
1

Evaluating the Performance of TCP Stacks for
High-Speed Networks

B.Even, Y.Li, D.J.Leith
Hamilton Institute, Ireland

Abstract— In this paper we present experimental results eval-
uating the performance of the Scalable-TCP, HS-TCP, BIC-
TCP, FAST-TCP and H-TCP proposals for changes to the TCP
congestion control algorithm to improve performance in high-
speed network paths.

Index Terms— TCP Congestion control; Evaluation of TCP
protocols; High-speed networks.

I. INTRODUCTION

The TCP congestion control algorithm has been remarkably
successful in making the current internet function efficiently.
However, in recent years it has become clear that it can
perform very poorly in networks with high bandwidth-delay
product (BDP) paths. In response to this poor performance, nu-
merous proposals have been made in recent years for changes
to the TCP congestion control algorithm. These include the
HS-TCP proposal of Floyd[6], the Scalable-TCP proposal of
Kelly[10] and the FAST-TCP proposal of Low et al[7]; more
recent proposals include BIC-TCP[16] and H-TCP[12]. These
proposals have all been the subject of considerable interest
and experimentation in recent years.

Due in no small part to the volume of work that has been
carried out in this area, a real need has developed for sys-
tematic screening of proposals to identify suitable candidates
for more detailed evaluation. Evaluating the performance of
new TCP proposals is not easy. One principal difficulty arises
form the lack of an agreed set of performance measures.
As a result of the latter, different studies typically employ
performance tests that highlight particular aspects of TCP
performance while casting little light on other, equally im-
portant, properties of proposed protocols. Most existing work
also fails to control for variations in performance associated
with differences in network stack implementation that are
unrelated to the congestion control algorithm (see below). This
is an important practical aspect that is frequently ignored in
academic studies on the topic. In view of these facts it is
not surprising that concrete conclusions relating to the merits
of competing proposals have been difficult to make based on
currently available published results.

Our aim in this paper is to compare the performance of
competing TCP proposals in a fair and consistent manner.
We present experimental measurements of the performance of
the HS-TCP, Scalable-TCP, FAST-TCP, BIC-TCP and H-TCP1

1We note that H-TCP is developed by some of the authors of this paper.
We emphasise therefore that all of the protocols studied are put through
identical tests yielding quantitative and repeatable measurements. While space
restrictions prevent us from including all of our experimental measurements
in this paper, the measurements are available at www.hamilton.ie/net/eval/.

proposals.
These tests highlight a number of specific deficiencies of

the protocols studied, and suggest future research directions
to render these suitable for deployment in real networks. In
summary, we find that both Scalable-TCP and FAST-TCP con-
sistently exhibit substantial unfairness, even when competing
flows share identical network path characteristics. Scalable-
TCP, HS-TCP and BIC-TCP all exhibit slow convergence and
sustained unfairness following changes in network conditions
such as the start-up of a new flow. FAST-TCP exhibits complex
convergence behaviour.

The paper is structured as follows. In Section II we discuss
some issues that limit the utility of previous evaluation studies
and motivate the present work. In Section III network stack
implementation issues affecting tests in high-speed networks
are discussed. In Section IV we present our experimental mea-
surements. The implications of these results are discussed in
more detail in Section V and the conclusions are summarised
in Section VII.

II. SOME PITFALLS

Comparing the performance of TCP proposals is not always
easy and many pitfalls exist. Examples include the following.

Different network stack implementations. In almost all re-
cent studies on high-speed networks, publicly available Linux
patches provided by the authors of TCP proposals are used.
The performance of these patches are then compared directly.
However, patches may relate to different operating system
versions. More seriously, performance issues relating to the
inefficiency of the network stack implementation, particu-
larly in relation to SACK processing, are known to have
a significant impact on performance (e.g. see [11]). As a
result, most patches implementing proposed changes to the
TCP congestion control algorithm also implement numerous
changes to the network stack that are unrelated to the con-
gestion control algorithm. Consequently, direct performance
comparisons of these patches risk revealing more about the
efficiency of the network stack implementation than about the
performance of the congestion control algorithm. In this paper,
we use a common network stack implementation with all of the
congestion control algorithms studied in order to focus solely
on the latter’s performance. This implementation is discussed
in more detail in the next section.

