,2],[3,2,1],\left[2^{2}, 1^{2}\right],\left[1^{6}\right](5-$ core [1]). There are 4 irreducible $e F G$-modules, labelled by the 5 -regular partitions $[6],[4,2],[3,2,1],\left[2^{2}, 1^{2}\right]$. Denote the corresponding irreducible modules by $D([6])$, $D([4,2])$, etc. With respect to these labellings, the decomposition matrix and the Cartan matrix are

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Thus the Brauer tree is a straight line with 5 nodes and 4 edges. The only bit of information we need here is that $\operatorname{Hom}_{F G}\left(P([6]), P\left(\left[2^{2}, 1^{2}\right]\right)\right)=0$, where $P(\lambda)$ is the projective cover of the simple module $D(\lambda)$. In other words, these PIM's have no composition factor in common. (For all this information, see [8]).)

Back to the displayed equalities. It's easy to see that $F_{N} \uparrow^{G} e=P([6])$ and $\operatorname{sgn}_{N} \uparrow^{G} e=\operatorname{sgn}_{G} \otimes F_{N} \uparrow^{G} e=P\left(\left[2^{2}, 1^{2}\right]\right)$. Then by the last statement of the last paragraph, $\operatorname{End}_{F G}(e f F G)=\operatorname{End}_{F G}\left(P([6]) \oplus P\left(\left[2^{2}, 1^{2}\right]\right)\right)=\operatorname{End}_{F G}(P([6])) \oplus$ $\operatorname{End}_{F G}\left(P\left(\left[2^{2}, 1^{2}\right]\right)\right)$ decomposes into a direct product of two non-zero F-algebras (each 2-dimensional, each commutative, with a 1-dimensional Jacobson radical).

Note: From the ordinary character multiplicities we see that efFGH is commutative (even though $F G^{H}$ is certainly not commutative). Now with $N=S_{4}$, it's clear that $Z(F N) \subseteq F G^{H}$ (for very general reasons). Thus efZ $(F N) \subseteq \mathrm{Z}\left(e f F G^{H}\right)$. What is happening then is that $e f=a e f+b e f$ (a nontrivial orthogonal decomposition in the centre of the algebra), where a is the block idempotent of the 5 -block of N containing F_{N} and b is the block idempotent of the 5 -block of N containing sgn_{N}.

Some positive results along these lines of Question 6 are possible. For example, the answer is positive when $G=S_{n}$ and $H=S_{m}$ for $m=n-1, n-2$, or $n-3$. The following proposition gives another situation in which the answer is positive.

Proposition 3. Assume that P is a normal p-subgroup of G. Then every central idempotent of $F G^{P}$ is in $\mathrm{Z}(F G)$.

Proof. Let e be a primitive central idempotent of $F G^{P}$. The Brauer map Br_{P} : $F G^{P} \rightarrow F C_{G}(P)$ is a surjective homomorphism. Its kernel is a nilpotent ideal. (To see this, note that if C is an orbit of the conjugation action of P on $G \backslash C_{G}(P)$, then C^{+}acts as 0 on each simple $F G$-module, so C^{+}is in $\mathrm{J}(F G) \cap F G^{P}$.) Let $f=\operatorname{Br}_{P}(e)$. Then $f=e+j$, with $j \in \mathrm{~J}\left(F G^{P}\right)$. Pick an n such that $j^{p^{n}}=0$. Then $f=f^{p^{n}}=(e+j)^{p^{n}}=e^{p^{n}}+j^{p^{n}}=e$. Thus $e \in F C_{G}(P)$. Since e must be central in $F C_{G}(P)$, it follows that e is a linear combination of elements of $C_{G}(P)$ of order prime to p.

Assume, for a contradiction, that e is not in the center of $F G$. Let $g \in G$ such that $g^{-1} e g \neq e$. Then $g^{-1} e g e=0$ since $g^{-1} e g$ is another primitive central idempotent. Let C be the orbit of g under the conjugation action of P. Since P is normal, $C \subseteq g P$. Let $x_{1}, x_{2}, \ldots, x_{s}$ be elements of P such that $C=\left\{g x_{1}, g x_{2}, \ldots, g x_{n}\right\}$. Let $a=x_{1}+x_{2}+\cdots+x_{s}$. Then $C^{+}=g a$. Since e is a central idempotent of $F G^{P}$, it follows that gae =ega. Since $a \in F P, a e=e a$, so gea $=e g a$, and hence $e a=g^{-1} e g a$. Multiplying from the left by e, we obtain $e a=e e a=e g^{-1} e g a=0 a=0$.

However, e is a linear combination of p^{\prime}-elements of $C_{G}(P)$, so for each $i, e x_{i}$ is a linear combination of elements with p-part x_{i}. Therefore the elements of the set $\left\{e x_{1}, \ldots, e x_{s}\right\}$ have disjoint support. It follows that the sum $e a=e x_{1}+e x_{2}+\cdots+$ $e x_{s}$ cannot be 0 . This contradiction completes the proof.

References

[1] J.L.Alperin, On the center of a Hecke algebra, J. Algebra 319 (2008), no. 2, 777-778.
[2] J.L.Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge, 1986.
[3] W.Bosma, J.Cannon, C. Playoust, The Magma algebra system. I. The user language, J.Symbolic Comput. 24 (3-4) (1997), 235-265
[4] H.Ellers, Searching for more general weight conjectures, using the symmetric group as an example, J.Algebra 225 (2000), 602-629.
[5] H. Ellers, The defect groups of a clique, p-solvable groups, and Alperin's conjecture, J. Reine Angew. Math. 468 (1995), 1-48.
[6] H. Ellers and J.Murray, Block theory, branching rules, and centralizer algebras, J. Algebra 276 (2004), no. 1, 236-258.
[7] H. Ellers and J. Murray, Blocks of $k S_{n+3} S_{n}$ and related algebras, preprint.
[8] G.James and A.Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass., 1981.
[9] B.Külshammer, Group-theoretical descriptions of ring-theoretical invariants of group algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld,1991), 425-442, Progr. Math. 95, Birkhäuser, Basel, 1991.
[10] J. Murray, Generators for the centre of the group algebra of a symmetric group, J. Algebra 271 (2004), no. 2, 725-748.
[11] J. Murray, Squares in the centre of the group algebra of a symmetric group, Bull. London Math. Soc. 34 (2002), no. 2, 155-164.

Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK

E-mail address: danz@maths.ox.ac.uk
Department of Mathematics, Allegheny College, Meadville PA 16335, USA
E-mail address: hellers@allegheny.edu
Department of Mathematics, National University of Ireland, Maynooth, Co. KilDARE, Ireland

E-mail address: John.Murray@nuim.ie

