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Abstract — This paper examines the application of stochastic

search techniques for the solution of two typical problems in mod-

elling nonlinear systems using a multi-modelling approach: interpo-

lation function determination and linear model structure determi-

nation. Two candidate stochastic search techniques are employed,

genetic algorithms and swarm intelligence, which show different ad-

vantages for each of the problems considered.
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I Introduction

The issue of nonlinear data-based modelling us-
ing multiple linear models has been comprehen-
sively dealt with in the literature. In particu-
lar, the pioneering work by Sugeno [1] had paved
the way for much that has followed, as exempli-
fied by [2, 3]. While the issue of interpolating or
switching between individual linear models must
be treated with care in the control situation to
ensure that global closed-loop stability is achieved
[4], the main concern in the modelling and/or fore-
casting application is the determination of an in-
terpolating or switching function which maximises
the model accuracy with respect to some criterion.
Unfortunately, such a problem is not usually con-
vex, which renders it unamenable to traditional
optimisation methods, such as gradient descent.
Once a candidate interpolation function has been
determined, however, the determination of the pa-
rameters of the linear models is relatively straight-
forward and can be evaluated using a variety of
linear identification techniques [5].

The only outstanding problem then remaining is
the determination of the structure of the set of lin-
ear models, with either a uniform structure across
all models, or individual model structures, being
chosen. Traditionally, this issue is resolved in one
of two ways:

1. Correlation-based techniques are used to de-
termine cut-offs for regressors (seasonal and
non-seasonal), or

2. The performance of a variety of model struc-
tures is examined with respect to some cri-
terion (which may include a complexity cost)
and the optimal structure selected.

Typically, the criterion employed in method 2.
above is the mean square error across the training
or validation data, with supplemental complexity
cost added in via criteria such as the Minimum
Description Length (MDL) or Akakie’s Informa-
tion Theoretic Criterion [5]. However, the models
dealt with in such a manner are normally restricted
to those with contiguous regressors, as exemplified
in the excellent MatlabTM System Identification
Toolbox. Method 1. above using, for example,
the Box-Jenkins methodology [6], provides for sea-
sonal models, but the interpretation of the partial
correlation functions can be a little subjective.

The paper addresses the dual problems of in-
terpolation function optimisation and linear model
structure determination. The interpolation func-
tion is chosen to be a set of overlapping (fuzzy)
functions (in the spirit of TSK-type models) while
the objective is to provide an arbitrary combina-
tion of regressor components in the synthesis of the
linear model(s).

Both problem domains represent non-convex op-
timisation problems and two stochastic optimisa-
tion techniques, both of which are inspired by nat-
ural phenomena, are selected as candidate solution
methodologies. In particular, optimisation tech-
niques based on natural selection [7] and swarm
intelligence [8] are shown to be suited to such prob-
lems and have solution structures which match the
problem domains.

II Problem Domains

The two problems considered in this study both re-
late to the general nonlinear dynamical modelling
problem, posed in the form of a TSK problem.
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a) Determination of linear model structure

The problem of linear model structure determina-
tion may be articulated by considering the rational
(z) transfer function in (1):

G(z) =
b0 + b1z

−1 + · · ·+ bmz−m

1 + a1z−1 + · · ·+ anz−n
z−d (1)

The most common structure determination proce-
dure involves the evaluation of suitable values of
m, n and d. This makes the assumption that all
of the terms from z0 to z−m (for the input regres-
sor) and z−1 to z−n (for the output regressor) are
involved in the determination of the system out-
put. An alternative formulation, popular in time
series modelling, is to make the assumption that
the regressor (in particular the output regressor)
is structured into the Seasonal AutoRegressive In-
tegrated SARI(p,D)(P ,DD) form, given as:

Φp(b)ΦP (BL)∇DD
L ∇D Yt = at (2)

where at is a white noise sequence and B the de-
lay operator. Φp and ΦP are the non-seasonal and
seasonal regressors respectively, of order p and P .
∇DD

L and ∇D are seasonal and non-seasonal dif-
ferencing operators, with:

∇DD
L ∇D(B) = (1−BL)DD(1−B)D (3)

contributing to the ‘Integrated’ designation. Fo-
cussing on the regressor terms:

Φp(B) = 1− φ1B − φ2B
2 − . . .− φpB

p

ΦP (BL) = 1− φ1,LBL − φ2,LB2L − . . .−

φp,LBPL

the regressor product therefore (assuming L > p)
contains the following terms:

Φp(b)ΦP (BL) = 1− φ1B − . . .− φpB
p

−φ1,LBL + φ1φ1,LBL+1 + . . . + φpφ1,LBL+p − . . .

−φP,LBPL + φ1φP,LBPL+1 + . . . + φpφP,LBPL+p

Clearly, the structure above does not require con-
tiguous regressor terms, but nevertheless the set of
available structures is restricted.

