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Abstract: The use of first-principles based models of plasma processes is discussed
in this paper. Such processes are essentially highly nonlinear, feature complex
interactions and are difficult to analyse. As an illustration of the nature of first-
principle based models, a characterisation of a simple plasma process is presented
in this work. Quantification of the nonlinearity, in terms of steady-state and
dynamics behavior, is carried out for the studied process. The use of Hammerstein
model and its applicability to the plasma process is also investigated. A basic
stabilising controller for the simple plasma process is designed and its performance
is analysed. Copyright c©2005 IFAC
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1. INTRODUCTION

Electronics manufacturing is an emerging area
for application of control technology. Over the
last few years it has been widely recognised that
a large fraction of semiconductor processing is
carried out in an essentially open loop manner.
Etching is, probably, the most fundamental of the
semiconductor manufacturing processes. In recent
years, the reactive ion etching (RIE) process has
received tremendous attention and has practically
become without an alternative in the semicon-
ductor industry. RIE is a low pressure plasma
system which involves chemical and physical reac-
tions to achieve an etching process with suitable
properties. Etching is a quite demanding process,
and properties such as selectivity, uniformity and
anisotropy are of great importance, (Badgwell et
al., 1995). It should be noted that a relatively
small percentage of the chips that are produced
through plasma etching are usable. At present,
the decrease in device feature size, and the in-

crease in aspect ratio and wafer size, have made
it increasingly difficult to achieve a flawless etch.
The lack of on-line sensing and closed-loop control
can result in a large volume of defective materials
that are manufactured before they are detected.
This is why the control of plasma processes is a
challenge that has inspired many researchers, in
the recent years.

Until recently, control of semiconductor etching
has typically been run-to-run and based on ex-
situ measurements of the etched wafers, (Rosen et
al., 2002). Recent developments of various in-situ
sensors including spectroscopic ellipsometry, has
now made it possible to consider the etch control
in real-time. Due to many diverse difficulties (such
as influence of chamber geometry, accuracy of
measurement sensors, etc.), the feedback real-
time control of plasma process has become an
appealing challenge. It should be noted, however,
that the process control largely depends on the
modelling itself. The modelling stage is the one
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that requires a thorough understanding of the
plasma dynamics, which is quite often hard to
analyse. The physical and chemical mechanisms
in RIE are known to be very complex, and are
currently not completely understood.

While a lot of work has been done on first-
principles based models for RIE, various literature
sources have pointed out that these models are not
suitable for control system design and analysis,
(Vincent et al., 1994). In practice, plasma models
are exclusively obtained through system identi-
fication, thus ignoring any physical relationships
inherent in the process that may be known. Neural
network based models and linear/Hammerstein
models are quite widely used in etching, (Kim
and Park, 2002; Vincent et al., 1994; Erten et
al., 1996; Stokes and May, 2000; VanAntwerp et
al., 1997). A major drawback of the linear models
is that they are normally only adequate for a
relatively small region about the operating point.
Artificial intelligence based models (such as fuzzy-
logic and neural network models) generally do
not allow full understanding of the inherent pro-
cess dynamics. System identification based con-
trol methodologies are often exploited to ensure
process stability and disturbance rejection and to
satisfy some performance criteria, for a particular
plasma reactor.

The lack of much literature dealing with the ap-
plication of first-principle based models for feed-
back control has led to a number of questions
that need to be addressed. In particular, these
questions concern the complexity and adequacy of
such models as well as amenability to analysis and
feedback control. The application of first-principle
based models of plasma processes is studied in
this paper, as an attempt to answer some of the
questions. As an illustrative example, a model of
a simple plasma process is presented in Section
2, and its charactersitics are examined in Section
3. A controller design for the underlying plasma
process is considered in Section 4, and finally,
conclusions are drawn in Section 5.

2. PLASMA PROCESS MODEL

Description of a global model of a simple plasma
process is now presented. Here, global means that
spatial gradients within the chamber are not con-
sidered, so that the concentration of each chemical
species inside the chamber is described by a single
state variable. The process itself is a one-species
plasma confined in a cylindrical chamber. The
model is based on known physical interactions
that are present in the plasma. Four nonlinear
differential equations describe the dynamics of the
process, (Turner, 2003; Iordanov, 2004):
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Equations 1-4 are, respectively, balance equation
for charged particles, balance equation for neutral
density, electron temperature balance equation
and gas temperature balance equation. The four
variables, which will further be referred to as state
variables, are:

n - electron (plasma) density
N - neutral density
Te - electron temperature
Tg - temperature of other gas species

