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This paper is concerned with the case of an exogenous system in which a model is required to
forecast a periodic output time series using a causal input. A novel approach is developed in
which the wavelet packet transform is taken of both the dependent time series and causal input.
This results in two sets of basis dictionaries and requires two bases to be chosen. It is proposed
that the best bases to choose are those which maximize the mutual information. Input selection
is then implemented by eliminating those coefficients of the selected input basis with low mutual
information. As an example, a model is constructed to forecast short-term electrical demand.
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1. Introduction

Time series forecasting is concerned with forecast-
ing a dependant time series, y(k), with a set of
causal variables, U(k), by using a model, f(·), as:

y(k) = f(U(k)) + ε(k) (1)

where ε(k) is a residual term. However, estimation
of f(·) is often a difficult task. This task may be
aided by transforming the inputs and/or outputs
into new domains prior to modeling as:

A(y(k)) = f ′(B(U(k))) + ε′(k) (2)

where A(·) represents the output transform (or out-
put filtering), B(·) represents the input transform
(or input preprocessing), ε′(k) is a residual term
(note: ε′(k) �= ε(k) in general) and f ′(·) denotes
the new model. The purpose of B(·) is to elimi-
nate noncausal inputs and reduce multicollinearity
(cross-correlation) in the inputs [Ljung, 1999]. The

purpose of A(·) is to transform the dependent time
series, y(k), into a time series that is more corre-
lated to the input. In addition, the distribution of
the residual term is altered which can be advanta-
geous, especially if the distribution of the original
residual term, ε(k), is non-Gaussian [Ljung, 1999].

Several types of transform have been applied
in time series forecasting such as Principle Compo-
nent Analysis (PCA) [Hiden et al., 1999], Indepen-
dent Component Analysis (ICA) [Roberts et al.,
2004], the Fourier Transform (FT) [Schoukens &
Pintelon, 1991], the Wavelet Transform (WT) [Yao
et al., 2000] and the Wavelet Packet Transform
(WPT) [Saito & Coifman, 1997; Roberts et al.,
2004; Milidiú et al., 1999; Nason & Sapatinas, 2001]
among others. However, the WT and WPT would
seem ideal for time series forecasting as unlike PCA,
ICA and the FT, some time information is pre-
served in the transformed variables. In addition,
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Fig. 1. Diagram of the WPT to a depth of three. (a) Packet {7, 8, 4, 2} (the wavelet transform), (b) the complete wavelet
packet tree and labeled nodes, (c) example of another wavelet packet {3, 9, 10, 2}.

the WPT allows an adjustable trade-off between
time and frequency resolution in the transformed
signal. The FT and WT have been used to trans-
form both the input and output of a system prior
to modeling [Schoukens & Pintelon, 1991; Liu, 2005;
Labat et al., 2000]. However, the WPT has not been
widely used for this purpose. The wavelet transfer
model proposed in this paper is similar to that pro-
posed by Ramsey and Lampart [1998]. However, as
the focus of this paper is on time series forecasting,
several unique problems arise such as the joint selec-
tion of A(·) and B(·) (Sec. 3.1) and input reduction
(Sec. 3.2).

2. The Wavelet Packet Transform

The WPT is implemented by successively filtering
an input, y(k) with specifically designed high pass,
H, and low pass, G, filters forming a WPT tree
(Fig. 1). This is followed by a down-sampling by
two.1 As H and G form perfect reconstruction fil-
ters, the original data can be reconstructed from the
down-sampled coefficients. With successive filter-
ing, the level of frequency resolution increases at the
expense of time resolution. As the option exists to
filter each branch independently an adjustable time-
frequency resolution trade-off is possible (three
alternative trees or packets are shown in Fig. 1) (for
an excellent textbook on wavelets see [Percival &
Walden, 1999]).

3. The Wavelet Transfer Model

The wavelet transfer model first prefilters the input
and output using the wavelet packet transform.
Input selection is then applied and a nonlinear

model is used to relate the transformed input to
the output as:

AY (k) = f(S◦B◦U(k)) + ε′(k) (3)

where A is a (WPT) basis transform of the output,
Y (k) = [y(k)y(k − 1) · · · y(k − s)], B is a (WPT)
basis transform of the input, U(k), S represents the
shrinkage operator which reduces the dimensional-
ity of the input (see Sec. 3.2), f is a nonlinear func-
tion, ε′(k) is a vector of (filtered) error terms,2 s is
the period of the data and ◦ denotes after.