Congestion control action not exercised. It is important to
design experiments that exercise the TCP congestion control

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297011286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

algorithm rather than other elements of the network stack. For
example, it is essential that the bandwidth of the network is
lower than that of the server network interface card (NIC), i.e.
that the network bottleneck lies external to the server being
tested. Otherwise, it is often the case that the transport layer
congestion control algorithm is effectively inactive (packet
drops are virtual) and performance measurements merely
evaluate the efficiency of the NIC driver.

Performance measures too narrow. We argue that it is not
sufficient to focus solely on the throughput performance of a
single flow. Fairness, responsiveness, etc between competing
TCP flows should also be evaluated.

Range of network conditions. Frequently results are
presented from a single test run only and/or for a specific
network condition or small range of network conditions. A
huge variety of conditions exist in modern networks. We
argue that it is essential, as a minimum, to characterise
TCP performance across a broad range of bandwidths
(not just on high-speed links), propagation delays (not just
trans-continental links) and router buffer sizes (not just very
large or very small buffers).

Such issues limit the utility of previous evaluation studies
and motivate the approach taken in the present paper. We do
not claim that our tests in this paper are exhaustive. We do,
however, seek to demonstrate their utility and discriminating
power and to initiate wider debate on this topic in the grid
community.

III. NETWORK STACK IMPLEMENTATION

A. Performance Issues

In this paper we focus on the Linux 2.4/2.6 network stack
implementation as it is widely used in TCP research for
high-speed networks. Specifically, measurements were taken
using commodity high-end servers, see Table I for details,
and a Linux 2.6.6 kernel modified to include instrumentation
of network stack operation and timing. Many of the issues
discussed are, however, also relevant to other operating system
network stacks. The efficiency of the TCP implementation for
high-speed networks has received considerable attention with,
for example, widespread support within gigabit-speed (and
above) network interface cards for hardware offload to reduce
the processing burden within the operating system kernel.
However, the bulk of this work has focussed on fast path
optimisation. While fast path performance is key in situations
where packet loss is rare (e.g. server farms), we demonstrate
that it is the slow path performance that is the bottleneck in
wide-area transfers where the probing action of the AIMD
strategy in TCP’s congestion control action means that packet
loss is an intrinsic feature of normal operation.

This is illustrated in Figure 1, which shows the cwnd for a
TCP flow on a 250Mb/s path with 200ms two-way propagation
delay. It can be seen that, following packet loss, the data
transfer stalls (the TCP ACK sequence number snd una does
not advance) and the congestion window cwnd remains at a
small value for an extended period. Also shown in Figure 1 is
the occupancy of the netdev queue that lies between the NIC

driver and the TCP stack. Incoming packets are placed in this
queue by the NIC driver to await processing by the TCP stack.
When the netdev queue becomes full, Linux enters a throttle
mode whereby all subsequent incoming packets are dropped
until processing of the queued packets completes and the
netdev queue empties; time spent in this throttle mode is also
marked on the figure. What we see happening is that following
packet loss the TCP stack is unable to process the incoming
TCP ACK packets quickly enough, resulting in a build up
of ACK packets in the netdev queue and entry into throttle
mode. Once throttle mode is entered, the resulting sustained
loss of ACK packets stalls the TCP data transfer. Eventually
this induces a TCP timeout and recovery. To our knowledge,
these are the first published stack measurements detailing
the performance degradation within the Linux network stack
during high-speed operation and describing the mechanism
involved.

