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Abstract

We present a sub-compartmentalized model of drug distribution in
tissue that extends existing approaches based on the well-stirred tissue
model. It is specified in terms of differential equations that explicitly ac-
count for the drug concentration in erythrocytes, plasma, interstitial and
cellular space. Assuming, in addition, steady state drug distribution and
by lumping the different sub-compartments, established models to predict
tissue-plasma partition coefficients can be derived in an intriguingly simple
way. This direct link is exploited to explicitly construct and parameter-
ize the sub-compartmentalized model for moderate to strong bases, acids,
neutrals and zwitterions. The derivation highlights the contributions of
the different tissue constituents and provides a simple and transparent
framework for the construction of novel tissue distribution models.

Keywords: lumped tissue distribution models, partition coefficients, PBPK,
PK/PD, mechanistic modelling, unbound fraction

Introduction

Physiologically based pharmacokinetic (PBPK) modelling and simulation is in-
creasingly recognized and used as a supporting tool in drug discovery and devel-
opment (1–6). The aim is to analyze, interpret and predict the pharmacokinet-
ics of drug candidates in the different stages of drug discovery and development
(7, 8). In toxicokinetics, physiologically based models are frequently used for
the assessment of toxicological risks to humans (9–11). A distinctive feature
of PBPK models is the underlying mechanistic description of the behavior of
drugs in the various tissues and the blood (11). A significant limitation to their
application within the pharmaceutical industry has been the requirement of vast
quantities of data for model construction (12). In broad terms, PBPK models
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rely on two types of input data: physiological parameters like, e.g., blood flows,
organ volumes, tissue composition; and compound-related parameters like, e.g,
unbound fraction in plasma, blood-plasma ratio, clearance and tissue partition
coefficients.

Partition coefficients are a measure of the steady state drug concentration
between two compartments. The tissue-plasma partition coefficient describes
the steady state drug distribution in tissue compared to the plasma concentra-
tion. The experimental determination of tissue affinities can be costly and time
consuming, and requires a substantial amount of compound, which is rarely
available during discovery and early candidate selection (12). As a solution to
this problem Poulin and Theil proposed in their seminal papers (13, 14) to a
priori predict the tissue distribution of a drug based on mechanistic descrip-
tion of the underlying physiology and the properties of drugs. Their key idea
is to regard the most important tissue constituents—like water, neutral lipids,
phospholipids, macro-molecules—and to predict the overall tissue distribution
by means of the distribution into these tissue constituents. The extent of drug
distribution into the tissue constituents is then estimated from readily available
in vitro data. Utilizing these achievements, generic PBPK models have been
designed that can be used in early drug discovery (1–3, 15). Subsequent predic-
tive models (12, 16, 17) rely on the same idea, but differ in the way the tissue
is composed and/or the distribution into the different constituents is approxi-
mated. Some of these models are designed for special compound classes, like
moderate to strong bases, acids, zwitterions (12, 16).

When aiming at more detailed PBPK models or interfacing with pharma-
codynamic processes, current tissue partitioning models have two major limita-
tions: (i) They are built on a lumped tissue compartment model, e.g., lumping
together the different tissue sub-compartments, like the interstitial and cellu-
lar sub-compartment, and (ii) they assume a quasi-equilibrium between the
concentrations in the different sub-compartments (”steady state assumption”).
Furthermore, the time-dependence of diffusion processes and/or active trans-
port processes between the different sub-compartments cannot be incorporated,
since it violates the underlying steady state assumption.

More detailed and refined PBPK models are known, e.g., (7, 8, 11, 18),
but these models are either specifically designed for the compound of interest,
or lack a generic parameterization in terms of readily available experimental
data. In this article we present a sub-compartmentalized model of drug distri-
bution in tissues, defined in terms of a system of differential equations. These
explicitly model the time evolution of the drug concentration in erythrocytes,
plasma, the interstitial and cellular space. In the generic case, drug exchange
by passive diffusion, non-saturable distribution processes and the absence of
metabolic processes is assumed. By exploiting recent developments in a priori
prediction of tissue partition coefficients, the sub-compartmentalized tissue dis-
tribution model can be parameterized in terms of readily available in vitro data,
thus enabling a priori predictions in early drug discovery. Parameterizations for
different drug classes, including moderate to strong bases, acids, neutrals and
zwitterions, are given. Assuming steady state drug distribution and lumping
the different sub-compartments, existing models of tissue partition coefficients
can be re-obtained in an intriguingly simple and clear way.