3.1. Packet selection technique

Define:

D1 = {Ai}N1
i=1 and D2 = {Bj}N2

j=1 (4)

where D1 and D2 are wavelet packet dictionaries
of all possible WPT transforms of Y (k) and U(k),
respectively. Ai and Bj are the elements of those
dictionaries and N1 and N2 their respective lengths.
The aim of packet selection is to choose an element
of D1 and D2 jointly. It is proposed here to use the
Mutual Information (MI, defined below) between
the transformed input and output to determine the
optimal transform:

(A,B) = arg max
i,j

I(AiY (k);BjU(k)) (5)

where A and B are the bases to be chosen and
I(U ;Y ) is the MI defined as:

I(U ;Y ) =
∫

Y

∫
U

fU,Y (u, y) log
fU,Y (u, y)

fU(u)fY (y)
dudy

(6)

where fU (u) and fY (y) are the (multivariate)
probability distributions of U and Y respectively.

1i.e. removing every second element of the filtered signal, denoted ↓2.
2Note that f(·) makes a forecast of the transformed output, Ŷ ′(k), and not of Y (k). Typically f(·) will be trained to minimize
some cost function (e.g. the Mean Squared Error, MSE) of the forecast errors. However, in this case f(·) minimizes the cost
function with respect to ε′(k) and not ε(k). This is sometimes advantageous [Ljung, 1991] as it may remove disturbances at
high and low frequencies that are not wanted during modeling.
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fU,Y (u, y) is the joint PDF between U and Y . Saito
et al. [2002] proposed a Local Discriminant Basis
(LDB) algorithm for calculating the MI for a clas-
sification problem. However, estimating fU,Y (u, y)
for multivariate continuous data is a difficult task
[Darbellay, 1999]. An approximation of the MI may
be made by means of multivariate Gaussian kernels
as [Nilsson et al., 2002]:

I(U ;Y ) ≈
M∑

j=1

∫
Y

∫
U

αjGjU,Y
(u, y)

× log
GjU,Y

(u, y)
GjU (u)GjY (y)

dudy, (7)

M∑
j=1

αj = 1

where GjU,Y
(u, y), GjU (u), GjY (y) are multivari-

ate Gaussian distributions for the jth kernel,
M denotes the number of modes in the approxi-
mated distributions and αj is the jth weight asso-
ciated with each kernel to ensure that the total
probability equals one. The optimum mean and
covariance matrices for the kernels may be esti-
mated using the Expectation Maximization (EM)
algorithm [Dempster et al., 1977]. Given a Gaus-
sian kernel the expression for the approximate MI
then reduces to:

I(U ;Y ) ≈ 1
2

M∑
j=1

αj log
|ĈjUY

|
|ĈjU

||ĈjY
| (8)

where | · | denotes the determinant, ĈjUY
, ĈjY

and
ĈjU

are the sample cross and auto-covariance matri-
ces of the jth kernel.

3.2. Input selection

Input selection requires reduction in the dimension
of BU (k). Typically, a threshold is used in which
wavelet coefficients with mutual information (or
entropy in the univariate case) below the threshold
are eliminated [Percival & Walden, 2000]. However,
the purpose here is to reduce the dimension of the
input space to a specific size. Given A and B (cal-
culated in Sec. 3.1), input selection is implemented
by retaining those variables that individually have
the highest mutual information with the output as:

U ′′ =
{

Aujm : m = 1, . . . , Ndim

/
arg max

jm∈{i/jm−1,...,j1}

× Î(Aujm ;BY ) (9)

where U ′′ is the reduced input set of dimension
Ndim, Aul is the lth element of AU and jm are the
indices of the retained elements. Î(Aul;BY ) is esti-
mated as in Eq. (8).

4. Example Application: Hourly
Electricity Demand Forecasting

Hourly electrical demand is a time series driven by
human activity which is influenced by weather; tem-
perature and humidity being the dominant causal
variables. The data spans the years 1986–2000, only
Mondays to Fridays and only the months January
to March. In addition, this data has been detrended.
The data has been split into three different groups
for analysis; training set (400 × 24 points), valida-
tion set (170 × 24 points) and test set (170 × 24
points). Finally, note that this data is periodic
with a period of 24 (hours) and that full details
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Fig. 2. Graph of original and detrended electrical demand, temperature and humidity.
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(a) (b)

Fig. 3. Graph of mutual information between detrended input and (a) temperature, (b) humidity.

of the above can be found in [Fay et al., 2003]. In
Fig. 2 a rise in temperature from indices 87:100 and
a corresponding fall in the detrended demand at
indices 95:100, are indicated. This example suggests
that a low frequency component in the tempera-
ture (i.e. the average temperature between indices
87:100) causes a corresponding change in the depen-
dant variable but at a later time and for a shorter
period. Thus, the wavelet transfer model would
seem ideal in identifying these time-frequency cor-
relations between the input and output.