The underlying problem is that the TCP stack is unable to
process incoming ACK packets quickly enough as the network
speed rises. Figure 1(b) plots the distribution of ACK process-
ing times. On a 250Mb/s link with 1500 byte data packets,
the mean inter-arrival time between packets is 48µs. It can be
seen that many ACK packets take much longer than 48 µs to
process (specifically, in this example 53.4% of ACK packets
take longer than 48 µs to process). On further inspection, we
find that long ACK processing times are largely associated
with time spent processing SACK information. The SACK
information included in a TCP ACK consists of notification
by the receiving machine of up to three contiguous blocks of
packets that have successfully reached the destination - packet
losses can be inferred from the gaps between these blocks.
Processing of SACK information imposes a significant book-
keeping burden on the sender. The current SACK processing
algorithm involves, for each ACK received, multiple walks by
the sender of the linked-list consisting of data packets sent
but not yet acknowledged (i.e. the packets in flight). Hence,
the computational burden of the algorithm scales with cwnd
and quickly becomes unacceptable on high bandwidth-delay
product paths. We note that the burden is also exacerbated
by the switch from delayed acking (whereby an ACK packet
is sent for roughly every two data packets received) to quick
acking (where an ACK packet is sent for every data packet)
during loss recovery, effectively doubling the number of ACK
packets that need to be processed.

Description
CPU Intel Xeon CPU 2.80GHz

Memory 256 Mbytes
Motherboard Dell PowerEdge 1600SC

Kernel Linux 2.6.6 altAIMD-0.6
txqueuelen 1,000

max backlog 300
NIC Intel 82540EM Gigabit

Ethernet Controller
NIC Driver e1000 5.2.39-k2

TX & RX Descriptors 4096

TABLE I
HARDWARE AND SOFTWARE CONFIGURATION.

3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350
 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09
Se

gm
en

ts
(c

w
nd

)

By
te

s (
se

qu
en

ce
)

time (seconds)

snd_cwnd
snd_una

qlen
throttle

(a) cwnd history

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

 0.1 1 10 100 1000 10000

D
ist

rib
ut

io
n

micro-seconds

slow path

(b) Distribution of ACK processing times.

Fig. 1. Performance of a single TCP transfer on a path with 250Mb/s
bottleneck bandwidth and 200ms two-way propagation delay; Linux 2.6.6
kernel, H-TCP congestion control algorithm (standard TCP algorithm is too
sluggish).

B. Improving Efficiency

We consider the following changes to the network stack to
improve efficiency.

• O(loss) SACK processing. As noted above, the current
implementation of SACK processing in the Linux kernel
requires a processing time which is O(cwnd). We have
implemented a modified SACK processing algorithm that
only requires a walk of the unsacked “holes” in the
linked-list of packets in flight rather than a walk of the
entire list. This algorithm effectively scales with O(loss)
rather than O(cwnd) and so can yield significant perfor-
mance gains in high bandwidth-delay product networks.

• SACK block reordering. Sorting SACK blocks by se-
quence number allows a single pass through the packets
in flight link-list (in the standard Linux implementation a
separate pass is made for each SACK block i.e. typically
three passes for every ACK packet received).

• ACK queueing. Significant efficiency gains are possible
by coalescing the SACK information from multiple ACK
packets - in effect, by using a form of delayed acking

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350
-4e+09

-3.5e+09

-3e+09

-2.5e+09

-2e+09

-1.5e+09

-1e+09

-5e+08

 0

 5e+08

 1e+09

Se
gm

en
ts

(c
w

nd
)

By
te

s (
se

qu
en

ce
)

time (seconds)

snd_cwnd
snd_una

qlen
throttle

(a) cwnd history

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

 0.1 1 10 100 1000 10000

D
ist

rib
ut

io
n

micro-seconds

slow path

(b) Distribution of ACK processing times.

Fig. 2. Performance of a single TCP transfer on a path with 250Mb/s bot-
tleneck bandwidth and 200ms two-way propagation delay; altAIMD modified
Linux 2.6.6 kernel, H-TCP congestion control algorithm.

inside the SACK processing code.
• Throttle Disabled. A build-up of ACK packets at the

sender can cause an overflow in the netdev queue which
invokes a throttle action that causes all packets to be
dropped. We have modified this behaviour so that the
netdev queue operates a pure drop-tail discipline.

