
VELOCITY-BASED GAIN-SCHEDULED LATERAL AUTO-PILOT FOR AN AGILE MISSILE

D.J.Leith*, A.Tsourdos†, B.A.White†, W.E.Leithead*

*Dept. of Electronic & Electrical Engineering, University of Strathclyde, U.K.
†Dept. of Aerospace, Power & Sensors, Cranfield University-RMCS, U.K.

Abstract:  This paper investigates the application of velocity-based gain-scheduling
techniques to a demanding, highly nonlinear, missile control design task.  Scheduling on
instantaneous incidence (a rapidly varying quantity) is well known to lead to
considerable difficulties with conventional gain-scheduling methods.  Moreover, the
missile dynamics do not have well-defined relative degree at operating points where the
lateral velocity is zero and thus conventional feedback linearisation methods cannot be
applied to design a controller.

1. INTRODUCTION
Gain-scheduling control is widely employed in

flight control applications, where high performance has
to be achieved over a broad operating envelope.  In the
classical gain-scheduling design approach, a non-linear
controller is constructed by continuously interpolating,
in some manner, between the members of a family of
linear controllers.  Each linear controller is, typically,
associated with a specific equilibrium operating point
of the missile and is designed to ensure that, locally to
the equilibrium operating point, the performance
requirements are met.  By employing a series expansion
linearisation which, locally to the equilibrium operating
point, has similar dynamics to the aircraft, linear
techniques may be used to resolve this local design
task.  Continuity is, therefore, maintained with
established linear design techniques for which a
considerable body of experience has been accumulated.
While this traditional gain-scheduling approach is
extremely successful in most flight control applications
(McLean 1990),  the trend is towards vehicle
configurations where the conventional gain-scheduling

conditions may not always be satisfied.  Gain-scheduled
controllers are traditionally designed on the basis of the
dynamics relative to a family of trim conditions
assuming that the airspeed is slowly varying.  However,
during aggressive manoeuvring the vehicle may be far
from equilibrium with rapidly varying airspeed.   In
addition, the requirement to operate at high angles of
attack can necessitate scheduling on rapidly varying
quantities such as the instantaneous incidence angle.  It
should be noted that scheduling on instantaneous
incidence is well known to be problematical and is
almost always avoided in classical scheduling
arrangements.  Specifically, in the example considered
in this paper, a conventional gain-scheduling design
approach fails to lead to a stabilising controller.

Faced with these kind of issues (which are also
relevant in many other applications), an recent years a
number of alternative approaches have been proposed
which attempt to extend gain-scheduling methods
including those based on local model networks and
Takagi-Sugeno fuzzy models (see, for example,
Johansen & Murray-Smith 1997, Hunt & Johansen
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1997).  However, the latter typically include off-
equilibrium information at the cost of moving to
nonlinear (especially affine) formulations and so lose
the continuity with linear methods which is one of the
principle advantages of classical gain-scheduling.
Moreover, the requirement for some form of slow
variation condition is often retained either directly or
indirectly via assumptions implicit in the formulation
(Leith & Leithead 1999a).  The velocity-based analysis
and design framework, recently proposed in Leith &
Leithead (1998a,b), associates a linear system with
every operating point of a nonlinear system, not just the
equilibrium operating points.  This approach thereby
relaxes the restriction to near equilibrium operation
while maintaining the continuity with linear methods as
required.  Moreover, it can be shown that the velocity-
based approach does not inherently involve any slow
variation requirement (Leith & Leithead 1999b).
Velocity-based techniques provide a useful bridge
between classical control approaches and AI methods
such as those based on local model networks and
Takagi-Sugeno fuzzy models, generalising the series
expansion linearisation which forms the basis of the
former while retaining the blended multiple model
structure of the latter.  The aim of this paper is to
investigate the application of velocity-based gain-
scheduling techniques to a demanding, highly
nonlinear, missile control design task.

2. MODELLING FOR CONTROL
The missile lateral dynamics are (White et al. 1998,

Tsourdos et al. 1998)
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where r is the yaw rate (rad/s), v the lateral velocity
(m/s), y the lateral acceleration (m/s2), u the fin angle
(rad) and Uo is the nominal forward speed (m/s).  (Note
that the missile dynamics do not have well-defined
relative degree at operating points where the lateral
velocity is zero and thus conventional feedback
linearisation methods cannot be applied to design a
controller).  Differentiating, the corresponding velocity-
based formulation is obtained
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with � , �r w v wr v  .  The velocity-based linearisation
associated with an operating point is obtained by simply
“freezing” (2) at the relevant operating point and the
collection of such linearisations forms the velocity-
based linearisation family.   The solution to the
velocity-based linearisation associated with a particular
operating point locally approximates the solution to the

nonlinear dynamics, (1), and the solutions to the
velocity-based linearisation family can be pieced
together to recover the global solution to (1).  The
velocity-based framework therefore allows continuity
with established linear methods to be maintained even
in the nonlinear context.