Drug distribution in animals and humans is a complex process, and the
presented model is a simplified mechanism-based description of it. In the case
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of partition coefficients, though, such a simplistic description has proven to be
very useful in the context of a priori prediction of the pharmacokinetics of
new chemical entities. The present model should be seen as a starting point for
modelling the tissue distribution of drugs. Whenever addition experimental data
or more refined information is available, the model equations should be refined in
order to account for the additional insight. This regards transporters in tissues,
e.g. (19), distribution in red blood cells, e.g. (20), the possibility of metabolic
processes in diverse tissues, e.g. (21), or the consideration of specific tissue
binding components that may be important for the specific drug of interest, e.g.
(22).

Methods

Tissue-plasma partition coefficients are a measure of the steady state distribu-
tion of the total drug concentration in tissue Ct,ss compared to the total plasma
concentration Cp,ss, i.e.,

Kt:p =
Ct,ss

Cp,ss
. (1)

Tissue-unbound plasma partition coefficients Kt:up are a measure of the steady
state distribution between the total drug in tissue to the unbound drug in the
plasma water Cp,ss

u , i.e.,

Kt:up =
Ct,ss

Cp,ss
u

. (2)

The vast majority of current generic PBPK models is build on a lumped, well-
stirred tissue compartment model (e.g., (1, 23, 24)) using Kt:p or Kt:up as an
input parameter.

Sub-compartment tissue distribution

In this section, we present a sub-compartment tissue distribution model as a
generalization of existing models to predict tissue partitioning coefficients. It is
specified in terms of differential equations for the drug concentration in erythro-
cytes (e), plasma (p), interstitial space (i) and cellular space (c), and explicitly
allows to model the transfer processes between the different sub-compartments.
The choice of sub-compartments is motivated by the availability of physiological
data and for pharmacokinetic and pharmacodynamic reasons (11, 19, 20). For
the generic parameterization, drug exchange by passive diffusion, non-saturable
distribution processes and the absence of metabolic processes is assumed, as in
existing models for predicting tissue partition coefficients (12–14, 16). Exten-
sions are discussed. Finally, we will demonstrate, how to re-obtain established
partition coefficient models by imposing additional assumptions. Vice versa, we
will use existing models to construct and a priori parameterize the proposed
sub-compartment tissue model.



4

Model equations. The sub-compartmentalized tissue distribution model is
based on the following assumptions: (i) the distribution of the drug to- and from
the organ is governed by advection through the blood flow Q [volume/time];
(ii) the drug exchange between the different sub-compartments of volume V
[volume] is governed by passive diffusion, described in terms of the permeability-
surface area product PS [volume/time]; (iii) only the unbound and unionized
drug Cun = fn · Cu can cross membranes, where Cu denotes the unbound drug
concentration in tissue water, and fn = Cun/Cu denotes the neutral unbound
fraction in the water, which is typically calculated according to the Henderson-
Hasselbalch relation. If the compound is not ionizable, we set fn = 1. Under
these assumptions the time evolution of the total drug concentrations C in
the different sub-compartments in a non-eliminating tissue is modeled by the
following system of differential equations:

V e d
dt

Ce = Q
(
Ce

in − Ce
)− PSe:p

(
fneCe

u − fnpCp
u

)
(3)

V p d
dt

Cp = Q
(
Cp

in − Cp
)

+ PSe:p
(
fneCe

u − fnpCp
u

)

−PSp:i
(
fnpCp

u − fniC i
u

)
(4)

V i d
dt

C i = PSp:i
(
fnpCp

u − fniC i
u

)− PSi:c
(
fniC i

u − fncCc
u

)
(5)

V c d
dt

Cc = PSi:c
(
fniC i

u − fncCc
u

)
, (6)

where the superscripts x = e, p, i, c refer to the different sub-compartments, and
the pairs x:y refer to neighboring sub-compartments x and y. Cp

in and Ce
in denote

the incoming drug concentrations in plasma and erythrocytes, respectively—
typically the distribution model is part of a whole body physiologically based
pharmacokinetic model, in which case the incoming concentrations are linked to
out-going concentrations of the preceding organ/tissue (e.g. the arterial concen-
tration). In the above equations, the term Q

(
Cx

in−Cx
)

with x = e, p models the
advection of the drug by the blood flow, while the term PSx:y

(
fnxCx

u − fnyCy
u

)
with x, y = e, p, i, c models the passive diffusion of the unbound unionized drug
across the capillary wall or the cellular membrane.

Under the above assumptions, the distribution of the drug into the differ-
ent sub-compartments is influenced by three processes: (i) the proportion of
unbound to total drug concentration, (ii) the velocity of the transfer processes
between sub-compartments, and (iii) the amount of ionization (for ionizable
compounds).