Patches implementing these changes are available online at
www.hamilton.ie/net/. The impact of these changes can be
seen in Figure 2. It can be seen that in this example the
netdev queue now never fills (and so no ACK packets are
now dropped within the network stack) and stalling of the
data transfer no longer occurs. The impact on ACK processing
time is shown in Figure 2(b), where it can be seen that the
distribution of processing times has been pushed to the left
so that now almost all ACKs are processed in less than 48
µs. We note that the distribution of ACK processing times
does include a tail beyond 48 µs. The source of this tail is
currently unclear (it seems to be associated with occasional
extended memory access times) but affects only a very small
proportion of ACKs packets - specifically, only in this example
0.11% of ACK packets take longer than 48 µs to process.

4

C. altAIMD kernel

In the rest of this paper, we make use of a Linux 2.6.6 kernel
modified as discussed above. In addition, we have included
in this kernel implementations of the Scalable-TCP, HS-TCP,
FAST-TCP, BIC-TCP and H-TCP congestion control algo-
rithms together with Appropriate Byte Sizing (RFC3465)[1]2.
A single sysctl is used to switch between congestion control
algorithms on-the-fly, without the requirement of rebooting.
This kernel is referred to as the altAIMD kernel and is available
online at www.hamilton.ie/net/. The congestion control algo-
rithm implementations are based on publicly available patches3

. However, these patches are often for different versions of
Linux and, as noted previously, typically also make extensive
changes to the network stack that are not directly related to the
congestion control algorithm. Use of a common network stack
implementation therefore serves to provide consistency, and
control against the influence of differences in implementation
as opposed to differences in the congestion control algorithm
itself.

IV. TCP CONGESTION CONTROL PERFORMANCE

It is important to emphasise that our goal in this paper is
not to achieve exhaustive testing, but rather to perform initial
screening of proposals for changes to the TCP congestion
control algorithm. We therefore seek to employ benchmark
tests that can be consistently applied and that exercise the core
functionality of TCP. The performance problems of standard
TCP over high bandwidth-delay product paths are largely
associated with bulk data transfers. It is therefore natural to
take this as our starting point in testing new TCP proposals.
In addition to restricting our attention to long-lived flows, we
also confine consideration to drop-tail queues, since this is
the prevalent queueing discipline in current networks, and to
a single shared bottleneck link. Short-lived TCP flows, and
indeed non-TCP flows, constitute a large proportion of traffic
in real networks. Similarly, not all routers operate drop-tail
queueing disciplines. However, as we shall see, restricting
our attention to long-lived TCP flows operating in drop-
tail environments is already sufficient to highlight important
features of new TCP proposals.

A. Test Setup

Before proceeding, we consider some issues common to all
of our proposed tests.

We define our tests on the dumbbell topology shown in
Figure 3. We recognize that this topology is a limited one,
but the behaviour of standard TCP on this topology is well
studied and so it provides a natural starting point. All tests are
conducted on an experimental testbed with commodity high-
end PCs connected to gigabit switches to form the branches

2The counting of ACK’s by the number of bytes acknowledged rather than
the number of ACKS’s received to counter the problems of slow cwnd growth
when using delayed acking.

3We note that the implementation of BIC-TCP included in the standard
Linux 2.6.6 kernel distribution is known[13] to be incorrect (this has subse-
quently been corrected). In our tests we use a corrected implementation based
upon the original Linux patch developed by the BIC-TCP authors.

Dummynet
Router

TCP1
receiver

TCP2
receiver

TCP1
sender

TCP2
sender

GigE
switch

GigE
switch

Fig. 3. Experimental set-up.

of the dumbbell topology. All sender and receiver machines
used in the tests have identical hardware and software config-
urations as shown in Tables I and II and are connected to the
switches at 1Gb/sec. The sender and receiver machines run the
altAIMD kernel. The router, running the FreeBSD dummynet
software, can be configured with various bottleneck queue-
sizes, capacities and round trip propagation delays to emulate
a range network conditions.

