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Abstract

Consider two sequences of bounded random variables, a value and
a timing process, that satisfy the large deviation principle (LDP) with
rate-function J(· , ·) and whose cumulative process satisfies the LDP with
rate-function I(·). Under mixing conditions, an LDP for estimates of I

constructed by transforming an estimate of J is proved. For the case
of cumulative renewal processes it is demonstrated that this approach is
favorable to a more direct method as it ensures the laws of the estimates
converge weakly to a Dirac measure at I .

1 Introduction, setup and estimation schemes.

Let {(Xn, τn), n ∈ N} be a stationary process of (not necessarily independent)
bounded random random variables taking values in [a, b] × [α, β] ⊂ R × (0,∞).
Defining Sn := X1+· · ·+Xn and Tn := τ1+· · ·+τn, assume {(Sn, Tn)/n, n ∈ N}
satisfies the Large Deviation Principle (LDP) on the scale 1/n with rate-function
J that is the Legendre-Fenchel transform of its scaled Cumulant Generating
Function (sCGF)

J(x1, x2) = sup
(θ1,θ2)∈R2

(θ1x1 + θ2x2 −M(θ1, θ2)), (1)

where

M(θ1, θ2) = lim
n→∞

1

n
log E[exp(θ1Sn + θ2Tn)].
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Treating τi as the inter-arrival time between volumesXi−1 andXi, the (pure,
zero-delayed) cumulative process {At, t ∈ R

+} is defined by

At :=

N(t)
∑

i=1

Xi,

where N(t) := sup{n : Tn ≤ t} is the counting process associated with {Tn, n ∈
N} and the empty sum with N(t) = 0 is defined to have value zero. Cumulative
processes arise naturally in many applications, including queueing theory and
risk theory. Assume {At/t, t ∈ R

+} satisfies the LDP on the scale 1/t with
rate-function I that is the Legendre-Fenchel transform of its sCGF

I(x) = sup
θ∈R

(θx − λ(θ)), where λ(θ) = lim
t→∞

1

t
log E[exp(θAt)]. (2)

If we are given an observation (X1, τ1), (X2, τ2) . . ., but the statistics of the
process {(Xn, τn), n ∈ N} are unknown, how would we estimate the rate-function
I? The purpose of this work is to consider the large deviations of estimating I
by transforming an estimate of the sCGF M . Although a more direct approach
based on estimating λ and taking its Legendre-Fenchel transform is possible, this
scheme performs better in certain, typical circumstances. For instance in the
case when {At, t ∈ R

+} is a cumulative renewal process, that is {(Xn, τn), n ∈
N} forms an i.i.d. sequence. This is demonstrated in section 3.

The transformation is based on the following observation. For a broad class
of processes it is known that J and I from equations (1) and (2) are related by

I(x) = inf
y>0

yJ

(

x

y
,
1

y

)

(3)

(see [19, 26, 11]). Having estimated J , our estimate of I is constructed by the
transforming the estimates through equation (3).

In order to discuss the LDP for estimates of I and J we must select topo-
logical spaces for I, J and their estimates. The spaces of lower semi-continuous
(lsc) convex functions from [a/β, b/α] and [a, b]× [α, β], respectively, taking val-
ues in R∪ {+∞} and denoted Conv[a/β, b/α], Conv([a, b]× [α, β]), are natural.
However, the usual topologies, such as uniform convergence on bounded subsets,
are not suitable. For example we want a topology in which estimates such as
In = n|x| converge to I which is 0 at x = 0 and +∞ otherwise.

The topology we employ is the Attouch-Wets topology [1, 2], a metrizable
topology which identifies the convergence of functions with the convergence of
their epigraphs. For an extended real-valued function f : Z 7→ R̄ on a metric
space (Z, d), the epigraph of f is defined to be epi f := {(z, α) ∈ Z × R : α ≥
f(z)}. Equipping Z × R with the box metric D, f is lsc if and only if epi f is
a closed subset of Z × R (for example, see Theorem 1.6 of [25]). Therefore a
topology for lsc functions is inherited from a topology on the closed subsets of
the metric space.
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Let CL(Z) denote the collection of nonempty closed subsets of Z. A sequence
{An, n ∈ N} ⊂ CL(Z) converges in the Attouch-Wets topology to A ∈ CL(Z),
denoted A = τAWd − limAn, if given any bounded set B ⊂ Z and any ǫ > 0,
there exists Nǫ such that

sup
z∈B

|d(z,An) − d(z,A)| < ǫ for all n > Nǫ.