In case of a linear, i.e., non-saturable relationship between the unbound
aqueous and the total drug concentration, it is

Cx
u = fux · Cx, (7)

where fux denotes the unbound fraction in the sub-compartment x, which is de-
fined as the steady state distribution between the unbound aqueous concentra-
tion and the total concentration fux = Cx

u/Cx. Replacing Cx
u by fux ·Cx results

a closed and solvable system of differential equations for the sub-compartment
tissue model. If, however, the relation between the total concentration C and
the unbound aqueous concentration Cu is assumed to be non-linear, e.g., due to
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saturable binding processes, the generic equations (3)-(6) have to be extended.
We will comment on this and illustrate possible extensions below.

First, we consider a linear relation between the unbound aqueous and the
total drug concentration. We restrict our consideration to a single sub-compart-
ment x to derive a predictive equation for fux. Let us assume that the compound
partitions into neutral lipids or phospholipids, and is present in water in dis-
solved form or bound to proteins; other effects are considered neglectable. Then,
the total amount of drug Ax in the sub-compartment x is given by (12, 16, 25)

Ax = Au + Apr + Anl + Anp, (8)

where Au denotes the amount of unbound drug in water, Apr the amount of
bound drug in the water, Anl and Anp the amount of drug partitioned into
neutral lipids (nl) and phospholipids (np). Let us denote by V z:x the fractional
volume of the constituent z (e.g., water, neutral or phospholipids) with respect
to the total volume of the sub-compartment x, i.e.,

V z:x =
V z

V x
. (9)

Dividing eq. (8) by the total sub-compartment volume V x yields

Cx = (Cu + Cpr) · V w:x + Cnl · V nl:x + Cnp · V np:x (10)

with Cu = Au/V w, Cpr = Apr/V w, Cnl = Anl/V nl, and Cnp = Anp/V np.
Dividing by the unbound aqueous concentration Cu and exploiting linear binding
and distribution processes such that Cu = fuxCx, we finally obtain

1
fux =

(
1 +

Cpr

Cu

)
V w:x +

(
Cnl

Cu

)
V nl:x +

(
Cnp

Cu

)
V np:x. (11)

The concentration ratios on the right hand side of eq. (11) can be interpreted
as partition coefficients associated with the different sub-compartment con-
stituents: the protein-unbound, neutral lipids-unbound and neutral phospholipids-
unbound partition coefficients

Kpr:u =
Cpr

Cu
, Knl:u =

Cnl

Cu
, Knp:u =

Cnp

Cu
. (12)

This finally yields

1
fux = (1 + Kpr:u) · V w:x + Knl:u · V nl:x + Knp:u · V np:x. (13)

Hence, the inverse of the unbound fraction is a weighted sum of different con-
stituent partition coefficients. The weighting factors are given by the volume
fractions of the tissue constituents. The above relation is not restricted to the
chosen example, but is much more general: Assume that the sub-compartment
comprises water and constituents z ∈ {a, b, c, . . .}. Then, the unbound fraction
fux satisfies

1
fux = V w:x +

∑

z∈{a,b,c,...}
Kz:u · V z:x. (14)
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In order to derive a priori predictive models, the tissue constituents par-
tition coefficients are approximated by parameters that are assessable through
in vitro measurements. To recognize this and to find appropriate experimen-
tal realizations was the break-through in a priori determination of partition
coefficients (13, 14). The differences between existing tissue distribution mod-
els regard (i) the tissue constituents that are taken into account and (ii) the
approximation of partition coefficients for the resulting constituents by in vitro
data. Typically, ionization effects, potential binding to acidic phospholipids and
partitioning into the neutral- and phospholipids are processes associated with
the cellular space. Important processes in the interstitial space include binding
to macro-molecules and ionization effects. Plasma and erythrocytes partitioning
are typically measured directly by in vitro experiments.

Finally, let us consider a non-linear relation between the unbound and total
concentration. E.g., assume that binding in the interstitial space is saturable,
specified in terms of the dissociation constant KD and the maximum number
of possible binding sites B. Then, eq. (7) for x = i has to be replaced by the
equation

C i
u =

1
2

(
C i −B −KD +

√
(C i −B −KD)2 + 4KDC i

)
. (15)

Further extensions can be realized in a similar way.