We consider round-trip propagation delays in the range
16ms-320ms and bandwidths ranging from 1Mb/s-250Mb/s.
We do not consider these values to be definitive – the upper
value of bandwidth considered can, in particular, be expected
to be subject to upwards pressure. We do, however, argue that
these values are sufficient to capture an interesting range of
network conditions that characterises current communication
networks. In all of our tests we consider delay values of
16ms, 40ms, 80ms, 160ms, 320ms and bandwidths of 1Mb/s,
10Mb/s, 100Mb/s and 250Mb/s. This defines a grid of mea-
surement points where, for each value of delay, performance
is measured for each of the values of bandwidth.

In order to minimise the effects of local hosts queues and
flow interactions, we only ran one flow per PC. Flows are
injected using iperf into the testbed. Each individual test
was run at least ten minutes each. In the case of tests involving
Standard TCP, we ran individual tests for up to an hour as
the congestion epoch duration becomes very long on large
bandwidth-delay products paths. In order to obtain a good
representation of the run-to-run variability in performance
metrics, all individual tests were repeated at least 5 times and
the arithmetic mean taken. An error on the measurement was
taken as the standard error from this mean.

B. Response Function Test

As our starting point we evaluate the impact of packet loss
on efficiency, similarly to Padhye et al [14] and Floyd[5],
by measuring the average throughput of a single TCP flow
as the level of random packet losses is varied. As discussed
previously, these measurements are carried out for a range of
propagation delays and link bandwidths. Measurements of the
response functions obtained are shown in Figure 4.

C. Fairness Test

We next evaluate fairness by considering two TCP flows
with shared bottleneck link. Owing to space restrictions, we
cannot include the results of all our tests here. We therefore
present results for a subset of network conditions that are

5

 0.1

 1

 10

 100

 1000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

T
ot

al
 T

hr
ou

gh
pu

t (
m

bi
t/s

ec
)

Random Loss Rate (packets)

Standard TCP
HSTCP

ScalableTCP
HSTCP Theory

ScalableTCP Theory
Standard TCP Theory

 0.1

 1

 10

 100

 1000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

T
ot

al
 T

hr
ou

gh
pu

t (
m

bi
t/s

ec
)

Random Loss Rate (packets)

HTCP
FAST

BicTCP
HSTCP Theory

ScalableTCP Theory
Standard TCP Theory

Fig. 4. Measured response functions with 250Mbit/sec bottleneck link and 162ms RTT.

Fig. 5. Ratio of throughputs of two flows under symmetric conditions (same propagation delay, shared bottleneck link, same congestion control algorithm)
as path propagation delay is varied. Results are shown for 10Mbit/sec and 250Mbit/sec bottleneck bandwidths. The bottleneck queue size is 20% BDP.
Observe that while standard TCP and H-TCP are essentially fair (the competing flows achieve, to within 5%, the same average throughput) under these
conditions, Scalable-TCP and FAST-TCP are notably unfair. HS-TCP and BIC-TCP can also be seen to exhibit significant unfairness, albeit to a lesser degree
than Scalable-TCP and FAST-TCP.

6

representative of the full test results obtained. Figure 5 plots
the ratio of measured throughputs for two flows with the
same propagation delay sharing a common bottleneck link
as the path propagation delay is varied. Tests are of 10
minutes duration. Results are shown both for a bottleneck link
bandwidth of 10 Mb/s and 250Mb/s, roughly corresponding
to low and high-speed network conditions. Results are shown
when the queue is sized at 20% BDP but similar results are
also obtained when the queue is 100% BDP.