Letting Conv(Z) denote the set of convex lsc functions from Z to R ∪ {+∞},
a sequence {fn, n ∈ N} ⊂ Conv(Z) converges to f ∈ Conv(Z) if and only if
{epi fn, n ∈ N} converges to epi f in the Attouch-Wets topology on CL(Z×R),
i.e., f = τAWD − lim fn if and only if epi f = τAWD − lim epi fn.

Whenever Z is a subset of R
n (for any finite n) equipped with the Euclidean

distance, d, Theorem 3.3.3 of Beer [3] can be used to show that the topologies
τAWD and τAWd on CL(Z × R) coincide. Thus either can be used to form the
Attouch-Wets topology on Conv(Z), and we denote this topology simply by
τAW from now on.

A necessary and sufficient condition for checking convergence in CL(Z) is
the following, which we shall use in our proofs:

Theorem 1 (Theorem 3.1.7 of Beer [3]) Let (Z, d) be a metric space, and
let A,A1, A2, . . . be a sequence in CL(Z). Then A = τAWd − limAn if and only
if for each bounded subset B of Z we have both limn→∞ ed(A ∩ B,An) = 0
and limn→∞ ed(An ∩B,A) = 0, where for any two nonempty subsets E and F ,
ed(E,F ), the excess of E over F is given by ed(E,F ) = sup{d(e, F ) : e ∈ E}.

A good reference for the Attouch-Wets topology is Beer [3]. Its suitability for
our purposes will be demonstrated by the continuity of the transformation in
equation (3).

The sCGF estimation scheme we adopt for M was proposed by A. Dembo
in a private communication to Duffield et al. [8]. The scheme is this: select
a block-length B ∈ N sufficiently large that you believe the blocked sequence
{~Yn, n ∈ N}, where ~Yn := (X(n−1)B+1, τ(n−1)B+1) + · · · + (XnB, τnB), can be
treated as approximately i.i.d; then use the estimator:

Mn(~θ) =
1

B
log

1

n

n
∑

i=1

exp(〈~θ, ~Yi〉). (4)

We propose taking the Legendre-Fenchel transform of Mn to form an estimate
Jn of J ,

Jn(~x) = sup
~θ

(〈~θ, ~x〉 −Mn(~θ)), (5)

and then transform Jn by equation (3) to form an estimate In of I,

In(x) = inf
y>0

yJn

(

x

y
,
1

y

)

. (6)

In section 2, Theorem 7, the LDP for {In, n ∈ N} in Conv[a/β, b/α] is
established via the contraction principle. In section 3 it is explained why this
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scheme can be preferable to the more direct approach of estimating I through
the Legendre-Fenchel transform of estimates of λ. In particular, using this
scheme if {At, t ∈ R

+} is a cumulative renewal process, we prove the laws of
{In, n ∈ N} converge weakly to a Dirac measure at a I, which is not typically
the case using the direct method. In section 4 we present a guide to related
work and an indication of the practical significance of the proposed estimation
scheme.

2 Main results.

Let M1([Ba,Bb]×[Bα,Bβ]) denote the space of probability measures on [Ba,Bb]×
[Bα,Bβ] equipped with the τ topology. In [4], Bryc and Dembo introduce a
mixing condition, condition (S), for stationary processes. For example it is sat-
isfied by hypercontractive Markov chains. If {(Xn, τn), n ∈ N} satisfies (S) then

by inclusion of σ-algebras the blocked process {~Yn, n ∈ N} also does. Under
condition (S), Theorem 1 of [4] proves that the empirical laws

Ln :=
1

n

n
∑

i=1

δ~Yi

satisfy the LDP in M1([Ba,Bb]× [Bα,Bβ]) with good, convex rate-function H .
The rate-function H can be calculated by through the following representation.
For ν ∈ M1([Ba,Bb] × [Bα,Bβ]),

H(ν) = sup
f∈M([Ba,Bb]×[Bα,Bβ],R)

{
∫

fdν − Λ(f)

}

,

where M([Ba,Bb] × [Bα,Bβ],R) is the set of bounded, measurable functions
from [Ba,Bb] × [Bα,Bβ] to R and

Λ(f) = lim
n→∞

1

n
log E

[

exp

(

n
∑

i=1

f(~Yi)

)]

.