Lumped steady state tissue partitioning

Common partition coefficient models can be directly derived from the sub-
compartmentalized tissue distribution model by imposing two additional as-
sumptions: the drug exchange between the different sub-compartments is in
dynamical equilibrium (at steady state), and the interstitial and cellular tis-
sue sub-compartments are lumped. From the steady state assumption we de-
duce that the unionized, unbound aqueous concentration is identical in all sub-
compartments, i.e.,

fnpCp
u = fniC i

u = fncCc
u. (16)

Recalling that the unbound aqueous concentration is defined with respect to
water volume and exploiting eq. (16), we obtain for the unbound fraction in the
tissue

1
fut =

Ct

Ct
u

=
(V iC i + V cCc)/V t

(V wiC i
u + V wcCc

u)/V wt
(17)

=
(

V i

fni fui
+

V c

fnc fuc

)(
V wi

fni
+

V wc

fnc

)−1

· V wt

V t
, (18)

where the subscripts wt, wi and wc refer to the tissue-, interstitial- and cellular
water, and V t = V i + V c and V wt = V wi + V wc. Defining the neutral fraction
in tissue fnt by

V wt

fnt =
V wi

fni
+

V wc

fnc , (19)

we end up with the relation

V t

fnt fut =
V i

fni fui
+

V c

fnc fuc . (20)
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By definition, the tissue-unbound plasma partition coefficient is given by Kt:up =
Ct/Cp

u . This yields

Kt:up =
fnp

fnt ·
1

fut , (21)

where we have again exploited that at steady state the unionized, unbound aque-
ous concentration are identical, i.e., fnpCp

u = fntCt
u. Combining eqs. (20) and

(21), we get the central relation between the tissue-unbound plasma partition
coefficient and the unbound fractions in the different sub-compartments:

Kt:up =
fnp

fni
· V i:t

fui
+

fnp

fnc ·
V c:t

fuc . (22)

Since we have Kt:p = fup ·Kt:up, we may alternatively predict the tissue-plasma
partition coefficient Kt:p. Finally we remark that eq. (22) easily generalizes to
more than two tissue sub-compartments.

Results

In this section we exploit eqs. (21) and (22) in order to derive and analyze exist-
ing models for the prediction of tissue-(unbound) plasma partition coefficients
in a unified, transparent and simple way. On the other hand, the design princi-
ples and the parameterization of the existing models can be used to construct
a priori sub-compartment tissue distribution models.

Figure 1: Tissue decomposition and processes underlying the a priori partition coefficient
models for moderate to strong bases by Rodgers et al. (left), and for neutrals and acids by
Rodgers and Rowland (right). For details, see the text.

Moderate to strong bases and type 1 zwitterions

Rodgers et al. (12, 16) recently developed mechanistic equations to predict
the tissue-unbound plasma partition coefficient for moderate to strong bases
(pKa ≥ 7.0) and type 1 zwitterions (at least one pKa ≥ 7.0). The model as-
sumes that the unbound (dissolved) drug is possibly ionized in the extra-cellular
and intra-cellular space. In the intra-cellular space, the ionized drug may bind
to acidic phospholipids (rem), while the neutral form may distribute into neu-
tral lipids (nl) and phospholipids (np). Furthermore it is assumed that only
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the neutral species can cross membranes by passive diffusion; see Fig. 1, left
for illustration. In the following derivation, we identify the extra-cellular and
intra-cellular space in (12, 16) with the interstitial and cellular space. Moreover,
we denote the water in the interstitial and cellular space by (wi) and (wc).

The model is based on the following approximations of the constituent par-
tition coefficients: (i) cellular residual tissue components-unbound drug parti-
tioning:

Krem:uc =
(
1− fnc

)
KA,AP[AP−]rem, (23)

where [AP−]rem denotes the concentration of acidic phospholipids in the resid-
ual space, with corresponding association constant KA,AP. (ii) Neutral lipids-
unbound drug partitioning:

Knl:uc = fncP∗:w, (24)

where P∗:w is chosen to be the octanol-water partition coefficient Po:w for non-
adipose tissue and the vegetable oil-water partition coefficient Pvo:w for adipose
tissue. (iii) Neutral phospholipids-unbound drug partitioning:

Knp:uc = fnc
(
0.3 · P∗:w + 0.7

)
(25)

assuming that neutral phospholipids behave like a mixture of 30% neutral lipids
and 70% water (as initially suggested by Poulin and Theil in (13)).

Sub-compartmentalized tissue distribution model. Since no interstitial
binding is considered, the unbound fraction in the interstitial space is

1
fui

= 1, (26)

while we obtain

1
fuc = V wc:c + fncP∗:wV nl:c + fnc

(
0.3 P∗:w + 0.7

)
V np:c +

(1− fnc)KA,AP[AP−]c (27)

for the cellular unbound fraction, where we exploited the relation [AP−]c =
[AP−]remV rem:c. Note that V x:c = V x:t · V t/V c, so that volume fractions with
reference to the cellular space can easily be converted into those with reference to
the tissue space (and thus we can use the readily available data in (12, 16, 18)).