Here, the controlled variable is the ion flux, Γn.
Control can be established through the following
manipulated variables:

F - gas flow rate
P - RF power

AE - exhaust port area
Tw - temperature of chamber wall
Tin - temperature of inlet gas

Since the latter two variables, Tw and Tin, have
little effect on the ion flux, they are eliminated
as manipulated variables. A list of the other
parameters involved in equations 1-4 is given in
table 1. Note that ki = f(Te) and k∗ = f(Te).
The ion flux, Γn, and the neutral flux, ΓN , are
nonlinear functions of the state variables n, N , Te

and Tg. Typical expressions for Γn and ΓN are
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3. PROCESS CHARACTERISATION

3.1 Model Adequacy

An important question that may arise is to what
extent the considered model is realistic. It should



be stressed that a typical RIE process involves at
least ten chemical species. In this study, several
assumptions related to the description of the cur-
rent plasma model are considered, (Turner, 2003).
Firstly, the approximation that all species other
than electrons have the same temperature is justi-
fied if there are sufficiently frequent collisions that
share energy between particles of different species.
Secondly, it is assumed that there are no losses in
delivering RF power to the chamber. In addition,
no terms that account for the dynamics of the
actuators are present. However, the question of
greater interest here is not whether this model is
sufficiently representative, but can such a process
description be of use from a control perspective.

3.2 Model Characteristics

The extent to which process nonlinearities may
be significant (for an explicitly stated task) is
often assessed through experience and general
rules of thumb. A notable feature of the plasma
model under consideration is the presence of Ar-
rhenius type of nonlinearities (terms like e−E/RT ).
Such nonlinearities are often classified as “severe”,
while polynomial nonlinearities are described as
“mild”, (Nikolaou and Hanagandi, 1995). The lo-
cation of equilibrium points of models with severe
nonlinearities (as the plasma model considered in
this paper) can be a formidable task. Specifically,
to derive analytical solutions for the steady-states
by using equations 1-4, is a significantly time-
consuming problem. Numerical differentiation is
an alternative approach to find the equilibria,
although not fully reliable. This approach can be
numerically sensitive, in particular, if the system
of differential equations is stiff. In other words,
if the model exhibits very fast and very slow
time constants, this would inevitably affect the
numerical differentiation. A notable feature of the

Table 1. Plasma model parameters

Par. Description
A Internal surface area of the chamber
V Volume of the chamber
h Parameter that accounts for

reduction on n near the walls
M Neutral mass
m Electron mass
δ Mass ratio, 2m/M
εi Ionisation energy
ε∗ “Non-Ionisation” energy
kB Boltzman constant
ke Energy rate

ki Ionisation rate, ki = k
(0)
i e

−
(

εi
kBTe

)

k∗ “Non-Ionisation” rate, k∗ = k
(0)
∗ e

−
(

ε∗
kBTe

)

γ Accommodation coefficient, γ ∈ [0, 1]

system of differential equations 1-4 is their stiff
nature. For the considered model, at certain oper-
ating points the ratio of the largest and smallest
time constants can be as large as 105. It should
be noted that at each operating point, defined
by {F i, P i, Ai

E}, only one plausible steady state
solution, {n◦, N◦, T ◦e , T ◦g }, can be found.

3.3 Quantification of Nonlinearity

Two aspects of the nonlinearity are addressed in
this study. The first one considers the deviation
from linearity at DC (static response), while the
second pays attention to the transient behavior
(dynamic response).

There are various ways to quantify the degree of
nonlinearity in terms of DC input-output (I/O)
response. The I/O relationship of Γn as a function
of each manipulated variable, F , P and AE , is
illustrated in figures 1, 2 and 3, respectively. Here,
F ∈ [10−5, 10−3] kg/s, P ∈ [400, 1200] W,
AE ∈ [10−5, 10−2] m2. It can be seen from the
figures that both functions Γn(F ) and Γn(AE)
are notably nonlinear, in particular, for small
argument values. It is interesting to note that Γn

is visibly linear in the RF power, P . In this study,
the degree of nonlinearity at a specified operating
point ux = {F x, P x, Ax

E} and an interval δux

around that point, is defined by the following
expression

ρ(ux, δux) = max
∣∣∣∣
Γl

n(u)− Γn(u)
Γl

n(u)