The proposal is to determine an algorithm which
will allow an arbitrary structure to be found, ac-
cording to an appropriate criterion, with specifica-
tion only on the maximum (numerator or denomi-
nator) regressor length. This can, conceptually at
least, be attempted using the form in (1) by ex-
amining the variance of each identified parameter
values relative to its nominal value. However, con-
siderable subjective judgement is required and no
information is available on the effect of complete
omission of parameter ‘bins’.

Appropriate criteria to employ in structure de-
termination include MDL and AIC, given as:

JMDL = V (1 + log(N)
np

N
(4)

JAIC = V (1 +
2 NP

N
) (5)

where V is the loss function:

V =
1

N

N∑

k=1

(yk − ŷk)2 (6)

with ŷk being the predicted system output. In the
case of the SARI model, the Box-Jenkins [6] pro-
cedure utilises inspection of the Sample AutoCor-
relation Function (SACF) and the Sample Partial
AutoCorrelation Function (SPACF). However, in-
terpretation of the SACF and SPACF for order
determination (p and P ) requires some experience
and is somewhat subjective. The season length, L,
must be specified a priori.

Overall, the structure determination problem for
a linear system model represents a non-convex op-
timisation problem and will be examined for the
transfer function:

G(z) =
z−3 + 0.5z−5 + 0.3z−10

1 + 0.2z−1 + 0.6z−10
(7)

for a range of signal-to-noise ratios.

b) Interpolation function synthesis

In the TSK formulation, interpolation is performed
across a set of linear models, such as those de-
scribed in Section a). This can be represented in
Fig.1, with the overall model determination pro-
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Fig. 1: Fuzzy sets for data partitioning

cedure outlined in Fig.2. The issue of consequent
function order was dealt with in Section a), and
the determination of the consequence parameters
represents a linear least-squares problem, so the
focus here is on the determination of the opti-
mal data partitioning parameters, p1 and p2. This
problem has been examined before, with a bench-
mark problem described in [9], developing a TSK
model to predict weekly electricity load. A SARI
consequent model (as in (2)) is used since the
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Fig. 2: Model determination procedure

data is seasonal (see Fig.3 and two fuzzy sets are
employed, observing the dichotomy between sum-
mer and winter consumption behaviour. The uni-
verse of discourse, in this case, is the consump-
tion in week (k − 1), where the consumption in
week k is being forecast. The determination of the
fuzzy partitioning parameters (the pi), for the load
modelling problem, represents a challenging non-
convex optimisation problem, as evidenced by the
performance surface shown in Fig.4.

III Stochastic optimisation techniques

Clearly, both problems presented in Section II
represent non-convex optimisation problems and
are not solvable using traditional gradient optimi-
sation. Stochastic search techniques maintain a
‘family’ of solutions which learn from each other,
with other mechanisms guaranteeing a diversity of
solutions, which ensures that a global optimum is
found.

a) Genetic algorithms

Genetic algorithms (GAs) are well described else-
where [7] so, for brevity, the attention here will
focus on the salient points in relation to the prob-
lem domain.
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Fig. 3: Weekly electricity load data
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Fig. 4: Performance surface for p1 and p2

GAs, by maintaining a ‘population’ of solutions
and utilising a number of features which allow
combination of solutions (e.g. crossover) and ex-
tension of the solution set (e.g. mutation) can
provide good global search capability. Chromo-
somes can be coded using binary or real numbers,
depending on whether the problem is discrete or
continuous. In some cases GAs are combined with
gradient search to improve the accuracy of the final
solution for continuous problems. GAs can solve
a wide range of discrete problems, with a compact
representation using binary-values chromosomes.
Indeed, they present themselves as an ideal solu-
tion mechanism for the problem described in Sec-
tion II(a) where each binary ‘bit’ represents inclu-
sion (or exclusion) of a regressor parameter. The
chromosome length represents the maximum re-
gressor order. For example, the transfer function
in (7) would be coded as in Fig.5. Chromosomes
can be coded using real or binary numbers [10].
However, given the stochastic nature of the search,
no guarantee of achieving the exact global mini-
mum can be had, even for real coding.
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Fig. 5: Chromosome representation for model structure

b) Swarm intelligence

The foraging behaviour of ants can be artifi-
cially mimicked to solve combinatorial optimisa-
tion problems, as evidenced in the early work of
Deneubourg [11]. Ant colony intelligence is har-
nessed by recreating the behaviour of ants in laying
pheromone trails which allow inter-ant communi-
cation and indicate the optimal paths to follow.
Pheremone also evaporates over time, leading to
dynamic optimisation.