For each ν ∈ M1([Ba,Bb] × [Bα,Bβ]) define Mν by

Mν(~θ) =
1

B
log

∫

~x∈[Ba,Bb]×[Bα,Bβ]

e〈
~θ,~x〉ν(d~x),

and Jν to be the Legendre-Fenchel transform of Mν. Note that when ν = Ln,
the empirical law, JLn

= Jn defined in equation (5). For a one dimensional
process, assuming condition (S) holds, Duffy and Metcalfe [10] prove that rate-
function estimates satisfy the LDP. The arguments in [10] generalize verbatim to
processes taking values in R

d, for any finite d, giving us the following theorem.
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Theorem 2 (Thm. 1, [10]) If {(Xn, τn), n ∈ N} satisfies condition (S) of
Bryc and Dembo [4], then the estimates {Jn, n ∈ N} satisfy the LDP in Conv([a, b]×
[α, β]) with good rate-function

K(φ) =

{

H(ν) if φ = Jν , where ν ∈ M1([Ba,Bb] × [Bα,Bβ]),
+∞ otherwise.

The arguments presented in [10] used to prove Theorem 2 rely on the assump-
tion that the random variables are bounded. Based on evidence from numerical
experiments we conjecture that Theorem 2 also holds for (an appropriate class
of) processes with unbounded random variables, but proving this is a mathe-
matically challenging problem. As there are is no constraint on the value of the
bound, for practical applications we believe the boundedness assumption posses
no serious difficulty.

In light of Theorem 2, in order to prove the LDP for {In, n ∈ N}, where In
is defined in equation (6), it suffices to prove that the transformation (3) from
Conv([a, b]× [α, β]) 7→ Conv[a/β, b/α] is continuous and invoke the contraction
principle (Theorem 4.2.1 of [6]). To prove continuity, first we prove a Proposition
and Corollary that provide a checkable condition for the continuity of a function
f : Conv(Z1) 7→ Conv(Z2), where (Z1, d1) and (Z2, d2) are metric spaces and
both Conv(Z1) and Conv(Z2) are equipped with the Attouch-Wets topology.
The Proposition, which may be of independent interest, establishes conditions
on a function g : Z2 7→ Z1 that ensure its pullback g∗, where g∗(B1) := {x ∈
Z2 : g(x) ∈ B1}, is continuous in the Attouch-Wets topology.

Proposition 3 Let (Z1, d1) and (Z2, d2) be metric spaces. Let g : Z2 7→ Z1 be a
bijective, continuous function that maps bounded sets to bounded sets and whose
inverse g−1 is uniformly continuous on bounded sets. Then g∗ : CL(Z1) 7→
CL(Z2) is continuous.

Proof: Let A,A1, A2, . . . denote a convergent sequence in CL(Z1) with A =
τAWd1

− limAn. Fix γ > 0, and let B2 be a bounded subset of Z2. As g maps
bounded subsets to bounded subsets, g(B2) := {g(x) : x ∈ B2} =: B1 ⊂ Z1 is
bounded. Then as A = τAWd1

− limAn, there exists an N such that n > N
implies that ed1

(B1 ∩An, A) < γ, so that d1(x,A) < γ for all x ∈ B1 ∩An. Fix
n > N and y ∈ B2∩g

∗(An). Then y ∈ g∗(B1)∩g
∗(An), and so d1(g(y), A) < γ.

Thus, since g is surjective, there must exist y′ ∈ g∗(A) with d1(g(y), g(y
′)) < γ.