V. DISCUSSION

Perhaps the most striking results are obtained from the
fairness test where the throughputs of competing flows with
the same propagation delay are compared, see Figure 5.
Under these conditions, the standard TCP congestion control
algorithm consistently ensures that each flow achieves the
same (to within less than 5%) average throughput. However,
the measurements shown in Figure 5 indicate that many of
the proposed protocols exhibit substantial unfairness under the
same conditions. While both FAST-TCP and Scalable-TCP
display very large variations in fairness, BIC-TCP and HS-
TCP also display significant levels of unfairness.

In view of the somewhat surprising nature of these results,
it is worthwhile investigating this behaviour in more detail.
We consider in turn each of the protocols exhibiting greater
levels of unfairness than standard TCP.

• Scalable-TCP. Figure 6 shows typical examples of mea-
sured cwnd time histories. It can seen that the cwnd’s
either do not converge to fairness or else converge
very slowly indeed (not reaching fairness within the
10 minute duration of these tests). Although sometimes
expressed as a modified additive increase algorithm, it is
easily shown that the Scalable-TCP algorithm is in fact
a multiplicative-increase multiplicative-decrease (MIMD)
algorithm. It has been known since the late 1980s [3] that
in drop-tail networks such algorithms may not converge
to fairness.

• FAST-TCP. Figure 7 shows typical examples of mea-
sured cwnd time histories when using the FAST-TCP
algorithm. The upper figure shows measurements taken
on a 250Mb/s path with 42ms propagation delay. Rapid
variations in cwnd are evident which are somewhat
surprising in view of the delay-based rather than loss-
based nature of the FAST-TCP algorithm. The middle
figure shows the cwnd’s measured when the propagation
delay on the path is increased to 162ms. The rapid vari-
ations in cwnd are no longer present, but the flows now
exhibit a number of abrupt changes in cwnd including
a sharp increase in unfairness after 500s. It is perhaps
worth emphasising that these examples are representative
of our measurements across a wide range of network
conditions and are not selected as worst case behaviours.
Our purpose in this paper is not to analyse or explain the
FAST-TCP algorithm or its performance. We do, however,
comment that the behaviour in the low latency example
appears to be associated with use of an aggressive cwnd
increase strategy leading to flooding of the queue and

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

ScalableTCP 1
ScalableTCP 2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

ScalableTCP 1
ScalableTCP 2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 100 200 300 400 500 600
cw

nd
 (

pa
ck

et
s)

Time (seconds)

ScalableTCP 1
ScalableTCP 2

Fig. 6. Scalable-TCP cwnd time histories following startup of a second
flow. RTT of both flows is 42ms (top), 162ms (middle) and 324ms (bottom).
Bottleneck bandwidth is 250Mbit/sec, queue size 20% BDP.

consequently generating many packet losses, while the
behaviour in the higher latency example appears to be
associated with the adaptive switching of the increase
strategy.

• HS-TCP. Figure 8 shows examples of HS-TCP cwnd
time histories for flows with the same round-trip time
following startup of a second flow. It can be seen that the
flows do converge to fairness, but that the convergence
time can be long. This effect becomes more pronounced
as the path propagation delay is increased. These exper-
imental measurements are in good agreement with the
simulation results previously reported in [15]. Recall that
the AIMD increase parameters are functions of cwnd in
HS-TCP. The slow convergence appears to originate in
the asymmetry that exists in HS-TCP between the AIMD
parameters of newly started flows (with small cwnd) and
existing flows (with large cwnd). Existing flows with
large cwnd have more aggressive values of increase and
decrease parameters than do newly started flows which
have small cwnd. Hence, sustained unfairness can occur.

• BIC-TCP. Figure 9 shows examples of the cwnd time
history of BIC-TCP following startup of a second flow.
It can seen that as the path propagation delay increases
the cwnd’s converge increasingly slowly, not reaching
fairness within the 10 minute duration of these tests
when the path propagation delay is large. This behaviour
manifests itself in Figure 5 as a fall in the measured
fairness as propagation delay increases.