∣∣∣∣× 100% (7)

where u ∈ [ux − δux, ux + δux]. In this equation,
Γn(.) is the output of the nonlinear model, while
Γl

n(.) is the tangent constructed at the operating
point ux and represents the linearised I/O static
map. It can be seen from its definition that ρ(.)
measures the deviation from linearity at the edges
of the operating range under consideration. Essen-
tially, this metric can be used to select operating
intervals for which linearisation is reasonable. For
instance, if a reasonable criterion for linearisation
is ρ(.) ≤ 2.5%, then an appealing objective is
to maximise δux over u so that this inequality
is satisfied. For this plasma model, the operating
region that best fits these requirements is given
by

ux = {8× 10−4kg/s, 850W, 8× 10−3m2}
δux = {±2× 10−4kg/s,±350W,±2× 10−3m2}

Clearly, this means that in the worst case, and
within this operating range, the true (nonlinear)
gain differs not more than 2.5% from its linear
approximation.

Needless to say, a single linear model cannot be
used to adequately represent the nonlinear process



over the operating space. However, quite often
a Hammerstein-type model is considered in cases
when at steady-state the controlled variable(s) de-
pends nonlinearly on the manipulated variable(s).
The Hammerstein model, shown in figure 4, be-
longs to the group of block-oriented models, de-
fined by cascade and/or parallel connection of
static nonlinearities and linear dynamics. Because
of its relatively simple structure, this model has
become increasingly popular, in particular, for
the modelling of chemical processes. This model
combines a linear dynamics with nonlinear steady-
state gain. Note that the Hammerstein model
structure can be justified if the process dynamics
are consistent over the entire operating range.

Nonlinearity not only affects the DC gain, but
more importantly, the process dynamics is of-
ten dependent on the operating point. In other
words, the time constants τi (and possibly over-
shoot and damping) can depend on the steady-
state reference value, ux, and the instantaneous
deviation of the input from this reference value,
δux. To analyse the dynamics of the presented
plasma model, step input changes were applied
at a grid of different operating points spanning
the operating space. Step changes in one input
at a time were applied and the size of the step
was 10% of the steady-state reference value. For
this analysis, step responses of the model state
variables were considered. In this investigation,
it was found that the process dynamics strongly
depend on the manipulated control variable AE ,
and to a less extent on F . As AE increases from
10−5 to 10−2, the time-constants τi decrease from
roughly 4s to about 4ms. It should be pointed out
that even for a fixed AE , the variation of time-
constants and overshoot due to step changes in
F and P , is still considerable. Variations in time-
constants (τ) and overshoot (σ) were identified
with the help of the following two metrics:

δτ :=
τmax − τmin

τmax + τmin
(8)

δσ :=
σmax − σmin

σmax + σmin
(9)

Essentially, equations 8 and 9 are expressions
for the uncertainty in τ and σ. For a particular
operating range, both parameters can be written
as

τ ∈ [τ◦(1− δτ), τ◦(1 + δτ)] (10)

σ ∈ [σ◦(1− δσ), σ◦(1 + δσ)] (11)

where τ◦ and σ◦ are the nominal (mean) values.
An interesting fact is that δτ is inversely propor-
tional to F . Note that it is possible to achieve con-
sistency in time-constants and overshoot within
some appropriately selected operating regions. In
the following operating range
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process parameter variations were reasonable
(δτ < 25% and δσ < 0.5%), which suggests
that local linearisation can be performed. Al-
though a Hammerstein model cannot fully rep-
resent the nonlinear dynamics over the entire op-
erating range, for the operating range in equation
12 such a model structure can be exploited.

An appealing question that may arise is how to
separate the static nonlinearity from the linear
dynamics part without sacrificing the physical pa-
rameters that naturally describe the process. The
process interactions represented by these parame-
ters help us to understand their effect on various
model properties, such as stability, controllability,
observability, numerical sensitivity, etc. Ongoing
research is focusing on the development of more
sophisticated, “robust” models, which will be able
to describe various plasma processes by simply
adjusting the relevant parameters accordingly.
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3.4 Jacobian Linearisation

The nonlinear plasma model represented by equa-
tions 1-4 was linearised using Taylor series expan-
sion, and closed-form expressions for the state-
space matrices were obtained. The linear state-
space model is described by