Fix ǫ > 0. Since B2 ∩ g∗(An) is bounded and g−1 is uniformly continuous
on bounded subsets we can choose γ sufficiently small that d2(y, y

′) < ǫ. Thus,
since y′ ∈ g∗(A), we have d2(y, g

∗(A)) < ǫ. This is true for all y ∈ B2 ∩ g
∗(An)

with n > N , and so ed2
(B2 ∩ g∗(An), g∗(A)) < ǫ. Thus limn→∞ ed2

(B2 ∩
g∗(An), g∗(A)) = 0. Similarly limn→∞ ed2

(B2 ∩ g∗(A), g∗(An)) = 0, and so
g∗(A) = τAWd2

− lim g∗(An).

�

In particular, the following Corollary states that if we wish to check the conti-
nuity of f : Conv(Z1) 7→ Conv(Z2) and epi f(ψ) = g∗(epi ψ), then it suffices to
check the conditions on g in Proposition 3.
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Corollary 4 Let (Z1, d1) and (Z2, d2) be metric spaces and let f : Conv(Z1) 7→
Conv(Z2) be a function. Suppose that epi f(ψ) = g∗(epi ψ) for all ψ ∈
Conv(Z1), where g : Z2 × R 7→ Z1 × R is a function that satisfies the con-
ditions of Lemma 3. Then f is continuous.

We prove that the transformation (3) is continuous by considering it as the
composition of two maps. The first takes J(x, y) to yJ(x/y, 1/y) and is proved
via Corollary 4; the second takes yJ(x/y, 1/y) to infy yJ(x/y, 1/y) and is proved
by direct arguments.

Lemma 5 For any φ ∈ Conv([a, b] × [α, β]), define its transform f1(φ) by

(f1(φ))(x, y) := yφ

(

x

y
,
1

y

)

, for all (x, y) ∈ [a/β, b/α] × [1/β, 1/α].

Then f1(φ) ∈ Conv([a/β, b/α] × [1/β, 1/α]) and f1 is continuous.

Proof: Let φ ∈ Conv([a, b] × [α, β]) and fix p ∈ [0, 1] and (x1, y1), (x2, y2) ∈
[a, b] × [α, β]. Consider (f1(φ))(px1 + (1 − p)x2, py1 + (1 − p)y2). Noting that

(

px1 + (1 − p)x2

py1 + (1 − p)y2
,

1

py1 + (1 − p)y2

)

= q

(

x1

y1
,

1

y1

)

+ (1 − q)

(

x2

y2
,

1

y2

)

,

and q = py1/(py1 + (1 − p)y2) ∈ [0, 1] as y1, y2 > 0, the convexity of f1(φ)
follows from the convexity of φ. To show that f1(φ) is lsc note that epi f1(φ) =
g∗(epi φ), where g : [a/β, b/α] × [1/β, 1/α] × R 7→ [a, b] × [α, β] × R is given by
g(x, y, z) = (x/y, 1/y, z/y). Since epi φ is closed and g is continuous, epi f1(φ)
is closed. Thus f1(φ) is lsc and f1(φ) ∈ Conv([a/β, b/α] × [1/β, 1/α]).

The function g is bijective with inverse g−1 : [a, b]× [α, β]×R 7→ [a/β, b/α]×
[1/β, 1/α] × R given by g−1(x, y, z) = (x/y, 1/y, z/y). Both g and g−1 are
uniformly continuous on bounded sets. Therefore g satisfies the conditions of
Proposition 3 and thus Corollary 4 implies that f1 is continuous.

�

Lemma 6 For any function φ ∈ Conv([a/β, b/α]× [1/β, 1/α]), define its trans-
form f2(φ) by

(f2(φ))(x) := inf
y∈[1/β,1/α]

φ(x, y), for all x.

Then f2(φ) ∈ Conv([a/β, b/α]) and f2 is continuous.

Proof: As φ ∈ Conv([a/β, b/α] × [1/β, 1/α]), it’s global infimum is attained
which ensures the conditions of Corollary 3.32 of Rockafellar and Wets [25] hold
and f2(φ) ∈ Conv([a/β, b/α]).

