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ABSTRACT

In this paper, a number of approacdhes to the modelli ng of eledricity demand, on a variety
of time-scdes, are mnsidered. These gproadces fall under the cadegory of ‘'intelli gent'
systems engineaing, where techniques such as neural networks, fuzzy logic and genetic
algorithms are employed. The paper attempts to give some motivation for the
employment of such techniques, while dso making some dfort to be redistic aéout the
limitations of such methods, in particular a number of important caveas that should be
borne in mind when uili sing these techniques within the aurrent applicaiion domain. In
general, the dedricity demand data is modelled as a time series, but one gplicaion
considered involves appli cation of lingustic modelli ng to cgpture operator expertise.

1. INTRODUCTION

Over the past 10-15 yeas, there has been an explosion in the number of applicaion of intelligent
techniques. For the moment, a working definition of the word 'intelligent’ will be taken to mean the
utilisation of engineaing techniques which have, to one etent or another, been born out of human
ressoning, adaptation or leaning, biologicd cognitive structures, or principles of evolution. Intelli gent
techniques have been widely applied to the modelling of industrial plants [1], utilised in model-based
predictive controllers [2] and used to model and forecast time series [3], as well as providing a number of
solutions to problems in clasdficaion [4], pattern recognition [5] and dedsion suppart systems[6].

This paper considers, in particular, the gplication of intelli gent techniques to the modelli ng and forecasting
of eledricity demand, with reference to hourly, weekly and annual load data. With the cntinuing
emergence of new deregulated eledricity markets, forecasting of eledricity unit price has also become an
important applicaion area for intelli gent techniques [7], though price forecasting is not the focus of this
paper. There have been many applicaions of intelligent techniques to eledricity load forecating in the
literature. See [8-11] for a representative seledion. Some papers focus on peek load forecasting,
particularly in the cnsideration of daily demand forecasting [12], while others consider the full daily
profile or weekly or annual time series of load [13,14]. Finaly, the intelligent systems literature has also
considered the dedricd load forecasting problem on al its time scaes: short-term (hourly/daily) [9,15],
medium term (weekly) [8,16,17] and yealy [18,19].

All of this literature suggests that many of the problems arising in eledricity demand forecasting may be
effedively dedt with using intelli gent techniques. One of the ams of this paper is to analyse why thisis ©
and to provide some detail on how advantage can be taken of such techniques. A further objediveisto look
at the posshle generaisation of particular techniques to dfferent utilities and to admit some genera
conclusions regarding the devel opment of effedive modelli ng and forecasting tools for eledricd |oad.
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2. PROBLEM ANALYSIS

This dion detail s the problem to be tackled and to look at why (and pcssbly why not !) intelli gent
systems techniques can be useful in aload forecasting context.

2.1 Problem Definition

The esential problem is to determine future values of eledricd load, given past values of eledricd load
and some causal inputs. The causal inputs sould be gpropriate to the time scde of interest, for example:

Hourly: Weaher inputs (temp., humidity, wind speed and dredion, cloud cover, etc), spedal
events (bank holidays, sporting events, etc)

Weekly: Weaher inputs (heaing degreedays, cooling degreedays), economic adivity

Yearly: Economic inputs (GDP, average industrial wage, consumer price index, etc),

demographic variables (population humbers, immigration, emigration, distribution, etc)

It is normal to construct a mathematica model based on the airrently available data, from which future
behaviour of the load variable can be extrapolated. Typicdly, such amodel is of the form:

Ye = f (yk—l""’yk—n’ut "'Uli-—ml""’ukp"'ukp—mp) N
where:
yk represents the dedricd load in yea k,
ud represents causal input i in yea k, and
f represents sme mapping which may be linea or nonlinea.

Note that the mapping, f, can be synthesised by an 'intelli gent' methoddody, if required. One important
issue is that any load model relying on causa inputs must have future values of that input available
(through some mecdhanism, passbly a further forecasting model) in order to produce aload forecast.

2.2 Intelligent Techniquesfor Load Forecasting

Why are intelli gent techniques likely to be useful for the load forecasting problem ? The foll owing presents
afairly roughlist of charaderistics of the problem which may merit the goplication of such methods:

e The function, f, may be nonlinear. Typicdly, intelligent methods such as neural networks,
guantitative fuzzy models or genetic programming can be used to synthesise nonlinea functions.