For the purposes of this paper the output
time series is the detrended demand, y(k), and
there are two inputs, temperature and humidity,
denoted ut(k) and uh(k) respectively. The WPT
to a depth of four is taken of y(k), ut(k) and
uh(k) using Daubechie’s “D4” wavelet [Percival &
Walden, 2000], giving three dictionaries D1, D1

2 and
D2

2. Y (k), U t(k) and Uh(k) are constructed as:

Y (k) = [y(k) · · · y(k − 24)]

U t(k) = [ut(k) · · · ut(k − 72)]

Uh(k) = [uh(k) · · · uh(k − 72)] k = 24, 48, . . .
(10)

Note that U t(k) and Uh(k) contain weather data
up to a lag of three days (72 hours). After three
days, it is considered that the weather has no effect
on the demand [Fay et al., 2003]. In addition, note
that as the data is periodic, it is sufficient to take
every 24th value of k.3 The input selection reduces
the number of input variables to seven.4 Figure 3
shows the mutual information between the inputs
and outputs for different packet transforms, calcu-
lated using M = 1 (this is equivalent to using the
correlation).

Table 1, below, summarizes the optimal pack-
ets chosen for the input–output in Fig. 3. As can
be seen, the transformed temperature has higher
mutual information with the transformed detrended
load, and so it is chosen as the transform to be
applied.

The next stage is to model AY (k) with BU(k)
using a feed-forward neural network. The network
used is similar to that described in [Fay et al.,
2003] (the inputs differ) and so it is not described
here. For comparison, the Wavelet Transfer Model
(WTM) is compared to a Transfer Model (TM) in

Table 1. Packet transforms that share the maximum mutual information with detrended load.

Input Packet Input Packet Output Packet Output Packet Mutual
Variable Number Nodes Number Nodes Information

Temperature 26 {3, 9, 10, 2} 12 {7, 8, 9, 10, 11, 12, 6} 0.9455
Humidity 7 {3, 4, 5, 13, 14} 9 {3, 4, 2} 0.3901

3i.e. the data is arranged by day, see Eq. (10).
4This number is chosen subjectively with experience.
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Table 2. A comparison of the wavelet transfer model and a model without the WPT.

Model PMSE Training Set PMSE Validation Set PMSE Novelty Set

WTM 3586 5236 6815
TM 3929 5876 7569

which the WPT is not applied, i.e. A = 1, B = 1
(note: input selection is still applied). Table 2 sum-
marizes the results.

5. Conclusions

A novel method was presented for modeling non-
linear exogenous time series based on the wavelet
packet transform. For a nonlinear system, an input
at one frequency will result in an output at different
frequencies. However, estimating frequency infor-
mation requires the use of a window. As the window
size increases the frequency estimate is improved
but time resolution is decreased, as the window now
covers a larger segment of time. As mentioned in the
introduction, the wavelet packet transform allows
an adjustable trade-off of time-frequency resolution.
The aim of the WTM is to find those (wavelet
packet) transformed domains that give the clear-
est relationship (in the mutual information sense)
between the input and output. Training a nonlin-
ear model can be a difficult task. However, it is
proposed that the training process is easier in the
WTM transformed domains.

However, like all black-box modeling tech-
niques, the suitability of this technique is data
dependent. There is no means a priori of determin-
ing if this technique is applicable other than with
experience. For the electricity demand data used in
the example, it was known from experience that a
low frequency component in temperature affects a
low frequency component in demand. When com-
pared to a model trained using untransformed data
the WTM approach performed better (Table 2). As
can be seen in Table 2, the Prediction Mean Squared
Error (PMSE) is consistently lower for the WTM
across all three data sets. Based on these empirical
results the WTM would appear to be superior for
the task of electricity demand forecasting.

In implementing this approach there are sev-
eral arbitrary elements. The choice of the wavelet
basis function depends again on experience. A Haar
wavelet basis function is equivalent to differenc-
ing [Percival & Walden, 1999] and in this case the
WTM is equivalent to the well-known Box–Jenkins

transfer model [Ljung, 1999]. For the example appli-
cation, a Daubechie’s “D4” wavelet was chosen as
this has a support of four (hours) which is thought
(from experience) to be appropriate for hourly elec-
tricity demand forecasting. The technique for esti-
mating the mutual information depends on what
is known about the underlying distribution of the
data. Given no prior knowledge, a nonparametric
technique is proposed (Sec. 3.1).

Perhaps the most serious drawback of the
WTM technique is the way the dictionary size
increases with depth. The number of elements for
a dictionary of depth N may be calculated recur-
sively as:

s(n) = (s(n − 1) + 1)2 n = 1, 2, . . . , N (11)

where s(N) is the number of elements of a dictio-
nary of depth, N and s(1) = 1. As s(N) increases
rapidly with N , it is impossible to evaluate all
packets in a dictionary individually for all but the
smallest depths [Coifman & Wickerhauser, 1992].
Coifman and Wickerhauser [1992] instead proposed
using an additive measure such as entropy which
allows the evaluation of each binary branch individ-
ually thus reducing the number of operations from
O(N(log N)2) to O(N). However, mutual informa-
tion is not an additive measure and so the WTM
technique is restricted to low values of N (N = 4
would appear to be the practical limit).
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