Lumped steady state model. Exploiting eq. (22) we obtain the tissue-
unbound plasma partition coefficient for moderate to strong bases:

Kt:up = V wi:t +
fnp

fnc V wc:t + fnpP∗:wV nl:t + fnp
(
0.3 P∗:w + 0.7

)
V np:t +

fnp 1− fnc

fnc KA,AP[AP−]
t
, (28)
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where [AP−]t denotes the concentration of acidic phospholipids in tissue, which
is related to the corresponding cellular concentration [AP−]c by [AP−]cV c:t =
[AP−]t. We remark that

1− fnc

fnc = 10−(pHc−pKa) (29)

for mono-protonic bases. Typically, values for KA,AP are not readily available
for the different tissues. In order to estimate the unknown association con-
stants, Rodgers et al. suggested to determine KA,AP for the erythrocytes from
the blood-plasma ratio B: P and use this value as an approximation for the
association constants in the other tissues. For details see (12, 26). Parameter
values can be found in (12, 16) for the species rat.

Very weak bases, neutrals, acids and type 2 zwitterions

In (16) Rodgers and Rowland developed mechanistic equations to predict tissue-
unbound plasma partition coefficients for very weak bases (pKa < 7.0), neutrals,
acids and type 2 zwitterions (no pKa ≥ 7.0). The model assumes that the drug
is dissolved and possibly ionized (for acids, very weak bases, and type 2 zwitte-
rions) in the extra-cellular and intra-cellular space. It may bind in either form
macromolecules (albumin for acids and weak bases, lipoproteins for neutrals) in
the extra-cellular space, and distribute into neutral lipids and phospholipids in
unionized form in the intra-cellular space. Furthermore it is assumed that only
the neutral species can passively diffuse across membranes; see Fig. 1 (right) for
illustration. In the following derivation, we again identify the extra-cellular and
intra-cellular space in (16) with the interstitial and cellular space.

The model is based on the following approximations of the constituents
partition coefficients: (i) Interstitial protein-unbound drug partitioning:

Kpr:ui = KA,PRPRwi, (30)

where PRwi denotes the concentration of interstitial binding protein (albumin in
the case of acidic, very weak basic and type 2 zwitterions, or lipoproteins in the
case of neutral compounds), and KA,PR refers to the corresponding association
constant. (ii) Neutral lipids-unbound drug partitioning:

Knl:uc = fncP∗:w, (31)

where P∗:w is chosen to be the octanol-water partition coefficient Po:w for non-
adipose tissue and the vegetable oil-water partition coefficient Pvo:w for adipose
tissue. (iii) Neutral phospholipids-unbound drug partitioning:

Knp:uc = fnc
(
0.3P∗:w + 0.7

)
(32)

assuming that neutral phospholipids behave like a mixture of 30% neutral lipids
and 70% water (as above).
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Sub-compartmentalized tissue distribution model. For the unbound
fraction in the interstitial space, eq. (14) yields

1
fui

= 1 + KA,PRPRi, (33)

while we obtain

1
fuc = V wc:c + fncP∗:wV nl:c + fnc

(
0.3 P∗:w + 0.7

)
V np:c (34)

for the cellular unbound fraction.

Lumped steady state model. Exploiting eq. (22) we obtain the tissue-
unbound plasma partition coefficient for very weak bases, acids, neutrals and
group 2 zwitterions

Kt:up = V i:t + KA,PRPRt +
fnp

fnc V wc:t + fnpP∗:wV nl:t

+fnp
(
0.3P∗:w + 0.7

)
V np:t, (35)

where we have exploited that PRt = PRi V i:t. Rodgers and Rowland suggest
to determine KA,PR in plasma from fup and Po:w. For details see (16, eq. (13)).
Parameter values can be found in (16, 26) for the species rat.

Poulin-Theil model

L = lipids PR = proteins

L = lipids PR = proteins

Drug 

molecules

Plasma

Tissue

W = water

W = water

NL = neutral lipids NP = phospholipids

dissolved binding protein

NL = neutral lipids NP = phospholipids

dissolved binding 

protein

Drug 

molecules

Plasma

Tissue

W = water

W = water

homogeneous model

Poulin and Theil model        Willmann et al. model

Figure 2: Tissue decomposition and processes underlying the a priori partition coefficient
models by Poulin and Theil (left), and by Willmann et al. (right). For details, see the text.