* Hard quantitative information is not available. There ae many cases where load forecasting
knowledge is performed purely on operator experience, requiring the cnstruction of an alternative
framework (e.g. afuzzy lingustic model) for knowledge formulation.

* The problem structure lends itself to intuitive solution. In some cases, intelli gent tods can present
structures which provide a good match to the problem. An example here would include fuzzy
partitioning of data between, say, Summer and Winter.

* Nonlinear problems generally lead to multi-modal performance surfaces. When the nonlinea
modelling tod falls into the 'intelligent' caegory (e.g. neural nets, fuzzy models, etc) or not (e.g.
Volterra, bilinea or Hammerstein models), the performance surfaces that must be searched are usually
multi-modal, with a plethora of locad minima. 'Intelli gent' stochastic search techniques, such as genetic
algorithms, can be dfedive in finding a solution close to a global minimum.

A number of caveas must be highlighted at this point. Note that, while tools sich as neural networks
provide alaptive solutions to problems and require little a priori knowledge, many other linea adaptive
structures have been in existence for some time (see [20] for example) and may provide a more
parsimonious lution to the modelli ng problem. A test for nonlineaity should always be performed prior



to using reural or fuzzy techniques. Finally, note that neural nets do not provide alinea solution by
default!

A further caved in the gplicaion of 'intelligent' techniques is the ladk of requirement for a priori
knowledge. While thisis, at first glance a dea advantage of the solution methoddogy, it does not provide
any motivation for the praditioner to investigate the problem more dosely, which might reved some eay
simplifications, or reved awedth of knowledge which is traditionally known about the problem of interest.
Spedficdly, for the load forecasting problem:

* A vast body of knowledge is avail able in relation to linea time series modelli ng
e Some simple nonlinea transformations may possbly be utilised to bring the problem within the
domain of linea adaptive techniques

The ultimate danger is that the naive load forecasting praditioner may seled a so-cdled 'intelli gent'
technique, with no knowledge of the time series tradition which has gone before and will, no daubt, get an
answer. Given that we ae deding with a forecasting problem, there is no benchmark answer to compare
with, other then possbly that provided by a more traditional linea approach (which we assume the
praditioner has no knowledge of). It is with regard to this difficulty that this author believes that intelli gent
modelling techniques such as neura networks and fuzzy models be firmly regarded as a nonlinea
extension of liner adaptive techniques, so that praditi oners have accesto the wedth of knowledge which
has gone before. The foll owing sedion documents a particular example, in this regard.

2.3 Naive, Intelligent or Both ?

In this sdion, an example is presented of autoregressve forecasting of weekly eledrica load. For clarity,
no causal (exogenous) variables are included, with load models relying purely on past load values. Two
models are propased to forecast weekly eledricd load 52weeks ahead:

1. Anintelligent neura network model, with littl e knowledge of traditional methods, and
2. A traditional, linea Box-Jenkins model

Model 1

Here, it may be deemed reasonable to base the model input vector (regressor) on the previous 52 weeks of
data, while the weights and biases of the neural network are determined on the full 10 years of data
available. Note that one year of datais reserved for testing of the model.

The model is of the form:

f(YnY) = 8 @

where the function f is synthesised by a feedforward MLP neural network, Y, is the load value at week t and
L the regressor length, in this case a full season equal to 52 weeks (1 year). a, is an (unmodelled) white
noise component (equivalent to the forecast error). A fully connected MLP was used with a 3-5-1 neuron
configuration resulting from architecture optimisation. The network was trained with standard
backpropagation (with momentum and adaptive learning rate) with stopping point determined at the
minimum of a cross-validation set. The performance is evaluated in terms of the mean absolute percentage
error (MAPE), with results given in Table 1.

Model 2
The univariate Box-Jenkins model is derived from the general SARI(p,d)(P,D) (seasona autoregressive
integrated) model which can be written as:

®y(B)Pe(B")I O, =4 3

where:



Y, isthe time series

Op0¢ =(1-B')°(1- B)¢ isadifferencing transformation required if the data is nonstationary. d
is the degree of non seasonal differencing, D is the degree of seasonal differencing, and L isthe
number of seasonsin ayear,

a, istheforecast error,
® (B)=(1-@9B-@B*-.....—@Br) isthe non seasonal autoregressve operator of order p,
® (B')=(1-9B--¢@ B*-....—@ B") isthe seasona autoregressve operator of order P.