Since there are a continuum of operating points, the
velocity-based linearisation family associated with a
nonlinear system has, of course, infinitely many
members.  It is therefore attractive to determine a
(perhaps approximate) finite parameterisation of the
family on which to base control designs.  This
requirement leads naturally to consideration of a
blended multiple model representation of the
linearisation family whereby the linearisations at a
small number of representative operating points are
blended together/interpolated between to produce an
approximation to the exact linearisation family.  Such a
representation is closely related to neuro-fuzzy
modelling approaches including Local Model Networks
and Takagi-Sugeno fuzzy methods .  However, in
contrast to the latter methods, the velocity-based
representation (Leith & Leithead 1999a)

 Uses genuinely linear local models (not affine).
 The dynamics are directly related to the local

models: the solution to a velocity-based blended
multiple model system, locally to a specific
operating point, is described by the solution to the
linear system obtained by “freezing” the blended
multiple model system at the relevant operating
point.  The resulting frozen system is simply a
weighted linear combination of the local models.

 A still stronger property is that the solution to the
blended multiple model system, locally to a
specific operating point, is approximated by the
weighted linear combination of the solutions to the
local models.

In the present application,  the velocity-based
linearisation family associated with the missile lateral
dynamics is approximated by the blended family
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The coefficients in (2) which depend on yaw rate, r, and
fin angle, u, are neglected so that the coefficients in (3)
vary only with lateral velocity.  For simplicity, standard
triangular membership functions, wi, centred on lateral
velocities of 0 m/s, 10 m/s, 20 m/s, 40 m/s and 60 m/s
are used with overlap occurring only between the
weighting functions associated with neighbouring
centres.   This scheme corresponds to straightforward
linear interpolation between the local models.  Despite
the very strongly nonlinear nature of the dynamics, only
five local models are sufficient to capture the dynamics
through the entire operating envelope up to around
60g (the accuracy of the approximation can be
assessed by comparing the transfer functions of the
linearisations associated with (2) and (3) over a range
of operating points but plots are omitted here owing to
space considerations).   Note that provided (3) is a
sufficiently accurate approximation to the exact family
and/or the controller is sufficiently robust, a controller
which achieves the performance objectives with these
approximate dynamics is also guaranteed to achieve
satisfactory performance when used with the exact
plant dynamics, (1).

3. VELOCITY-BASED CONTROL DESIGN
The requirement is to achieve a closed-loop

acceleration response with rise time of around 0.1
seconds with less that 20% overshoot.  This
requirement is to be satisfied over the full of operating
envelope of 50g.  The control design considered
adopts an inner/outer loop type of structure common in
flight control applications.  A lateral velocity inner
loop is designed first and then enclosed within an
acceleration outer loop.  The inner loop is designed to
have sufficiently higher bandwidth than the outer loop
that the design of the two loops can be effectively
decoupled.  One immediate advantage of this approach
is that the dynamics from fin angle to lateral velocity
are minimum-phase (the dynamics from fin to lateral
acceleration are non-minimum-phase) and so an inverse
can be determined directly without the need to use a
minimum-phase approximation.

Inner-loop
The structure of the inner controller is shown in Fig. 1.

Design of �G1  and �A 1   The linear dynamics, �A 1 , are
an approximate pole-zero inverse of the actuator

dynamics while �G1  is approximately inverts the
nonlinear dynamics associated with velocity-based
linearisation family, (3).   �G1  is designed using the
velocity-based inversion approach of Leith & Leithead
(1999b).    Velocity-based linearisation families are
associated with the plant and the controller.  Consider
selecting the controller velocity-based linearisations
such that at every operating point the closed-loop
combination of the plant and controller linearisations
has the approximately the same transfer function.  The

closed-loop linearisation family then has similar
transfer function at every operating point.  This is,
however, not sufficient to ensure that the controller
approximately inverts the plant dynamics.  The transfer
function only specifies the realisation of a linearisation
to within a linear state transformation.  It is, therefore,
also necessary to ensure that the state-space realisations
of the members of the controller linearisation family are
suitably compatible with one another.  (When the rate
of variation of a nonlinear system is sufficiently slow, it
can be shown that the controller becomes insensitive to
the choice of realisation.  However, in the present
example the plant dynamics are rapidly varying and the
controller dynamics are highly sensitive to the choice of
realisation.  Indeed, it is not difficult to find choices of
realisation which lead to controllers that fail to an
unstable closed-loop).  In the present example, an
appropriate realisation of approximate velocity-based
inverse is
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where
Ai(v)=A(v)-B(v)D-1(v)C(v),Bi(v) = -B(v)D-1(v)
Ci(v)=D-1(v)C(v),   Di(v)=D-1(v)