As φ is convex and lsc, it is finite on a convex closed subset of [a/β, b/α] ×
[1/β, 1/α] and is continuous on the interior of this set. Therefore for any
fixed x, infy∈[1/β,1/α] φ(x, y) is attained at some point in [1/β, 1/α]. Thus
z ≥ infy∈[1/β,1/α] φ(x, y) if and only if there exists a y ∈ [1/β, 1/α] with
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z ≥ φ(x, y), i.e., (x, z) ∈ epi f2(φ) if and only if there exists a y ∈ [1/β, 1/α]
with (x, y, z) ∈ epi φ.

Let φ, φ1, φ2, . . . be a sequence in Conv([a/β, b/α] × [1/β, 1/α]). Let B ⊂
[a/β, b/α] × R be the bounded set B = [a/β, b/α] × [−c, c]. Fix n and (x, z) ∈
B∩epi f2(φn). Then there must exist y ∈ [1/β, 1/α] with (x, y, z) ∈ B′∩epi φn,
where B′ = [a/β, b/α] × [1/β, 1/α] × [−c, c]. Thus, since (x′, z′) ∈ epi f2(φ) if
and only if there exists y′ with (x′, y′, z′) ∈ epi φ, and since d((x, z), (x′, z′)) ≤
d((x, y, z), (x′, y′, z′)), we have

inf
(x′,z′)∈epi f2(φ)

d((x, z), (x′, z′)) ≤ inf
(x′,y′,z′)∈epi φ

d((x, y, z), (x′, y′, z′)),

that is
d((x, z), epi f2(φ)) ≤ d((x, y, z), epi φ).

This is true for any (x, z) ∈ B ∩ epi f2(φ), and so

ed(B ∩ epi f2(φn), epi f2(φ)) ≤ ed(B
′ ∩ epi φn, epi φ) ∀ n.

Similarly ed(B ∩ epi f2(φ), epi f2(φn)) ≤ ed(B
′ ∩ epi φ, epi φn) for all n. Thus

φ = τAW−limφn implies that f2(φ) = τAW−lim f2(φn), and so f2 is continuous.

�

The transformation in equation (3) is the composition f = f2 ◦ f1, and so
Lemmas 5 and 6 demonstrate its continuity. As we defined the estimates In of
I in equation (5) by In = f(Jn) and Theorem 2 proves {Jn, n ∈ N} satisfies an
LDP in Conv([a, b]× [α, β]), the following Theorem follows from an application
of the contraction principle.

Theorem 7 The sequence {In, n ∈ N} satisfies an LDP in Conv([a/β, b/α])
with good rate function

K ′(φ) = inf

{

K(ψ) : ψ ∈ Conv([a, b] × [α, β]) and inf
y>0

yψ

(

x

y
,
1

y

)

= φ(x) for all x

}

,

where K is defined in the statement of Theorem 2.

3 The case of cumulative renewal processes.

In Duffy and Metcalfe [10] it is shown that whenever the sequence {~Yn, n ∈ N}
is i.i.d., the laws of the sequence of empirical estimates {Jn, n ∈ N} converge
weakly to the Dirac measure δJ . An analogous result holds for the sequence
{In, n ∈ N} of estimates of I.

Theorem 8 Assume there exists a unique µ ∈ M1([Ba,Bb] × [Bα,Bβ]) with
H(µ) = 0, then the sequence of laws of {In, n ∈ N} converge weakly to the Dirac
measure δf(Jµ).
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Proof: Clearly K ′(f(Jµ)) = 0. A simple adaption of Corollary 27.2.2 of [24]
ensures that K ′(ψ) > 0 for any ψ 6= f(Jµ). The result now follows from
Theorems 2.1 and 2.2 of Lewis et al. [20].

�

Thus for a cumulative renewal process, the blocked sequence {~Yn, n ∈ N} is
i.i.d. when B = 1 and by Sanov’s Theorem the conditions of Theorem 8 are
satisfied. In this case H is the relative entropy H(ν) = H(ν|µ), where µ is
the common distribution of {(Xn, τn), n ∈ N}. Thus Theorem 8 implies that
the laws of the sequence of estimates {In, n ∈ N} converge weakly to the Dirac
measure δf(Jµ) = δf(J) = δI , which is clearly desirable.