• H-TCP. Figure 10 shows cwnd time histories of H-TCP

7

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

FAST 1
FAST 2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

FAST 1
FAST 2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

FAST 1
FAST 2

Fig. 7. FAST-TCP cwnd time histories following startup of a second
flow. RTT is 42ms (top), 162ms (middle) and 324ms (bottom). Bottleneck
bandwidth is 250Mbit/sec, queue size 20% BDP.

following startup of a second flow. The equal sharing
achieved between the two competing flows is evident.

VI. RELATED WORK

Performance measurements are included in many papers
proposing modifications to the TCP congestion control algo-
rithm and we briefly mention here the main studies relevant to
the present paper. In [10], Kelly presents an experimental com-
parison of the aggregate throughput performance of Scalable-
TCP and standard TCP. In [9], Low and co-authors present
throughput and packet loss measurements from a lab-scale
test network for FAST-TCP, HS-TCP, Scalable-TCP, BIC-TCP
and TCP-Reno. Only throughput measurements that are an
aggregate over all flows are presented, thus preventing the
fairness of the TCP algorithms from being evaluated; only
a single queue size is used and network convergence time is
not considered. In [8], aggregate throughput measurements are
presented for FAST-TCP and TCP Reno. In [7], throughput
and cwnd time histories of FAST-TCP, HS-TCP, Scalable-
TCP and TCP Reno are presented for a lab-scale experimental
testbed. Aggregate throughput, throughput fairness (measured
via Jain’s index) and a number of other measures are pre-
sented, but only for an 800Mb/s bottleneck bandwidth setting
and 2000 packet queue. In [16], NS simulation results are
presented comparing the performance of HS-TCP, Scalable-
TCP, BIC-TCP and standard TCP.

We note that the foregoing papers all propose changes
to the TCP congestion control algorithm and thus present
performance measurements in support of these changes. While

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

HSTCP 1
HSTCP 2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

HSTCP 1
HSTCP 2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 100 200 300 400 500 600
cw

nd
 (

pa
ck

et
s)

Time (seconds)

HSTCP 1
HSTCP 2

Fig. 8. HS-TCP cwnd time histories following startup of a second flow.
RTT is 42ms (top), 162ms(middle) and 324ms (bottom). Bottleneck bandwidth
250Mbit/sec, queue size 20% BDP.

the design of congestion control algorithms for high-speed
networks has been the subject of considerable interest, the
evaluation of competing proposals per se has received far less
attention. Notably, [2], [4] present evaluation studies specifi-
cally targeted at measuring the performance of TCP proposals.
Experimental measurements are presented for Scalable-TCP,
HS-TCP, FAST-TCP, H-TCP, BIC-TCP, HSTCP-LP and P-
TCP (i.e. 16 parallel standard TCP flows) over network paths
within the U.S and between the U.S and Europe. Measure-
ments presented include aggregate throughput and throughput
fairness (via Jain’s index). Convergence time and the impact
of queue provisioning are not considered.

In all of the experimental tests noted above, no attempt
is made to control for changes to the Linux network stack
implementation that are unrelated to the congestion control
algorithm.

VII. SUMMARY AND CONCLUSIONS

In this paper we present experimental results evaluating the
performance of the Scalable-TCP, HS-TCP, BIC-TCP, FAST
TCP and H-TCP proposals.

We find that many recent proposals perform surprisingly
poorly in even the most simple test, namely achieving fairness
between two competing flows in a dumbbell topology with the
same round-trip times and shared bottleneck link. Specifically,
both Scalable-TCP and FAST TCP exhibit very substantial
unfairness in this test.

8

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

BicTCP 1
BicTCP 2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

BicTCP 1
BicTCP 2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

BicTCP 1
BicTCP 2

Fig. 9. BIC-TCP cwnd time histories following startup of a second flow. RTT
is 42ms (top), 162ms(middle) and 324ms (bottom). Bottleneck bandwidth is
250Mbit/sec, queue size 20% BDP.

REFERENCES

[1] M.Allman, TCP Congestion Control with Appropriate Byte Counting
(ABC). IETF RFC 3465, February 2003.