A particular problem, that has received con-
siderable attention from the ‘ant colony’ commu-
nity is the travelling salesman problem (TSP) [12],
which has close parallels with foraging-like activ-
ity. However, application of this paradigm to non-
TSP problems is less than straightforward, even
to other optimisation problems where the solution
domain is discrete.

The authors are aware of only one publication
applying swarm intelligence to problems where the
solution domain is continuous [13], though the
problem is articulated in [14]. In essence, the ap-
proach here consists of the following procedure:

1. A starting point (the ‘nest’) in the solution
space is chosen (can be arbitrary)

2. An equally-spaced set of direction vectors is
established

3. Ants are assigned probabilistically to search
directions

4. Ants now start a distance X along chosen di-
rections from starting point

5. The direction vectors are weighted with values
depending on the concentration of pheromone,
indicating the success of ants that have chosen
to explore each vector

6. Ants are re-assigned to directions based on
pheromone and roulette wheel (probabilistic)
selection

7. Ants move a random distance (up to max. Y )
in a random direction

8. Overall directions from nest are updated,
along with pheromone weighting

9. Y is decreased (with each iteration)

10. Go to 5.

S/N(dB) ∞ 32 28 20 <20

AIC 0 0.0338 z−13

z−3 X X

MDL 0 0.0338 0.0586 0.1234 z−4,z−6

z−3,z−8,z−11,z−12

Table 1: Performance of GA-based structure iden-
tification using AIC and MDL criteria

An example of this type of operation is shown in
Fig.6. Note that X and Y (and the decrease fac-
tor for Y ) are parameters of the swarm algorithm
(along with the initial ‘nest’ location.

Fig. 6: Example of swarm optimisation [13]

IV Results

a) Determination of linear model structure

The system in (7) was examined under a range
of signal-to-noise (S/N) conditions, with the max-
imum order of numerator and denominator regres-
sor terms both set at 15. A data sequence of 1000
points was utilised, with 500 for training (determi-
nation of parameters) and 500 for validation (de-
termination of structure). The first 200 training
points were discarded to remove the initial condi-
tion response. The input sequence chosen was zero
mean, resulting in a zero mean output sequence.
Additive noise was normally distributed and zero
mean.

Table 1 gives an overview of the achieved per-
formance, based on training and validation data
records of 500 points each, utilising both AIC and
MDL as criteria. Where a number is included, it
denotes the MSE for a model with correct struc-
ture, while ‘X’ denotes incorrect structure. The
included terms (powers of z) are the extra ones
added, at the largest S/N where the algorithm fails
to identify the correct structure. Clearly, the MDL
is superior as a complexity-weighted criterion for
this particular application. By way of comparison,
Table 2 gives the parameter estimates and their
standard deviations (SDs) for the maximal regres-



sor size (order 15) for a low-noise case (S/N =
32dB). Note that a number of significant (SD <
|coeff|) erroneous parameters are generated. The
(erroneous) selected model order, using both AIC
and MDL, is the maximal order of 15, using the
validation data for model structure verification, as
in the case of the GA-based algorithm.

b) Interpolation function synthesis

For the individual seasonal models, the season
length is clearly 52 (weeks), as verified by Fig.3,
with the seasonal and non-seasonal regressor or-
ders determined as P = 2 and p = 3 respectively.
12 initial direction vectors were established with 24
ants assigned randomly to these directions, using
roulette wheel selection. The initial distance from
the nest, X, was set at 1/4 of the overall parame-
ter range (60,000), while the maximum subsequent
random movement was 1/2 the overall parameter
range, with a reduction factor of 0.85 per iteration.
The actual random distances were taken from a
normal distribution, with the appropriate maxi-
mum value. Fig.7 shows the evolution of the mean
squared error (MSE) for the total model, with
the adaptation of the fuzzy parameters (shown in
Fig.1) performed using the continuous swarm algo-
rithm as described in the preceeding section. The
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Fig. 7: Comparative performance of genetic and swarm
paradigms

comparative performance of a GA-based adapta-
tion, as reported in [9], is also shown as a bench-
mark. In general, the swarm algorithm performs
at least as well (with a minor improvement) com-
pared to the GA-based technique. The iteration
count for the GA-based algorithm corresponds di-
rectly to generation count, allowing some compari-
son to be made on computational complexity. The
convergence rates for both algorithms are compa-
rable, but it should be noted that the GA had a
population of 70, while only 24 ants were utilised.