The direct adaption of the estimation scheme from [8] to estimate I would
be to select a time-scale T ∈ R

+ such that you believe {ATn −AT (n−1), n ∈ N}
forms an i.i.d. sequence and estimate λ in equation (2) by

λt(θ) =
1

T
log

1

[t/T ]

[t/T ]
∑

i=1

exp(θ(ATi −AT (i−1))). (7)

and take its Legendre-Fenchel transform. However, if {(Xn, τn), n ∈ N} is i.i.d.,
{NTn −NT (n−1), n ∈ N} is typically not i.i.d. for any T , leading to bias in the
estimate of λ. See [8, 15] for a discussion on bias in sCGF estimation.

In the simplest scenario possible, we illustrate the advantage of using the
apparently more complex approach proposed in this paper. If Xi = 1 with
probability 1, then the relationship in equation (3) reduces to I(x) = xJ(1, 1/x),
relating the large deviations of {Tn/n, n ∈ N} and {N(t)/t, t ∈ R

+}; a relation-
ship known to hold for a broad class of processes (see [16, 26, 23, 9, 11]). Setting
{τn, n ∈ N} to be i.i.d. taking the values 1, 2 each with probability 1/2, one
thousand (Xn, τn) pairs were generated and both schemes were implemented
and run on the same data-set. The results shown in Figure 1 are typical for a
broad class of cumulative renewal processes. The real I was determined explic-
itly and is plotted for reference. Although the results of just a single data-set
are shown, they’re representative. The scheme described in this paper nearly
perfectly overlays I. The more direct scheme is shown for three block-sizes
5, 10, 20. When the block-size is 5 or 10, underestimation occurs. When the
block-size is 20, the estimate does not span the whole x range of I as the full
range of possible ATn −AT (n−1) blocks has not been observed.

4 A rough guide to related work.

The estimation scheme in equation (4) for a one-dimensional version of M was
proposed by A. Dembo and used by Duffield et al. [8] for a problem in Asyn-
chronous Transfer Mode (ATM) networking. When combined with theorems
of Glynn and Whitt [17], it provided an online measurement-based mechanism
for estimating the tail of queue-length distributions. For the success of this
approach see, for example, Crosby et al. [5] and Lewis et al. [21].
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Figure 1: Estimating I via the scheme advocated in this paper with a block-size
of 1 and via the more direct scheme for a range of block-sizes. The processes
are: Xn = 1 for all n and {τn, n ∈ N} is Bernoulli {1, 2}.

In ATM networking, discrete time models are appropriate. This makes the
need for rate-function estimators of continuous time processes unnecessary. In
IP networks, which are more prevalent, it is more appropriate to model data-
traffic by a cumulative process where Xn is a packet-size and τn is an inter
packet arrival time. Thus to adapt for IP networking the successful Connection
Admission Control framework based on rate-function estimation, we propose
the estimator described in this paper.

For fixed θ, the estimator in equation (4) is known to be biased for correlated
data, with the bias tending to zero as block-size B increases. In [15] Ganesh
analyses this bias for auto-regressive and finite-state Markovian sources. He
shows that it is of similar form for both classes and demonstrates how to com-
pensate for the bias.

If extra structure of the input process is known a priori, more accurate esti-
mates can be made for M(θ) at fixed θ. If the source is known to be Markovian,
for example, see Paschalidis and Vassilaras [22], Eichelsbacher and Ganesh [12],
and references therein.

In other analysis of the estimator (4) the existence ofB such that {Yn, n ∈ N}
is i.i.d. is usually assumed. See Györfi et al. [18] for distribution-free confidence
intervals for measurement of λ(θ) for fixed θ. For a related question, in the
Bayesian context, see Ganesh et al. [13], and Ganesh and O’Connell [14] and
references therein. For a large deviations analysis of a connection admission
control algorithm based on estimating sCGFs see Duffield [7].
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