The lags p and P are determined using correlation analysis, as are the degreeof the diff erencing operators,
d and D. The seaondlity of the data, L, is usualy known a priori, or may also be determined using
correlation analysis. A variety of methods may be used to determine the model parameters in the ®(B)
polynomials, iterative least squares proving a popular approach. Following model construction, t-ratio tests
may be used to assessthe significance of the model.

Model type MAPE Linear MAPE Neural Networ k
Autoregresgve (52 inpus) 1 3.96% 4.45% (Model 1)
Box-Jenkins 3.81% (Model 2) 3.35% NNBJtype'A’

2.35% NNBJtype ‘B’
Structural State Space  2.74% 2.57%

Table1: Comparative results for linea and neural models

Table 1 gives comparative results for linea and nonlinear (neural network) versions of models with

different structures:

* 52 contiguous autoregressve inputs,

* A’ partitioned' input structure using the methoddogy of Box and Jenkins as described above, and

* A basic structural model [22] formulation, where diff erent model segments focus on trend and seasonal
components.

The neural network version of the structural state-space model utilises a neural network to model the
residual (the regressor of which is gructured using the Box-Jenkins methoddogy) remaining after linea
structural state spacemodelli ng.

Clealy, Table 1 provides for some interesting conclusions ! The basic comparison between the results for

Model 1 and Model 2 yield the foll owing conclusions:

* The linead model constructed using traditional methods sgnificantly outperforms the ' naive’ neural
network model (3.81% Vs 4.45 %),

* The ANN model (Model 1) is not able to resolve the most useful regressor inputs from the superset
presented to it,

* A neura network model presented with a structured regressor significantly outperforms the linea
version, and

* Thelinea structura model is very good, with a modest improvement when the residual is modelled by
an ANN.

Hopefully the &ove provides a dea message: ' intelligent’ tedhniques must be gpliédtelligently is a
goodsolutionisto be ahieved. Use a priori knowledge and any transformations which can assst.



3. LINGUISTIC MODELLING OF SHORT-TERM LOAD

This ®dion presents a mathematicd model for short-term (24 hour) eledricd energy consumption in
Ireland. The model is based on fuzzy logic and the parameters determined by drawing on the extensive
intuitive knowledge of operators in the National Control Centre (NCC) in E.S.B., using a series of
guestionnaires to determine the shape and location of the fuzzy sets, and the fuzzy rules used to evaluate
the model output [23].

3.1  Standard Day Selection

Inherent in this model is the load forecating rotion of a ‘standard’ day. The forecater seleds a shift
profile from record that he wnsiders will be a ¢ose gproximation to that which is expeaed for the future
period. This represents the ideaof a standard day. The basis upon which a shift is chosen as dandard is
made by comparison of the charaderistics for the two days in question. It is worth noting at this gage that
the standard day and the day to be forecasted will, in virtually every case, have the same cdendar
‘dayname’. In the fuzzy model a mecdhanism was devised so that the load profile for the forecasted day was
developed on a shift by shift basis, which was then adapted acwording to the experts fuzzy advice,
hopefully, to within the acceted tolerance of the expeded daily charaderistics and parameters.

3.2  Unpredictable Load Changes

The system load data has a 25 MWatt pseudo-random variation. The prefix “pseudo’ is used to describe
this fluctuation because it depends entirely on the demands made by a large ac furnaceload which utili ses
this much energy over a very short time scde, 15-30 minutes, at random intervals, which are impossble to
forecast.

3.3  Input Variables

The most important input variable is outdoar temperature, athoughthe other weaher variables also make a
significant contribution. Subsequent to several medings with the operators, fuzzy variable input spaces
were generated. As an example, for ambient temperature the most suitable linguistic terminology was
dedded upon as ( freezing, very cold, cold, comfortable, warm and hot). These represent the various
thresholds and watersheds that this variable muld pess through, utilising the commonplace terminology
used by the experts concerning daily weaher forecasts.

For quantifying wind speed, the gplicaion of a modified Beaufort scde type system was considered the
best option. This resulted in the terms .. (calm, light/gentle breeze, moderate/fresh breeze, moderate/strong
breeze, storm force). Wind dredion was represented, in a aisp set manner, by the eght cardinal compass
points. The seleded terminology for the fuzzy lingustic variable representing the sun's heaing ability or
brightness was... (dull, overcast, cloudy, clear, bright, sunny). Due to an inability to find any suitable
person in either E.S.B. or the Met. Office who could quantify this parameter, the range was divided
propartionately and crisp dedsions made & aresult.