In their seminal papers in 2000/01 (13, 14), Poulin and Theil proposed an
in silico approach to a priori predict tissue-plasma partition coefficients solely
based on few compound specific in vitro data. They assumed that the compound
is present in dissolved form in tissue water, that it may bind to macromolecules



11

in the interstitial space, and distribute into neutral lipids or phospholipids in
the cellular space, while other effects are considered negligible. These equations
have subsequently been corrected by Berezhovskiy (25, eq. (64)) (see also (16)).
For the present model we will only derive the unbound fraction in the tissue fut,
since only the total tissue water is considered by Poulin and Theil rather than
a distinction between the interstitial and cellular water as in the previous mod-
els. The unbound fraction in tissue is linked to the tissue partition coefficient
via Kt:p = fup/fut , if ionization is not considered. The lumping of the tissue
space in the model by Poulin and Theil has the following consequence for the
sub-compartmentalized tissue model: Either the generic equations are reduced
to account for the change of tissue concentration only, or alternatively, one sets
fui = fuc = fut and stays with the full system of equations.

The model (including the corrections) is based on the following approxima-
tions: (i) Protein-unbound drug partitioning:

Kpr:ut =





1/(2fup)− 1/2; non-adipose tissue,
0; adipose tissue,
1/fup − 1; plasma

(36)

where fup denotes the unbound fraction in plasma as measured by in vitro
assays. (ii) Neutral lipids-unbound drug partitioning:

Knl:ut = P∗:w, (37)

where P∗:w is chosen to be the octanol-water partition coefficient Po:w for non-
adipose tissue and the vegetable oil-water partition coefficient Pvo:w for adipose
tissue. (iii) Neutral phospholipids-unbound drug partitioning:

Knp:ut = 0.3 ·Knl:ut + 0.7, (38)

where it is assumed that neutral phospholipids behave like a mixture of 30%
neutral lipids and 70% water. For ionizable compounds, Pvo:w has to be replaced
by fn · Pvo:w. In view of eq. (38) and (39) this implies that a correction for
ionizable compounds is only made for adipose tissue (see Discussion).

Sub-compartmentalized tissue distribution model. Based on the fun-
damental relation (13), the unbound fraction in non-adipose tissue fut is given
by

1
fut =

(
1

2fup +
1
2

)
V wt:t + Po:wV nl:t +

(
0.3 Po:w + 0.7

)
V np:t. (39)

For adipose tissue it is

1
fut = V wt:t + Pvo:wV nl:t +

(
0.3 Pvo:w + 0.7

)
V np:t. (40)

Lumped steady state model. By neglecting ionization (fn = 1), as in (13),
we exploit eq. (21) and Kt:p = Kt:up · fup to obtain the tissue-plasma parti-
tion coefficient as published by Poulin and Theil, with subsequent corrections
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according to Berezhovskiy. For non-adipose tissue it is

Kt:p =

(
1/(2fup) + 1/2

)
V w:t + Po:wV nl:t +

(
0.3 Po:w + 0.7

)
V np:t

(1/fup)V w:p + Po:wV nl:p +
(
0.3 Po:w + 0.7

)
V np:p

, (41)

and for adipose tissue it is

Kt:p =
V w:t + Pvo:wV nl:t +

(
0.3 Pvo:w + 0.7

)
V np:t

(1/fup)V w:p + Pvo:wV nl:p +
(
0.3 Pvo:w + 0.7

)
V np:p

, (42)

where V w:p, V nl:p, V np:p are the respective fractions of water, neutral lipids
and phospholipids in plasma. Parameter values can be found in (13, 27) for the
species rabbit, rat, mouse and human.

Willmann et al. model

In (17), Willmann et al. proposed an alternative mechanistic model for the
calculation of the tissue-plasma partition coefficient Kt:p. In contrast to the
previous models Willmann et al. use the membrane affinity to quantify binding
to lipids. It is assumed that the compound can dissolve in tissue water, bind
to proteins (pr) and membrane lipids (l). In distinction to the previous models,
Willmann et al. consider the proteins as a separate phase.

The model is based on the following approximations (17): (i) Protein-unbound
drug partitioning:

Kpr:ut =

{
PR/KD; plasma
10−5 MA; tissue

(43)

where PR denotes the concentration of albumin in the blood plasma, and KD

denotes the dissociation constant for serum proteins. (ii) Lipids-unbound drug
partitioning:

K l:ut = MA (44)

where MA denotes the membrane affinity. For ionizable compounds, the tissue
protein-unbound drug partitioning is corrected with the ionization constant pKa

yielding

Kpr:ut = 10−5

(
9.9

1
1 + (8/pKa)18

+ 0.1
)

MA. (45)

Sub-compartmentalized tissue distribution model. Based on the fun-
damental relation (13), the unbound fraction in tissue fut is given by

1
fut = V wt:t + Kpr:wtV pr:t + MA · V l:t. (46)
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Lumped steady state model. Exploiting eq. (21) and Kt:p = Kt:up · fup we
obtain the tissue-plasma partition coefficient

Kt:p =
V w:t + Kpr:utV pr:t + MA · V l:t

V w:p + Kpr:upV pr:p + MA · V l:p
. (47)

Parameter values can be found in (28).