with C D( ) , ( )v vc d  1 .  Note that the values of

d and c used when deriving the approximate inverse
are design parameters which determine the accuracy of
the inversion achieved.  Analogously to linear pole-zero
inversion of systems with relative degree greater than
zero, the approximate inverse contains high frequency
poles to ensure that it is realisable.  Roughly speaking,
d determines the frequency of the poles and c

influences the damping.  Since the direct coupling term
is zero in (3) (the relative degree is greater than zero) ,
the inversion error tends to zero as d and c tend to
zero.  In the present example, values of 5 and 0.2,
respectively are found to achieve an adequate degree of
accuracy.
Design of C  The approximate inverse, G-1, is
augmented with controller dynamics, C, consisting
simply of integral action.  The gain, K, of the integrator
is selected such that the inner loop bandwidth is around
130 rad/s, see figure 2.
Controller Realisation The velocity-based inverse, (5),
cannot be directly implemented owing to the derivative
action at the input (shown in figure 3a).  However,
owing to the integral action in the controller dynamics,
C, the controller structure in figure 3a may be
equivalently formulated as in figure 3b and is now
realisable.  Note that a direct link is maintained between
the gains in the controller implementation and the gains
in the original (unrealisable) design.

Outer-loop
The lateral acceleration is related to lateral velocity

and fin angle by
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Owing to the relatively high bandwidth of the inner
loop, the lateral velocity can be considered effectively
equal to the lateral velocity demand input to the inner
loop controller.  An outer loop controller with the
simple structure shown in figure 4 is therefore
sufficient.  The nonlinear gain, gnl includes a factor

1

21 2a a v | |� �  to compensate for the nonlinear gain

relating acceleration to velocity in (6).  An additional
factor is included to compensate for the effect of the
direct coupling term in (6) at low frequencies, namely
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with g1=1, g2=2, g3=5, g4=5 and triangular weighting
functions, wi centred on lateral velocities of 1 m/s,
30m/s, 50 m/s and 60 m/s.  The overall nonlinear
control gain, gnl, is therefore g n l

a a v1 22 | |� �
.  The

nonlinear gain is augmented with controller dynamics
consisting of integral action.  The gain of the integrator
is selected such that the outer loop bandwidth is around
20 rad/s, see figure 5.
Controller Realisation The outer loop controller also
includes integral action and so can be realised directly
as discussed previously.

4. PERFORMANCE
Typical step responses of the controlled system are

shown in Figure 6.  It can be seen that the performance
requirements are satisfied over the operating envelope
(50g).  Typical stability margins and open-loop
crossover frequencies of the velocity-based
linearisations of the inner and outer control loops are

Inner loop

lateral
velocity

(m/s)

gain
margin
(dB)

phase
margin
(deg)

cross-over
frequency

(rad/s)
0 9.35 72.7 130.8

20 9.23 72.9 128.6

50 9.60 73.5 123.9

Outer loop

lateral
velocity

(m/s)

gain
margin
(dB)

phase
margin
(deg)

cross-over
frequency

(rad/s)
0 12.3 57.3 17.3

20 14.80 55.6 18.7

50 14.28 55.3 18.7

The stability margins vary due to the approximate
nature of the particular inverse dynamics used and
owing to the inaccurate inversion that results from
using a scheduled approximation to the exact plant
dynamics.

5. SUMMARY
The application of velocity-based gain-scheduling
techniques to a demanding, highly nonlinear, missile
control design task is investigated.  Scheduling on
instantaneous incidence (a rapidly varying quantity) is
well known to lead to considerable difficulties with
conventional gain-scheduling methods.  Moreover, the
missile dynamics do not have well-defined relative
degree at operating points where the lateral velocity is
zero and thus conventional feedback linearisation
methods cannot be applied to design a controller.   It is
demonstrated that the velocity-based framework can,
however, be used to successfully design a gain-
scheduled controller which achieves the performance
requirements while maintaining the continuity with
linear methods which is the principle advantage of
classical gain-scheduling approaches.
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Figure 1 Structure of inner-loop controller
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Figure 2  Transfer functions of open-loop velocity-based linearisations of inner-loop at lateral velocities of 0 m/s, 20
m/s and 50 m/s (corresponding roughly to lateral accelerations of 0g, 20g and 50g).  The uniform nature of the
dynamics is clearly evident.
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Figure 3 Alternative formulations of controller
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based linearisations of outer-loop at lateral velocities
of 0 m/s, 20 m/s and 50 m/s (corresponding roughly to
0g, 20g and 50g).  It can be seen that the dynamics are
relatively uniform at frequencies below around 60
rad/s; that is, at frequencies up to and above the cross-
over frequency of the outer-loop.
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Figure 6 Step responses with velocity-based gain-
scheduled controller