The rainfall terminology that was implemented was...( dryday, wetday,

Quarter Hourly Daily Load for Week No 15 sat1990
2200 , ,

rainday) but a rainday can be( light, moderate, heavy). It was deamed : 3
unrecessary to try and find a crrelation between relative ar humidity and 20 i i ]
eledricd demand in this =t of data, since the expert operators did not |~ { |
consider it to be of any relevance or significancein the forecasting process e 3 R

g 1600 \/’V\[\\\: AR
3.4  Output Variables ol f \?/ \
The output variables of this fuzzy model are the danges that the model \ Mm%h"m / Djmey
recommends to be gplied to the standard day seleded. The most important ”UU‘ N |
points on the daily load profile plot are the overnight minimum, the load at = | (A |
9.00 am.,and the midday pe. The magnitude of the load demand at this =~ °* ".."* * *

latter point would typicadly be the largest over the aitire day. Later the load
falsinto day valley, and later still the ascent to the evening pe&k. In Summer,  Fig.1: Sample 24-hour load profile



however, there is frequently another pe&k in the profile, much smaller than the evening high and usually
before midnight. Its presenceis ggnificant and was duly included into the set of output variables, cdled the
late high. The full set of basis paints, upon which the forecast is constructed, is therefore ( Overnight min.,
09.00 a.m., 12.00 noon, Day valley min., Evening peak, Late high).

3.5  Construction of Fuzzy Sets

Freean. g V-Cold | Cold |Comfort| Warm Hot |V.Ho

It was dedded that a questionnaire be mnstructed so as to colled the |==

information on the fuzzy set boundaries, from the experts, in a structured
and systematic manner. This information determined the fuzzy sets and

asciated fuzzy values. The questionnaire was then constructed with the |::c

12°C

purpose of gaining three very important fields of information from the [==

14°C

operators:
+ Intuitive lingustic parameter names. e
« Spedficaion of the quantitative ranges, thresholds and watersheds of [
data.
e Systematic dedsion criterion and rule base. 5o | I I I I I I

o | \ \ \ \ \ \

Furthermore, it confirmed that in redity, the operators forecast procedure, or
at least the reasoning behind the dedsions, is intuitively the same & the

structure of the fuzzy logic rule based mechanism. Fig.2: Sample of Questionnaire

3.6  Fuzzy Rule Base Construction.

The modelling of the dedsion making processof the operators is encgpsulated within the fuzzy rule base.
An array type of medhanism is the most systematic and structured method o representing such a complex
process When all the arays had been completed by as many experts as was possble, the most popular
opinions regarding the degree of influence eab weaher parameter had on a particular profile point was
seleded. Spedal attention was also applied when a parameter has an espedally large or smaller effed than
normal, in an effort to model spedal day (e.g. World Cup match day) charaderigtics.

Name: A. N. Other. Temperature
Wind FREEZING V.COLD COLD COF T WARM HOT V. HOT
CALM +ML +M +MS NIL -S -M -ML
LIGHT AIR +ML +M +MS NIL -S -MS -M
LIGHT / GENTLE +ML +M +MS NIL -S -MS -M
MOD.FRESH BREEZE +ML +ML +MS NIL -S -MS -M
STGBREZ /MODGALE +ML +ML +MS NIL -VS -S -MS
FRESH/STG GALE +L +ML +MS NIL -VS -S -S
STORM +VL +L +MS NIL -VS -S -S
LEGEND: * :Increaseor Deaease. VS:“Very small” S:“Small” MS: “Medium small”
M :“Medium’ ML : “Medium large” L:“Large” VL :“Very large”
Table2: Sample Extrad of Questionnaire for Fuzzy Rule Base.

3.7 FuzzyInference Engine

Oncethe input and autput fuzzy sets were seleded and the rule base mnstructed then systematic coding of
these rulesin the IF...THEN.. structure took the format outlined in Fig.3. There exist many various diff erent
medhanisms to model this type of fuzzy reasoning which occurs naturaly in the human mind. The most
notably successul of these ae those accedited to Mamdani and Larson [26][27]. Mamdani implication
was implemented initially because aiticd analysis claimed that it was most suitable for application
involving lingustic modelli ng [24][ 25].