Parameterization of the sub-compartmentalized tissue dis-
tribution model

We have demonstrated, how existing approaches to a priori predict tissue-
(unbound) plasma partition coefficients can be exploited to predict the unbound
fractions in the interstitial and cellular space. In our context, these values can
readily be used to parameterize the sub-compartment tissue model. This al-
lows us to establish different parameterization for different drug classes. Be-
yond fui and fuc, the unbound fractions in plasma and erythrocytes, as well
as permeability-surface area products and the different volumes of the sub-
compartments are needed.

The unbound fraction in plasma fup is directly determined by in vitro mea-
surements, while the unbound fraction in erythrocytes fue can be derived from
the blood-plasma ratio B: P according to

1
fue =

B: P− (1− hct)
hct · fup · fne

fnp , (48)

where hct denotes the hematocrit value. A detailed summary on red blood cell
partitioning can be found in (20). The unbound fractions can be used with
eq. (7) to parameterize the sub-compartment model. A permeability-surface
area product PS is obviously not present in the lumped steady state models,
so we have to adopt a different approach. In the early stage of drug discovery,
the permeability-surface area product may well be chosen identically to a suf-
ficiently large value in order to account for a fast and instantaneous exchange.
In this case our model mimics the dynamical equilibrium (comparable to the
partition coefficient models). However, it still allows to directly access the con-
centrations in the different sub-compartments and to include active transport
processes. Once experimental data is available, it might be possible to esti-
mate the permeability-surface area product, cf. e.g, (18). However, a generic
parameterization for a large class of drugs is not known.

Typically, tissue volume is regarded as extra-vascular space, comprising the
interstitial and the cellular space, while the organ space includes the vascular
space in addition to the interstitial and cellular space. Tissue volume data can
be found in the literature, see e.g., (1, 12, 16, 29). In (18, Table A2), values
for the vascular volume fractions V v:org and for the interstitial volume fractions
V i:org of diverse organs have been published for rats and assumed to be iden-
tical for humans. Utilizing the hematocrit (hct) value, we may thus compute
all necessary volumes for the sub-compartmentalized tissue distribution model:
V t:org = 1− V v:org, V v = V v:org · V t/V t:org, V e = hct · V v, V p = (1− hct) · V v,
V i = V i:org · V t/V t:org, V c = (1− V v:org − V i:org) · V t/V t:org.
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Extensions of the sub-compartmentalized tissue distribu-
tion model

The main advantage of the sub-compartmentalized tissue distribution model
is the ability to extent and refine it. As a simple example, we consider the
integration of binding to a target B in the interstitial space. In this example
we assume a non-saturable binding to macro-molecules (proteins) specified in
terms of fupr, and a saturable binding to a target protein B with dissociation
constant KD. The model refinement can easily be realized by adding evolution
equations for the drug concentration that is bound to macro-molecules C i

pr, for
the concentration that is bound to the target proteins C i

target, and the free target
protein concentration Bu to eqs. (3)-(6):

V i d
dt

C i
pr = V i · kfast

(
1− fupr

fupr
· C i

u − C i
pr

)
(49)

V i d
dt

C i
target = V i · kfast

(
C i

uBu

KD
− Cc

target

)
(50)

V i d
dt

Bu = V i · kfast

(
(Btot −Bu)− C i

uBu

KD

)
(51)

where the unbound concentrations equals C i
u = C i −C i

pr −C i
target. The param-

eter kfast [1/time] denotes a large rate constant, while Btot denotes the total
target protein concentration in the interstitial space. In the case of the equa-
tions above, it is also possible to derive an algebraic expression for C i

u (cf. (18)):

C i
u =

1
2
fupr

(
(C i −KD/fupr −B)

+
√

(C i −KD/fupr −B)2 + 4C iKD/fupr

)
, (52)

which would substitute eq. (7) with x = i. Along the same lines it is possible
to include active transport processes between different sub-compartments, or to
integrate entire signalling pathways in order to account for drug related effects.

Discussion

A major challenge in the construction of a priori tissue distribution models is
the choice of the considered tissue constituents—like macro-molecules, neutral
lipids etc.—as well as the way the resulting constituent partition coefficients are
approximated by in vitro data. The presented approach highlights these two
points and offers a flexible and transparent way to design novel tissue distribu-
tion models.