[2] H. Bullot, R.L. Cottrell, R. Hughes-Jones, Evaluation of Advanced TCP
Stacks on Fast Long Distance Production Networks. J.Grid Comput,
2003.

[3] D.M. Chiu, R. Jain, Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks. Computer Networks
and ISDN Systems, 1989.

[4] R.L. Cottrell, S. Ansari, P. Khandpur, R. Gupta, R. Hughes-Jones, M.
Chen, L. MacIntosh, F. Leers, Characterization and Evaluation of TCP
and UDP-Based Transport On Real Networks. . Proc. 3rd Workshop on
Protocols for Fast Long-distance Networks, Lyon, France, 2005.

[5] S.Floyd, K.Fall, Promoting the use of end-to-end congestion control in
the internet. IEEE/ACM Transactions on Networking, August 1999

[6] S.Floyd, HighSpeed TCP for Large Congestion Windows . Sally Floyd.
IETF RFC 3649, Experimental, Dec 2003.

[7] C. Jin, D.X. Wei, S,H. Low, FAST TCP: motivation, architecture,
algorithms, performance. Proc IEEE INFOCOM 2004.

[8] C. Jin, D. X. Wei, S. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L.
A. Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini,
S. Ravot, S. Singh, FAST TCP: From Theory to Experiments. IEEE
Network, 19(1):4-11, 2005

[9] S. Hegde, D. Lapsley, B. Wydrowski, J. Lindheim, D.Wei, C. Jin, S. Low,
H. Newman, FAST TCP in High Speed Networks: An Experimental
Study. Proc. GridNets, San Jose, 2004.

[10] T. Kelly, On engineering a stable and scalable TCP variant, Cam-
bridge University Engineering Department Technical Report CUED/F-
INFENG/TR.435, June 2002.

[11] D.J.Leith, Linux implementation issues in high-speed
networks. Hamilton Institute Technical Report, 2003,
www.hamilton.ie/net/LinuxHighSpeed.pdf.

[12] D.J.Leith, R.N.Shorten, H-TCP Protocol for High-Speed Long-Distance
Networks. Proc. 2nd Workshop on Protocols for Fast Long Distance
Networks. Argonne, Canada, 2004.

[13] Y.T.Li, D.J.Leith, BicTCP implementation in Linux

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

HTCP 1
HTCP 2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

Time (seconds)

HTCP 1
HTCP 2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 100 200 300 400 500 600
cw

nd
 (

pa
ck

et
s)

Time (seconds)

HTCP 1
HTCP 2

Fig. 10. H-TCP cwnd time histories following startup of a second flow. RTT
is 42ms (top), 162ms (middle) and 324ms (bottom). Bottleneck bandwidth is
250Mbit/sec, queue size 20% BDP.

kernels. Hamilton Institute Technical Report, 2004,
www.hamilton.ie/net/LinuxBicTCP.pdf.

[14] J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, Modeling TCP Reno
performance: a simple model and its empirical validation. Proc. SIG-
COMM 1998 (Also IEEE/ACM Transactions on Networking, 2000).

[15] R.N.Shorten, D.J.Leith,J.Foy, R.Kilduff, Analysis and design of con-
gestion control in synchronised communication networks. Automatica,
2004.

[16] L. Xu, K. Harfoush, I. Rhee, Binary Increase Congestion Control for
Fast Long-Distance Networks. Proc. INFOCOM 2004

TCP Protocol Parameters
HS-TCP High P=1−7, Low Window=31

and High Window=83, 000
Scalable-TCP α = 0.01, β = 0.875

and Low Window=16
H-TCP ∆L = 1sec, ∆B = 0.2

BIC-TCP Smax = 32, B = 4, smooth part=20, β = 0.8
Low Util=15%, Util Check=2

and Low Window=14
FAST-TCP γ = 50, m0a=8, m1a=20, m2a=200

m0u=1500, m1l=1250,
m1u=15000 and m2l=12500

TABLE II
DEFAULT NEW-TCP PARAMETERS USED IN ALL TESTS.