ẋ = Ax + Bu (13)

y = Cx (14)
where

x = [n,N, Te, Tg]T , u = [F, P, AE ]T , y = Γn

All of the state-space matrices: A, B and C are
functions of u, in an explicit or implicit way. An
interesting fact is that the state matrix, A, is
ill-conditioned regardless of the operating point
about which linearisation is performed. Here, the
numerical sensitivity of the state matrix is as-
sessed with the help of a singular value decom-
position. The sensitivity analysis has shown that
the first two singular values, σ1(A) and σ2(A), are
significantly larger than the other two, σ3(A) and
σ4(A). As a consequence, the condition number of
A, defined as σ1(A)/σ4(A), is of the order of 1030.
Since the state matrix is poorly conditioned, any
time-domain analysis will possibly deliver mis-
leading results that are difficult to evaluate. It
should be noted that for the considered operat-
ing space, all eigenvalues are real and negative,
which indicates that the system is stable. The
eigenvalues and singular values of the state matrix
derived at the operating point {F = 10−3, P =
1000, AE = 10−5}, are shown in table 2.

Table 2. Some typical eigenvalues and
singular values of A

Eigenvalues of A Singular Values of A
λ1 = −3.77276× 107 σ1 = 5.92859× 1021

λ2 = −9.56162× 102 σ2 = 8.68627× 1015

λ3 = −4.62219× 102 σ3 = 3.96439× 102

λ4 = −3.65322× 10−1 σ4 = 2.08531× 10−14

Overcoming the numerical sensitivity of the linear
state-space representation is normally addressed
by regularisation/normalisation techniques. Such
techniques offer reduction on the condition num-
ber of A, and are generally based on similar-
ity transformations. Although a desired numerical
stability can often be achieved in practice, how-
ever, similarity transformations typically induce
fictitious states that have no explicit relation to
the original physical states. The Balanced reali-
sation technique, (Moore, 1981), is a widely used
regularisation approach. The use of this technique
was considered in the present study. Although
this method normally works well in practice, it
was not the case with the studied linear state-
space model. It is worthy to mention that the
balanced regularisation technique failed to reduce
the condition number of the state matrix at some
operating ranges, and generally, its effect was in-
significant. This perhaps can be explained with
the very large condition number of A, which seems
to be a burden for any existing regularisation
technique.

Analysis results have indicated that the controlla-
bility matrix is of rank two, which clearly under-
lines that the process model is uncontrollable. The
states Te and Tg are linear combinations of the
states n and N , thus indicating that the system
is, however, physically controllable.

4. SUBSYSTEM CONTROLLER DESIGN

In order to illustrate the applicability of the stud-
ied model for feedback control, a simple controller
was synthesised. For this design, a command
tracking problem is considered with Γn as con-
trolled variable, and F and P as manipulated vari-
ables. Due to the aforementioned numerical diffi-
culties, the original linearised state-space model is
practically inappropriate for this purpose. Using
Gramian-based balancing, the linear state-space
model was transformed into a more numerically
stable form and model reduction was applied. As
a result, the two states corresponding to signifi-
cantly faster dynamics were truncated. The lin-
ear model was obtained at the operating point
{F = 8 × 10−4, P = 850, AE = 8 × 10−3}, which
is consistent with the studied plasma chamber.

The considered control design is a mixed-sensitivity
H∞ problem. The need of robust control method-
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ology is justified by the eliminated high-frequency
dynamics, a result of the model order reduction,
and the existing dependence on the operating
conditions. The design objective is expressed by:

γ = min
K
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where K denotes the controller, S is the sensitivity
function and T is the complementary sensitivity
function, (Skogestad and Postlethwaite, 1996).
The weighting filters W1, W2 and W3 are selected
so that the closed-loop maintains stability against
unstructured uncertainty and also provides good
tracking performance. A controller K ensuring
robust performance of γ = 0.108 was produced
with the following choice of filters:

W1(s) =
1100

50s + 1
, W2 =

[
106 104

]

W3(s) =
10−7s + 3× 10−6

107s + 1

Closed-loop step responses, for the nonlinear
plant, illustrating the command tracking of four
different reference values for Γn (1×1020, 2×1020,
3× 1020, 4× 1020) are depicted in figure 5. These
values cover the operating space in equation 12.

5. CONCLUSIONS

In this paper, analysis and feedback design of
a simple plasma process have been considered,
featuring a first-principle model as a basis for
control design. The foregoing analysis reveals that
such models are typically quite complex, highly
nonlinear and their analysis highlights various
numerical difficulties that are present. However,
the consideration of physically-based models for
design is an appealing challenge that should not
be disregarded. A robust control design follow-
ing model order reduction is shown to be able
to achieve nominal performance across a typical
operating range.
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