Common tissue distribution coefficients can be easily derived by assuming
steady state drug distribution and by lumping the different sub-compartments.
In comparison to the derivations in the original papers (12–14, 16, 17), the
relation in eq. (22) is intriguingly simple and may serve as a way to develop
novel partitioning coefficient models in the future. Within this setting, common
features as well as the differences between the existing models can easily be as-
sessed. All considered models regard protein binding and distribution into water
and lipids as major processes determining the distribution of the drug into the
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tissue. While Willmann et al. regard tissue lipids as a whole, Poulin and Theil
as well as Rodgers et al. further distinguish between neutral and phospholipids.
In addition, different in vitro parameters are used to approximate the resulting
constituent partition coefficients (logP vs. MA). A major difference between the
models is the way they take ionization effects into account. Rodgers et al. model
ionization based on the Henderson-Hasselbalch relation. In contrast, Willmann
et al. propose an empirical model, cf. eq. (46), that has been optimized based
on experimental data. In the Poulin and Theil model there are some inconsis-
tencies regarding ionization. Only the vegetable oil-water partition coefficient is
corrected for ionization, accounting for a modified neutral lipids-unbound drug
partitioning. However, the neutral phospholipids-unbound drug partition co-
efficient in eq. (38) is not correctly modified ((0.3fn · Knl:ut + 0.7) instead of
fn · (0.3Knl:ut + 0.7)). In addition, ionization in non-adipose tissue is not ac-
counted for. Another difference between the models is the way protein binding
is modelled. Willmann et al. use the membrane affinity (MA) to estimate pro-
tein binding in tissue, while Poulin and Theil as well as Rodgers et al. rely on
the fraction unbound in plasma (fup). While in the Rodgers et al. models fup

is appropriately modified in order to account for distribution processes into e.g.
neutral lipids and phospholipids within the plasma, this is not realized in the
Poulin and Theil model.

Eqs. (3)-(6) model the distribution of a drug into a non-eliminating tis-
sue/organ. For eliminating tissues/organs, the equations have to extended to
account for the metabolic processes. The advantage of a description in terms
of different equations is that such processes can easily be integrated, in par-
ticular for two and more, possible saturable processes. In the case of elimi-
nating tissues, eq. (22) is not valid anymore, since the underlying assumption
eq. (16) is violated. In this case, tissue partition coefficients can be directly
determined from the concentrations in the different sub-compartments, i.e.,
Kt:p = Ct/Cp = (V iC i + V cCc)/(V i + V c)/Cp. In special cases, also the parti-
tion coefficient can be adapted to account for elimination, see (25, eq. (55)) for
non-saturable tissue elimination.

In PBPK modelling, the most widely used model of tissue distribution is the
well-stirred or perfusion rate-limited model (5, 11). It lumps together the extra-
vascular space of the tissue and is build on a single tissue compartment. The
idea of decomposing organs/tissues into blood, interstitial and cellular space
was proposed earlier (e.g.,(11)), but refined models have not been used in a
generic way due to the increased amount of parameters needed. The presented
approach directly addresses this parameterization problem. A major advantage
of the sub-compartmentalized distribution model is its capability to link tissue
distribution to effect related signalling pathways or metabolic/gene regulatory
networks. This becomes increasingly important in view of the current mod-
elling and simulation needs in the pharmaceutical industry. As outlined in (34),
failure due to pharmacodynamic and toxicological issues is of major concern.
To be supportive, physiologically based pharmacokinetic models should provide
interfaces for pharmacodynamic or toxicological models (19).

The sub-compartmentalized tissue distribution model is of increased com-
plexity in comparison to the common well-stirred lumped tissue model, which
results in additional differential equations to be solved. Taking explicitly the
four sub-compartments erythrocyte, plasma, interstitium and cellular space into
account quadruples the number of equations; considering a lumped vascular
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space would still result in a threefold number of equations. From a numerical
point of view, the number of equations is still relatively small compared to ap-
plications, e.g., in chemical engineering, automobile or aviation industry, and
efficient numerical algorithms to solve (stiff) problems are available (30, 31).
However, when aiming at analyzing the overall model or at estimating parame-
ters, the increased complexity can become a problem. Here the relation between
the detailed sub-compartment model and the lumped model can be exploited
to reduce the complexity, and further reduction techniques may be applicable
(cf., e.g., (32, 33)).

In this article, we have focussed on a generic parameterization of the sub-
compartment distribution model in terms of readily available in vitro data. We
utilized recent developments in (12, 13, 17) to establish predictive models for
small-molecular compounds. For the class of biologics, it can also be crucial
to incorporate cellular processes in order to correctly account for the distri-
bution processes (like, e.g., internalization processes in the case of monoclonal
antibodies). The equations (3)-(6) can easily be extended, e.g. to account for
active transport processes (19, 20), linear- or nonlinear metabolism (20, 21),
binding to other relevant molecules (20, 22), including target molecules (19)
and downstream effects. This opens the door for a wide range of applications
in pharmacokinetics and -dynamics.
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