However rudimentary application of Larson reasoning showed no improvement in load forecast acarracy,
so it was not fully encoded as a model option. One can rever tell how many rules might be fired by a
particular day seledion, without in-depth study. An algorithm was developed whereby the COA'’s of the



fuzzy output load change sets were cdculated prior to program exeaution. In the de-fuzzificdion strategy
the degreeto which any particular rule is relevant is measured by the maximum membership function of the

output load change set.

THEN DELTA LOAD [0.00 A.M

IF M ODEL isS[SUMMER,WINTER ].
& TEMPERATURE is[FREEZING,V.COLD,COLD ,COMFORT,WARM HOT,V.HOT ].
& HISTORIC TEMPERATURE iS[FREEZING,V.COLD,COLD COMFORT,WARM HOT,V.HOT]
& RAIN is[DRYDAY,RAINDAY , WETDAY].
& WETDAY is[LIGHT,MODERATE,HEAVY ].
& HISTORIC RAIN is[DRYDAY ,RAINDAY WETDAY].
& WETDAY is[LIGHT,MODERATE,HEAVY ].
& WIND is[CALM ,LIGHT BREEZE, M ODERATE/FRESH BREEZE,STRONG
BREEZE/M ODERATE GALE,FRESH/STRONG GALE,STORM ].
& DIRECTION iSfNORTHERLY,SOUTHERLY , EASTERLY,WESTERLY ].
& SOLAR INTENSITY is[DULL,OVERCAST,CLOUDY,CLEAR,BRIGHT,SUNNY]

., OVERNIGHT M INIMUM, 9.00 A.M .

.M IDDAY PEAK,DAY

VALLEY,EVENING PEAK,LATEHIGH ,M IDNIGHT]

each elementof DELTA LOAD hasacorresponding element of LOAD CHANGE associated with it, where
LOAD CHANGE =[ VERY SM ALL,SMALL,MEDIUM SMALL,MEDIUM MEDIUM LARGE,
LARGE,VERY LARGE ]

Schematic Representation of Fuzzy Model.

3.8 Interpolation Mechanism.

Of primary importance d the
output of the fuzzy modd is
the presentation of the daily
profile in quarter-hourly form.
A  draightforward, abeit
intricate, linea interpolation
medhanism  (illustrated in
Fig.4) was devised, whereby
the forecasted criticd points
are joined together,
maintaining the daraderistic
curves of the ‘standard’ day.
These daraderistics include
ascent and descent rates of the
‘standard’ day profile. The

interpolation technique
employed in this gudy
involves isolating the

‘standard’ day either side of
the aiticd minimum, or
maximum, point and
applicaion of the dgorithm to
either sidein turn.

3.8  Sample Results

Isolate Critical Point.
(M aximum or M inimum)

Separate data
into 2 arrays,
either side of
critical point.

if ASCENT
subtract last point
from every element
of array.

Norm alise
with respect to the
last element.
(temporary critical point)

if DESCENT
subtract first point
from every element
of array.

Norm alise
with respect to the
last element.
(temporary critical point)

Scale up data array to

Scale up data array to

[new critical point - new start point] ‘ ‘ [new critical point - new end point]

|

Add
new start point
to every element of array

I

l

Add
new end point
to every element of array.

—

M odified profile.
(New critical point)

Fig.4:

Interpolation Mechanism Flowchart.

Table 3 gives ssmple results for a singe day. Generaly, he fuzzy model produces a mnsistent forecast
within the 50 MWatt acceptable tolerance and, on occasions, achieves a surprisingly high degree of
acaragy, with MAF s of the order of 10 MWaitts or less However, it has to be acceted that the model
does encounter days that it cannot forecast to any substantial degree of acaracy. A mitigating fador,
however, is that experts admit that certain kinds of day are very often, in their minds, impossble to forecast

to within 100 MWatts.



Forecast Statistics for a Thurs. 1990

Forecast mwats E.S.B. Load mwaty Error pa
Overnight min. 1347 1314 2.50
09.00 am 2164 2226 2.78
12.00 noon 2213 2314 4.36
Day valley 2020 2112 4.36
Evening pe&k 2365 2415 2.07
Late high 1942 1974 1.62

Table 3: Sample day performance from linguistic model

3.9  Linguistic Model Adaptation

Further to this work, a quantitative fuzzy model, utilising a neuro-fuzzy engine, was implemented to
provide adata-based refinement to this lingustic model. The ideawas to retain the intuitive nature of the
model, while dlowing the model to lean by its mistakes. In this ense, threestrategies (ill ustrated in Fig.5)
are posshle:

1. Attempt to adapt the original linguistic model,

2. Adapt anumericd model and a set of combinatoria weights, and

3. Model theresidual from the linguistic model

Rule Base Rule Base

T)’ by

/ 4 +

Numeri ;2/
Algorit Numeric;/ . %

Lingustic ingusti
" g _ Ym_ @‘T y Lingustic
e

o

Algorith
g 7
Strategy 1 Straté/z
u ,|  Lingustic e y u .| Lingustic
Rule Base Rule Base Yoy
e >
X +
.| Numeric S .| Numericd +
"|  Algorighm “|  Algorithm
en

Strategy 3 in Training and Forecasting Modes
Fig.5: Possble strategies for adapting the linguistic model

The ultimate dhoice seleded Strategy 3, since Strategy 2 would not, in any case, remedy intrinsic arorsin
the lingustic model and it was though prudent to retain the good lingustic model intad (eliminating
Straegy 1). For further details, see[13] or [28]. One of the interesting points to emerge from this work is
that all commonly held subjedive beliefs are not always borne out by the data. The operators held that there
was a significant correlation between rainfall and load, espedally when rainfall was combined with cold
(leading to the cncept of 'misery’). However, this was not borne out by a multi-correlation analysis
performed in the subsequent data-based analysis.



4. GENETIC OPTIMISATION OF A FUZZY WEEKLY LOAD MODEL

In this application, weekly load forecasting is considered, with a quantitative fuzzy (TSK) model used to
interpol ate between separate linear season models.

41 Model Construction

Separate linear Seasonal AutoRegressive (SAR) Winter and Summer models are identified on partitioned
data which is segregated using triangular fuzzy sets. Following partitioning, data is preprocessed using the
seasonal and non-seasonal operators,

0ro=(@1-8%)°@1-B) (4)

which have been previously defined in Section 2.3. The parameters of the SAR models (i.e. the fuzzy
conseguence functions) are determined using least squares (unimodal performance surface), while the fuzzy
parameters are determined using a genetic algorithm, given that the performance surface is significantly
multimodal. A typical performance surface for a two set example (just Summer and Winter sets) is shown
inFig. 6.
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Fig.6: Example performance surface in fuzzy set parameters

In order to partition the data according to season, the raw data, shown in Fig.7, is detrended to give a zero-
mean seguence. Following this operation, positive data, in general, corresponds to Winter time (larger
heating and lighting loads), with the negative values corresponding to Summer. The transition region
around the zero line roughly corresponds to Spring/Autumn, which can be further discriminated using trend
(+ve going or -ve going). Therefore, in order to discriminate easily by season, universe of discourseis the
previous weekly load value from the detrended data sequence.

41  Optimisation of Fuzzy Model

A simple genetic algorithm (SGA) with elitism [29] is employed to optimize the fuzzy set parameters, with
the consequent function parameters evaluated at each step using a batch least squares algorithm. The
complete optimisation procedure is outlined in Fig.7. A population of 60 is used with binary coded
chromosomes and roulette wheel selection is used to select offspring. The fitness function is selected as a
multi-step prediction criterion. For the two set case, Fig.8 shows the variation in the multi-step MSE, while
Fig.9 shows the weekly prediction over a year obtained using the optimized fuzzy model, compared with
the best linear model prediction. The final fuzzy parameters obtained are (5359.8 7024.1), indicating a
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Fig.7: Model determination procedure

relatively small overlap in models in the transition region. For a quantitative comparison, the MSE for the
optimised fuzzy model (1484) compares favourably with that for the single linear model.
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Fig.8: Variation in MSE for best candidate with Fig.9: Sample results from fuzzy weekly model

generation number



CONCLUSIONS

This paper contains a number of applications of intelligent systems to electrical load forecasting. However,
the main message is not that intelligent systems provide an improvement over conventional linear
techniques, but rather that prudence is required in their application. Freguently, lessons and techniques
learned in traditional analysis can serve us well as we try to harness the power of newer techniques. In
addition, the absence of a requirement for a significant amount of a priori information is a double edged
sword - lack of understanding of the problem may result in a solution that is hon-parsimonious and sub-
optimal, in many cases being significantly to that obtained from traditional methods. This is rarely more
true than in forecasting, where we aim to determine what is unknown and therefore can be easily led to
believe that the solution we have is a good one.
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