A typical prediction from the TSK model is
shown in Fig.8, with the performance of a single

linear model shown for comparison. The Mean Ab-
solute Percentage Errors (MAPEs) for TSK and
linear models are 2.5% and 3.9% respectively, in-
dicating significant improvement for the nonlinear
model.
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V Conclusions

The paper has examined the application of search
techniques based on evolutionary and natural in-
telligence to the nonlinear dynamic modelling
(multi-model) problem. Problems which are dis-
crete in the solution space (model structure) and
continuous (determination of interpolating param-
eters) arise, both of which are non-convex and can-
not be solved using traditional gradient techniques.
The GA-based solution to the model structure is-
sue exploits the natural representation of chromo-
somes, while the swarm algorithm can outperform,
if only modestly, the GA algorithm in the contin-
uous problem. One explanation for this is that,
for continuous problems, the swarm algorithm can
be considered as a type of ‘parallel’ gradient algo-
rithm, where future search directions are informed
by the previous solutions (with some random selec-
tion), while the ‘adaptation gain’ is progressively
reduced (consistent with the gradient → 0 as the
minimum is reached) with progressive iteration.
Due to their relatively recent development, arti-
ficial swarm-type algorithms have been rarely ap-
plied and this paper suggests that there is consid-
erable scope for them in areas of modelling and
control, given that their accuracy is no worse than
GAs and they have (for the particular problem
considered here) a significant computational ad-
vantage.



Term a0 a1 a2 a3 a4 a5 a6 a7

Coef. 1.0000 0.0127 -0.0013 -0.1265 0.0244 -0.0729 -0.0390 -0.0270
SD 0.0000 0.0587 0.0590 0.0593 0.0595 0.0587 0.0185 0.0152

Term a8 a9 a10 a11 a12 a13 a14 a15

Coef. 0.0052 -0.0020 0.5785 -0.1062 0.0302 -0.0827 0.0229 -0.0574
SD 0.0152 0.0150 0.0146 0.0368 0.0373 0.0373 0.0375 0.0370

Term b0 b1 b2 b3 b4 b5 b6 b7

Coef. 0.0062 0.0100 -0.0019 0.9913 -0.1936 0.5313 -0.2288 0.0980
SD 0.0111 0.0111 0.0111 0.0111 0.0592 0.0606 0.0681 0.0694

Term b8 b9 b10 b11 b12 b13 b14 b15

Coef. -0.1358 0.0014 0.2398 -0.0581 -0.0114 -0.0635 0.0291 -0.0221
SD 0.0687 0.0359 0.0351 0.0247 0.0249 0.0251 0.0250 0.0249

Table 2: Results from Least Squares

References

[1] T. Takagi and M. Sugeno. “Fuzzy identifica-
tion of systems and its applications to mod-
elling and control”. IEEE Trans on Systems,
Man and Cyber., 15, 117-132, 1985.

[2] T.A. Johansen and B.A. Foss. “Construc-
tion NARMAX models using ARMAX mod-
els”. Int. J. of Control, 58, 1125-1153, 1993.

[3] (-) “Special issue on multiple model approaches
to modelling and control. Int. J. of Control, 72,
7/8, 1999.

[4] D. Liberzon and A.S. Morse. “Basic problems
in stability and design of switched systems”.
IEEE Control Systems Magazine, 19, 5, 59-70,
1999.

[5] L. Ljung System Identification: Theory for the
User (2nd Ed.), Prentice Hall, 1999.

[6] G.E.P. Box, G.M. Jenkins and G.C. Reinsel.
Time Series Analysis: Forecasting and Control
(3rd Ed.), Prentice Hall, 1994.

[7] D.E. Goldberg Genetic Algorithms in Search,
Optimisation and Machine Learning, Addison-
Wesley, 1989.

[8] E. Bonabeau, M. Dorigo and G. Theraulaz
Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press, 1999.

[9] J.V. Ringwood “Optimisation of fuzzy elec-
tricity forecasting models using genetic algo-
rithms”. Proc. 5th Euro. Congress on Intelli-
gent Techniques and Soft Computing (EUFIT),
Aachen, Germany, Sept. 1997, Vol.3, 2457-
2461.

[10] C.Z. Janikow and Z. Michalewicz “An experi-
mental comparison of binary and floating point
representations in genetic algorithms”. Proc.
4th Intl. Conf. on Genetic Algorithms, 1991,
31-36.

[11] J.-L. Deneubourg, S. Goss, J.M. Pasteels, D.
Fresneau and J.-P. Lachaud “Self-organising
mechanisms in ant societies (II): Learning in
foraging and division of labour” Experientia
Suppl., 54, 1987, 177-196.

[12] M. Dorigo and L.M. Gambardella “Ant colony
system: a cooperative approach to the trav-
elling salesman problem”. IEEE Trans. Evol.
Comp., 1, 1997, 53-66.

[13] L. Kuhn “Ant colony optimisation for con-
tinuous spaces”. BE Thesis, University of
Queensland, Oct. 2002.

[14] G. Bilchev and I.C. Parmee “The ant
colony metaphor for searching continuous de-
sign spaces”. Proc. AISP Wkshp. on Evol.
Comp., 1995, 25-39.


